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Abstract

Significant recent interest has been devoted to the multiscale interface as a paradigm for user-driven
exploration of large or complex information worlds. Multiscale interfaces sometimes permit nesting
of worlds, a notion that underpins a diverse variety of navigation aides and multiple-view tools such
as visual hyperlinks, bookmarks, filters, magnifying glasses, overview and detail views, and coordinated
views, all of which can be used to enhance the effectiveness of information exploration. These constructs
often behave in accordance with underlying spatial relationships among nested views. Unfortunately, re-
searchers and designers currently lack tools to help them describe and reason formally about spatial
relationships tying together nested virtual worlds. The absence of appropriate formalisms is problem-
atic because multiple spatial models are available and, even under a consistent model different nested
constructs can exhibit different behaviors, many of which have complex and asymmetric properties. In
this paper we describe a spatial model for nested multiscale interfaces that we constructed based on ex-
perience with a prototype data visualization system. We show how behaviors of nested components can
be described succinctly in our model and provide a comprehensive taxonodgydigtinct behaviors.
Finally, we make use of our spatial model to design techniques to help maintain user orientation during
navigation between nested worlds by smoothly animating transitions between outer and inner views.

1 Introduction

Multiscale interface$FB95] represent a powerful and flexible paradigm for user-driven exploration of large
information worlds in which users can adjust the scale with which information is displayed while browsing.
Multiscale interfaces have been proposed or deployed in a diverse set of applications including information
visualization toolse.g, [AW95, BHP"96, DKR97, LRB 97, STH02, WOA 01], WYSIWYG tools for
creating and viewing documents,g, [Cora, Corb, MPBH95], geographic information system (GIS) and
cartographic toolse.g, [AA99, BGS99], and even Web browsers [BHS5]. Many multiscale interface
environments including [ACSW96, BHMP6, BHS" 96, BSP 93, PF93, PM99, SFB94, WOA1] permit
nesting, whereby one information world appears as a sub-window of another. Nested sub-windows are called
portals [BHP+96, WOA™01] !, which serve as a unified way to implement a number of useful constructs
that can enhance the ability of users to explore large or complex information worlds effectively. First of
all, portals provide a convenient mechanism for linking together different information worlds or different
locations within the same world via a useful navigation shortcut: Users can “enter” a portal to change the
main view to be the one displayed inside the portal. Aside from serving as visual hyperlinks, portals can
also be used as bookmarks (also called indexes) [E3P as well as a variety of nested multiple-view
constructs including filters [BHPO6, SFB94], magnifying glasses [Bel00, SFB94], overview and detail
views [CMS98], and coordinated views [Bel00, SFB94]. We refer to nested constructs that can be created
using portals in multiscale environments collectivelypastal tools

IMany other names have been used in the literature to refer to similar concepts, including “Magic Lens€<93BSPB94]
and “wormholes” in Tioga-2 [ACSW96], the predecessor to DataSplash.



Satellite Image
Street Map | (kilometers)
(miles)
Stuart
Park ]
Megdalena (LA
Cliestal N
Firelight
Figure 1: Magnifying glass tool. Figure 2: Coordinated view tool.

1.1 Portal Tools and Complexity

Portal tools often obey an underlying spatial model that ties together the views shown at different levels
of nesting and dictates how the views change in response to user actions. For example, consider a typical
magnifying glass tool, which covers a region of the world displayed on the screen and in its place displays
an increased-scale representation of the occluded region. Figure 1 illustrates a cartographic application
with a magnifying glass portal tool. Users may reposition the magnifying glass, causing its contents to
shift, and the relationship between the change in position on the screen and the shift in contents of the
magnifying glass portal is based on an implicit spatial model that incorporates scale as well as horizontal
and vertical position. Users may also change the scale of the world being explored, automatically triggering
a corresponding change in the scale of the magnifying glass contents to maintain a fixed scale ratio derived
from a spatial model.

Different types of portal tools exhibit different spatial properties), bookmark tools typically behave
differently than magnifying glasses when repositioned by a user. Moreover, the behaviors of some tools can
be complex. For example, consider coordinated view tools, which contain an inner world consisting of an
alternative representation of the portion of the outer information world currently displayed on the screen.
Figure 2 shows an example of a coordinated view tool that might be used in a GIS application to show
a street map (inner world) in conjunction with a satellite image (outer world) of the same area. In many
applications users mayan, or scroll, in the information world, causing the view of the outer world to shift
while the coordinated view tool remains stationary on the screen. Meanwhile, the content of the coordinated
view is shifted automatically to maintain the inner and outer views coordinated. Since the coordinated view
tool remains fixed on the screen, when a pan occurs the position of the tool in the coordinates of the outer
information world changes. However, if a user repositions the coordinated view tool directly, also altering its
position relative to the outer information world, its contents remain unchanged. This apparent inconsistency
in behavior has the useful property of allowing the tool to be freely repositioned on the screen to avoid
occluding essential information without affecting the contents of the coordinated view tool, which continues
to display an alternative representation of the portion of the outer information world currently displayed
on the screen. In some applications, complexities such as this are warranted due to useful properties that
arise such as the ability to affect which information is occluded without resorting to navigation. In fact,
behaviors that are complex to describe may seem quite intuitive to expert users. On the other hand, for
simple applications or novice users, it may be appropriate to remove complexities by, for example, locking
the screen position of a coordinated view tool, which requires altering the way the tool behaves in response
to user actions.

Even a single type of portal tool such as a coordinated view can be alternatively configured to behave in



one of several ways. Interestingly, some configurations may result in asymmetric properties. For example,
consider a magnifying glass tool, illustrated in Figure 1, in which the magnified scale of the nested world
inside the magnifying glass is typically a function of the current scale of the outer world. Therefore, when a
user alters the scale of the outer world, the scale of the inner world changes automatically, and the relation-
ship is typically governed by a multiplicative magnification factor. In some instances, users are permitted
to alter the scale of the inner world directly. If so, the portal may be configured so that the change, divided
by the magnification factor, propagates to the outer world, having the same overall effect that would have
occurred had the user altered the scale of the outer world directly and leaving the magnification factor un-
changed. On the other hand, in an alternative configuration, a change made by a user to the scale of the inner
world does not propagate to the outer world, having the effect of programming the magnification factor of
the magnifying glass. In this alternative configuration, changing the scales of the inner and outer worlds
are not symmetric actions: the former programs the magnification factor between the two worlds, while the
latter alters the scales of both worlds while holding the magnification factor constant.

