
Getting Portals to Behave

Chris Olston∗

Stanford University
olston@db.stanford.edu

Allison Woodruff
Xerox PARC

woodruff@parc.xerox.com

Abstract

Data visualization environments help users understand
and analyze their data by permitting interactive brows-
ing of graphical representations of the data. To further
facilitate understanding and analysis, many visualiza-
tion environments have special features known asportals,
which are sub-windows of a data canvas. Portals provide
a way to display multiple graphical representations si-
multaneously, in a nested fashion. This makes portals an
extremely powerful and flexible paradigm for data visu-
alization. Unfortunately, with this flexibility comes com-
plexity. There are over a hundred possible ways each
portal can be configured to exhibit different behaviors.
Many of these behaviors are confusing and certain be-
haviors can be inappropriate for a particular setting. It
is desirable to eliminate confusing and inappropriate be-
haviors. In this paper, we construct a taxonomy of portal
behaviors and give recommendations to help designers
of visualization systems decide which behaviors are in-
tuitive and appropriate for a particular setting. We ap-
ply these recommendations to an example setting that is
fully visually programmable and analyze the resulting re-
duced set of behaviors. Finally, we consider a real vi-
sualization environment and demonstrate some problems
associated with behaviors that do not follow our recom-
mendations.

Keywords: Portals, Multiple Views, Data Visualization.

1 Introduction
Recently, much attention has been devoted to data visual-
ization environments that permit interactive browsing of
graphical representations of large data sets [1, 2, 3, 4, 8,
9, 12, 13]. Many of these environments present a two-
dimensional infinite canvas1 of graphical data through
which the user can “navigate” to interactively browse the
data. Interactive browsing can be a powerful way to un-
derstand and analyze data. To further facilitate browsing
and analysis, many visualization environments have spe-
cial features known asportals [2, 3, 12, 13],2 which are

∗Supported by a National Science Foundation graduate research
fellowship.

1Called a “surface” in Pad [13].
2Portals have many names, including “wormholes” in Tioga-2 [2],

the predecessor to DataSplash.

sub-windows of a data canvas. Portals provide a way
to display multiple graphical representations simultane-
ously, in a nested fashion. This makes portals an ex-
tremely powerful and flexible paradigm for data visual-
ization.

Unfortunately, with this flexibility comes complex-
ity. There are over a hundred possible ways each portal
can be configured to exhibit different behaviors. Many
of these behaviors have confusing effects. Furthermore,
many behaviors are inappropriate for a particular set-
ting. For example, certain behaviors have visually pro-
grammable aspects and thus are not appropriate in a
browse only setting. It is desirable to eliminate confusing
and inappropriate behaviors. In this paper, we construct a
taxonomy of portal behaviors and give recommendations
to help designers of visualization systems decide which
behaviors are intuitive and appropriate for a particular
setting.

So that this analysis can apply as broadly as possible,
we model the environment as follows. Avisualization
environment3 is any system that displays (a portion of) a
two-dimensional canvas, called theparent canvas, which
contains a set of objects. Some of these objects may be
portals, which are special objects that show a portion of
another canvas, called thechild canvas. Note that the
child canvas can be the same as the parent canvas. A con-
crete example is illustrated in Figure 1, which is a screen-
shot from the DataSplash visualization environment [12]
showing a parent canvas of filled polygons and other ob-
jects. The polygons are U.S. states. The three square
objects are portals, each located at the coordinates of a
major city. Each portal is a sub-window in the parent
canvas that shows a portion of a child canvas, which in
this case contains a bar chart describing transportation
data for the city. Note that, in general, portals can be of
any shape.

In addition to showing a portion of the child canvas,
portals can be used for navigation. Many visualization
environments allow users to “enter” portals to instantly
navigate to the child canvas. For example, entering one
of the portals in Figure 1 causes the corresponding bar
chart canvas to become the parent canvas and the bar
chart to fill the entire screen.

3Although we use the term “visualization environment” throughout
this paper, our analysis also applies more generally to multiple view
systems that contain views that are related (usually via an underlying
spatial model).



Figure 1: An example DataSplash visualization with por-
tals.

Since portals allow users to instantly navigate to an-
other location and/or another canvas, they can be used
to create visual versions of hyperlinks and bookmarks.
There are also many other uses for portals. Portals
can be used to implement a variety of tools to help the
user browse and understand the data being visualized by
showing multiple views simultaneously. The views can
show different representations of the data, or data at dif-
ferent levels of magnification. For example,magnifying
glasses[2, 13] show a magnified view of the data below
them and can in some cases be repositioned by the user.

Each portal tool comes in many varieties, depending
on how the user is permitted to interact with the tool. For
example, the user may or may not be permitted to reposi-
tion a magnifying glass. When the user pans and zooms,
magnifying glasses can travel with the user or remain
fixed relative to the canvas. Furthermore, the user may
or may not be allowed to pan and zoom the child canvas
inside the magnifying glass. If zooming inside the mag-
nifying glass is allowed, it may change the magnifica-
tion factor, zoom the entire parent canvas along with the
child canvas inside the magnifying glass, automatically
resize the magnifying glass, or apply some combination
of these effects. Finally, if resizing the magnifying glass
is allowed, enlarging it may increase the magnification,
or alternatively cause more data to become visible with
the same magnification.

In this paper, we concentrate on the properties that
govern which user operations are allowed and which user
operations trigger which other operations. Considering
only these fundamental properties we have identified,
there are125 possible behaviors for each portal. En-
abling all possible behaviors is probably not a good idea
for several reasons. First, it is unlikely that the user can
be expected to understand all125 behaviors. Second,
some of the behaviors may have confusing effects. Fi-
nally, many of the behaviors may simply not be useful or
appropriate, depending on the setting.

This paper addresses this issue by formally defining
the behavior space and proposing a two-step procedure
for reducing the behavior space to a handful of intuitive
and appropriate behaviors. The first step eliminates be-
haviors that are confusing. For this purpose we propose
a set of rules that can be applied in all settings. The sec-
ond step eliminates those behaviors that are not appro-
priate in a particular setting. To illustrate the process

of eliminating inappropriate behaviors, we consider a
specific example setting—a fully visually programmable
environment—and describe rules to be applied. We then
analyze the resulting reduced set of behaviors. We omit
an exhaustive analysis of possible settings.

