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ABSTRACT
In this paper, we study the benefits and overheads of lazy
MapReduce processing, where the input data is partitioned
and only the smallest subset of these partitions are processed
to meet a user’s need at any time. We also develop guidelines
for successfully applying the lazy MapReduce computation
technique to reduce processing times of analysis tasks.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Parallel databases,
Query processing

General Terms
Design, Performance
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1. INTRODUCTION
As their dataset sizes explode [2], scientists are exploring

new tools for analyzing their data. MapReduce [7], a flexi-
ble and highly-scalable parallel data-processing system, is a
popular choice today. Many scientists are starting to apply
MapReduce to their analysis tasks [18, 17, 26, 30].

Because of the volume of data, a single MapReduce job
can easily take from minutes to hours to run. For example,
a data clustering algorithm executed on an 18GB dataset
took 1.6 hours to run on an 8-node cluster [17]. Addition-
ally, scientists often need to perform an entire workflow of
transformations in order to process their data [1]: clean the
data, extract and transform features, match results against
a reference database, etc. Each transformation maps onto
one or more MapReduce jobs. Processing times are thus a
bottleneck to scientific discovery as scientists must wait sig-
nificant amounts of time whenever they want to answer a
question using their data. Such high latencies are especially
frustrating when a scientist needs only a subset of the anal-
ysis result. For example, given the output of an astronomy
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simulation in the form of a series of snapshots [19, 27], an
astronomer is typically only interested in a subset of these
snapshots. It would be wasteful to run the 1.6-hour data
clustering algorithm on hundreds of snapshots in a simula-
tion if the user will access only a few of the snapshots.

Our vision is to optimize scientific workflows by carefully
deciding when to process different subsets of the data at any
step in a workflow. In this paper, we study the problem at
the level of a single MapReduce job. Our observation is that
given a dataset and a transformation, a scientist often has
the choice to apply that transformation either to the entire
dataset or only to a subset of that dataset. For example,
an astronomer can choose to run the clustering algorithm
ahead of time on all simulation snapshots or he can choose
to cluster individual snapshots as the need arises. In gen-
eral, deciding what subsets of the input data to a MapRe-
duce computation to process is not trivial for the following
reason: If a user will access some small subset of the analysis
result, it is faster to compute only that subset rather than
the entire result. However, if the user processes a subset
of the data and later realizes that he needs additional re-
sults, there is a penalty to obtaining such results compared
with upfront processing of the entire dataset. For example,
if the astronomer will end up studying the evolution of ce-
lestial structures over most simulation snapshots, it may be
faster to cluster all snapshots of the simulation in a single
MapReduce job rather than running a separate job for each
snapshot.

We call the delayed computation of MapReduce results
lazy MapReduce processing. For a given MapReduce job, the
key idea is to partition the input data into small fragments
and process only the smallest set of fragments to satisfy a
user’s needs at any given time. To use this technique effec-
tively, a user must (1) decide whether lazy processing is both
possible and cost-effective for her analysis task and dataset
and, if so, (2) at what granularity to apply this technique.

We present preliminary work that addresses both issues.
First, we study the potential gains and overheads of lazy
MapReduce processing (Section 4). Second, we develop
guidelines to help a user decide whether lazy MapReduce
processing can be cost effective and at what data granular-
ity to apply this technique (Section 5). We begin with an
overview of MapReduce in Section 2 and discuss an illustra-
tive example of lazy MapReduce processing in Section 3.

2. BACKGROUND
MapReduce [7] is Google’s parallel data-processing sys-



tem. It facilitates large-scale data analytics by providing
a simple programming interface: the user writes only a se-
rial map and a serial reduce function to analyze data and
the MapReduce implementation takes care of efficiently ex-
ecuting these functions in parallel across nodes in a cluster.
Hadoop [12] is an open-source version of MapReduce.

Several high-level languages exist for MapReduce includ-
ing Pig Latin [23] and HiveQL [14]. Such languages enable
users to express their analysis tasks in the form of simple
scripts or declarative queries. These queries are compiled
into directed acyclic graphs (DAGs) of MapReduce jobs. In
this paper, however, we focus on single MapReduce jobs.