1.2 Formalism to Combat Complexity

As we have seen in Section 1.1, different portal tools exhibit different spatial behaviors in response to user
actions, a single type of tool can be configured to exhibit several alternative behaviors, and these behaviors
can be complex and asymmetric. Due to the presence of significant complexity, we feel that an overarching
formal model for portal behavior that describes the space of possible behaviors in a systematic way would
be of significant benefit to researchers, designers, programmers, and users. First, researchers of nested mul-
tiscale interfaces can leverage a formal model to help them understand, describe, communicate, and reason
about properties of portal tools and the alternative configurations available. Second, by providing a clear
enumeration and description of possible behaviors, a good formalism can assist designers faced with the
nontrivial tasks of deciding which behaviors to make available, how best to present the available options to
end-users, and what control mechanisms to provide, when offering portal tools in a nested multiscale inter-
face environment. A formal model may also be of significant help to programmers of multiscale interfaces,
which can use it as a basis for a simple and elegant implementation of portals with flexible configurations.
Finally, a spatial model of portal behavior can be incorporated into documentation to guide non-expert users
of systems like DataSplash [WOM1] as they create portal tools that have flexible, visually programmable
behaviors.

This paper presents a formal model for the spatial properties of nested user interface constructs. Al-
though nesting has been proposed in a variety of contexts, we are aware of no previous attempt to model
spatial relationships among nested information worlds formally. Our initial work in [OWO0OQ] developed a
basic model for nested interfaces based on Boolean properties that describe whether certain actions such as
navigating in worlds or repositioning portals trigger other actions to occur. The abstract model of [OWO0O]
is intended to be very general, and does not specify the exactly way in which actions are correlated, which
depends on the specific spatial or non-spatial model in use. In this paper we describe a detailed spatial
model based on space-scale diagrams [FB95] that captures the semantics of a wide variety of portal tools
and configurations in a unified way. The specific contributions of this paper are:

e We extend space-scale diagrams, originally designed for analyzing non-nested multiscale interfaces,
to incorporate nesting in a natural way (Section 2).

e Drawing from our experience with a nested multiscale data visualization environment, we propose a
model describing the way portals behave in response to user actions based on geometric relationships
among elements in a space-scale diagram (Section 3).

¢ We provide a comprehensive taxonomys@fvarieties of portal tools that obey our spatial model, and
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Figure 3: Example canvas. Figure 4: Space-scale diagram.

provide an accompanying online Java demonstration program for readers to experiment with different
tool types and configurations in our taxonomy (Section 4).

e We propose techniques for animating the entrance into a portal while maintaining the user’s orienta-
tion that exploit our spatial model (Section 5).

We now proceed with a short review of non-nested multiscale interfaces and space-scale diagrams, and
then introduce nesting formally.

2 Multiscale Interfaces, Space-Scale Diagrams, and Nesting

In a typical multiscale interface a user navigates within a two-dimensional world that can be very large or
even infinite. For our purposes it is convenient to think of it as a finite, two-dimensional rectangle with
andy coordinates called eanvas. Figure 3 shows a simple canvas containing three concentric circles. The
user is able to view portions of the canvas inside a fixed-size rectangle of screen real-estate ozttedthe
window To control which portion of the two-dimensional canvas appears in the viewer window, the user
can navigate in three dimensions fmgnningandzooming The effect of panning is to change the portion of

the canvas that appears in the viewer window without affecting the degree of magnificatszaleomhe

effect of zooming is to change the scale, causing a greater or smaller portion of the canvas to become visible
in the viewer window.

2.1 Review of Space-Scale Diagrams

Multiscale interfaces are perhaps easiest understood with the hefmoé-scale diagraméntroduced by

Furnas and Bederson [FB95], which represent scale explicitly, leading to a convenient way to model nav-
igation and, in particular, zooming. We review space-scale diagrams briefly here (the reader is referred to
[FB95] for a more comprehensive description and discussion). Figure 4 shows a space-scale diagram for the
canvas in Figure 3. The two-dimensional canvas appears multiple times in the three-dimensional diagram
that has dimensions, v, ands, and each copy of the canvas lies in a different plane and is scaled by a
different amount. Scale is determined by theoordinate. In the.—v plane at scale coordinate= 1, the

canvas is drawn at its “natural” scale, so that = andv = y. At others positions, ther andy dimensions

are scaled multiplicatively (linearly) by: « = = - s andv = y - s. Due to this scaling effect, af, y) point

2Also called a “surface” in Pad [PF93].



in a canvas becomesgaeat ray(see Figure 4) irfu, v, s)-space originating a0, 0,0) and passing through
all points on the line parameterized ks follows:u = z - s; v = y - s. Objects in the canvas such as the
circles in Figure 3 become generalized cones in the space-scale diagram.

The portion of the canvas currently displayed on the screen in the viewer window is represented in a
space-scale diagram as a 2D shape andwv of fixed size and shape called aperture which is usually
rectangular, as shown in Figure 4. The canvas is rendered by taking the portion that lies inside an aperture
called theparent frame(for reasons that will soon become clear) and drawing it on the screen, scaled to
fit exactly inside the viewer window. (The shape of the parent frame aperture must match the shape of the
viewer window.) Since apertures are fixed in size and shape, their coordinates can be encoded by their center
position, a(u, v, s) point that can be edited by the user via navigation (panning and zooming) operations.
Editing the position of the parent frame aperture causes the contents of the viewer window to change.

2.2 Nesting in Space-Scale Diagrams

We can extend space-scale diagrams in a natural way to represent nested canvases (those containing portals).
For simplicity, we assume only a single level of nesting, whereby a stigld canvasis nested within a

single parent canvas Our model can be extended to incorporate multiple levels of nesting, as found in
some environments such as [BH®6, WOAT01]. We also simplify our discussion by focusing on parent
canvases containing a single portal, although in general canvases may contain multiple portals, possibly
linking to different child canvases.