The analysis in this paper focuses uniquely on the
binary choice of which user operations trigger which
other operations. We do not consider the exact behavior
when changes are propagated via triggering. For exam-
ple, when the user enlarges a magnifying glass, either the
same portion of the canvas remains visible but is shown
at increased magnification (i.e., no triggering), or a larger
portion of the canvas is shown at the same magnification
(i.e. triggering). Our analysis addresses which of these
two scenarios may occur, but not how much more of the
canvas becomes visible nor how much the magnification
increases. These issues are orthogonal to the discussion
in this paper.

Others have focused on modeling the way operations
are correlated in specific behaviors [3, 5, 6, 10], often us-
ing a spatial model. However, we are not aware of any
work on enumerating fundamental behaviors. Further-
more, to our knowledge no work has focused on making
recommendations for choosing a reduced set of behav-
iors from the large space of possible behaviors we iden-
tify.

The remainder of this paper is structured as follows.
After giving an overview of some useful portal tools in
Section 2, we present our model for portals in Section 3,
which focuses on a set of fundamental binary properties
that determine the portal behavior. To reduce the space of
allowed behaviors by eliminating confusing behaviors,
we propose rules in Section 4. Next, in Section 5, we
describe rules to further reduce the space for an exam-
ple setting by eliminating inappropriate behaviors, and
we analyze the remaining reduced set of behaviors. Sec-
tion 6 considers a real visualization environment, and
demonstrates some problems associated with behaviors
that do not conform to the suggested rules. Finally, in
Section 7, we discuss avenues for future work.

2 Portal Tools
In this section, we give examples of portal tools. We
make no claim that this is an exhaustive list of useful
tools. Each portal tool comes in many varieties, depend-
ing on which aspects are visually programmable by the
user and which are not. Since there are so many vari-
ations on each tool, each requiring a different behavior,
we omit a thorough discussion. Instead, in Section 3, we
describe a set of fundamental properties that govern the
behavior of a portal.

2.1 Visual Hyperlinks

Visual hyperlinksare analogous to hypertext hyperlinks
(e.g., between Web pages) in that they allow the user to
instantly navigate between a location on one canvas to
some location on another canvas. Additionally, visual
hyperlinks display the contents of the destination in a
sub-window, to provide a “preview” of the destination.



Firelight

Cuesta

Magdalena

Stuart

Park

Street Map
(miles)

Satellite Image
(kilometers)

Figure 2: A visualization showing a satellite image in
the parent canvas and a street map in a coordinated view
tool.

2.2 Bookmarks

Bookmarksare visual hyperlinks that remain on the
screen at all times and allow the user to instantly nav-
igate to the location displayed in the bookmark portal.
Indexesin Pad++ [3] are similar to bookmark tools.

2.3 Coordinated Views

A coordinated view[5, 15] is a portal tool that remains
on the screen at all times and shows a different represen-
tation of the data in the main window. The data shown
in the coordinated view corresponds to some region of
the main window and is not related to the position of the
portal. Coordinated views can be quite useful in applica-
tions such as astronomy, medical imaging, comparative
cartography, and structural analysis, where data objects
have several alternative representations showing differ-
ent characteristics [15]. For example, Figure 2 illustrates
a visualization displaying a satellite image in the parent
canvas and a street map of the same geographic region in
a coordinated view tool.

2.4 Overviews

An overviewis a portal tool that shows a demagnified
(zoomed out) copy of the canvas and is fixed on the
screen to help orient the user during navigation. In the
literature, the combination of overview portal and parent
canvas is called anoverview and detailview [7].

2.5 Filters

Filters [13] show a different graphical representation of
the region of the canvas that is occluded by the portal ob-
ject. Filters are useful for displaying two different repre-
sentations of the same data.

Movable filtersare filters that the user is allowed to
reposition and resize. Afterward, whatever region of the
parent canvas is newly occluded by the filter is instead
displayed inside the filter, as the alternative representa-
tion. Movable filters allow the user to interactively ad-
just the region of the canvas being filtered. This can be a
useful behavior for a number of reasons outlined in [6].
Magic Lensesin the See-Through Interface [6, 15] and
Pad++ [3] are movable filter tools.

Shattuck

A
sh

by

V
ir

gi
ni

a

La Loma

Shattuck

A
sh

by

H
ea

rs
t

V
ir

gi
ni

a

H
ea

rs
t

La Loma

Rose Rose

Figure 3: Two snapshots of a map visualization having a
movable magnifying glass with the lens and lens−1 de-
pendencies enabled. The user can go from the before im-
age (left) to the after image (right) either by repositioning
the magnifying glass or by panning the magnified image
inside the magnifying glass.

Filters and movable filters can either becanvas-
stationaryor user-stationary. Canvas-stationary filters
are stationary relative to the parent canvas, and do not
remain with the user during navigation unless the user
explicitly moves them. Canvas-stationary filters are of-
ten kept positioned near a particular region of the canvas
that is interesting to see through a filter. On the other
hand, user-stationary filters remain fixed in position and
size on the screen during navigation. User-stationary fil-
ters are useful when the user wishes to see a filtered view
of every part of the canvas visited, possibly in conjunc-
tion with the regular, unfiltered view.

2.6 Magnifying Glasses

A magnifying glass[2, 13] is a portal tool that shows a
magnified (zoomed in) view of the region of the canvas
underneath.4

Movable magnifying glassesare magnifying glasses
that the user is allowed to reposition (and resize). Mov-
able magnifying glasses can help the user see different
portions of the canvas in detail without navigating. For
example, a movable magnifying glass might be useful
when using a map visualization to view street names that
are otherwise too small to read without zooming in, as
illustrated in Figure 3 (the reader should ignore the cap-
tion for now, as it contains concepts that have not yet
been introduced).

As with filters, magnifying glasses and movable mag-
nifying glasses can either be canvas-stationary or user-
stationary. Both types can be useful. For example, con-
sider a map visualization used to convey driving direc-
tions between two points. When viewing the entire route
in freeway-level detail on the screen, it may be useful
to have one canvas-stationary magnifying glass over the
starting location and another over the destination show-
ing detailed street maps. Alternatively, consider a doc-
ument visualization. A user-stationary magnifying glass

4We draw a distinction between filters (which show a different
graphical representation of a given region of a canvas) from magni-
fying glasses (which show a larger or smaller region of a canvas). We
discuss hybrid tools in the following subsection.



portal frame

parent visible frame

child visible frame

parent canvas child canvas

Figure 4: Portal model.

could be positioned in the center of the screen to facili-
tate reading text while still displaying the context in the
periphery.

