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Abstract

Strict consistency of replicated data is infeasible or not required by many distributed applications,
S0 current systems often perrstale replication in which cached copies of data values are allowed to
become out of date. Queries over cached data return an answer quickly, but the stale answer may be
unboundedly imprecise. Alternatively, queries over remote master data return a precise answer, but with
potentially poor performance. To bridge the gap between these two extremes, we propose a hew class of
replication systems called TRAPRré&deoff in Replication Precision and Performapc&@ RAPP sys-
tems give each user fine-grained control over the tradeoff between precision and performance: Caches
store ranges that are guaranteed to bound the current data values, instead of storing stale exact values.
Users supply a quantitatiyerecision constrainlong with each query. To answer a query, TRAPP
systems automatically select a combination of locally cached bounds and exact master data stored re-
motely to deliver bounded answetonsisting of a range that is no wider than the specified precision
constraint, that is guaranteed to contain the precise answer, and that is computed as quickly as possible.
This paper defines the architecture of TRAPP replication systems and covers some mechanics of caching
data ranges. It then focuses on queries with aggregation, presenting optimization algorithms for answer-
ing queries with precision constraints, and reporting on performance experiments that demonstrate the
fine-grained control of the precision-performance tradeoff offered by TRAPP systems.

1 Introduction

Many environments that replicate information at multiple sites pestaie replication rather than enforc-

ing exact consistency over multiple copies of data. Exact (transactional) consistency is infeasible from a
performance perspective in many large systems, for a variety of reasons as outlined in [GHOS96], and for
many distributed applications exact consistency simply is not a requirement.

The World-Wide Web is a very general example of a stale replication system, where master copies of
pages are maintained on Web servers and stale copies are cached by Web browsers. In the Web architecture,
reading the stale cached data kept by a browser has significantly better performance than retrieving the
master copy from the Web server (accomplished by pressing the browser’s “refresh” button), but the cached
copy may be arbitrarily out of date. Another example of a stale replication system is a data warehouse,
where we can view the data objects at operational databases as master copies, and data at the warehouse (or
at multiple “data marts”) as stale cached copies. Querying the cached data in a warehouse is typically much
faster than querying the master copies at the operational sites.

*This work was supported by the National Science Foundation under grant 11S-9811947, by NASA Ames under grant NCC2-
5278, and by a National Science Foundation graduate research fellowship.



1.1 Running Example

As a scenario for motivation and examples throughout the paper, we will consider a simple replication
system used for monitoring a wide-area network linking thousands of computers. We assume that each node
(computer) in the network tracks the average latency, bandwidth, and traffic level for each incoming network
link from another node. Administrators at monitoring stations analyze the status of the network by collecting
data periodically from the network nodes. For each IMk— IV; in the network, each monitoring station

will cache the latest latency, bandwidth, and traffic level figures obtained from NedeéAdministrators

want to ask queries such as:

Q1 What is the bottleneck (minimum bandwidth link) along a pAth— Ny — - -+ — Ni?

Q2 What is the total latency along a path — Ny — -+ — Ni?

Q3 What is the average traffic level in the network?

Q4 What is the minimum traffic level for fast links.€., links with high bandwidth and low latency)?
Q5 How many links have high latency?

Q6 What is the average latency for links with high traffic?

While administrators would like to obtain current and precise answers to these kinds of queries, collect-
ing new data values from each relevant node every time a query is posed would take too long and might
adversely affect the system. Requiring that all nodes constantly send their updated values to the monitors
is also expensive and generally unnecessary. This paper develops a new approach to replication and query
processing that allows the user to control the tradeoff between precise answers and high performance. In our
example, the latency, bandwidth, and traffic level figures at each monitor are cadzedes rather than
exact values, and nodes send updates only when an exact value moves outside of a cached range. Queries
such a€Q1-Q6 above can be executed over the cached ranges and themselves return a range that is guaran-
teed to contain the current exact answer. When an administrator poses a query, he can preddsoa
constraintindicating how wide a range is tolerable in the answer.

For example, suppose the administrator wishes to sample the peak latency periodically in some critical
area, in order to decide how much money should be invested in upgrading the network. To make this
decision, the administrator does not need to know the precise peak latency at each query, but may wish to
obtain an answer to within 5 milliseconds of precision. Our system automatically combines cached ranges
with precise values retrieved from the nodes in order to answer queries within the specified precision as
quickly as possible.

1.2 Precision-Performance Tradeoff

In general, stale replication systems potentially offer the user two modes of querying. In the first mode,
which we call theprecise modequeries are sent to the sources to get a precise (up-to-date) answer but
with potentially poor performance. Alternatively, in what we call ilmprecise modegueries are executed

over cached data to get an imprecise (possibly stale) answer very quickly. In imprecise mode, usually no
guarantees are given as to exactly how imprecise the answer is, so the user is left to guess the degree of
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Figure 1: Precision-performance tradeoff.

imprecision based on knowledge of data stability and/or how recently caches were updated. Figure 1(a)
illustrates the precision-performance tradeoff between these two extreme query modes.

The discrepancy between the extreme points in Figure 1(a) leads to a dilemma: answers obtained in
imprecise mode without any precision guarantees may be unacceptable, but the only way to obtain a guar-
antee is to use precise mode, which can place heavy load on the system and lead to unacceptable delays.
Many applications actually require a level of precision somewhere between the extreme points. In our run-
ning example (Section 1.1), an administrator posing a query wihaamtitative precision constrairike
“within 5 milliseconds” should be able to find a middle ground between sacrificing precision and sacrificing
performance.

To address this overall problem, we propose a new kind of replication system, which we call TRAPP
(Tradeoff in Replication Precision and Performahcd RAPP supports a continuous, monotonically de-
creasing tradeoff between precision and performance, as characterized in Figure 1(b). Each query can be
accompanied by a custom precision constraint, and the system answers the query by combining cached and
source data so as to optimize performance while guaranteeing to meet the precision constraint. The extreme
points of our system correspond to the precise and imprecise query modes defined above.

1.3 Overview of Approach

In addition to introducing the overall TRAPP architecture, in this paper we focus on a specific TRAPP repli-
cation system called TRAPP/AG, for queries with aggregation over numeric (real) data. The conventional
precise answer to a query with an outermost aggregation operator is a single real value. In TRAPP/AG,
we define @bounded imprecise answéhrereafter calletbounded answéto be a pair of real values 4 and

H 4 that define a rangH. 4, H 4] in which the precise answer is guaranteed to lie. Precision is quantified as
the width of the rangéH 4 — L 4), with O corresponding to exact precision ardrepresenting unbounded
imprecision. A precision constraint is a user-specified congtapt 0 denoting the maximum acceptable
range widthj.e,0 < Hy — L4 < R.

To be able to give guaranteed bourids,, H 4] as query answers, TRAPP/AG requires cooperation
between data sources and caches. Specifically, let us suppose that when a source refreshes a cache’s value
for a data objecO, along with the current exact value forthe source sends a range H | called thebound
of O. (We actually cover a more general case where the bound is a function of time.) The source guarantees



link latency bandwidth traffic refresh weights

from ‘ to cached‘ precise cached‘ precise| cached ‘ precise| cost || W ‘ w’ ‘ w
1| N | Ny | [2, 4] 3 |[60,70]| 61 | [95,105] | 98 3 2 | 10 | 29.5
2| Ny | Ny| [5,7] 7 | [45,60]| 53 |[110,120]| 116 6 2 10| 2
3| N3 | Ny |[12,16]| 13 |[55,70]| 62 | [95,110] | 105 6 15 | 41.5
4| N, | N3 | [9,11] 9 |[65 70]| 68 |[120,145]| 127 8 25| 2
5( N, | N5 | [811] | 11 |[40,55]| 50 | [90,110] | 95 4 3 |20|365
6| N5 | Ng | [4,6] 5 | [4560]| 45 | [90,105] | 103 2 2 | 15 | 315

Figure 2: Sample data for network monitoring example.

that the actual value faD will stay in this bound, or if the value does exceed the bound then the source will
immediately send a new refresh. Thus, the cache stores the hbuAd for each data objecd instead of

an exact value, and the cache can be assured that the current master valisendgthin the bound. When

the cache answers a query, it can use the bound values it stores to compute an answer, also expressed in
terms of a bound.

The small table in Figure 2 shows sample data cached at a network monitoring station (recall Section
1.1), along with the current precise values at the network nodeswé&ightsmay be ignored for now. Each
row in Figure 2 corresponds to a network link betweenlithie from node and thdink to node. Recall that
precise master values fatency bandwidth andtraffic for incoming links are measured and stored at the
link to node. In addition, for each link, the monitoring station stores a bounded vallagocy bandwidth
andtraffic. The cache can use these bounded values to compute bounded answers to queries.