Portals can be thought of as having two aspects: outline and contents. An outline in the parent canvas
designating where the contents of a portal are to be drawn is callgubtted frame As with all objects in
the parent canvas, a portal frame hag:any) location, a shape, and a size, all of which can potentially be
edited by the user. The contents of a portal are defined bghitekframe an aperture (fixed-size 2D shape)
in the space-scale diagram of the child canvas. Figure 5(a) shows an example of a space-scale diagram
containing the three frames (parent, portal, child) of our model (the canvas contents have been omitted from
the space-scale diagram to reduce clutter), augmented wéttuasiveportal. A recursive portal is one in
which the child canvas is the same as the parent canvas, so the portal goes to another location and/or scale
in the same canvas. With recursive portals, all three frames to be drawn in the same space-scale diagram.
(A non-recursive portal can be drawn using two diagrams to represent the parent and child canvases.) The
reason the portal frame h&s, y) coordinates while the other two frames hdwuev, s) coordinates is that
the portal frame, like any graphical object within a canvas, is manifest at all scales while the parent and
child frames each have a corresponding scale. For simplicity, we assume throughout this paper that all three
frames in our model are rectangular, as is common, so the portal frame appears in the space-scale diagram
as a pyramid composed of four great rays.

Figure 5(b) shows the viewer window as seen by the user when the parent and child canvases are both
the one shown in Figure 3 and are rendered using the frames shown in Figure 5(a). A portal is rendered
for the user by taking the region of the child canvas enclosed by the child frame, scaling it appropriately,
and drawing it inside the portal frame in the parent canvas, which in turn is rendered on the screen inside
the viewer window as discussed in Section 2.1. (The shape of the child frame must match the shape of the
portal frame.) In Figure 5(a), the cross-section of the portal frame taken at the current scale coordinate of
the parent frame is smaller than the parent frame, and is enclosed by the parent frame. Consequently, the
portal outline is rendered inside the viewer window in Figure 5(b). The cross-section of the portal frame
at the scale of the parent frame is also smaller than the child frame, meaning that the portion of the canvas
bounded by the child frame is demagnified (reduced in scale) when rendered inside the portal in Figure 5(b).
To enable rendering and simplify animation of portal entering (see Section 5), the aspect ratios of the three
rectangular frames should match, and for simplicity we assume that all three aspect ratios remain fixed and
equal at all times.
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Figure 5: A space-scale diagram containing the three frames of our model for a canvas with a recursive
portal (a), and the corresponding viewer window (b).
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Figure 6: A space-scale diagram showing a new interface state (a), and the corresponding viewer window

(b), obtained by beginning with Figure 5 and editing either the parent or portal frame with the parent-portal
latch active.



Our basic three-frame model for a parent canvas containing a single portal to a child canvas was orig-
inally introduced in [OWO00], which presented an equivalent notion of frames not based on space-scale
diagrams. As justified in [OWO00], the three frames can be assigned the orgheniegt frame>- portal
frame - child framebased on the conceptual distance from the user: the parent frame encloses the main
display, the portal frame is an element inside that display, and the portal frame is conceptually located be-
neath the main display, inside the portal frame. For convenience, we use the natati@nd.X —) to refer
to the frame immediately succeeding (preceding) fraha& the conceptual order. Next we discuss user
interaction.

3 Spatial Model for Behavior During User Interaction

One way in which users can interact with nested multiscale interfaces is by editing the coordinates of the
three frames in our model. Editing tkie, v, s) position of the parent frame, which always remains fixed in
size, is accomplished viparent navigatioroperationsj.e., pan and zoom. Many environments including
[BHPT96, WOA"01] also supporthild navigation which allows users to edit the:, v, s) position of the

child frame. For example, a user could potentially pan and zoom the child canvas in Figure 5(b) to enlarge
and recenter its contents without affecting the parent canvas. Panning either the parent or child frames alters
thew andwv position in the space-scale diagram of the center of the frame in a manner independent of the
current scale. For example, a “pan left” operation performed at any scale will setu — K for some
constantX that does not depend anZooming the parent or child frame changesdip@sition of the frame,
typically while keeping it centered on the same great ray, thereby holding dnely coordinates constant.
Therefore, whenever zooming |s performed, changlng the scaledrom’, the other two coordinates are
updated automatically to' = u - < £ andv’ = v -

In addition to editing the parent and child frames via parent and child navigation, users can edit the portal
frame by manipulating the portal object. A portal can be thought of as an object having the special property
that it displays another canvas, and some environments including’{B6{RVOA™01] permit users to move
and resize portal objects in the same manner as other non-portal objects. For example, a user could make
the portal in Figure 5(b) larger and reposition it. The effect on the space-scale diagram would be to enlarge
and reposition the pyramid representing the portal frame. Under the simplest of behaviors, each frame can
be freely edited by the user and each is independent, meaning that edits to one frame have no effect on the
other two frames. However, many other behaviors are possible in which the user is prevented from editing
certain frames, or, more interestingly, in which editing one frame causes changes to other frames. We now
describe two types of fundamental properties, frame editability and dependencies, that govern these more
complex behaviors.

3.1 Frame Editability and Dependencies

As introduced in [OWO0O], there are two types of Boolean properties governing the fundamental behavior of
portals during user interaction. Each frame has an editability property, and each ordered pair of frames has
a dependency property, resulting in nine Boolean properties overall. We review these basic properties here
before introducing our detailed model for frame dependencies based on spatial relationships among frames
in Section 3.2.

The user can be prevented from editing a frame by disabling the frasdéability property The
editability of each frame can be configured independently. By default, editing one frame has no effect on
the other two frames, although it may change the contents of the viewer window. For example, making
the portal in Figure 5(b) smaller does not affect the child frame, which remains in the same position in
the space-scale diagram, so the same contents (two concentric circles) would be displayed in the smaller
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Figure 7: The three frames in our model, in order of conceptual distance from the user, with arcs between
them representing potential dependencies between frames.

portal frame. Frame dependenciesre properties that cause one frame to change automatically when the
user edits another frame. Dependencies are one-way links between ordered pairs of frames, of which there
are six. Each dependency can either be enabled or disabled. If a dependency from frariname B,

written A — B, is enabled, then whenever the user edits the position and/or size of ##athe position

and/or size of framd3 changes automatically. Of course, a dependeticy» B cannot be enabled unless
frame A is editable. On the other hand, even if frafiés not editable, the dependency can still be enabled.
Editability only restricts direct editing, while still allowing indirect editing via frame dependencies.

There are six possible frame dependencies in our three-frame model. We classify the dependencies into

forward and reverse dependencies. A dependehcy B is forward if A = B, and reverse otherwise.