2.7 Hybrid Tools

Hybrid tools can be created that have properties taken
from several portal tools. For example, a magnify-
ing glass/filter hybrid would simultaneously magnify the
data and change its representation. Such tools are par-
ticularly common in semantic zoom [13] environments
that display different representations of data depending
on the magnification level.

3 Portal Model
In this section we present the model used in this paper.
Our model is simple enough to capture the semantics of
many environments with portals. Figure 4 illustrates a
side-view of our model, with the user on the left.

The vertical line immediately to the right of the user
represents the parent canvas. Theparent visible frame,
or simply parent frame, is the two-dimensional region of
the parent canvas displayed on the screen. This frame
corresponds to the entire window in Figure 1. The parent
canvas may contain one or more portals. Each portal has
a portal frame, which is a two-dimensional region of the
parent canvas. The border of each square in Figure 1 is a
portal frame.

The vertical line on the right represents the child can-
vas associated with a portal. Note that each portal in the
parent canvas can point to a different child canvas. The
child visible frame, or simply child frame, is the two-
dimensional region of the child canvas that is displayed
inside the portal. This frame corresponds to one of the
bar charts in Figure 1.

The position and size of each frame can be adjusted
by the user. Editing the parent visible frame is accom-
plished viaparent navigationoperations,i.e., pan and
zoom. Similarly, many environments supportchild nav-
igation, which allows the user to edit the child visible
frame. For example, a user could potentially pan and
zoom one of the child canvases in Figure 1 to enlarge a

User Operation Frame Edited
parent navigation (panning and
zooming in the parent canvas) parent visible frame
manipulating (resizing and
repositioning) the portal object portal frame
child navigation (panning and
zooming in the child canvas) child visible frame

Figure 5: Summary of which user operations edit which
frames.

portion of the bar chart without affecting the parent can-
vas.

In addition to editing the parent and child visible
frames via parent and child navigation, a user can edit
the portal frame by manipulating the portal object. Re-
call that a portal can be thought of as a special object
that displays another canvas. Some environments permit
users to move and resize portal objects in the same man-
ner as other non-portal objects. For example, a user could
make one of the portals in Figure 1 smaller and reposi-
tion it. Figure 5 summarizes which user operations edit
which frames.

While other models are possible, we believe these
three frames represent the minimal set of entities needed
to describe what appears on the screen. The parent frame
describes what portion of the parent canvas is displayed,
the portal frame specifies the position of the portal, and
the child frame determines what portion of the child can-
vas appears inside the portal.

The three frames in this model can be thought of as
having an ordering in terms of conceptual distance from
the user. First, the parent visible frame is the closest to
the user since it controls what the user sees of the parent
canvas. Second, the portal frame is an element of the
parent canvas, where it can be manipulated by the user.
Third, the child visible frame is the farthest from the user,
because editing it requires navigating the child canvas,
which is conceptually located beneath the parent canvas.
To indicate this order, we writeparent visible frame�
portal frame� child visible frame. The order of frames
in terms of conceptual distance from the user is a useful
concept that we will invoke later in the paper.

Some environments (e.g., DataSplash [12]) support
multiple levels of nesting, where portals can contain por-
tals, and so on, and thus have additional frames beyond
the three discussed. In DataSplash, the user is only per-
mitted to edit the three closest frames (the parent visible,
portal, and child visible frames), and cannot edit frames
of grandchild portals without first entering the child por-
tal. Therefore, in this paper we consider only the three
closest frames. However, our model easily generalizes to
environments that permit the user to edit frames of nested
portals.

Now that we have presented our model for portals, we
turn to a discussion of portal properties. Although there
are a multitude of properties that portals can have, we
wish our model to be basic enough to capture the seman-
tics of as many environments with portals as possible.
Therefore, our model considers only two types of binary



properties, which we consider fundamental, calledframe
editability, which applies to frames, andframe depen-
dency, which applies to ordered pairs of frames. Each
property of either type can be either enabled or disabled.
A set of enabled properties is called abehavior. Various
instances of the tools discussed in Section 2 can be im-
plemented as portals with different behaviors. We now
discuss the editability and dependency properties in turn.

3.1 Frame Editability Properties

It is possible to disallow edits to one or more frames by
disabling itseditability property. Recall from Figure 5
that the parent and child frames are edited by parent and
child navigation operations, respectively, and the portal
frame is edited by repositioning and resizing the portal
object. It is often desirable to disallow edits to certain
frames in some behaviors. For example, some behaviors
require portals to remain fixed and do not permit users
to resize or reposition portals. Therefore, each portal has
three binary editability properties, one for each frame.
For convenience, we writeeditable(A) to indicate that a
frameA is editable.

3.2 Frame Dependency Properties

In the absence of any dependencies between frames, each
frame is independent. In other words, editing one frame
does not affect the other two frames. For example, mak-
ing one of the portals in Figure 1 smaller does not af-
fect the child visible frame, which remains the same size.
Thus, the same child frame (the entire bar chart) will be
displayed in the now smaller portal frame.5

Frame dependenciesare properties that cause one
frame to change automatically when the user edits an-
other frame. Dependencies are one-way links between
ordered pairs of frames, of which there are six. Each
dependency can either be enabled or disabled. If a de-
pendency from frameA to frameB (written A → B) is
enabled, whenever the user edits the position and/or size
of frameA, the position and/or size of frameB changes
automatically. Of course, a dependencyA → B cannot
be enabled unless frameA is editable. On the other hand,
even if frameB is not editable, the dependency can be
used. Editability only restricts direct editing, while still
allowing indirect editing via frame dependencies. For
notational convenience, we writeA ; B if a (possibly
empty) chain of dependencies is enabled from frameA to
frameB. Note that since editing a frame always changes
it, A → A andA ; A are trivially true for any frameA.