We use as illustrative examples and in the evaluation real
data transformation tasks from the data analysis workflows
of the University of Washington’s Astrophysics “NBody
Shop”group [19]. The tasks that we consider consist of a sin-
gle job each, running many map and reduce tasks in parallel
(over 450 tasks in our experiments). The types of operations
performed by these jobs include selections/filters on items of
interest, joins, and the application of user-defined functions
(UDFs) for more complex analysis.

3. ILLUSTRATIVE EXAMPLE
We present an illustrative example of lazy MapReduce

processing, how it can help improve performance, and how
it can hurt performance if applied indiscriminately.

In astronomy, cosmological simulations are used to study
how structures form and evolve in the universe on scales
ranging from a few million light-years to several billion light-
years [19, 27]. Typically, the simulations start shortly af-
ter the Big Bang and run the full lifespan of the universe,
roughly 14 billion years. Every few simulation timesteps, the
simulator outputs a snapshot of the universe in the form of
a set of particles, their position, and their properties (mass,
velocity, etc.). The particles in each snapshot are then clus-
tered to identify celestial structures such as galaxies. Given
the raw particle data and cluster information, astronomers
often want to ask various questions on the data and these
questions can be expressed as Pig Latin scripts [19].

One such question (Query 3 from Loebman et al. [19]) is
the following: “Return all particles of type T (gas, stars, or
dark matter) within distance R of point P1 whose property
X is above a threshold D computed at timestep S.” Given
this question, the user can proceed in one of three ways:

• Standard approach: Run Query 3 as specified on the
entire input dataset.

• Eager approach: Extract all particles of type T whose
property X is above a threshold D at timestep S. Do
not apply the predicate on distance to P1 because par-
ticles near other points may also be of interest later.

• Lazy approach: Partition the input data into small spa-
tial regions and run the above Query 3 only on the re-
gions that contain P1 and particles within R of P1. Do
not apply the predicate on distance to P1 in case other
points within the processed region become of interest.

The standard approach extended with caching is similar
to the lazy approach except for two differences. First (as-
suming the input dataset is a file with no index), the lazy
approach consumes a subset of the input data rather than
the entire dataset to compute the result. Second, the lazy
approach explicitly defines the granularity with which data

is processed. Additionally, both lazy and eager output extra
results that the user needs to filter out until they are needed.
In this paper, we study only the lazy and eager techniques.

When to be eager vs lazy? Lazy processing can be
applied to select-project-join queries1 and queries contain-
ing user-defined functions (UDFs) that process tuples inde-
pendently of one another. For queries with operations that
consume the entire dataset to compute their results such as
aggregations (e.g., AVG, SUM, COUNT), the lazy approach
cannot be applied. Query 3, for example, could benefit from
lazy processing assuming that (1) the initial dataset is large,
(2) the predicate on distance is costly, and (3) the scientist
will end-up studying only a small number of points Pi. In-
deed, in MapReduce, processing a dataset incrementally is
slower than processing the entire dataset in one shot. Thus,
if the user will end-up consuming the output from process-
ing most of the input data or the overall MapReduce job is
short, the lazy approach will only add overhead.

Goal and assumptions. We apply the lazy MapReduce
computation as a way to accelerate an individual query. We
do not consider the alternate optimization goal of optimizing
the total resource utilization of the cluster.

We assume a basic MapReduce cluster where the input
data is stored in a file-system such as the Google File Sys-
tem (GFS) [9] or equivalent Hadoop Distributed File System
(HDFS) [4]. GFS and HDFS take each input data file and
break it into large chunks on the order of 64 MB or larger.
The files are not indexed.

4. LAZY MAPREDUCE PROCESSING
In this section, we evaluate the potential benefits and

overhead of the lazy approach on a 52GB, uncompressed
astrophysical dataset and query workload from the Univer-
sity of Washington’s “N-body Shop” group. All experiments
were run on an eight-node MapReduce cluster with Yahoo!’s
Hadoop 0.20.104 release and Pig version 0.6.0. Each node
contains eight, 2.66GHz Intel Xenon processors and 16GB
of RAM. The cluster’s HDFS block size was configured with
128MB and has 32 designated parallel slots for map tasks
and 32 parallel slots for reduce tasks.