Each forward dependency — B has an inversel3 — A that is a reverse dependency. It is helpful to think

of the frame dependency properties of a portal as a directed graph with three vertices, one for each frame
(parent, portal, and child), as shown in Figure 7 with frames displayed in order of conceptual distance from
the user, from left to right. Each arc in the graph is labeled with the name we give to the corresponding
dependency. The three forward dependencies are named as follavesit — portal = sticky, parent—

child = s-nav(for synchronous navigation), ammbrtal — child = lens We name their inversesticky !,

s-nav'!, andlens™!, respectively.

There are a total of25 distinct fundamental behaviors, considering only the Boolean editability and
dependency properties, and accounting for the restriction that outgoing dependencies are only allowed from
editable frames. Many of these behaviors are unintuitive and can be confusing, and#bitiey ruleswere
proposed in [OWO00] to eliminate unintuitive behaviors, reducing the number of allowed behavi¥s to
These32 intuitive behaviors are abstract, in the sense that our general model from [OWO00] only considers
whether dependencies between frames are enabled or disabled, and not what effect enabled dependencies
have, which depends on the way dependencies are implemented.

The appropriate dependency implementation depends on the characteristics desired, which vary across
applications. In some applications, the relationships among frames may not have any spatial significance.
For example, consider a political map visualization of the United States in which a recursive portal displays
the home town of the governor of the state displayed in the main viewer window. The portal exhibits, among
others, the s-nav dependency because edits to the parent frame (havigation in the main viewer window) can
trigger a change to the child frame (portal contents), but the relationship is not spatial. On the other hand, in
many common and natural applications of nested multiscale interfaces, dependent frames exhibit a spatial
relationship. We describe our model for a spatial implementation of frame dependencies next.



3.2 Spatial Implementation of Dependencies

Frame dependencies can be implemented in a way that obeys a spatial metaphor. There are at least two
plausible metaphors for nested multiscale interfaces. In one, the portal frame is treated as a physical window,
where moving closer spreads out the viewing angle, thereby enlarging the visible area of the child canvas.
Alternatively, portals can be treated like hanging pictures rather than windows in this respect. Our original
intuition when we helped develop portals in the DataSplash system [VW0@RAwas to follow the physical
window metaphor due to its correspondence with windows in the real world. However, after extensive
experimentation it became clear that the physical window model was impractical because the portal contents
could not be made invariant during zooming, making it difficult to program useful nested visualizations.
Therefore, it was decided that the hanging picture metaphor would likely be superior for most purposes.
We now present our spatial model for implementing frame dependencies, which is based on the hanging
picture metaphor, and which satisfies the mapping transitivity and inversion properties defined in [OW00]
and deemed essential for intuitive nested interface environments. For simplicity, we focus on recursive
portals, but our model extends easily to non-recursive ones.

3.2.1 Latches

The basic conceptual constructs in our spatial modelaacbes which temporarily fasten together pairs of
frames. There are two latches in our three-frame model, one between each pair of frames that are adjacent
in conceptual order: thparent-portal latchand thechild-portal latch Each of the two latches involves one
aperture (parent or child frame), represented as a fixed-size rectangle in the space-scale diagram, and the
portal frame, represented as a pyramid of variable size. Consider the four points at which the four great rays
making up the pyramid of the portal frame intersect the plane of one of the aperture frames. These are called
theintersection point®f the aperture frame, and their fo(ir, v) coordinates relative to the:, v) position

of the aperture frame center are called tblative intersection coordinate®Vhen a latch is active, it fastens

the relevant aperture frame to the portal frame by maintaining the relative intersection coordinates invariant,
causing the movements of the two frames to be coordinated.

By physical analogy, an aperture frame can be thought of as being embedded in a thin, flat plate pierced
by four rods representing the great rays of the portal frame, the ends of which are anchored to the origin.
The holes in the plate made by the rods represent the relative intersection coordinates, which remain in the
same position in the plate. The rods are permitted to slide freely up and down in the holes. When the latch
is active, the effect is that moving the plate laterally (panning the aperture) causes the rods (portal frame)
to move along with it. Moving the plate up (increasing the scale coordinate of the aperture by zooming)
causes the angle between the rods to decrease and the portal frame to become smaller. Conversely, moving
the plate down (decreasing the scale coordinate of the aperture by zooming) spreads the rods farther apart
and causes the portal frame to grow larger, as illustrated in the transition from Figure 5 to Figure 6, in which
both panning and zooming of the parent frame aperture have been performed with the parent-portal latch
active. Edits made to the portal frame transfer to the aperture frame via the same mechanism when the latch
is active. Moving the rods in unison laterally (repositioning the portal frame) causes the plate to move along
with them, indirectly panning the aperture. Bringing the rods closer together (reducing the size of the portal
frame) causes the plate to move up, increasing the scale coordinate of the aperture such that the relative
intersection coordinates remain unchanged. Conversely, spreading the rods apart (increasing the size of the
portal frame) causes the plate to move down, decreasing the scale coordinate of the aperture. This effect is
illustrated in the transition from Figure 5 to Figure 6, which could have been accomplished by spreading out
the portal frame rods with the parent-portal latch active.

We now describe the effect of latches mathematically. Let the parent aperture frame coordinates be
(up,vp, sp), and the coordinates of the lower-left and upper-right corners of the portal frarie b )



Dependency | Latch Activated

sticky (parent— portal) | parent-portal
s-nav parent— child) | child-portal
lens fortal — child) | child-portal
sticky ! (portal — paren) | parent-portal
s-nav ! (child — paren) | parent-portal
lens! (child — portal) | child-portal

Table 1: List of which latch is activated for each enabled dependdney B during edits to framed.

and(z2, y2), respectively. The four relative intersection coordinates are, in clockwise order beginning with
the lower-left: (z1 - s, — up, y1 - sp — vp), (1 - 8p — Up, Y2 - Sp — Vp), (T2 - Sp — Up, Y2 - Sp — Up), @Nd
(22 - sp — up, Y1 - sp — vp). If the user edits the parent frame, changing its coordinates fig,, s,)
to (ul,, v}, s)), and the parent-portal latch is active, then the lower-left and upper4right) portal frame
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coordinates change (0 o , ) ) and( ) ; o ) respectively. Itis

easy to verify that these new portal frame coordinates leave the relative intersection coordinates between the
portal and parent frames unchanged. If the user edits the portal frame, changing its lower-left and upper-
right coordinates froniz1, y1) and(z2, y2) to (24, y1) and(z5, v4), respectively, and the parent-portal latch

is active, then the parent frame coordinates change to:
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As before, it can be verified that the relative intersection coordinates between the portal and parent frames
remain unchanged. The corresponding formulae for the child-portal latch are similar.