There are six possible frame dependencies in our
three-frame model. We classify the dependencies into
forward and reverse dependencies. A dependency
A → B is forward if A � B, and reverse other-
wise. Each forward dependencyA → B has an inverse,
B → A that is a reverse dependency. Conversely, the in-
verse of a reverse dependency is a forward dependency.
It is useful to think of the frame dependency properties

5For the purposes of this paper, we assume that the shape of the
child visible frame must be the same as the shape of the portal frame.
When these frames are rectangles, the aspect ratios must be equal.

parent visible
frame

portal frame child visible
frame

s-nav

sticky lens

-1sticky lens-1

s-nav-1

Figure 6: A graph of the behavior having all the frame
dependencies enabled. The nodes are displayed in order
of conceptual distance from the user, from left to right.
The name of each dependency is shown next to its corre-
sponding edge.

of a portal as a directed graph with three vertices, one
for each frame (parent visible, portal, and child visible).
An edge from frameA to frameB means that the frame
dependencyA → B is enabled. Figure 6 shows a graph
for the behavior with all the frame dependencies enabled.
The nodes are displayed in order of conceptual distance
from the user, from left to right. Each edge in the graph
is labeled with the name we give to the corresponding
dependency.

Next, we describe the three forward dependencies
(which we callsticky, s-nav, andlens) and their inverses
(sticky−1, s-nav−1, andlens−1) in Sections 3.2.1, 3.2.2,
and 3.2.3. Then, in Section 3.3, we describedependency
mappings, which specify the exact way in which editing
a frame automatically changes a dependent frame.

3.2.1 Sticky and Sticky−1 Dependencies

We refer to the dependencyparent visible frame→
portal frameas thesticky dependency, which can be used
to make portals “stick to the screen” [2, 3]. In this sce-
nario, when the user edits the parent frame (e.g., by pan-
ning and zooming), the portal frame changes so that its
size and position relative to the parent frame remain con-
stant. The sticky dependency is useful for portals that are
intended to remain on the screen at all times.6

The sticky−1 dependencyis the inverse of the sticky
dependency:portal frame→ parent visible frame. This
dependency is useful when moving a portal should auto-
matically change the parent frame. This dependency is
often temporarily applied when the user drags an object
off the edge of the screen, allowing the parent frame to
follow the drag. For the sake of simplicity, in this paper
we limit ourselves to behaviors that arise from perma-
nently enabling the sticky−1 dependency.

6This property and its inverse can also be applied to objects other
than portals. For example, shapes such as triangles or circles may be
sticky.



3.2.2 S-nav and S-nav−1 Dependencies

We refer to the dependencyparent visible frame→ child
visible frameas thes-nav dependency(for synchronous
navigation), which can be used to apply navigation per-
formed in the parent canvas to the child canvas (possibly
with a transformation) [16]. In other words, navigating
the parent canvas causes the child canvas inside the portal
to automatically navigate. This dependency is useful for
portals whose view is somehow linked to the view of the
parent, as in coordinated views (Section 2.3) and certain
varieties of other tools.

The s-nav−1 dependencyis the inverse of the s-nav
dependency:child visible frame→ parent visible frame.
In certain behaviors, navigation in the child canvas auto-
matically navigates the parent. Some varieties of coordi-
nated views and other tools use this effect.

3.2.3 Lens and Lens−1 Dependencies

We refer to the dependencyportal frame → child
visible frameas thelens dependency, which creates be-
haviors where editing the portal frame affects which part
of the child canvas is displayed inside the portal. This
dependency is useful for movable filters and magnifying
glasses (see Sections 2.5 and 2.6).

The lens−1 dependencyis the inverse of the lens de-
pendency:child visible frame→ portal frame. When the
lens−1 dependency is enabled, navigating the child can-
vas inside the portal changes the portal’s position and/or
size on the surface of the parent canvas. This dependency
can be used for many purposes, including to create a vari-
ety of movable filters in which panning the child canvas
to change the region being filtered automatically repo-
sitions the filter above the corresponding region in the
parent canvas.

3.3 Dependency Mappings

When a dependencyA → B is enabled, it is useful to
think of the relationship between framesA andB as a
dependency mappingfrom edits by the user of frameA to
changes automatically performed on frameB. Although
a detailed discussion of dependency mappings is beyond
the scope of this paper, which focuses instead on the bi-
nary choice of which dependencies are enabled, we give
a short illustrative example.

Consider a magnifying glass with the lens dependency
enabled. One interesting dependency mapping for the
lens dependency might have, among other things, the fol-
lowing characteristic. If the user enlarges the magnifying
glass (portal frame), then the region of data displayed
inside the magnifying glass (child frame) also enlarges.
Such a mapping could be used to maintain a fixed ra-
tio between the portal frame and child frame sizes, to
hold the magnification factor constant. In this situation,
the magnification factor is a parameter in the dependency
mapping.

Ideally, we would like our analysis in this paper to
be orthogonal to the choice of dependency mappings,
since we concentrate on the binary choice of enabling or

disabling each dependency. However, we do make two
minor restrictions on dependency mappings to simplify
our analysis without loss of applicability. It is our be-
lief that systems that do not meet these restrictions have
unintuitive and undesirable behaviors. Specifically, we
only consider environments that obeymapping transitiv-
ity andmapping inversion, which we discuss next.

3.3.1 Mapping Transitivity

In environments withmapping transitivity, if dependen-
ciesX → Y , Y → Z, andX → Z are enabled, then the
mapping for theX → Z dependency is the composition
of the mappings forX → Y andY → Z. In general,
the composition of mappings along any path fromX to
Z must produce the same mapping asX → Z. We say
that a dependencyX → Z is derivable via transitivityif
there is a pathX ; Z other thanX → Z. This means
that the mapping forX → Z can be derived by compos-
ing a sequence of mappings for dependencies fromX to
Z.

Environments that do not employ mapping transitivity
can allow confusing behaviors. Consider a behavior with
the following three dependencies:X → Y , Y → Z,
andX → Z. Editing X to X ′ automatically changes
Y to Y ′ andZ to Z ′. If mapping transitivity is not em-
ployed, then manually editingY to Y ′ can changeZ to
something other thanZ ′. This is counter intuitive.

As a concrete example, consider a behavior with de-
pendenciesparent→ portal (sticky), portal → child
(lens), andparent→ child (s-nav). Say that moving
the portal to the right by one unit automatically pans the
child canvas to the right by some amountx. The user
can also cause the portal to move one unit to the right
indirectly via the sticky dependency by panning the par-
ent. Without mapping transitivity, doing so pans the child
canvas by some amount other thanx. This effect is con-
fusing because intuitively the user expects the child can-
vas to pan byx, which would occur if they had moved
the portal directly.