Suppose a bounded answer to a query with aggregation is computed from cached values, but the answer
does not satisfy the user’s precision constraiiet, the answer bound is too wide. In this case, some data
must be refreshed from sources to improve precision. We assume that there is a known quactsative
associated with refreshing data objects from their sources, and this cost may vary for each daayitem (
in our example it might be based on the node distance or network path latency). We show sample refresh
costs for our example in Figure 2. Our system uses optimization algorithms that attempt to find the best
combination of cached bounds and master values to use in answering a query, in order to minimize the cost
of refreshing while still guaranteeing the precision constraint. In this way, TRAPP/AG offers a continuous
precision-performance tradeoff: Relaxing the precision constraint of a query enables the system to rely more
on cached data, which improves the performance of the query. Conversely, tightening the constraint causes
the system to rely more on master data, which degrades performance but yields a more precise answetr.

1.4 Contributions
The specific contributions of this paper are the following:

¢ We define the architecture of TRAPP replication systems, which offer each user fine-grained control
over the tradeoff between precision and performance, and propose a method for determining bounds.



e We specify how to compute the five standard relational aggregation functions over bounded data
values, considering queries with and without selection predicates, and with joins.

e We present algorithms for finding the minimum-cost set of tuples to refresh in order to answer an
aggregation query with a precision constraint, with and without selection predicates. (Joins are dis-
cussed but optimal algorithms are not provided.) We analyze the complexity of these algorithms, and
in the cases where they are exponential we suggest approximations.

e We have implemented all of our algorithms and we present some initial performance results.

2 Related Work

There is a large body of work dedicated to systems that improve query performance by giving approximate
answers. Early work in this area is reported in [Mor80]. Most of these systems use either precomputation
(e.g, [PG99]), sampling€.g, [HH97]), or both €.g, [GM98]) to give an answer with statistically estimated
bounds, without scanning all of the input data. By contrast, TRAPP systems may scan all of the data (some
of which may be bounds rather than exact values), to provide guaranteed rather than statistical results.

The previous work perhaps most similar to the TRAPP ide€@uasi-copieJABGMAS88] and Moving
Objects DatabaseRVXCJ98]. Like TRAPP systems, these two systems are replication schemes in which
cached values are permitted to deviate from master values by a bounded amount. However, unlike in TRAPP
systems, these systems cannot answer queries by combining cached and master data, and thus there is no
way for users to control the precision-performance tradeoff. Instead, the bound for each data object is
set independently of any query-based precision constraints. In Quasi-copies, bounds are set statically by
a system administrator. In Moving Objects Databases, bounds are set to maximize a single metric that
combines precision and performance, eliminating user control of this tradeoff. Furthermore, neither of these
systems support aggregation queries.

TheDemarcation ProtocolBGM92] is a technique for maintaining arithmetic constraints in distributed
database systems. TRAPP systems are somewhat related to this work since the bound of a data value forms
an arithmetic constraint on that value. However, the Demarcation Protocol is not designed for modifying
arithmetic constraints the way TRAPP systems update bounds as needed. Furthermore, the Demarcation
Protocol does not deal with queries over bounded data.

Both [JV96] and [RB89] consider aggregation queries with selections. The APPROXIMATE approach
[JV96] produces bounded answers when time does not permit the selection predicate to be evaluated on all
tuples. However, APPROXIMATE does not deal with queries over bounded data. The work in [RB89]
deals with queries over fuzzy sets. While bounded values can be considered as infinite fuzzy sets, this
representation is not practical. Furthermore, the approach in [RB89] does not consider fuzzy sets as approx-
imations of exact values available for a cost.

In the multi-resolution relational data mod¢RFS92], data objects undergo various degrees of lossy
compression to reduce the size of their representation. By reading the compressed versions of data objects
instead of the full versions, the system can quickly produce approximate answers to queries. By contrast, in
TRAPP systems performance is improved by reducing the number of data objects read from remote sources,



rather than by reducing the size of the data representatioRiviergence CachingHSW94], a bound is
placed on the number of updates permitted to the master copy of a data object before the cache must be
refreshed, but there are no bounds on data values themselves.

Another body of work that deals with imprecision in information systemsfisrmation Quality(IQ)
researche.g, [NLF99]. 1Q systems quantify the accuracy of data at the granularity of an entire data server.
Since no bounds are placed on individual data values, queries have no concrete knowledge about the preci-
sion of individual data values from which to form a bounded answer. Therefore, 1Q systems cannot give a
guaranteed bound on the answer to a particular query.

Finally, data objects whose values are ranges can be considered a special case of constrained values in
Constraint DatabasefKKR90, BK95, BSCE99, Kup93, BL99], or as null variables with local conditions
in Incomplete Information DatabassKG87]. However, no work in these areas that we know of considers
constrained values as bounded approximations of exact values stored elsewhere. Furthermore, aggregation
gueries over a set with uncertain memberskig(due to selection conditions over bounded values) are not
considered.

3 TRAPP System Architecture

The overall architecture of a TRAPP system is illustrated in Figur®a&ta Sourcesmaintain the exact
valueV; of each data objea®;, while Data Cachestore bounds$L;, H;] that are guaranteed to contain the
exact values. Source values may appear in multiple caches (with possibly different bounds), and caches may
contain bounded values from multiple sources. A user submits a query@utry Processoat a local data

cache, along with a precision constraint. To answer the query while guaranteeing the constraint, the query
processor may need to seqdery-initiated refresh requests theRefresh Monitoiat one or more sources,

which responds with new bounds. The Refresh Monitor at each source also keeps track of the bounds for
each of its data objects in each relevant cache. (Note that in the network monitoring application we consider
in this paper, each source must only keep track of a small number of bounds. In other applications a source
may provide a large number of objects to multiple caches, in which case a scalable trigger system would be
of great benefit [HCF99].) The Refresh Monitor is responsible for detecting whenever the value of a data
object exceeds the bound in some cache, and sending a new bound to the cathe-i@tiated refresh

When the cached bound of a data object is refreshed by its source, some cost is incurred. We consider
the general case where each object has its own cost to refresh, although in practice it is likely that the cost
of refreshing an object depends only on which source it comes from. (It also may be possible to amortize
refresh costs for a set of values, as discussed in Section 8.) These costs are used by our algorithms that
choose tuples to refresh in order to meet the precision constraint of a query at minimum cost.

The TRAPP architecture as presented in this paper makes some simplifying assumptions. First, al-
though object insertions or deletions do not occur on a regular basis in our example application, insertions
and deletions are handled but they must be propagated immediately to all caches. (Section 8.3 discusses
how this limitation might be relaxed.) Second, the level of precision offered by our system does not account
for elapses of time while sending refresh messages or while processing a single query. We assume that the
time to refresh a bound is small enough that the imprecision introduced is insignificant. Furthermore, we
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Figure 3: TRAPP system architecture.

assume that value-initiated refreshes do not occur during the time an individual query is being processed.
Addressing these issues is a topic for future work as discussed in Section 8.4.

Next, in Section 3.1 we discuss in more detail the mechanics of bounded values and refreshing. Then
in Section 3.2 we generalize bound functions to be time-varying functions. In Section 4 we discuss the
execution of aggregation queries in the TRAPP/AG system, before presenting our specific optimization
algorithms for single-table aggregation queries in Sections 5 and 6. In Section 7 we present some preliminary
results for aggregation queries with joins.

3.1 Refreshing Cached Bounds

The master copy of each data objéztresides at a single source, and for TRAPP/AG we assume it is a
single real value, which we denoté. Caches store a range of possible values Ifitend for each data
object, which we denotd.;, H;]. When a source sends a copy of data obfgcto a cache (aefreshevent
at time7,), in addition to sendin@);’s current precise value, which we dendtg7,), it sends a bound
[L;, H;].

As discussed earlier, refreshes occur for one of two reasons. First, if the master value of a data object
exceeds its bound stored in some cadle, (@t current timeZ,., V;(7.) < L; or V;(7.) > H;), then the
source is obligated to refresh the cache with the current precise VAlig and a new boungl;, H;|—a
value-initiated refresh. Second, a query-initiated refresh occurs if a query being executed at a cache requires
the current exact value of a data object in order to meet its precision constraint. In this case, the source will
sendV;(7.) along with a new bound to the cache, and the precise V4l@&) can be used in the query.

3.2 Bounds as Functions of Time

Section 3.1 presented a simple approach where the bound of each data(hbiget pair of endpoints
[L;, H;]. A more general and accurate approach is to parameterize the bound byZit¥€), H;(7)]. In
other words, the endpoints of the bound are functions of fmeThese functions have the property that
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L;(7,) = Hi(7,) = Vi(7,), where7, is the refresh time. That is, the bound at the time of refresh has zero
width and both endpoints equal the current value. As time advanceg pabe endpoints of the bound
diverge fromV;(7,.) such that the bound contains the precise value at all titmes 7,.: L;(7.) < V;(7;) <

H;(7.). Eventually, when another refresh occurs, the source sends a new pair of bound functions to the
cache that replaces the old pair. Figure 4 illustrates the baunid@), H,(7")] of a data objecO; over time,
overlaid with its precise valu; (7).