As we will see in Section 5, the concept of latches is useful for creating an animation sequence for
entering a portal. The primary purpose of latches, however, is to link together the motions of dependent
frames during editing by the user, as discussed next.

3.2.2 Activation of Latches

Latches are inactive by default, and they may be activated temporarily during frame editing, depending on
which dependencies are enabled. While the user is editing franaelatch is activated for each outgoing
dependencyA — X that is enabled. 1A — X is a forward dependencye., A >~ X, then the latch
betweenX and X — (the frame immediately preceding in the conceptual order) is activated while frame

A is edited. Otherwise, il — X is a reverse dependenéyg., X > A, then the latch betweeK and X+

(the frame immediately succeedid in the conceptual order) is activated. Put simply, if any dependency

A — X is enabled, then while framé is edited, the latch betweeX and the frame befor& on the path

from A to X is activated. For example, suppose the parent frame is edigedthe user pans or zooms

in the parent canvas. If the sticky dependengsrént— portal) is enabled, then the parent-portal latch is
activated during editing. If the s-nav dependenggrént— child) is enabled, then the child-portal latch is
activated. If both dependencies are enabled, then both latches are activated while the parent frame is edited.
Table 1 lists, for each dependendy— B, which latch is activated while the user edits fraseNote that

latch activation is not necessarily symmeteog, if the parent-portal latch is activated while the user edits

the parent frame, it may not necessarily be activated while the user edits the portal frame.

3Note that the new scale coordinate can be defined equivalently in terms ofithgrsince we require the aspect ratio of the
parent frame to remain fixed.
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Forward Dependencies Enablqd Recursive Portal Tool Type \ Non-recursive Portal Tool Type

{} canvas-stationary visual hyperlink

{sticky} viewer-stationary visual hyperlink (bookmark)

{lens} canvas-stationary magnifying glascanvas-stationary filter/transformer
{sticky, s-nav, lens viewer-stationary magnifying glagsviewer-stationary filter/transformer
{sticky, s-nay overview coordinated view

Table 2: The five allowed forward dependency combinations, and some types of recursive and non-recursive
portal tools that use them.

The two latches are spatial constructs that implement the six dependencies from our abstract model
from [OWO0Q] to define a new spatial model. It may seem surprising that no latches are needed between
the parent and child frames in our spatial model. According to one of the fundamental usability rules
established in [OWO00], dependencids— B that bypass intermediate frames in the conceptual order must
be accompanied by dependencies frdnto each intermediate frame betwedrand B in the conceptual
order. Therefore, when framé is edited, all latches along the path frofnto B will be activated, thereby
transferring edits indirectly frond to B via the intermediate frames. For example, the s-nav dependency
(parent— child) bypasses the portal frame, so the sticky dependgrargiit— portal) must also be enabled
whenever the s-nav dependency is enabled. The combination of those two dependencies causes both the
parent-portal and child-portal latches to be activated while the parent frame is edited, thereby causing the
edits to transfer indirectly from the parent frame to the child frame via the portal frame. In our physical
analogy, the parent and child frames are each embedded in a thin plate, which are both pierced by the same
four rods representing the great rays of the portal frame. When both latches are active, moving one plate
moves the rods, whose motions indirectly cause the other plate to move.

Perhaps the best way to understand our spatial model based on latches, which dictates how portals behave
during user interaction when dependencies are enabled, is to interact with our online demonstration program,
available at [OIs02]. Users of our demonstration program can configure the editability and dependency
properties, edit frames, and observe how edits transfer indirectly to other frames via latches. Two visual
representations are provided of the nested canvas being controlled: a space-scale diagram containing the
three frames in our model and the viewer window as rendered for the end user. Figures 5 and 6 are screen-
shots of our program.

4 Taxonomy of Portal Tools Employing Our Spatial Model

In this section we provide a taxonomy of portal tools that can be created by applying our spatial dependency
implementation based on latches to one of3edundamental behaviors that satisfy the usability rules of
[OWO0Q]. We classify portal tools along two main dimensions: type of tool and programmability.

4.1 Tool Type

The type of tool is defined by which forward dependencies are enabled. There are three forward dependen-
cies, and therefore eight combinations, but only five of them are permitted by the usability rules of [OWO0O].
Table 2 lists the five legal combinations of forward dependencies, along with some types of tools that can
be created with a recursive or non-recursive portal that has exactly that set of forward dependencies enabled
and obeys our spatial dependency implementation.

We now briefly describe the different types of portal tools listed in Table 2 (the reader is referred to
[OWO00] for some discussion of applications that might use the different types of tools).

11



e Visual hyperlinksare analogous to hypertext hyperlinksg, between Web pages) in that they allow
the user to navigate instantly from a location on one canvas to a new location on the same can-
vas, or some location on another canvas. Additionally, visual hyperlinks display the contents of the
destination in a sub-window, providing a “preview” of the destination. Hyperlinks use no forward
dependencies.

e Filter/transformergBHP96, SFB94] are portals that show an alternative representation of the region
of the parent canvas that is occluded by the portal. For this type of tool, the lens dependency is
enabled, causing the contents of a filter/transformer to be correlated with its position and size in the
parent canvas.

e Magnifying glassefACSW96, PF93] show a magnified view of the region of the canvas underneath.
See Figure 1 for an illustration. As with filter/transformers, the lens dependency is enabled, causing
the contents of a magnifying glass to be correlated with its position and size in the outer canvas.

e Overview toolsare fixed on the screen and show a demagnified view of the portion of the canvas
surrounding the current viewer window contents, creating an overview and detail view [CMS98]. The
s-nav dependency is enabled, causing the contents of an overview to be correlated with the contents of
the main viewer window. The sticky dependency is also enabled, causing an overview tool to remain
the same size and in the same position on the screen despite parent navigation.

e Coordinated view$Bel00, SFB94] remain on the screen at all times and show an alternative repre-
sentation of the region of the parent canvas displayed in the main viewer window. See Figure 2 for
an illustration. In contrast to filter/transformers, the view displayed inside a coordinated view tool
depends only on what is displayed in the main viewer window, and is not related to the position of the
portal. As with overview tools, coordinated views have the sticky and s-nav dependencies enabled,
causing them to remain stationary on the screen and their contents to be correlated with the contents
of the viewer window.