As mentioned in the previous section, with the lazy tech-
nique we partition the input dataset into smaller fragments
and run the query only on the fragment of interest. In our
experiments, we partition the dataset on subregions of space
(x, y, z coordinates). We measure the time to run a query on
either the entire dataset or on one partition of the dataset
at a time. We experiment with partitions that range in size
from 1

2 of the data to 1
32 of the data.

The workload we evaluate is the Pig Latin script in Fig-
ure 1, which is a variant of Query 3 and has a high-cost UDF
function, VirialTemp. Figure 2 shows the results for running
the above query in three different scenarios: first with the
original UDF (per tuple processing cost of 477 µs to 507 µs),
second with a less expensive version of the same UDF (cost
of 232 µs to 293 µs), and finally without the UDF (cost of
140 µs to 335 µs). The figure shows the results of running
the query in these three configurations and on different size
data partitions. Each bar in the bar graph consists of dif-

1For joins, one input relation can be processed lazily while
the other one must be processed in its entirety to yield cor-
rect results unless both datasets are partitioned on the join
attribute.
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Figure 2: Effect of Processing Cost and Overhead in Various Partitioning Schemes

REGISTER udfs.jar;
gas43 = LOAD ’gas43full’ USING BinStorage() AS (pid:long,

mass:double,px:double,py:double,pz:double,vx:double,
vy:double,vz:double, phi:double,rho:double,temp:double,
hsmooth:double,metals:double);

-remove any records with null values
gas43 = FILTER gas43 BY pid is not null AND mass is not null

AND px is not null AND py is not null AND pz is not null
AND vx is not null AND vy is not null AND vz is not null
AND phi is not null AND rho is not null
AND temp is not null AND hsmooth is not null
AND metals is not null;

-classification step:
-search a particular region of the space for particles
-whose temperature is above some threshold
regionA = FILTER gas43 BY temp > udfs.VirialTemp(Rvir,Mvir,pid)

AND px >= -0.5 AND px < -0.25 AND py >= 0 AND
py < 0.5 AND pz >= -0.5 AND pz < 0;

STORE regionA INTO ’gas43result’ USING BinStorage();

Figure 1: Pig Latin Script

ferent color boxes, which represent the individual times for
running the query on each partition.

The graphs show two main trends. First, we see, as ex-
pected, that as the number of partitions increases, so does
the effect of partitioning overhead: the time to process the
entire dataset increases. Lazy evaluation thus cannot be
applied indiscriminately and the user needs to pick the par-
titioning strategy wisely. Also, the right-most graph in Fig-
ure 2 demonstrates that partitioning too small (e.g., into
32nds) is not useful, as the overhead tends to outweigh any
benefit. Finally, we see that the benefits of lazy evaluation
are most pronounced when the per tuple processing costs
are high. The lazy approach is effective because it only
scans and applies the expensive UDF on a small amount of
data when possible. The eager approach performs a signifi-
cant amount of extra processing (see the first two graphs in
Figure 2) compared to the lazy approach as it applies the
expensive UDF operation to a large number of particles that
may never be of interest to the user. However, if the user
needs to study particles near other points Pi, the data is
readily available.

5. LAZY PROCESSING GUIDELINES
The previous section presented the motivation and chal-

lenges of lazy MapReduce processing. We now provide a
preliminary strategy for applying this technique.

5.1 Estimating the Runtime of a Job
In a cluster with N slots, when a MapReduce job runs,

it can execute up to N map and N reduce tasks in paral-
lel, with the reduce tasks following the map tasks. We call
such groups of N tasks, parallel processing units (PPUs).
The default behavior of MapReduce is that the number of
map tasks is automatically determined by the size of the in-
put data, with one map task processing one block of data.
Hence, given a MapReduce job, the map phase runs as a

series of PPUs. In contrast, the number of reduce tasks is
set by the user and the best practice is for the reduce phase
to run as a single PPU.