All of the subsequent algorithms and results in this paper are independent of how bounds are selected
and specified. In fact, in the body of the paper we assume that any time-varying bound functions have
been evaluated at the current tirfig and we write[L;, H;] to mean|L;(7.), H;(7.)]. Also, we writeV;
to mean the exact value at the current tim&(7.). We have done some preliminary work investigating
appropriate bound functions, and have deduced that in the absence of additional information about update
behavior, appropriate functions are those that expand according to the square-root of elapsed time. That
is: Hy(T) — Ly(T) < /T —7,, where7, is the time of the most recent refresh. The proportionality
parameter, which determines the width of the bound, is chosen at run-time. The interested reader is referred
to Appendix A for details.

4 Query Execution for Bounded Answers

Executing a TRAPP/AG query with a precision constraint may involve combining precise data stored on
remote sources with bounded data stored in a local cache. In this section we describe in general how
bounded aggregation queries are executed, and we present a cost model to be used by our algorithms that
choose cached data objects to refresh when answering queries. For the remainder of this paper we assume the
relational model, although TRAPP/AG can be implemented with any data model that supports aggregation
of numerical values.

For now we consider single-table TRAPP/AG queries of the following form. Joins are addressed in
Section 7.



SELECT AGGREGATE(T.a) WITHIN R
FROM T
WHERE  PREDICATE

AGGREGATIE one of the standard relational aggregation functions: COUNT, MIN, MAX, SUM, or
AVG. PREDICATEHS any predicate involving columns of talilfeand possibly constants is a nonnegative
real constant specifying the precision constraint, which requires that the bounded &hgwiy | to the
query satisfie® < Hq — L4 < R. If Ris omitted thenk = oo implicitly.

To compute a bounded answer to a query of this form, TRAPP/AG executes several steps:

1. Compute an initial bounded answer based on the current cached bounds and determine if the precision
constraint is met. If not:

2. An algorithmCHOOSEREFRESH examines the cache’s copy of tdbland chooses a subset of
T's tuplesTy to refresh. The source for each tupl€lip is asked to refresh the cache’s copy of that
tuple.

3. Once the refreshes are complete, recompute the bounded answer based on the cache’s now partially
refreshed copy df".

Our CHOOSEREFRESH algorithm ensures that the answer after step 3 is guaranteed to satisfy the preci-
sion constraint.

Sections 5 and 6 present details based on each specific aggregation function, considering queries with
and without selection predicates. For each type of aggregation query we address the following two problems:

¢ How to compute a bounded answer based on the current cached bounds. This problem corresponds to
steps 1 and 3 above.

e How to choose the set of tuples to refresh. This problem corresponds to step 2 aloiHOASE
REFRESH algorithm igptimalif it finds the cheapest subsé&k of T's tuples to refreshife., the
subset with the least total cost) that guarantees the final answer to the query will satisfy the precision
constraint for any precise values of the refreshed tuples within the current bounds.

We are assuming that the cost to refresh a set of tuples is the sum of the costs of refreshing each member
of the set, in order to keep the optimization problem manageable. This simplification ignores possible
amortization due to batching multiple requests to the same source. Also recall that we assume a separate
refresh cost may be assigned to each tuple, although in practice all tuples from the same source may incur
the same cost.

Note that the entire séfr of tuples to refresh is selected before the refreshes actually occur, so the
precision constraint must be guaranteed for any possible precise values for the tuplesAndifferent
approach is to refresh tuples one at a time (or one source at a time), computing a bounded answer after each
refresh and stopping when the answer is precise enough. See Section 8.2 for further discussion.



5 Aggregation without Selection Predicates

This section specifies how to compute a bounded answer from bounded data values for each type of ag-
gregation function, and describes algorithms for selecting refresh sets for each aggregation function. For
now, we assume that any selection predicate in the TRAPP/AG query involves only columns that contain
exact values. Thus, in this section we assume that the selection predicate has already been applied and the
aggregation is to be computed over the tuples that satisfy the predicate. TRAPP/AG queries with selec-
tion predicates involving columns that contain bounded values are covered in Section 6, and joins involving
bounded values are discussed in Section 7.

Suppose we want to compute an aggregate over collimof a cached tabl&'. The value off".a for
each tuple; is stored in the cache as a bouiid, H;]. While computing the aggregate, the query processor
has the option for each tuple of either reading the cached boufid;, H;| or refreshingt; to obtain the
master valué/;. The cost to refresh is C;. The final answer to the aggregate is a boling, H 4].

5.1 Computing MIN with No Selection Predicate

Computing the bounded MIN df.a is straightforward:

_ : . : A1l
[La, Hal = [glelgg(Lz),gelg(Hz)]

The lowest possible value for the minimuth{) occurs if for allt; € T', V; = L;, i.e.,, each value is at the
bottom of its bound. Conversely, the highest possible value for the mininklim éccurs ifV; = H; for

all tuples. Returning to our example of Section 1.1, suppose we want to find the minimum bandwidth link
along the pathv; — Ny — N4 — N5 — Ng, i.e,, queryQL Applying the bounded MIN obandwidthto
tuplesT ={1, 2, 5, § in Figure 2 yieldg40, 55].

Choosing an optimal set of tuples to refresh for a MIN query with a precision constraint is also straight-
forward, although the algorithm’s justification and proof of optimality is nontrivial (see Appendix B).
The CHOOSEREFRESH;o_sk1 mvin algorithm choosedr to be all tuplest; € T such thatl; <
ming, c7(Hy) — R, whereR is the precision constraint, independent of refresh cost. Thatrscon-
tains all tuples whose lower bound is less than the minimum upper bound minus the precision constraint.
If B-tree indexes exist on both the upper and lower bountise set7» can be found in time less than
O(|T]) by first using the index on upper bounds to fimdn,, c7(H}), and then using the index on lower
bounds to find tuples that satisty; < min¢, c7(Hj) — R. Without these two indexes, the running time for
CHOOSEREFRESHo_skr v is O(|T).

Consider again our example quepd, which finds the minimum bandwidth along path — Ny —

Ny — N5 — Ng. CHOOSEREFRESH,¢_sgr,/miv With R = 10 would choose to refresh tuple 5, since
itis the only tuple amongl, 2, 5, 8 whose low value is less thanin,, ¢ (12 5 6} (Hx) — 2 = 55— 10 = 45.
After refreshing, tuple 5's bandwidth value turns out to be 50, so the new bounded answer is [45, 50].

The MAX aggregation function is symmetric to MIN. See Appendix C.1 for details.

*In this and all subsequent formulas, we defini () = 4co andmax(f) = —oo.
2Section 8.3 briefly discusses indexing time-varying range endpoints, a problem on which we are actively working.
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5.2 Computing SUM with No Selection Predicate

To compute the bounded SUM aggregate, we take the sum of the values at each extreme:

[La,Hal=1>_ Li, Y Hi]
t;,eT ;€T
The smallest possible sum occurs when all values are as low as possible, and the largest possible sum occurs
when all values are as high as possible. In our running example, the bounded Sldténof/along the
pathN; — Ny — Ny — N5 — Ng (QueryQ?2) using the data from Figure 2 is [19, 28].

The problem of selecting an optimal sBt of tuples to refresh for SUM queries with precision con-
straints is better attacked as the equivalent problem of selecting the tuples not to réfgesh? — Tk.

We first observe thatin — La = D, cp Hi — >y cr Li = >y cp(Hi — Li). After refreshing all tu-
plest; € Tg, we haveH; — L; = 0, so these values contribute nothing to the bound. Thus, after re-
fresh, >, cr(Hi — Li) = >, o7 (Hi — L;). These equalities combined with the precision constraint
Hjs — Ls < R give us the constrainztieﬁ(ﬂi — L;) < R. The optimization objective is to satisfy
this constraint while minimizing the total cost of the tupleslin. Observe that minimizing the total cost
of the tuples inTy is equivalent to maximizing the total cost of the tuples nof’jp Therefore, the op-
timization problem can be formulated as choosifgso as to maximiz@tieﬁ C; under the constraint
doter; (Hi — Li) < R.

It turns out that this problem is isomorphic to the well-kno@/ Knapsack ProblerfCLR90], which
can be stated as follows: We are given aSeff items that each have weighit; and profitP;, along with
a knapsack with capacity/ (i.e., it can hold any set of items as long as their total weight is at moyt
The goal of the Knapsack Problem is to choose a sufigebf the items inS to place in the knapsack
that maximizes total profit without exceeding the knapsack’s capacity. In other words, chose as
to maximize) ;¢ P under the constraint ;. W; < M. To state the problem of selecting refresh
tuples for bounded SUM queries as the 0/1 Knapsack Problem, we &ssigi’, Sx = Tgr, P, = C;,
W;=(H; — L;),andM = R.