On the other hand, with mapping transitivity, the s-nav
mapping is derivable from the sticky and lens mappings.
In this case, whenever the portal is moved (either directly,
or indirectly by panning the parent), the same effect is
manifest on the child frame. This effect is determined
solely by the lens dependency mapping.

3.3.2 Mapping Inversion

In environments withmapping inversion, if a depen-
dencyA → B is enabled in conjunction with its in-
verse (B → A), then the two mappings are inverses
of each other. In other words, when two frames are co-
dependent, the user can directly edit either frame to pro-
duce the same effect.

Having two frames that are co-dependent without
mapping inversion is confusing. For example, consider
the canvas with a coordinated view illustrated in Fig-
ure 2. Say the user pans the satellite image (parent can-
vas) to the right by one kilometer, which causes the street
map (child canvas) inside the coordinated view to pan to



the right by0.625 miles. Without mapping inversion,
manually panning the street map to the right by0.625
miles does not pan the satellite image to the right by
one kilometer, as would be expected when the parent and
child frames are co-dependent.

Mapping inversion can be seen as a special case of
mapping transitivity. Consider two co-dependent frames
A andB. By mapping transitivity, the mapping along the
pathA → B → A must equal the mapping forA → A,
which is the identity mapping.

We say that a dependencyA → B is derivable via
inversionif the inverse dependencyB → A is enabled.
This means that the mapping forA → B can be derived
from the mapping forB → A by inverting it. Note that
whenever a dependency and its inverse are both enabled,
they are always mutually derivable via inversion.

4 Reducing the Number of Behaviors

The behaviorof a portal is defined by the set of frame
editability and frame dependency properties that are en-
abled. We count the number of possible behaviors, keep-
ing in mind that a dependencyA → B cannot be enabled
unless frameA is editable. First, if none of the frames are
editable, the only valid behavior has no dependencies.
Second, if any one of the three frames is editable, it is
possible to select any subset of the two outgoing depen-
dencies from the enabled frame, for a subtotal of3·22 be-
haviors with any one frame editable. Third, if any two of
the three frames are editable, then any subset of the four
outgoing dependencies from the two enabled frames can
be selected, giving3 · 24 behaviors. Finally, if all three
frames are editable, there are26 behaviors. Summing up
the possibilities, there are1·20+3·22+3·24+1·26 = 125
different behaviors, considering only the frame editabil-
ity and frame dependency properties.

Presenting the user with a choice of any possible be-
havior for each portal is probably not a good idea for sev-
eral reasons. First, it is unlikely that the user can be ex-
pected to understand all125 behaviors. Second, some of
the behaviors may have confusing effects. Finally, many
of the behaviors may not be appropriate, depending on
the setting.

In the remainder of this section, we present a set of
rules that eliminate confusing behaviors in all settings.
Then, in Section 5, we focus on a specific example set-
ting and discuss ways to further limit the space to be-
haviors that are appropriate for the particular setting we
consider.

4.1 Dependency Transitivity

We recommend enforcingdependency transitivity. In a
behavior that is not dependency transitive, when the user
explicitly edits frameY , frameZ automatically changes,
but when the user edits some other frameX that auto-
matically changesY , frameZ does not change. This is
counterintuitive.

For example, consider a behavior that is not depen-
dency transitive with only dependenciesparent→ portal

Figure 7: A behavior with bypassing as the user pans
upward in the parent canvas.

andportal→ child enabled. Moving the portal automat-
ically pans the child canvas, and panning the parent au-
tomatically moves the portal but does not pan the child
canvas. Since behaviors that do not obey dependency
transitive are unintuitive, we recommend the use of the
following rule:
Dependency Transitivity Rule: ∀X, Y, Z((X → Y ) ∧
(Y → Z) ⇒ (X → Z))

4.2 No Bypassing

We strongly believe thatbypassingcan be confusing for
the user. Recall from Section 3 that frames have an order
based on conceptual distance from the user. Bypassing
occurs when editing one frame automatically changes a
closer or farther frame without changing an intermediate
frame. The No Bypassing rule states that no dependency
can bypass a frame in the conceptual distance order. In
other words, if editing one frame automatically changes
a closer or farther frame, then it must also change all
frames in between.

For example, consider a behavior where the only en-
abled dependency isparent→ child (s-nav). Figure 7
illustrates the effect of panning upward in the parent can-
vas. The portal frame remains stationary relative to the
other objects in the parent canvas, yet the child canvas
inside the portal pans. This behavior can be quite con-
fusing, so we suggest the following rule:
No Bypassing Rule:∀X, Y, Z((X → Z)∧ ((X � Y �
Z) ∨ (Z � Y � X)) ⇒ (X → Y ))

4.3 Only Forward Derivable Reverse Dependencies

Behaviors with reverse dependencies are usually confus-
ing. In general, users expect edits of a frame to propagate
to more distant frames via forward dependencies, but not
the other way around.

However, reverse dependencies can make sense when
they are derivable via transitivity or inversion (recall Sec-
tions 3.3.1 and 3.3.2) from some sequence of dependen-
cies that includes a forward dependency. When this is
the case, we say that a reverse dependency isforward
derivable, written formally as:forward-derivable(B →
A) ⇔ (A → B)∨∃X1, X2, . . .Xk((X1 = B)∧ (Xk =
A) ∧ ∀1 ≤ i ≤ k − 1(Xi → X(i+1)) ∧ ∀1 ≤ i ≤ k, 1 ≤
j ≤ k(Xi 6= Xj) ∧ ∃1 ≤ i ≤ k − 1(Xi � X(i+1))).

Since the user is aware of the forward dependency,
the reverse dependency from which it is derived does not
come as a surprise. The notion that behaviors with non-
forward derivable reverse dependencies are confusing is
best illustrated through three examples. The first two



parent visible
frame

portal frame child visible
frame

s-nav

sticky

lens-1

s-nav-1

Figure 8: A graph of DataSplash Behavior 3, which has
all reverse dependencies derivable.

examples describe intuitive behaviors with reverse de-
pendencies that are forward derivable via inversion and
transitivity, respectively. The third example illustrates a
confusing behavior with a reverse dependency that is not
forward derivable.