If a file contains less data than a single map PPU can
handle, the processing time for the map phase in an N -
slot cluster will be the same as that of a full map PPU.
Some slots will simply go unused. Hence, we recommend to
partition the input data into files, such that each input file
gets processed by some number K of full map PPUs.2 This
guideline assumes no other jobs are executing in the cluster.

To estimate the processing time of a MapReduce job on
a file created as recommended above, we adapt equations
from our prior work [22, 21].

Tjob eager ≈ Tstart + KTmap ppu + Treduce ppu (1)

where Tstart is the overhead of starting a single MapReduce
job over N slots. This overhead is significant and can reach
tens of seconds even for medium-size clusters with up to
100 nodes [24]. Tmap ppu and Treduce ppu are the times to
process one round of map tasks and one round of reduce
tasks respectively. K is the number of map PPUs in the job.
Tmap ppu ≈ Tmap start + Nrecs ∗ Trec, where Tmap start is the
time to start a new round of map tasks, Nrecs is the number
of records in a single file-system chunk (or split) and Trec

is the per-record processing time for map tasks. Similarly,
Treduce ppu ≈ Mrecs ∗ Urec. Here, Mrecs is the number of
records assigned to a single reduce task and Urec is the per-
record processing time. There is no startup overhead for
the reduce PPU as the first round of reduce tasks is always
scheduled at the same time as the map tasks. For some
MapReduce jobs, skew can occur [17], where some map or
reduce tasks take much longer to process than others. In
such cases, the time estimates of the skewed phase must be
adjusted to take the skew into account [21].

To effectively use lazy MapReduce processing, a user must
have an estimate of the above parameters. As in our prior
work [22, 21], these values can be obtained from debug runs.
Note that we do not try to perfectly model runtimes. We
only need to model these parameters and the job runtime
sufficiently well to discriminate between different processing
strategies in the case where runtime differences vary signifi-
cantly between approaches.

5.2 Lazy vs Eager Processing
Given a dataset partitioned into files, the question that

the user wants to answer is whether to process all files at
once as in Equation 1 or lazily process one file at a time
as needed. To answer this question, we derive the expected
processing time for the lazy approach.
2In Hadoop, the user can achieve this goal either by playing
with the file sizes or by adjusting the “split size”, which
determines how much data is assigned to each map task.
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Figure 3: Eager and Lazy evaluation tradeoffs.

We assume that the dataset comprises K partitions such
that each partition can be processed by one map PPU. We
also assume that partitions are grouped into equal-sized files,
each containing k partitions. There are thus K

k files.
We assume that Pi is the probability that partition i from

the set of K partitions will have to be processed. For sim-
plicity, we assume the probability is the same for all parti-
tions and equal to P . In that case, the expected processing
time for the analysis task using the per-file lazy processing
method is the following (other discrete probability distribu-
tions could be modeled by replacing P with Pi and expand-
ing the following equation):

Tjob lazy ≈
K(1− (1− P )k)(Tstart + kTmap ppu + f(Treduce ppu, k))

k
(2)

Where (1 − (1 − P )k) is the probability that a file with
k partitions will be processed. As above, Treduce ppu is the
runtime for the reduce phase when the entire input data
is being processed. f(Treduce ppu, k) is a function that esti-
mates the time for the reduce phase when only k out of K in-
put partitions are processed. Frequently, f(Treduce ppu, k) =
kTreduce ppu

K , but this may not always hold.
Table 1 verifies that the above equations for eager and

lazy processing produce reasonable estimates for processing
time, with errors < 3.1%. In this experiment, the original
data fit into 15 map PPUs, which resulted in two sets of 8
map PPUs when the data was split in two.

Figure 3 illustrates the estimated processing times for the
configuration from Table 1, where Tstart = 9 s, Tmap ppu =
20 s, Treduce ppu = 0 s, K = 16, and varying both k and
p. As the figure shows, for low probability values the lazy
approach with k = 1 wins. The eager approach wins for
high p values. In this configuration, it is never beneficial to
use lazy evaluation with k > 1.

To decide whether to use lazy processing or not, a user
should thus estimate the parameters in the above equations
and compare the expected runtimes for Tjob eager and Tjob lazy

for different values of k.