Unfortunately, the 0/1 Knapsack Problem is known to be NP-Complete [GJ79]. Hence all known ap-
proaches to solving the problem optimally, such as dynamic programming, have a worst-case exponential
running time. Fortunately, an approximation algorithm exists that, in polynomial time, finds a solution hav-
ing total profit that is within a fractior of optimal for any0 < ¢ < 1 [IK75]. The running time of the
algorithm isO(n - logn) + O((2)% - n). We use this algorithm fo€HOOSEREFRESH;o _sgr/sum-
Adjusting parametet in the algorithm allows us to trade off the running time of the algorithm against the
quality of the solution.

In the special case of uniform costS;(= C; for all tuplest; andt;), all knapsack objects have the
same profitP;, and the 0/1 Knapsack Problem has a polynomial algorithm [CLR90]. The optimal answer
then can be found by “placing objects in the knapsack” in order of increasing wigighitil the knapsack
cannot hold any more objects. That is, we add tupléBrstarting with the smallestl; — L; bounds until
the next tuple would causEtieﬁ(Hi — L;) > R. If an index exists on the bound widtH; — L; (see
Section 8.3), this algorithm can run in sublinear time. Without an index on bound width, the running time
of this algorithm isO(n - logn), wheren = |T'|.
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Figure 5: CHOOSEREFRESHo_skr/sum time and refresh cost for varying

Consider again quer@?2 that asks for the total latency along path — Ny — Ngs — N5 — Ng.
Figure 2 shows the correspondence between our problem and the Knapsack Problem by specifying the
knapsack “weightW = H — L for thelatencycolumn of each tuple i§1, 2, 5, . Using the exponential
(optimal) knapsack algorithm to find the total latency along psith— Ny — N4 — N — Ng with
R = 5, tuples 2 and 5 are “placed in the knapsack” (whose capacity is 5), leawirg{1, 6}. The bounded
SUM of latencyafter refreshing tuples 1 and 6 is [21, 26].

5.2.1 Performance Experiments

CHOOSEREFRESHo_skr/sum Uses the approximation algorithm from [IK75] to quickly find a cheap
set of tuplesl'r to refresh such that the precision constraint is guaranteed to hold. We implemented the
algorithm and ran experiments using 90 actual stock prices that varied highly in one day. The high and
low values for the day were used as the bouflds H;], the closing value was used as the precise value
V;, and the refresh cost; for each data object was set to a random number between 1 and 10. Running
times were measured on a Sun Ultra-1 Model 140 running SunOS 5.6. In Figure 5 we fix the precision
constraintk = 100 and varye in the knapsack approximation in order to p@HOOSEREFRESH time
and total refresh cost of the selected tuples. Smaller valuesifarease th€C HOOSEREFRESH time
but decrease the refresh cost. However, sinc€tHO OSEREFRESH time increases quadratically while
the refresh cost only decreases by a small fraction, it is not in general advantageous&®@st0.1 (which
comes very close to optimal) unless refreshing is extremely expensive.

In Figure 6 we fix the approximation parameter 0.1 and varyR in order to plot precision (precision
constraintR?) versus performance (total refresh cost) for our CHOOSEFRESHo_sgr,/sum algorithm.
This graph, a concrete instantiation of Figure 1(b), clearly shows the continuous, monotonically decreasing
tradeoff between precision and performance that characterizes TRAPP systems.
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Figure 6: Precision-performance tradeoff for CHOQREFRESH;o_skr,/sum-

5.3 Computing COUNT with No Selection Predicate

When no selection predicate is present, compu@@UNT anounts to computing the cardinality of the

table. Since we currently require all insertions and deletions to be propagated immediately to the data caches
(Section 3), the cardinality of the cached copy of a table is always equal to the cardinality of the master copy,
so there is no need for refreshes.

5.4 Computing AVG with No Selection Predicate

When no selection predicate is present, the procedure for computing the AVG aggregate is as follows. First,
compute COUNT, which as discussed in Section 5.3 is simply the cardinality of the caghedhen,
compute the bounded SUM as described in Section 5.2 ®ith R - COUNT to produce Lsynr, Hsuu)-

Finally, let:
Lsyy  Hsum ]
COUNT’ COUNT

Since the bound widtt 4 — Ly = Hsgu—Lsum  py computing SUM such thallsyy — Lsym <
R - COUNT, we are guaranteeing th&f4 — L4 < R, and the precision constraint is satisfied. The
running time is dominated by the running time of BBlOOSEREFRESH;o_sgr,/sum algorithm, which
is given in Section 5.2.

Consider quenyQ3 from Section 1.1 to compute the average traffic level in the entire network, and
let precision constrainR = 10. We first computeCOUNT = 6, and then compute SUM witlR =
R - COUNT = 10 -6 = 60. The column labeledV’ in Figure 2 shows the knapsack weight assigned
to each tuple based on the cached bounddrédfic. Using the optimal Knapsack algorithm, the SUM
computation will cause tuples 5 and 6 to be refreshed, resulting in a bounded SUM of [618, 678]. Dividing

by COUNT = 6 gives a bounded AVG of [103, 113].

[La,Hal =]
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(bandwidth > 50) A (latency < 10) latency > 10 traffic > 100
before refresh‘ after refresh before refresh after refresh|| before refresh‘ after refresh
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3 T- T- T+ T+ T’ T+
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5 T’ T- T’ T+ T’ T-
6 T’ T- T- T- T’ T+

Figure 7: Classification of tuples inf6~, 77, andT'+ for three selection predicates.

6 Modifications to Incorporate Selection Predicates

When a selection predicate involving bounded values is present in the query, both computing bounded
aggregate results and choosing refresh tuples to meet the precision constraint become more complicated.
This section presents modifications to the algorithms in Section 5 to handle single-table aggregation queries
with selection predicates. We begin by introducing techniques common to all TRAPP/AG queries with
predicates, regardless of which aggregation function is present.

Consider a selection predicate involving at least one colunifi tifat contains bounded values. The
system can partitior” into three disjoint sets7~, 77, andTt. T~ contains those tuples that cannot
possibly satisfy the predicate given current bounded d&tacontains tuples that are guaranteed to satisfy
the predicate given current bounded data. All other tuples &f€ imeaning that there exist some precise
values within the current bounds that will cause the predicate to be satisfied, and other values that will cause
the predicate not to be satisfied. The process of classifying tuple§’intd’?, and7T+ when the selection
predicate involves at least one column with bounded values is detailed in Appendix D. The most interesting
aspect is that filters ovéF that find the tuples iff't and7” can always be expressed as simple predicates
over bounded value endpoints, and all of our algorithms for computing bounded answers and choosing tuples
to refresh examine only tuples i andT”. Therefore, the classification can be expressed as SQL queries
and optimized by the system, possibly incorporating specialized indexes as discussed in Section 8.3.

For examples in the remainder of this section we refer to Figure 7, which shows the classification for
three different predicates over the data from Figure 2, both before and after the exact values are refreshed.

6.1 Computing MIN with a Selection Predicate

When a selection predicate is present, the bounded MIN answer is:

La,Hsl=[ min (L;), min (H;
[La, Ha] = [ min _(L:), min (H;)]

In the “worst case” forL 4, all tuples inT” satisfy the predicatei.€., they turn out to be if’t), so the
smallest lower bound of any tuple that might satisfy the predicate forms the lower bound for the answer.
In the “worst case” forH 4, tuples in7” do not satisfy the predicaté.€., they turn out to be ifl’™),
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so the smallest upper bound of the tuples guaranteed to satisfy the predicate forms the only guaranteed
upper bound for the answer. In our running example, consider qpéryind the minimumtraffic where
(bandwidth > 50) A (latency < 10). The result using the data from Figure 2 and classifications from
Figure 7 is [90, 105].

CHOOSEREFRESH v choosesTy to be exactly the tuple; € 7% U T7 such thatL; <
miny, .+ (Hy) — R. This algorithm is essentially the same @IOOSEREFRESH;_ggr,/nin, and
is correct and optimal for the same reason (see Appendix B). The only additional case to consider is that
refreshing tuples i may move them intd@~. However, such tuples do not contribute to the actual MIN,
and thus do not affect the bound of the ansWer, H 4]. Hence, the precision constraint is still guaranteed
to hold. As with CHOOSEREFRESH¢_ggrmin the running time foCHOOSEREFRESH,x can
be sublinear if B-tree indexes are available on both the upper and lower bounds. Otherwise, the worst-case
running time forCHOOSEREFRESHn is O(n).

For our queryQ4 with precision constrainR = 10, CHOOSEREFRESH,n choosesl'r = {5, 6},
since tuples 5 and 6 may pass the selection predicate and their low values are lessifhap. (H) — R =
105 — 10 = 95. After refreshing, tuples 5 and 6 turn out not to pass the selection predicate, so the bounded
MIN is [95, 105].