First, we describe an intuitive behavior with a reverse
dependency that is forward derivable via inversion. Con-
sider a behavior with both the lens and lens−1 dependen-
cies enabled. Clearly, the lens−1 dependency is derivable
from the lens dependency via inversion (Section 3.3.2).
In this behavior, repositioning the portal automatically
pans the child canvas inside (as with a movable magnify-
ing glass). If the user manually pans the child canvas, the
portal is automatically repositioned appropriately. Fig-
ure 3 illustrates an example display before and after per-
forming either of these operations to a movable magni-
fying glass in a map visualization. This is an intuitive
behavior because changing what region is displayed in-
side the magnifying glass automatically repositions the
magnifying glass over the corresponding region of the
map.

We now describe an intuitive behavior with a re-
verse dependency that is forward derivable via transitiv-
ity. Consider the behavior whose dependency graph is
illustrated in Figure 8 having the sticky, s-nav, s-nav−1,
and lens−1 dependencies enabled. The lens−1 depen-
dency is derivable from the s-nav−1 and sticky depen-
dencies via transitivity (Section 3.3.1). In this behav-
ior, panning the parent canvas automatically moves the
portal frame and pans the child canvas (as with a co-
ordinated view). In addition, panning the child canvas
automatically pans the parent canvas and moves the por-
tal frame in the same manner as if the parent had been
panned manually. Intuitively, panning the child produces
the same effect as panning the parent (via the s-nav−1

dependency), which among other things moves the por-
tal frame (via the sticky dependency). Figure 9 illustrates
the display before and after repositioning a coordinated
view tool (top) and panning left in either the parent or
child canvas (bottom).

Now that we have presented two examples of intu-
itive behaviors with forward derivable reverse dependen-
cies, we give an example of a confusing behavior with a
reverse dependency that is not forward derivable. Con-

Figure 9: Two sequences of snapshots of a visualiza-
tion having a coordinated view with the sticky, s-nav, s-
nav−1, and lens−1 dependencies enabled. The top two
snapshots illustrate the display before and after reposi-
tioning the coordinated view portal. The bottom two
snapshots illustrate the display before and after panning
left in either the parent or the child canvas.

sider the behavior with only the lens−1 dependency en-
abled. Repositioning the portal has no effect on the child
canvas inside (as with a visual bookmark). However,
panning the child canvas automatically moves the portal.
Figure 10 illustrates the display before and after reposi-
tioning the portal (top) and panning the child canvas to
the right (bottom). This is effect is counter-intuitive. The
user has no reason to expect panning the child canvas to
have any reverse effects like moving the portal, because
the lens−1 dependency is not forward derivable.

Since behaviors with underivable reverse dependen-
cies are confusing, we propose the following rule:
Only Forward Derivable Reverse Dependencies Rule:
∀X, Y ((X � Y ) ∧ ¬forward-derivable(Y → X) ⇒
¬(Y → X))

5 Example Setting
Applying the usability rules presented in Section 4 re-
duces the size of the behavior space from125 potential
behaviors to32 intuitive behaviors. We omit a detailed
discussion of all intuitive behaviors. Not all of these be-
haviors are appropriate in every setting. In this section
we describe additional rules to further reduce the set of
behaviors for a visualization environment that permits
the user to edit any frame and to visually program any
dependency mapping.

Given a mappingM , user edits that alterM can be
thought of asprogrammingM , and edits that do not
alter M can be thought of asbrowsingwith respect to
M . Consider two framesA andB with the dependency
A → B enabled using mappingM , and no other de-
pendencies among frames. Editing frameB does not af-
fect frameA, and thus programs the relationship between
framesA andB: mappingM . On the other hand, edit-
ing frameA causes frameB to be changed according to
the mapping and does not alter the mapping. Therefore,
editingA is considered browsing with respect toM .

For example, consider a magnifying glass with the
lens dependency enabled and the lens−1 dependency dis-
abled. A dependency mapping for the lens dependency



Figure 10: Two sequences of snapshots of a visualization
having a portal with only the lens−1 dependencies en-
abled, which is not forward derivable. The top two snap-
shots illustrate the display before and after repositioning
the coordinated view portal. The bottom two snapshots
illustrate the display before and after panning the child
canvas to the right.

might cause the child frame to be automatically enlarged
when the user enlarges the portal frame. The ratio of the
portal frame to parent frame sizes is a parameter in the
lens dependency mapping that controls the magnification
factor, as discussed in Section 3.3. Since the lens−1 de-
pendency is disabled, editing the child frame does not
affect the portal frame, and thus programs the magnifica-
tion factor.

In the fully programmable setting, we would like ev-
ery dependency to beprogrammable, meaning that there
is a way for the user to program its dependency map-
ping. A dependency is programmable if the dependent
frame is editable and the inverse dependency is disabled.
Enabling the inverse dependency would cause the two
frames to be co-dependent, so that no edits could alter
the relationship between frames. Note that although in-
verse dependencies are undesirable in this setting, they
are useful in other settings with browse-only characteris-
tics.

It is also desirable for all dependencies to beinde-
pendently programmable, meaning that programming its
mapping does not also program any other mapping. In
mapping transitive environments (which we consider in
this paper as discussed in Section 3.3), a dependency
A → B is independently programmable if all mappings
for dependencies pointing toB are derivable via tran-
sitivity from each other. In this case, all dependency
mappings pointing toB are really just incarnations of
the same mapping, which can be programmed indepen-
dently of other mappings that do not point toB. The
formal rule for enforcing independent programmability
of a dependencyA → B is:
Independent Programmability Rule for A → B:
(A → B) ⇒ editable(B) ∧ ¬(B → A) ∧ ∀X((X →
B) ⇒ (X ; A) ∨ (A ; X))

To obtain a reduced set of behaviors for a fully ed-
itable and independently programmable environment, we
start by applying our usability rules suggested in Sec-
tion 4, which reduces the size of the behavior space to32
intuitive behaviors. To further reduce the set of allowed
behaviors in this setting, we start by asserting that all

frames are editable, which results in11 behaviors. Then,
we apply the Independent Programmability rule to each
pair of frames, which leaves the following set of five be-
haviors that are intuitive and fully editable and have all
dependencies independently programmable:

1. Dependencies:{}
Editable:{parent, portal, child}

2. Dependencies:{sticky}
Editable:{parent, portal, child}

3. Dependencies:{sticky, s-nav}
Editable:{parent, portal, child}

4. Dependencies:{lens}
Editable:{parent, portal, child}

5. Dependencies:{sticky, s-nav, lens}
Editable:{parent, portal, child}

In this reduced set of behaviors, all dependencies are
uni-directional since this setting requires independent
programmability of all dependencies, and they are for-
ward since our usability rules do not permit underivable
reverse dependencies. Our usability rules also eliminate
the behaviors{s-nav} and{s-nav, lens}, which both ex-
hibit bypassing, and{sticky, lens}, which violates de-
pendency transitivity. We now turn to a discussion of the
five allowed behaviors.