Visual hyperlinks, filter/transformers, and magnifying glasses can be eglhngas-stationarpr viewer-
stationary (Overview tools and coordinated views are always viewer-stationary by nature.) The position and
size of a canvas-stationary tool are fixed relative to the canvas, and therefore the observed position relative
to the viewer window changes during panning in the parent canvas and the observed size changes during
zooming. In contrast, the position and size of viewer-stationary tools relative to the viewer window remains
fixed while parent navigation is performed. Canvas-stationary portal tools can be made viewer-stationary
by enabling the sticky dependency and taking the transitive closure of the resulting dependency graph to
guarantee dependency transitivity as required by the usability rules of [OWO00]. Viewer-stationary visual
hyperlinks are also calledookmarkgknown asindexesin Pad++ [BHP 96]). For simplicity, throughout
the remainder of this paper we focus on recursive portal tools and commonly refer to the five tool types by
abbreviation: hyperlinks, bookmarks, canvas magnifiers, viewer magnifiers, and overviews.

4.2 Programmability Options

Before we describe the second component of our taxonomy, frame programmability, we must first introduce
the concept of interface state, upon which our notion of programmability is base@iL.gt) and(xs, y2)

be the lower-right and upper-left corners, respectively, of the portal frame, ang Jet,, s,,) and(u., v, sc)

be the coordinates of the parent and child frames, respectivelyinféréace stateS of a parent canvas con-
taining a nested child canvas specifies the current coordinates of all three frames in our model. However, it
is useful to reformulate the interface state in terms of relative relationships among frames. Recall from Sec-
tion 3.2.1 that the points at which the portal frame intersects the plane of an aperture (parent or child frame),
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in (u,v) coordinates relative to the aperture center are called the relative intersection coordinates. Since we
require portals to have a fixed aspect ratio, we can encode the parent-portal relative intersection coordinates
as the three-tuplé, = (z1 - s, — up, y1 - sp — vp, X2 - 5 — up), and the child-portal relative intersection
coordinates similarly ag. = (z1-sc—uc, Y1+ Sc— Ve, T2+ Sc—uc). The overall interface state can be rewritten

by encoding the coordinates of each frame relative to those of the previous frame in the conceptual order.
The result is the following three-tuple of three-tuplés= (Sparent, Sportats Schitd) = ((Up, Vp, 8p)s Ip, Ic).

The three components of the interface st&lg,..:, Sportar, aNAS,riq, €ach correspond to one frame in our
model, and together they specify unambiguously the coordinates of all three fi8pes, specifies which

part of the parent canvas is displayed inside the viewer windowSgng, specifies the placement and size

of the portal within the viewer windowsS,;;;; pertains to the contents of the portal and specifies which
portion of the child canvas is displayed inside the portal, relative to the placement and size of the portal
outline within the parent canvas. For example, with a magnifying gtass, determines the magnification

factor as well as the offset between the portion of the outer canvas occluded by the magnifying glass and the
portion of the canvas displayed inside it.

When a forward dependency between two frames is enabled, the interface state component of the de-
pendent frame encodes the spatial relationship between the two frames. For example, in the case of the lens
dependency for magnifying glassesy,;;; encodes the magnification factor and offset. Altering the inter-
face state of the dependent frame can be thought of as a way to program the spatial relationship between the
frames. When a frame is not dependent on any other frames, spatial relationships among frames are not rel-
evant because its coordinates remain fixed unless it is edited directly, as with the child frame of a bookmark.
In that case, altering its interface state can be thought of as a way to program its absolute coordinates. In
either case, we refer to the act of altering a frame’s interface state by editing that frgmog@snmingthe
frame.

We say that framed is programmableif users can altetS4 directly by editingA. If all frames are
editable and no reverse dependencies are enabled, then all frames are programmabled Eaanbe
made nonprogrammable in one of two ways. The first way is to make framen-editable, which has
the indirect consequence of disabling any outgoing dependenciesAroithe formA — X (recall from
Section 3.1 that dependencies from non-editable frames are not allowed). Second, if any incoming forward
dependencies to framé are enabled, thed can be made nonprogrammable dyding inversionwhich
proceeds in two steps. First, for each forward incoming depend&ney A enabled, we enable its inverse
A — X, which is a reverse dependency. Second, to guarantee dependency transitivity as required by the
usability rules of [OWO00], we take the transitive closure of the resulting dependency graph. Adding inversion
is only applicable if at least one forward dependency into frafrie enabled. Note that both methods for
making a frame nonprogrammable, adding inversion and disabling editability, can result in a change to the
tool type by affecting which forward dependencies are enabled. Adding inversion can in some cases lead to
additional forward dependencies being enabled due to the transitive closure step. Disabling editability can
lead to one or more forward dependencies being disabled since outgoing dependencies from non-editable
frames are not permitted. We revisit this apparent oddity below in Section 4.3.

To illustrate the two options for making frames nonprogrammable, we take as an example a fully pro-
grammable canvas magnifier, which has only the lens dependency enabled. Since a magnifying glass shows
a detailed view of a small area of the canvas, users may wish to explore the immediate neighborhood of
that view without affecting the outer view by panning inside the magnifying glass. Performing this action
amounts to editing the child frame, which alt&ts,;;; and programs the offset between the position of the
magnifying glass in the canvas and the location viewed within the magnifying glass. Normally, the offset
of a magnifying glass is kept at zero, so programming the offset may, for novice users, result in unexpected
behavior during further interaction. Therefore, it may be appropriate to disable programming of the child
frame for novice users. For magnifying glasses, which have the lens forward dependency enabled, there
are two ways to disable child frame programmability. The simplest is to disable editing of the child frame,
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disallowing users from panning or zooming the contents of the portal directly. The second way to make
the child frame nonprogrammable is to add inversion by enabling the letependency. In the resulting
behavior, if a user pans the contents of the magnifying glass, the magnifying glass itself moves within the
outer canvas to remain centered over the portion of the canvas shown in the magnified inner view. The effect
is the same as if the user had instead repositioned the magnifying glass over a new area of the outer canvas,
keeping the offset fixed at zero.