The MAX aggregation function is symmetric to MIN. See Appendix C.2 for detalils.

6.2 Computing SUM with a Selection Predicate

To compute SUM in the presence of a selection predicate:

[LaHal=[Y_ Li+ > LY Hi+ >  Hj
t;eT+ t,€T?AL;<0 tieT+ t,€T?AH;>0

The “worst case” for 4 occurs when all and only those tuplesTif with negative values fof,; satisfy the
selection predicate and thus contribute to the result. Similarly, the “worst casél faccurs when only
tuples inT” with positive values foifd; satisfy the predicate.

The CHOOSEREFRESHyy algorithm is similar toCHOOSEREFRESH;o_sgr,/sum, Which
maps the problem to the 0/1 Knapsack Problem (Section 5.2). The following two modifications are re-
quired. First, we ignore all tuples € T—. Second, for tuples; € T”, we setl¥; to one of three possible
values. IfL; > 0, letW; = H; — 0=H;. If H; <0, letW; =0 — L; = —L;. Otherwise, leW; = (H; — L;)
as before. The idea is that we want to effectively extend the bounds for all tugi€staninclude 0, since it
is possible that these tuples are actuall{'m and thus do not contribute to the SUMe(, contribute value
0). In the knapsack formulation, to extend the bounds to 0 we need to adjust the weights as specified above.

6.3 Computing COUNT with a Selection Predicate

The bounded answer to ti@OUNT aggregation function in thegsence of a selection predicate is:

[La, Ha] = [|TF],|TF| + |T7]
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For example, consider que@5 from Section 1.1 that asks for the number of links that Wavency > 10.
Figure 7 shows the classification of tuples iffto, 77, andT*. Since|T*| = 1 and|T”| = 2, the bounded
COUNT s [1, 3].

The CHOOSEREFRESHounT algorithm is based on the fact thafy — L4 = |T7|, and that
refreshing a tuple i’ is guaranteed to remove it frofft’. Given these two facts, the optimal CHOOSE
REFRESHounT algorithm is to letTr be the[|T?| — R] cheapest tuples ifi”. Using a B-tree index
on cost, this algorithm runs in sublinear time. Otherwise, the worst-case running tinEHGIOSE
REFRESHounT requires a sort and 9(n - logn).

Consider again quer®5 and supposé? = 1. Since|T’| = 2, CHOOSEREFRESH ounT Selects
Tr = {5}, which is the[|T?| — R] = [2 — 1] = 1 cheapest tuple ifi”*. After updating this tuple (which
turns out to be ifl’*), the bounded OUNT is [2, 3].

6.4 Computing AVG with a Selection Predicate
6.4.1 Computing the Bounded Answer

Computing the bounded AVG when a predicate is present is somewhat more complicated than computing
the other aggregates. With a predicate, COUNT Imanded value as well as SUM, so it is no longer a
simple matter of dividing the endpoints of the SUM bound by the eXg@tUNT value (as in Section 5.4).
To compute the lower bound on AVG, we start by computing the average of the low endpointsiof the
bounds, and then average in the low endpoints oflthounds one at a time in increasing order until the
point at which the average increases. Computing the upper bound on AVG is the reverse. For example,
consider quenyQ6 from Section 1.1 that asks for the average latency for links hattaffic > 100. To
compute the lower bound, we start by averaging the low endpoirifs-dfiples 2 and 4, and then average
in the low endpoints of”’ tuples 1 and then 6 to obtain a lower bound on average latency of 5. We stop at
this point since averaging in furth@f’ tuples would increase the lower bound. Appendix E formalizes this
computation, which has a worst-case running timé&o6f - log n).

A looser bound for AVG can be computed in linear time by first computing SUNLas s, Hsu]
and COUNT as$Lcount, Hcount] using the algorithms from Sections 6.2 and 6.3, then setting:

Lsum Lsum Hsymy  Hsum

LAaHA = |min ) ) s
[ I=1 (HCOUNT Lcount Lcount Hcount

In our example[L sy, Hsum] = [14,55] and[Lcount, Hoount) = [2,6]. Thus, the linear algorithm
yields [2.3, 27.5]. Notice that this bound is indeed looser than the [5, 11.3] bound achievedky:thes n)
algorithm above.

6.4.2 Choosing Tuples to Refresh

CHOOSEREFRESHy( is our most complicated scenario. Details are provided in Appendix F. Here we
give a very brief description.

Our CHOOSEREFRESH,y¢ algorithm uses the fact that a loose bound on AVG can be achieved
as a function of the bounds for SUM a@DUNT, as in the linear algithm in Section 6.4.1 above. We
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choose refresh tuples that provide bounds for SUM@AAUNT such that thbound for AVG as a function
of the bounds for SUM an@ OUNT meets the precision constraint. This interactioadsomplished by
using a modified version of the CHOOSEEFRESHy\ algorithm that understands how the choice of
refresh tuples for SUM affects the bound f8©OUNT. This algoithm sets a precision constraint for SUM
that takes into account the changing bound@@UNT to guarantee that the overall precision constraint on
AVG is met. CHOOSEREFRESH,yq preserves the Knapsack Problem structure. Therefore, choosing
refresh tuples for AVG can be accomplished by solving the 0/1 Knapsack Problem, and it has the same
complexity as CHOOSHREFRESHo sk, /sum (See Section 5.2).

In our example quer6 above, if we seik = 2 then CHOOSEREFRESH,y¢ chooses a knapsack
capacity ofM = 4 and assigns a weight to each tuple as shown in the column laBéfeth Figure 2.
The knapsack optimally “contains” tuples 2 and 4. After refreshing the other tiiples{1, 3, 5, &, the
bounded AVG is [8, 9].

7 Aggregation Queries with Joins

Computing the bounded answer to an aggregation query with a join expressipwith multiple tables

in the FROMclause) is no different from doing so with a selection predicate: in most SQL queries, a
join is expressed using a selection predicate that compares columns of more than one table. Our method
for determining membership of tuples i, 77, andT~ applies to join predicates as well as selection
predicates. As before, the classification can be expressed as SQL queries and optimized by the system to
use standard join techniques, possibly incorporating specialized indexes as discussed in Section 8.3.

On the other hand, choosing tuples to refresh is significantly more difficult in the presence of joins.
First, since there are several “base” tuples contributing to each “aggregation” (joined) tuple, we can choose
to refresh any subset of the base tuples. Each subset might shrink the answer bound by a different amount,
depending how it affects tHE*, 77, T~ classification combined with its effect on the aggregation column.
Second, since each base tuple can potentially contribute to multiple aggregation tuples, refreshing a base
tuple for one aggregation tuple can also affect other aggregation tuples. These interactions make the problem
quite complex. We have considered various heuristic algorithms that choose tuples to refresh for join queries.
Currently, we are investigating the exact complexity of the problem and hope to find an approximation
algorithm with a tunable parameter, as in the approximation algorithm@OOSEREFRESHyy.

8 Status and Future Work

We have implemented all of the bounded aggregation function€&@dOSEREFRESH algorithms pre-
sented in this paper, and implementation of the source-cache cooperation discussed in Sections 3.1 and 3.2 is
underway. In addition to testing our algorithms in a realistic environment, we plan to study how the choice
of bound width (Section 3.2 and Appendix A) affects the refresh frequency, and we plan to investigate
alternative methods of choosing bound functions.

This paper represents our initial work in TRAPP replication systems, so there are numerous avenues
for future work. We divide the future directions into four categories: additional functionality (Section 8.1),
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choosing tuples to refresh (Section 8.2), improving performance (Section 8.3), and real-time and availability
issues (Section 8.4).

8.1

Additional Functionality

Expanding the class of aggregation queries we conside¥Ve want to devise algorithms for other
aggregation functions, such as MEDIAN (for which we have preliminary results [F00P and
TOP-. In addition, we would like to extend our results to handle grouping on bounded values, en-
abling GROUP-BY and COUNT UNIQUE queries. We would also like to handle nested aggrega-
tion functions such as MAX(AVG), which requires understanding how the precision of the bounded
results of the inner aggregate affects the precision of the outer aggregate.

Looking beyond aggregation queriesWe believe that the TRAPP idea can be expanded to encom-
pass other types of relational and non-relational queries having different precision constraints. In our
running example (Section 1.1), suppose we wish to find the lowest latency path in the network from
nodelN; to nodeN;. A precision constraint might require that the value corresponding to the answer
returned by TRAPPI ., the latency of the selected path) is within some distance from the value of
the precise best answer.

Allowing users to express relative instead of absolute precision constraint#\ relative precision
constraint might be expressed as a consfant 0 that denotes an absolute precision constraint of
2- A - P,whereA is the actual answer. The difficulty is thdtis not known in advance. Based on

the bound on4 derived in the first pass from cached data alone, it is possible to find a conservative
absolute precision constraift < 2 - A - P to use in our algorithms. However, it might be possible to
redesign our algorithms to perform better with relative bounds.