Behavior 1 has no dependencies, and can be used to
implement visual hyperlinks (Section 2.1). Behavior 2
can be used to construct bookmarks (Section 2.2).

Coordinated views (Section 2.3) and overview tools
(Section 2.4) use Behavior 3. The sticky dependency en-
sures that the portal frame is always in the same posi-
tion relative to the parent visible frame,i.e., is fixed on
the screen. Using the s-nav dependency with the identity
mapping, the child visible frame always shows the same
set of objects as the parent visible frame, giving rise to a
coordinated view. Alternatively, using a different s-nav
dependency mapping that causes the child visible frame
to be larger than the parent visible frame, we have an
overview tool.

Finally, Behaviors 4 and 5 can be used to con-
struct movable filters (Section 2.5) and movable magni-
fying glasses (Section 2.6). The lens dependency maps
changes to the portal frame to changes to the child visi-
ble frame so that moving or resizing the portal changes
which part of the child canvas is filtered or magni-
fied. Using Behavior 4, the filter or magnifying glass
is canvas-stationary, since its size and position is static
relative to the parent canvas, independent of navigation.
Alternatively, using Behavior 5, the filter or magnifying
glass is user-stationary, so it remains fixed on the screen.

Each of these behaviors is fully and independently
programmable. To see this, consider the most restrictive
case of Behavior 5, where all three forward dependen-
cies are enabled. The sticky mapping is programmed by
editing the portal frame, and the lens mapping is pro-
grammed by editing the child visible frame. Since map-
ping transitivity is employed, the s-nav mapping is de-
fined as the composition of the sticky and lens mappings



and is not a separate mapping available for programming.
Therefore, Behavior 5 is fully and independently pro-
grammable, as are the other behaviors with fewer depen-
dencies.

6 Case Study: DataSplash
The authors of this paper were involved in the DataS-
plash prototype implementation [12] as part of the Tioga
project at UC Berkeley [14]. The DataSplash prototype
was designed and implemented before the analysis of this
paper was conducted. Therefore, it does not conform to
all of the rules outlined here. We discuss the behaviors
allowed in DataSplash, and show that in cases where the
rules in the paper were not followed, behaviors can be
undesirable.

DataSplash employs mapping transitivity and map-
ping inversion, and allows the following set of six be-
haviors, the last two of which violate dependency transi-
tivity:

1. Dependencies:{}
Editable:{parent, portal, child}

2. Dependencies:{sticky}
Editable:{parent, portal, child}

3. Dependencies:{sticky, s-nav, s-nav−1, lens−1}
Editable:{parent, portal, child}

4. Dependencies:{lens}
Editable:{parent, portal, child}

5. Dependencies:{sticky, lens}
Editable:{parent, portal, child}

6. Dependencies:{sticky, s-nav, s-nav−1, lens, lens−1}
Editable:{parent, portal, child}

Behaviors 1, 2, and 4 are the same as Behaviors 1, 2,
and 4 in the fully programmable setting (see Section 5).

Behavior 3, illustrated in Figure 8, was discussed in
Section 4.3 and has two forward derivable reverse de-
pendencies. It is similar to Behavior 3 in the fully pro-
grammable setting and can be used to construct coordi-
nated views and overviews that have an independently
programmable sticky dependency. However, the s-nav
dependency mapping,e.g., the demagnification factor of
an overview tool, is not programmable since the parent
and child frames are co-dependent.

Behavior 5 is inconsistent and confusing because it vi-
olates the Dependency Transitivity rule, which was rec-
ommended for usability in Section 4.1. The user can edit
the portal, causing the child to automatically navigate.
However, if the user pans or zooms the parent, the por-
tal follows the user, but the child does not automatically
navigate. Another way to see how this is problematic is
that the dependency mapping initially set up between the
portal frame and child frame (e.g., making them the same
for a movable filter) is destroyed when the user navigates
the parent. Our experience with the DataSplash proto-
type confirms this lack of usability. Behavior 5 was never
used.

parent visible
frame

portal frame child visible
frame

s-nav

sticky lens

lens-1

s-nav-1

Figure 11: A graph of DataSplash Behavior 6, which vi-
olates dependency transitivity.

Behavior 6, illustrated in Figure 11, also violates de-
pendency transitivity. Since editing the portal frame au-
tomatically changes the child frame but does not also
change the parent frame, it does not make sense that edit-
ing the child frame should change the parent frame. For
example, consider a magnifying glass. Moving the mag-
nifying glass around has the expected effect: it causes a
magnification of the region of the canvas underneath the
repositioned magnifying glass to appear in the magnify-
ing glass. Panning the magnified region not only auto-
matically repositions the magnifying glass, but also pans
the parent. The latter effect can be surprising and con-
fusing.

One way to convert Behavior 6 into a less con-
fusing behavior is to remove the s-nav−1 dependency.
This more intuitive behavior can be used for movable
magnifying glasses whose lens dependency is not pro-
grammable. When the user pans the child inside the
magnifying glass, the magnifying glass moves so as to
remain correctly positioned relative to the parent canvas.
Similarly, when the user zooms the child inside the mag-
nifying glass, the magnifying glass automatically resizes
to maintain the same magnification factor.

In practice, Behavior 6 was effectively converted into
a less confusing behavior in another way. While experi-
menting with the DataSplash prototype, we never edited
the child frame directly for portals using Behavior 6 be-
cause it was confusing. Thus, child frame editability was
effectively disabled. Notice that if we remove child ed-
itability from Behavior 6, the s-nav−1 and lens−1 depen-
dencies become meaningless and are removed, and the
behavior no longer violates transitivity and is similar to
fully programmable Behavior 5 (see Section 5), but with
child editability disabled.