Both options for making the child frame nonprogrammable are possible with canvas-stationary magni-
fying glasses, but for tools with no forward dependencies into the child frame enabled, it is not possible to
add inversion. For example, consider a bookmark tool, which does not use the lens dependency. It is not ap-
propriate to attempt to prevent the user from programming the bookmark contents (child frame) by enabling
the lens ! dependency, thereby causing the bookmark tool to be repositioned or resized in the parent canvas
in response to child navigation. In fact, this behavior is not permitted by the usability rules.

In summary, there are five types of tools, defined by which forward dependencies are enabled. For each
type of tool, each frame can be either programmable or nonprogrammable, depending on which frames
are editable and which reverse dependencies are enabled. A frame can always be made nonprogrammable
by disabling editability of that frame. In some cases, the same frame can alternatively be made nonpro-
grammable by adding inversion. Note that the programmability of the parent frame is a global option, which
affects the entire interface by preventing the user from panning and zooming the parent canvas. In contrast,
the programmability of the portal and child frames only pertains to an individual portal, and can be config-
ured differently for each portal present in the interface. We now present our overall taxonomy of portal tools
that obey our spatial model, which classifies them by tool type and programmability.

4.3 Portal Tool Taxonomy

Table 3 lists every allowed combination of tool type and programmability options, along with the resulting
behavior. Behaviors are represented as three strings of three T/F values each. The first string encodes which
forward dependencies are enabled, in the order sticky, s-nav, lens, and the second string encodes which
reverse dependencies are enabled, in the order Sticleynav!, lens™!. The third string encodes which
frames are editable, in the order parent, portal, child. For each tool type, the first eight rows correspond to
the 22 = 8 options available by making each frame either programmable (indicated by “Y”), or nonpro-
grammable by disabling editability (indicated by “N-noned”), which are always possible for each frame.
Additional rows, if any, correspond to options resulting from making one or more frames nonprogrammable
by adding inversion (indicated by “N-inv”), which is only possible in some cases. Each unique behavior
obtained by selecting a tool type and choosing a programmability option for each frame is assigned a unigue
identification number. As discussed above, in some cases disabling programmability of frames (either by
disabling editability or by adding inversion) may enable or disable one or more forward dependencies,
causing the behavior to be equivalent to that of another tool type. We indicate such cases in Table 3 by
referencing the identification number of the equivalent behavior in parentheses. While the number of valid
tool type and programmability options is greater, there32raonequivalent behaviors, accounting for all

32 behaviors that satisfy the usability rules of [OWO00].

To illustrate how a portal tool can become equivalent to another due to making some aspect nonpro-
grammable, we present two examples. First, making the parent frame nonprogrammable by disabling ed-
itability removes the sticky and s-nav dependencies of any portal tools present since outgoing dependencies
are not allowed in the absence of editability. Therefore, when the parent frame is not editable, a book-
mark, which normally employs the sticky dependency, is equivalent to a hyperlink, which has the sticky
dependency disabled (see the fifth through eighth rows for the bookmark tool type in Table 3). This equiv-
alence makes intuitive sense: if the user is not permitted to pan or zoom the parent canvas, then there is no
detectable difference between canvas-stationary and viewer-stationary tools.
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Programmability Options Behavior
Tool Type| Parent | Portal | Child | Forward Deps.| Reverse Deps, Editability || Behavior ID
hyperlink | Y Y Y FFF FFF TTT 1
Y Y N-noned FFF FFF TTF 2
Y N-noned | Y FFF FFF TFT 3
Y N-noned | N-noned FFF FFF TFF 4
N-noned | Y Y FFF FFF FTT 5
N-noned | Y N-noned FFF FFF FTF 6
N-noned | N-noned | Y FFF FFF FFT 7
N-noned | N-noned | N-noned FFF FFF FFF 8
bookmark | Y Y Y TFF FFF TTT 9
Y Y N-noned TFF FFF TTF 10
Y N-noned | Y TFF FFF TFT 11
Y N-noned | N-noned TFF FFF TFF 12
N-noned | Y Y FFF FFF FTT (5)
N-noned | Y N-noned FFF FFF FTF (6)
N-noned | N-noned | Y FFF FFF FFT )
N-noned | N-noned | N-noned FFF FFF FFF 8)
Y N-inv Y TFF TFF TTT 13
Y N-inv N-noned TFF TFF TTF 14
canvas Y Y Y FFT FFF TTT 15
magnifier [ Y Y N-noned FFT FFF TTF 16
Y N-noned | Y FFF FFF TFT (3)
Y N-noned | N-noned FFF FFF TFF (@)
N-noned | Y Y FFT FFF FTT 17
N-noned | Y N-noned FFT FFF FTF 18
N-noned | N-noned | Y FFF FFF FFT )
N-noned | N-noned | N-noned FFF FFF FFF 8)
Y Y N-inv FFT FFT TTT 19
N-noned | Y N-inv FFT FFT FTT 20
viewer Y Y Y TTT FFF TTT 21
magnifier | Y Y N-noned TTT FFF TTF 22
Y N-noned | Y TTF FFF TFT (29)
Y N-noned | N-noned TTF FFF TFF (30)
N-noned | Y Y FFT FFF FTT 17)
N-noned | Y N-noned FFT FFF FTF (18)
N-noned | N-noned | Y FFF FFF FFT )
N-noned | N-noned | N-noned FFF FFF FFF 8)
Y Y N-inv TTT FFT TTT 23
N-noned | Y N-inv FFT FFT FTT (20)
Y N-noned | N-inv TTF FTT TFT (32)
Y N-inv Y TTT TFF TTT 24
Y N-inv N-noned TTT TFF TTF 25
Y N-inv N-inv TTT TTT TTT 26
overview | Y Y Y TTF FFF TTT 27
Y Y N-noned TTF FFF TTF 28
Y N-noned | Y TTF FFF TFT 29
Y N-noned | N-noned TTF FFF TFF 30
N-noned | Y Y FFF FFF FTT 5)
N-noned | Y N-noned FFF FFF FTF (6)
N-noned | N-noned | Y FFF FFF FFT (@)
N-noned | N-noned | N-noned FFF FFF FFF (8)
Y Y N-inv TTF FTT TTT 31
Y N-noned | N-inv TTF FTT TFT 32
Y N-inv Y TTT TFF TTT (24)
Y N-inv N-noned TTT TFF TTF (25)
Y N-inv N-inv TTT TTT TTT (26)

Table 3: An exhaustive enumeration of every allowed combination of tool type and programmability options,
along with the resulting behavior. Duplicate behaviors are indicated with parentheses around the behavior
identification number. See the text for an explanation of the abbreviated notation.