Considering probabilistic precision guarantees.TRAPP systems as defined in this paper improve
performance by providing bounded answers, while offering absolute guarantees about precision. As
discussed in Section 2, other approaches improve performance by giving probabilistic guarantees
about precision. An interesting direction is to combine the two for even better performance: provide
bounded answers with probabilistic precision guarantees.

Considering applying our TRAPPideas tomulti-level replication systems, where each data ob-

ject resides on one source and there is a hierarchy of data cacheRefreshes would then occur
between a cache and the caches or sources one level below, with a possible cascading effect. A current
example of such a scenario is Web caching systengs (hktomi Traffic Servefink99]), which reside
between Web servers and end-user Web browsers.

Extending data visualization techniques to take advantage afRAPP. We are currently investigat-

ing ways to extend data visualization systemg{ [OWA198]) to display images based on bounded
data instead of precise data, perhaps by drawing fuzzy regions to indicate uncertainty. A visualiza-
tion in a TRAPP setting could be modeled as a continuous query in which precision constraints are
formulated in the visual domain and upheld by TRAPP.
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8.2

8.3

Choosing Tuples to Refresh

e Adapting our CHOOSEREFRESHalgorithms to take refresh batching into account.If multiple

query-initiated refreshes are sent to the same source, the overall cost may be less than the sum of the
individual costs. We would like to adapt our CHOOSEFRESH algorithms to take into account

such cases where refreshing one tuple reduces the cost of refreshing other tuples. In fact, the same
adaptation may help us develop CHOOREFRESH algorithms for queries involving join and
group-by expressions. In both of these cases, refreshing a tuple for one purpose (one group or joined
tuple) may reduce the subsequent cost for another purpose (group or joined tuple).

Considering iterative CHOOSEREFRESHalgorithms. Rather than choosing a set of tuples in
advance that guarantees adequate precision regardless of actual exact values, we could refresh tuples
iteratively until the precision constraint is met. In addition to developing the alternative suite of
algorithms, it will be interesting to investigate in which contexts an iterative method is preferable to

the batch method presented in this paper. Also, we could use an iterative method to give bounded
aggregation queries an “online” behavior [HA@9], where the user is presented with a bounded
answer that gradually refines to become more precise over time. In this scenario, the goal is to shrink
the answer bound as fast as possible.

Improving Performance

Delaying the propagation of insertions and deletions to data cache¥®Ve are currently investigating

ways in which discrepancies in the number of tuples can be bounded, and the computation of the
bounded answer to a query can take into account these bounded discrepancies. Sources will then no
longer be forced to send a refresh every time an object is inserted or deleted.

Investigating specialized bound functions suitable for update patterns with known properties.
The bound function shape we suggested in this paper (Section 3.2) is based on the assumption that no
information about the update pattern is available.

Considering ways to amortize refresh costs byefresh piggybackingand pre-refreshing When a

(value- or query-initiated) refresh occurs, the source may wish to “piggyback” extra refreshes along
with the one requested. These extra refreshes would consist of values that are likely to need refreshing
in the near futuree.g, if the precise value is very close to the edge of its bound. The amount of
refresh piggybacking to perform would depend on the benefit of doing so versus the added overhead.
Additionally, it might be beneficial to perforpre-refreshing by sending unnecessary refreshes when
system load is low that may be useful in future processing.

Investigating storage, indexing, and query processing issues over bounded valué§e are cur-

rently designing and evaluating schemes for indexing bounds that are functions of time with a square-

root shape, as discussed in Section 3.2. Also, we plan to weigh the advantages of using functions for
bounds versus potential indexing improvements when bounds are constants. We also plan to study
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ways in which cached data objects stored as pairs of bound functions might be compressed. Without
compression, caches must store two values for each data object (Appendix A), and sources must trans-
mit these two values for each tuple being refreshed. Furthermore, the Refresh Monitor at each source
must keep track of the bound functions for each remotely cached data object. Compression issues
can be addressed without affecting the techniques presented in this papeHOWSEREFRESH
algorithms are independent of which bound functions are used or how they are represented, and we
have not yet focused on query processing issues.

8.4 Real-time and Consistency Issues

e Handling refresh delay. Since message-passing over a network is not instantaneous, in a value-
initiated refresh there is some delay between the time a master value exceeds a cached bound and the
time the cache is refreshed. Consequently, a cached bound can be “stale” for a short period of time.
One way to avoid this problem is by pre-refreshing a value when it is close to the edge of its bound.

e Evaluating concurrency control solutions. If value-initiated refreshes are permitted to occur during
the CHOOSEREFRESH computation or while a query is being evaluated (or in between), the an-
swer could reflect inconsistent data or could fail to satisfy the precision constraint. One solution is to
implement multiversion concurrency control [BHG87], which would permit refreshes to occur at any
time, while still allowing each in-progress query to read data that was current when the query started.
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A Choosing Good Bound Functions

Returning to the issues alluded to in Section 3.2, we now briefly discuss how good bound functions are
selected. To make the problem of choosing good bound functions more manageable, we separate it into
two subproblems: (1) choosing the ovedilpeof the bound functions, which we will determine statically

and callf(7); and (2) choosing aidth parameteof the bound for each data object, which is done by the
sources at run-time. Assuming we choose a monotonically increasing function of timefor data object

O; we let lower bound.;(7) = V;(7,) —W;- f(T —7,) and upper boundl;(7) = V;(7,)+ W;- f(T —T),

with the width parametéi’; > 0 chosen by a run-time algorithm. Now that we have decomposed the overall
problem into two subproblems, we are faced with the tasks of selecting a furf¢tion(the shape) and an
algorithm for choosingV; (the width parameter).

Notice that representing pairs of bound functions this way has the added benefit that they can be encoded
by two numbers: the current valti&(Z, ) and the width parameté¥;, which are transmitted from a source
to a cache at refresh time. In addition, the cache must be able to cofhpufg, i.e., the elapsed time since
the refresh. If the message-passing delay is non-negligible, then the source must transmit the refresh time
7, along withV;(7,) andW;, and clocks must be synchronized within a negligible threshold.

In terms of shape,e., function f(7'), in the absence of more information we can model the changing
value of a data object as a random walk in one dimension. This model is natural for common settings
where updates tend to be small increments or decrements to the current value (“escrow transactions”). In the
random walk model the value either increases or decreases by a constant amioesth time step. After
T steps, the probability distribution of the value is a binomial distribution with variadcel [GKP89].
Chebyshev’s Inequality [GKP89] gives an upper bound on the probalilitiyat the value is beyond any
distancek from the starting pointP? < 7 - (%)2. Therefore, using any fixed probabilify (say 5%),k <
(ﬁ)-ﬁ, so the value is Withimﬁ)-ﬁ units of the starting point. Thus the function of time that bounds
the value with probability — P is proportional toy/7 . In other words, as the value varies over time, a tight
bound has approximately the shape of the square-root funtt®m.we usef(7) = /7 for the shape of
our bound functions. Thus, bound functions are of the fof(7,.) —W; -7 — 7., Vi(T,)+W; /T — T;).

The curves in Figure 4 illustrate square-root functions with varying widths.

Now we sketch a dynamic algorithm to choose a bound width parafiéténat attempts to minimize
the number of refreshes. To avoid value-initiated refreshes (due to updates to the master value), the bound
should be wide enough to make it unlikely that the value will exceed the bound. On the other hand, to avoid
guery-initiated refreshes (due to precision constraints of queries), the bound should be as narrow as possible.
Unfortunately, since decreasing the chance of one type of refresh increases the chance of the other, it is not
obvious how best to choose a bound widith that minimizes the total probability that a refresh will be
required.

Since both of the factors that affect the choice of bound width—the variation of data values (which

3Intuitively, it makes sense that the result should be a function with a negative second derivative. Note that initially, when
T is small, it is not unlikely for a randomly varying value to move several steps in the same direction, so the function increases
rapidly. However, a§ grows large, it becomes less likely that the value will continue to move in the same direction, so the function
increases less dramatically.
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causes value-initiated refreshes) and the precision requirements of user queries (which cause query-initiated
refreshes)—are difficult to predict, we propose an adaptive algorithm that atjusts conditions change.

The strategy is as follows: First start with some valueligr Each time a value-initiated refresh occurs (a
signal that the bound was too narrow), increéigewhen sending the new bound. Conversely, each time a
guery-initiated refresh occurs (a signal that the bound was too wide), deétgasdis strategy should find

a middle ground between very wide bounds that the value never exceeds yet are exceedingly imprecise, and
very narrow bounds that are precise but need to be refreshed constantly as the value fluctuates.

As future work, we plan to refine the details of the suggested technique and perform experiments to
determine how well it eventually balances the conflicting requirements of queries and updates. We also plan
to consider other bound functions for cases where update patterns are known and do not conform to the
random walk model.