7 Summary and Future Work
In this paper, we presented a model for portals and fun-
damental binary properties that govern their behavior and
gave examples of useful tools that come in many varieties
with different properties. Since the space of possible be-
haviors is quite large, we introduced rules that can be
applied to eliminate confusing behaviors. We then sug-
gested additional rules to apply to eliminate inappropri-
ate behaviors for an example setting and examined the



resulting reduced set of behaviors. Finally, we analyzed
the set of behaviors available in a real visualization envi-
ronment, focusing on behaviors that violate our rules and
the resulting adverse effects.

There are numerous avenues for future work in this
area. First, we plan to explore models for dependency
mappings. Some models for displaying portals treat the
portal frame as a physical window, where moving closer
enlarges the visible area of the child. With other models,
portals are like hanging pictures rather than windows in
this respect.

In addition, we plan to consider environments that
permit partial editability (e.g., where panning is permit-
ted but not zooming), and partial programming of depen-
dencies (e.g., where zooming the child of a magnifying
glass changes the magnification, but panning does not
change the magnified region). Furthermore, we plan to
consider environments where frame editability and de-
pendency programmability are temporary states, rather
than static properties of a behavior.

Some environments supportreplicated portals[2, 5]
(called “splash” portals in DataSplash [11, 12]). Portals
can be automatically replicated, one for each data item
in a data set. For example, Figure 1 shows a map visual-
ization of the U.S. states (the filled polygons) in which a
replicated portal displays a bar chart for each major city.
In some cases, it may be desirable to have dependencies
between child frames of replicated portals, so that nav-
igating one portal automatically navigates others. We
plan to study the interaction of dependencies between
child frames and the dependencies discussed in this pa-
per, such as the s-nav dependency.

Finally, since portals are so complex, more work re-
mains to be done on intuitive ways to convey to the user
the behavior and dependency mappings of each portal.

Acknowledgments
We thank the other members of the DataSplash re-
search group at UC Berkeley: Alexander Aiken, Michael
Chu, Vuk Ercegovac, Mark Lin, Mybrid Spalding, and
Michael Stonebraker. They provided many useful dis-
cussions. We also thank Ed Chi and Jock Mackinlay for
helpful feedback.

References
[1] C. Ahlberg and E. Wistrand. IVEE: An information vi-

sualization and exploration environment. InProceedings
of the First Information Visualization Symposium (InfoVis
’95), Atlanta, Georgia, October 1995.

[2] A. Aiken, J. Chen, M. Stonebraker, and A. Woodruff.
Tioga-2: A direct manipulation database visualization en-
vironment. InProceedings of the 12th International Con-
ference on Data Engineering, pages 208–217, New Or-
leans, Louisiana, February 1996.

[3] B. B. Bederson, J. D. Hollan, K. Perlin, J. Meyer, D. Ba-
con, and G. W. Furnas. Pad++: A zoomable graphical
sketchpad for exploring alternate interface physics. In
Journal of Visual Languages and Computing, volume 7:1,
pages 3–31, March 1996.

[4] B. B. Bederson and B. McAlister. Jazz: An extensible
2D+ zooming graphics toolkit in java. Technical report,
University of Maryland, May 1999.

[5] Belmont. CrossGraphs: Multidimensional graphical re-
porting and data visualization. White paper, Belmont Re-
search, Inc., 2000.

[6] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and
T. DeRose. Toolglass and magic lenses: The see-through
interface. InProceedings of the ACM SIGGRAPH Com-
puter Graphics Annual Conference Series, pages 73–80,
Anaheim, California, August 1993.

[7] S. K. Card, J. D. Mackinlay, and B. Shneiderman.In-
formation Visualization: Using Vision to Think, pages
285–286. Morgan-Kaufmann, San Francisco, California,
1998.

[8] M. Derthick, J. A. Kolojejchick, and S. F. Roth. An in-
teractive visualization environment for data exploration.
In Proceedings of the Third International Conference on
Knowledge Discovery and Data Mining, pages 2–9, New-
port Beach, California, August 1997.

[9] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Don-
jerkovic, S. Lawande, J. Myllymaki, and K. Wenger. DE-
Vise: Integrated querying and visual exploration of large
datasets. InProceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 301–
312, Tucson, Arizona, May 1997.

[10] C. North and B. Shneiderman. Snap-together visualiza-
tion: A user interface for coordinating visualizations of
a relational database. InProceedings of the 5th Interna-
tional Working Conference on Advanced Visual Interfaces
(AVI 2000), Palermo, Italy, May 2000.

[11] C. Olston, M. Stonebraker, A. Aiken, and J. M. Heller-
stein. VIQING: Visual Interactive QueryING. InPro-
ceedings of the 14th IEEE Symposium on Visual Lan-
guages, pages 162–169, Halifax, Canada, September
1998.

[12] C. Olston, A. Woodruff, A. Aiken, M. Chu, V. Ercegovac,
M. Lin, M. Spalding, and M. Stonebraker. DataSplash.
In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 550–552, Seattle,
Washington, June 1998.

[13] K. Perlin and D. Fox. Pad: An alternative approach to the
computer interface. InProceedings of the 20th Interna-
tional Conference on Computer Graphics and Interactive
Techniques, pages 57–64, Anaheim, California, August
1993.

[14] M. Spalding and A. Woodruff. DataSplash: A database
visualization environment developed by the UC Berkeley
Tioga project, 1998. http://datasplash.cs.berkeley.edu.

[15] M. C. Stone, K. Fishkin, and E. A. Bier. The mov-
able filter as a user interface tool. InProceedings of the
ACM SIGCHI Conference on Human Factors in Com-
puting Systems, pages 306–312, Boston, Massachusetts,
April 1994.

[16] A. Woodruff, A. Su, M. Stonebraker, C. Paxson, J. Chen,
A. Aiken, P. Wisnovsky, and C. Taylor. Navigation and
coordination primitives for multidimensional browsers.
In Proceedings of the 3rd IFIP 2.6 Working Conference
on Visual Database Systems, pages 360–371, Lausanne,
Switzerland, March 1995.