15



As a second example, consider a coordinated view tool (as in Figure 2), which, like an overview tool,
has both the sticky and s-nav forward dependencies enabled, and whose contents remain unchanged when
the user edits the position or size of the portal in the viewer window. As suggested in Section 1.1, it may be
appropriate to make the portal frame nonprogrammable to simplify the behavior and avoid confusing novice
users. Making the portal frame nonprogrammable by adding inversion causes the'stiefgendency to
be enabled, and taking the transitive closure causes the lens dependency to be enabled as well. Therefore,
a coordinated view tool with a portal frame made nonprogrammable by adding inversion is equivalent to
a viewer magnifier, which has all three forward dependencies enabled (see the last three rows of Table 3).
This equivalence makes intuitive sense as well: the only difference between a coordinated view tool and a
viewer magnifier is that with a viewer magnifier, the contents of the portal change when the user edits the
portal’'s position or size relative to the viewer window. If the user is not permitted to reposition or resize
the portal relative to the viewer window then the effective difference between the two tool types is removed.
(Of course, although the two tool types share a common behavior in this case, they may be instantiated
differently, i.e., have opposite magnification factors.)

5 Animating the Entrance Into a Portal

An important feature in some nested multiscale interface environments is the ability of the user to “enter”
a portal [WOAF01], causing the parent canvas and frame to be replaced by the child canvas and frame.
This feature is clearly useful for navigation aides such as visual hyperlinks and bookmarks. Interestingly,
it can also be a convenient feature for other types of tools. For example, entering a magnifying glass is a
convenient shortcut for increasing the scale of the canvas (magnifying the main view). Conversely, entering
an overview is a simple way to demagnify the view rapidly. Entering a filter/transformer or coordinated
view tool offers a convenient method of converting the main view into the alternative one shown inside the
portal tool.

When the user enters a portal, to maintain the user’s orientation it may be helpful for the system to
perform an animated transition from the current interface state to the final state resulting from entering the
portal. There are many ways to execute this animation, and we propose three alternatives based on nested
space-scale diagrams here. One alternative is to deactivate both latches and navigate the parent frame to the
position in which its four corners meet the four great rays of the portal frame pyramid, following one of
the pan-zoom trajectories proposed in [FB95] such as a hyperbolic trajectory. The effect seen by the user
of navigating along this path is that of “zooming in” on the portal until it fills the entire viewer window. A
second alternative is to deactivate both latches and enlarge the portal frame gradually until its four great rays
reach the four corners of the parent frame, causing the portal to appear to grow progressively until it fills the
entire viewer window. In both these alternatives, after the animation has been performed, the final step is to
replace the parent canvas and frame by the child canvas and frame, which will have the effect of deleting the
portal outline from the viewer window perimeter and completing the seamless transformation from parent
view to child view.

The previous two approaches, which align the parent and portal frames by animating the motion of one
of them with both latches deactivated, can be used to animate the entrance into any portal. The following
third approach may be the most effective in maintaining user orientation during the entrance into a recursive
portal, or more generally any portal to another canvas with equivalent coordinates, such as a filter. This
approach aligns all three frames and proceeds in two phases: one to align the portal and child frames, and
a second to bring the parent frame into alignment with the other two frames. In the first phase, the parent-
portal latch is activated while the parent frame is displaced (along with the latched portal frame) using a
smooth animation to a new location in which the four great rays of the latched portal frame intersect the four
corners of the child frame, as illustrated in the transition from Figure 5 to Figure 6. (A pan-zoom trajectory
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from [FB95] such as a hyperbolic trajectory can be used for this phase.) In the second phase, both latches
are deactivated and the parent frame is moved to the position of the child frame, again using a pan-zoom
trajectory from [FB95]. At the end of the second phase, the child frame replaces the parent frame, now at
the same position, and for non-recursive portals the child canvas replaces the parent canvas, completing the
transition. The overall effect of this approach seen by the user of the first phase is that the parent canvas is
panned and zoomed to align the outer view to the inner one like a jigsaw puzzle. In the second phase, the
main viewer “zooms in” on the portal until it fills the entire viewer window.

6 Summary and Future Work

In this paper we have described a spatial model for nested multiscale interfaces that we constructed based
on experience with spatial metaphors in a prototype data visualization system. Our model uses space-scale
diagrams and a physical analogy of rods piercing plates to describe the behavior of portals in response
to user actions such as panning, zooming, and repositioning the portal. We also provided a taxonomy of
tools that can be constructed using portals that obey our spatial model, classifying them by tool type and
programmability by users. (To accompany our spatial model and portal tool taxonomy, we created an online
demonstration program [OIs02], which may aid in understanding how the portal tools in our taxonomy
behave in response to user actions.) Finally, we used our model of spatial relationships to propose techniques
for smoothly animating the transition from the outer view to the inner view displayed inside a portal, helping

to maintain user orientation during navigation between nested worlds.

The design of animated transitions between nested worlds serves as an example of how our formalisms
might be used in practice. In general, it is our belief that the formal model presented here can be of significant
benefit to researchers, designers, programmers, and users of nested multiscale interfaces. Researchers can
use our framework as a basis for reasoning about properties of portal tool configurations including spatial
dependencies and programmability options. Also, our taxonomy of possible behaviors can assist designers
faced with the nontrivial tasks of deciding which of tB2recommended behaviors to make available and
how best to offer control over the tool type and programmability options to end-users. In addition, our
formal model can serve as a specification for implementors of nested user interfaces. Finally, our physical
analogy of plates and rods along with our interactive demonstration program may be useful in documenting
the behavior of nested interface components for end-users.

As future work we plan to refine our taxonomy to allow frames in our model to be partially pro-
grammable, in addition to the existing options of full programmability and strictly non-programmaubility.

For example, with a magnifying glass for novice users it may be appropriate to allow programming of the
magnification factor, but at the same time require that the offset between the portion of the outer canvas
occluded by the magnifying glass and the magnified portion displayed inside it remain fixed at zero. Doing
so would require making the child frame partially programmable, since both the magnification factor and
offset are encoded in the child component of the interface state. We believe that our notion of interface
state, overall model, and taxonomy can be extended in a straightforward manner to accommodate partial
programmability of frames.
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