B Proof of Correctness of CHOOSEREFRESHo_sgr/min

Recall from Section 5.1 that tttHOOSEREFRESH;o_sgr,/Mmin algorithm choosefx to be all tuples
t; € T such thatl; < min, c7(Hy) — R, whereR is the precision constraint. To show that this choice
for Ty is correct and optimal, we show that every tuplélisn must appear in every solution, and that this
solution is sufficient to guarantee the precision constraint. First, we show that every tiijplennst appear
in every solution. Consider arty € T and suppose we choose to refresh every tuplg exceptt;. It is
possible that refreshing all other tuplgsresults inV; = H; for each onei(e., each precise value is at its
upper bound). In this case, after refreshing, our new bounded answer Wilkbé/ 4| whereL 4 < L; and
Hj = ming, ¢ (Hy). SinceL; < ming, c7(Hy) — R by the definition ofl'r, ming, c7(Hy) — L; > R, SO
H4 — La > R, and the precision constraint does not hold. Thus, every tugie imust be in any solution
to guarantee that the precision constraint will hold.

Next, we show thall'r is sufficient to guarantee the precision constraint. Lgtbe mintk eE(Lk)’
whereTr = T'— Tg. Note that for alt; € T, L; is within R of min,, c7(H},), SO we havenin,, ¢ (Hy,) —
L, < R. After tuples inTr have been refreshedhin, c7(H},) can only decrease, so we kndy — L, <
R. After refreshing the tuples ift’s, they will have a bound width of zerag., L; = H; = V;. There are
thus two cases that can occur after the tuples Tz have been refreshed. First, if any of the valligs
are less than or equal 10,, then we can compute an exact minimum. Otherwise, if all of the valuase
greater tharl,, thenL4 = L,,. SinceH4 — L, < R, itfollows thatiH4 — L4 < R.

C Computing MAX

C.1 Computing MAX with No Selection Predicate

The MAX aggregation function is symmetric to MIN. Thus:

L, Ha) = [max(L;), max(H;
[La, Ha] = [max(Li), max(H;)]
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and the CHOOSEREFRESHo_srr,/vmax algorithm choosefy to be all tuples; € T' such thatt; >
matheT(Lk) + R.

C.2 Computing MAX with a Selection Predicate

The MAX aggregation function is symmetric to MIN. Thus:

La,Hal = L;), H;

[La, Ha] = [max (Li), max (H;)
and the CHOOSEREFRESH,4x algorithm choose§ to be all tuplest; € T+ U T such thatd; >
maxy, e+ (Lk) + R.

D Classifying Tuples by a Selection Predicate

The algorithms in Section 6 require that we first classify all tupleg &s belonging to one &f—, T, or
T?. Let P be the predicate in the user’s query, which we assume is an arbitrary boolean expression involving
binary comparisons. We define two transformations on predieafehe Possible transformation yields an
expression that finds tuples that could possibly satisfy the predicate based on bounded vald&staihe
transformation yields an expression that finds tuples that are guaranteed to satisfy the predicate based on
bounded values. We can appliertain(P) to find tuples infl"*, and( Possible(P) A = Certain(P)) to find
tuples inT”. All other tuples are iff"—.

Since Certain(P) and Possible(P) are predicates to be evaluated on the tuples of tabltey must
be expressed in terms of constants, attributes whose values are exact, and endpoints (denafted
max of attributes whose values are ranges. To handle expressions uniformly, we assume that all values
are ranges: in the case of a constant valigrespectively an attributel whose value is exact), we let
Kpin = Knae = K (respectivelyA, i, = Amee = A). Figure 8 gives a set of translation rules—primarily
equivalences—specifying how boolean expressions are translate@dntein and Possible. These rules
are applied recursively to the query’s selection predidate obtain Certain(P) and Possible(P). Note
that disjunction forCertain and conjunction forPossible are implications rather than equivalences. Thus,
when we translatéossible(F; A Es) into Possible(E;) A Possible(E,) we may classify a tuple int@”
when it should really be iff" ~. Also, when we translat€ertain(E,V Es) into Certain(E1)V Certain(Es)
we may classify a tuple int@” when it should really be id"+. Cases where we misclassify tuples are ex-
tremely unusual (because they involve very special cases of correlation between subexpressions), and note
that these misclassifications affect only the optimality and not the correctness of our algorithms.

We now illustrate how to use the rules in Figure 8 to derive expressiorédanin (P) and Possible(P)
in terms of range endpoints. For the predic&e= (bandwidth > 50) A (latency < 10), Certain(P)
becomesbandwidth,,;, > 50) A (latencymq, < 10), and Possible(P) becomes(bandwidth,q, >
50) A (latencymin < 10). The column labeled(bandwidth > 50) A (latency < 10) before refresh” of
Figure 7 shows the resulting classification of tuples in our example data of Figure 2int6”, andT+.

It turns out that this technique is part of a more general mathematical framework introduced in [Lip79]
for evaluating predicates over data objects that have a set of possible values (in our case, an infinite set of
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‘ expressions ‘ Possible(E) ‘ Certain(E)

[Zmins Tmaz] = [Ymins Ymaz] | & (@min < Ymaz) A (Tmaz = Ymin) | € Tmin = Tmaz = Ymin = Ymaz
[xmim xmax] < [ymina ymax] = Tmin < Ymaz = Tmaz < Ymin

[Tmin, Tmaz] < [Ymins Ymaz] | © Tmin < Ymaz = Tmaz < Ymin

-F < = Certain(Ey) < —Possible(E7)

E,V E, & Possible(Ey) V Possible(Es) < Certain(E) V Certain(Es)
Ei NE, = Possible(E1) N Possible(E2) & Certain(Ey) A Certain(Es)

Figure 8: Translation of range comparison expressions.

points along the rangg.;, H;]). The following relationships translate the notation used in this paper into
the notation from [Lip79]T+ = | T|., T7 = |T|I* — ||T|l«, T~ = | T|]*.

In general, the selection predicate does not influence the evaluation of the aggregate—as we have seen
in Section 6, the only information needed from the selection predicate is the classification of tuplés,into
T-, andT”’. However, a slight refinement can be made if the selection predicate is over the same column
as the aggregatich.In this special case, each tuglein 77 has a restriction on actual valié imposed
by the selection predicate, in addition to the boyhd H;]. For example, boundl;, H;] = [3,8] has an
additional restriction orV; under the predicate: 5, if V; is to contribute to the result. To take advantage
of this additional restriction, the bounds;, H;] for tuples inT” can be shrunk before they are input to the
result computation or CHOOSREFRESH algorithm. For example, if we are aggregalatgncyunder
the predicatdatency > 10, we can modify any lower bounds below 10 to 10 by usingx(L;, 10), H;]
instead of( L;, H;].

E Computing a Tight Bound for AVG with a Selection Predicate

To compute a tight bound for AVG with a selection predicate (recall Section 6.4.1), proceed as follows.
First, letS;, = ZtieTJr L;and K = |T"|, the sum and cardinality of the low valuesdit. Then, letA
represent the tuples € 7”7, sorted in increasing order Hy;. Leta be the first element ofl. If L, < [i—LL

then addL, to S; and 1 toK;. Advancea and continue this process uniil, > f;—LL Similarly, let

Sy = Ztiew H; and Ky = |T*|. Now, let A represent the tuples € T”, sorted in decreasing order by

H;. Leta be the first element ofl. If H, > Ii—f;{ then addH,, to Sy and 1 toK ;. Advancea and continue

this process untiH, < [i—fl Finally, let:

St SH

La Hypl = |—, —
[La, Hal [KL’KH

]

For example, consider que@6 from Section 1.1 that asks for the averdgtencyfor links having
traffic > 100. First, we classify tuples intd~, T, and7+ as shown in Figure 7. Sincg* = {2, 4},
initially S;, = 14 and K, = 2. Ais [1, 6, 5, 3], which are the tuples ifi’ sorted in increasing order by

“More generally, the refinement applies if the selection predicate always restricts the value of the aggregation column. For
example, the predicatB.a < 5 A T.b # 2 always restricts the value of colurfina to be less than 5.
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L;. First, we leta = 1, and sincel,, = 2 < 2= = 4§} = 7, wesetS, = 5, + L, = 14 +2 = 16

andK;, = K, +1 =2+1 = 3. Then, we leta = 6, and sincel,, = 4 < IS(—LL = 13—6 = 5.3, we set

S, =S,+L,=16+4=20andK;, = K, +1=3+1 = 4. Next, we leta =5, and note that,, = 8 >
}z—LL = % = 5, SO we stop withS;, = 20 and K, = 4. The computation oby and K proceeds similarly

to yield Sy = 34 and Ky = 3. These results give a bounded AVG [¢f-, 2] = [, 3]] = [5,11.3].

This algorithm for computing a tight bound for AVG has a running timé&o¢f. - log n).