5.3 Online Data Partitioning
In the above equations, we assumed that the input data

was already pre-partitioned into files. If this is not the case,
the lazy processing time must be extended with the time
to partition the data, which is equivalent to running a fast
MapReduce job eagerly on the entire dataset.

5.4 Summary of Findings and Guidelines

To leverage lazy MapReduce processing, we recommend:

Guideline 5.1. From debug runs and domain knowledge,
estimate Tstart, Tmap ppu (i.e., Tmap start, Nrecs, and Trec),
Treduce ppu, f(k, Treduce ppu), and p for the given system,
dataset, and analysis.

Guideline 5.2. Using the estimated parameters, com-
pare the expected time given by Tjob eager (Equation 1) and
Tjob lazy (Equation 2) for different values of k. Select the
execution strategy that yields the lower expected runtime.

Guideline 5.3. Partition the input data into files that
are the size of k map PPUs.

In general, the results from Section 4 indicate that the
lazy approach offers greater gains for queries with high per-
tuple processing costs, either from expensive relational op-
erations or UDFs. If a workflow consists of multiple stages
(i.e.multiple Pig jobs) executing in a pipeline, all it takes
is one slow, blocking stage to affect the performance of the
workflow. Hence, multi-stage workflows can potentially ben-
efit more from lazy processing than shorter ones.

6. RELATED WORK
There is significant work in the area of scientific workflow

management systems [8, 10, 28, 25, 29]. Existing systems,
however, treat individual computation steps as black-boxes.
In contrast, the goal of our line of work is to optimize such
workflows by processing subset of data at each step eagerly
and other subsets lazily in order to minimize total runtime.

Recent work on data intensive scalable computing systems
based on MapReduce or its competitor, Dryad [15], has de-
veloped new techniques for incremental processing in face of
appends to the input data [13, 20]. Our goal goes one step
further: we seek to compute only a subset of the requested
data eagerly, computing the rest lazily, whether the input
data is updated or not.

The details of lazy MapReduce computations are related
to incremental view maintenance [11]. The goal of this past
work, however, was to efficiently maintain a materialized
view (i.e., workflow output) synchronized with continuously
updated input data. In contrast, we focus on what parts to
update at all when new data arrives and what parts to leave
out-dated until a user requests the corresponding output.
Even deferred view maintenance techniques [6, 31] refresh
an entire materialized view rather than subsets of that view.

Our approach is most closely related to physical database
tuning [5]: Choosing what data to compute eagerly is sim-
ilar to materialized view selection [3]. Our problem space
is different, though: physical tuning strives to minimize the
total runtime for queries in a workload in face of disk-space
constraints and updates [3]. In contrast, our goal is to min-
imize the expected running time for a query without such
constraints but knowing that there is only some probability
that each part of the query output will be needed.

Finally, there has been a plethora of new techniques that
optimize various aspects of MapReduce (e.g., [16, 20]). To
the best of our knowledge, we are the first to study the spe-
cific eager/lazy processing trade-off presented in this paper.

7. CONCLUSIONS
We studied the problem of eager v.s. lazy processing of

scientific analysis tasks using MapReduce. We showed that



Table 1: Estimated Processing Times from Equations vs Actual Processing Times from Experiment
Experiment Approach Est. Time Actual Time % diff K k Tstart TMapPPU

UDF Removed Eager 5min 9secs 5min 11secs -0.6% 15 n/a 9secs 20secs
UDF Removed Process one partition with size 1

2 2min 57secs 2min 51secs 3.1% 16 8 9secs 21secs

UDF Removed Process two partitions with size 1
2 each 5min 45secs 5min 42secs 0.9% 16 8 9secs 21secs

either lazy or eager processing can be preferable under dif-
ferent circumstances and we developed a set of guidelines to
help users understand what granularity of lazy computation
to use for their analysis tasks and when to use it rather than
eagerly processing their entire dataset. In future work, we
plan to build on this basic technique to optimize the compu-
tation of entire MapReduce workflows and also automate the
lazy/eager processing decisions. This work is thus a prelim-
inary but important step in helping the science community
efficiently exploit MapReduce to analyze their data.
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