F Choosing Refresh Tuples for AVG with a Selection Predicate

Refer to Section 6.4.2 and note that we make use of the loose bound for AVG given in Section 6.4.1.
CHOOSEREFRESH,y¢ will guarantee that the precision constraiity — L 4 < R is satisfied with:

Lsum Lsum Hsymy  Hsum
) ) b
Hcount Lcount Lcount Hcount

[La,Hy| = [min(

Although it would be desirable to find @HOOSEREFRESH algorithm that guarantees the precision
constraint is satisfied for the exact bouddy, H4] = [Ii—LL, Ii—f{] described in Appendix E, we have not yet
succeeded in finding such an algorithm.

CHOOSEREFRESHvy¢ chooses a set of tuplés; such that after refreshing the tuplesiip and
computing[Lsu, Hsum] and[Leount, Hoount], AAVG = Have—Lave = max( S JHsu )y

Lecount’ Hoount

min(Hii%AfVT’ ng%T) < R. To make it possible to choose bounds for SUM @@UNT that will guar-
anteeAAVG < R, we must formulate\ AV G as a function oASUM = Hsyy — Lsyy andACOUNT

= Hoount — LoounT. Based on this functionCHOOSEREFRESH,y¢ chooses an “approximately
optimal” set of tuplesl'y to refresh that gives values faxSUM and ACOUNT such that the precision
constraintA AVG < R is guaranteed to be met.

The relationship betwed sy, Hsuu |, [Loount, Heount], andAAVG is:

ASUM + (maX(HSUMv—LSUMvHSUM—LSUM)) "ACOUNT

AAVG < RHS = ooy
- ACOUNT + LeoounT
To show this inequality, we consider three cases. In casellggf; > 0, AAVG < LIZZ%T — HLC%%T
which gives:
ALV < RIS ASUM + ({2sy . ACOUNT
- 1= ACOUNT + LeounT
In case 2, ifHsyy < 0, AAVG < HIgZ%T — LﬁZ%T which gives:
AUV < RIS ASUM + (pEswe) . ACOUNT
= 2 ACOUNT + Lcount
Otherwise, in case sy < 0 andHgyys > 0), AAVG < Asuw _ _Lsuw which gives:

— Lcounr Lcount

AAVG < RHS3 = ASUM + (W)'ACOUNT
- o ACOUNT + Lcount
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) ASUM+(max(HSUM**LngAJI’Vf;SUM*LSUM>).ACOUNT
All three cases are equivalent ®®HS = ACOUNT EogunT . In case 1,

RHS1 = RHS since Lgyy > 0 implies max(Hgyar, —Lsum, Hsum — Lsum) = Hsua- Similarly,
in case 2RHS; = RHS sinceHSUM <0 implieSmax(HSUM, —Lsum, Hsunr — LSUM) = —Lgyym. In
case 3,RHS3 = RHS since the SUM bound straddles 0, which impliesx(Hgsyar, —Lsunm, Hsum —
Lsum) = Hsum — Lsum-

Since our goal is to expres§AVG as a function ofASUM and ACOUNT, we must eliminate all
other values from the relationship:

ASUM + (maX(HSUMﬁLSUM7HSUM*LSUM)) . ACOUNT
AAVG < Lcount
- ACOUNT + LeoounT

To do this elimination, we substitute conservative estimates for the valyes, Hsyy, and Lcount.
Conservative estimates for these values are obtained by computing SUM and COUNT over the current
cached bounds d8's;,,,, Hsya) @nA[Licounrs Hoount)- Since, when the refreshes are performed, these
bounds can shrink but not grow,;;,, < Lsum, Hypy > Hsum, andLly,pnr < Leount. Therefore,
by examining the inequality relatind. syas, Hsuwm|, [Lcount, Hoount), andAAVG, it can be seen that
substitutingL’s;;,, for Lsyn, Hgyy, for Hspu, and Ly pyr for Lecount makes the right-hand side
strictly larger, so it is still an upper bound @nA VG. This substitution results in:

ASUM + (2~ Esune Msuy=Vsun)y - ACOUNT

L
AAVG < F(ASUM,ACOUNT) = COUNT
ACOUNT—’_L/COUNT

Now that we finally haveF (ASUM , ACOUNT), an upper bound faA AVG as a function o\SUM
and ACOUNT (since L'y Hoypyr @and Lip oy are computed once and used as constants), we can
substitute this function foA AVG in the precision constraint. Recall that the precision constraint requires
that AAVG < R. SubstitutingF(ASUM, ACOUNT) for AAVG givesF(ASUM,ACOUNT) < R.

At this point, we have formulated the precision constraint in terms of énf{/AM/ and ACOUNT.
Rewriting the precision constraint in termsAfSUM gives:

max(Hepas> —Lsonrs Hsonr — Lsour)
ASUM < L'popnr - R— ( SUM LfUM SUM__SUM” _ R). ACOUNT
COUNT

This formulation of the precision constraint can be used in place of the original considintc <
R. Therefore, the CHOOSREFRESH\y¢ algorithm is free to choose any values farSUM and
ACOUNT that satisfy the reformulated precision constraint. We have thus reduced the task of choosing
refresh tuples for AVG to the task of choosing refresh tuples for SUM under this reformulated constraint.

Normally, to choose refresh tuples for SUM, we have the consttait’d/ < Rgyys. In this case, we
instead have the constraittSUM < L'y - R — (s L Mapy “Vouw) _ ). ACOUNT,

COUNT

so we letRg s be the following function oA COUNT':

H/ _L/ H/ _ L/
Rsumt(ACOUNT) = Linpyy - Bt — (XU suar: S sum) _ py. ACOUNT
COUNT

To see how to choose refresh tuples for SUM wlitgsy,, is a function ofACOUNT, first recall that
the CHOOSEREFRESH) algorithm chooses refresh tuples for SUM by mapping it to the 0/1 Knap-
sack Problem, where the knapsack capadifty= Rgyys. Therefore, for the CHOOSREFRESHy ¢
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algorithm, we need to make the knapsack capacity a functich @OUNT. On the surface, it looks as
though this modification is not possible since there is no way to make the knapsack capacity a function
instead of a constant. Fortunately, making the knapsack capacity a functdd@©@fUNT is possible to

fake. First, recall thah COUNT is equal to the number of tuples ¥ that do not get refreshed (and thus
remain inT”’ after the refreshes are performed). Also, recall that the set of items placed in the knapsack
corresponds t@’z: the set of tuples that will not be refreshed. It follows the€OUNT is equal to the
number of"” tuples in the knapsack. Therefore, when the knapsack is el UNT = 0 and thus the

initial knapsack capacity/ = Rgsy(0) = Lisoynr - R. Furthermore, every time &’ tuple is added to

the knapsackA COUNT increases by 1. Since the functidtyyy (ACOUNT) is a line with (negative)

slope:

_(maX(HéUMv _L/SUMvHé*UM _ LISUM) ~R)

LICOUNT
the capacity of the knapsack decreases by the ameunevery time &'’ tuple is added to the knapsack.
Observe that decreasing the knapsack capacity when an item is added is equivalent to increasing the weight
of the item. Therefore, to simulate shrinking the knapsack-byevery timeA COUNT increases by 1, all
we have to do is add the quantitym to the weight of each tuple if”.

To summarize, the CHOOSREFRESHy¢ algorithm is exactly the same as tiegHOOSE
REFRESHu\ algorithm (which maps to the 0/1 Knapsack Problem) with the following modifications:
M = L'ypynr - R, and for all tuples; € 77, W; = WZ-+(max(HéUM’7L,;SOU”;];I;~/9UM7L3UM) — R). The values
Lisynrs Hoypgr @A Loy are found by computing SUM andOUNT over the currentached bounds
as[Lsyar, Hsyyl @nd[ Lo ynrs Hoounrl- The running time oCHOOSEREFRESH, v is dominated
by the running time oCHOOSEREFRESHy\, Which is given in Section 6.2.

m =

F.1 Reuvisiting the Example of Section 6.4.2

Consider quenQ6 that asks for the averadatencyfor links having traffic > 100, with R = 2. First,
we classify tuples intdl—, T?, and T, as shown in Figure 7. Then, we compL@IéSUM,HgUM] =
[14, 55] and[L'cpynr Hoounr) = [2, 6]. We use these values to assign a weight to each tuple by
computing the weight used in the CHOOSEFRESH\ algorithm, and for tuples ir7’?, adding

Hlyygo— Vs Hl L -
ey~ Lo Msuy=Vsu) _ g — 3 _ 9 — 95.5. The column labeledV” in Figure 2 shows these
COUNT

weights. Using the Knapsack Problem with= L', ;xR = 2-2 = 4, the knapsack optimally “contains”
tuples 2 and 4. After refreshing the other tuplgs= {1, 3, 5, , the bounded AVG is [8, 9].
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