Getting Portals to Behave

Chris Olston Allison Woodruff
Stanford University Xerox PARC
olston@db.stanford.edu woodruff@parc.xerox.com
Abstract sub-windows of a data canvas. Portals provide a way

. o . CLO display multiple graphical representations simultane-
Data visualization environments help users understan usly, in a nested fashion. This makes portals an ex-

and analyze their data by permitting interactive brows- yremely powerful and flexible paradigm for data visual-
ing of graphical representations of the data. To further jzation.

facmtate understanding and_ analysis, many visualiza- Unfortunately, with this flexibility comes complex-
tion environments have special features knowpa$als jty. There are over a hundred possible ways each portal
which are sub-windows of a data canvas. Portals providecan be configured to exhibit different behaviors. Many
a way to display multiple graphical representations si- of these behaviors have confusing effects. Furthermore,
multaneously, in a nested fashion. This makes portals amany behaviors are inappropriate for a particular set-
extremely powerful and flexible paradigm for data visu-ting. For example, certain behaviors have visually pro-
alization. Unfortunately, with this flexibility comes com- grammable aspects and thus are not appropriate in a
plexity. There are over a hundred possible ways eactbrowse only setting. Itis desirable to eliminate confusing
portal can be configured to exhibit different behaviors. and inappropriate behaviors. In this paper, we constructa
Many of these behaviors are confusing and certain befaxonomy of portal behaviors and give recommendations
haviors can be inappropriate for a particular setting. It to help designers of visualization systems decide which
is desirable to eliminate confusing and inappropriate be-Pehaviors are intuitive and appropriate for a particular
haviors. In this paper, we construct a taxonomy of portalS€tting. _ _ .
behaviors and give recommendations to help designers SO that this analysis can apply as broadly as possible,

of visualization systems decide which behaviors are inWW& model the environment as follows. Visualization
tuitive and appropriate for a particular setting. We ap- environmentis any system that displays (a portion of) a

ply these recommendations to an example setting that ig/;g;g:;nsegsgg{]?f%abnggtss' ngﬁetpo?r?hn;g:g\éaesgglﬁa be
fully visually programmable and analyze the resulting re-) ' J y

duced set of behaviors. Finally, we consider a real Vi_portals, which are special objects that show a portion of
: Y: another canvas, called tlohild canvas Note that the

sualization environment and demonstrate some problemsyiiq canvas can be the same as the parent canvas. A con-
associated with behaviors that do not follow our recom- ¢rete example is illustrated in Figure 1, which is a screen-

mendations. shot from the DataSplash visualization environment [12]
showing a parent canvas of filled polygons and other ob-
Keywords: Portals, Multiple Views, Data Visualization. jects. The polygons are U.S. states. The three square
objects are portals, each located at the coordinates of a
1 Introduction major city. Each portal is a sub-window in the parent
anvas that shows a portion of a child canvas, which in
his case contains a bar chart describing transportation
ata for the city. Note that, in general, portals can be of
ny shape.
In addition to showing a portion of the child canvas,
portals can be used for navigation. Many visualization
environments allow users to “enter” portals to instantly

Recently, much attention has been devoted to data visu
ization environments that permit interactive browsing of
graphical representations of large data sets [1, 2, 3, 4,
9, 12, 13]. Many of these environments present a two-
dimensional infinite canvasof graphical data through
which the user can “navigate” to interactively browse the
data. Interactive browsing can be a powerful way to un--"". ; ;
derstand and analyze data. To further facilitate browsin avigate to the child canvas. For example, entering one

and analysis, many visualization environments have spe-f the portals in Figure 1 causes the corresponding bar
cial features known agortals[2, 3, 12, 13[2 which are chart canvas to become the parent canvas and the bar

chart to fill the entire screen.
*Supported by a National Science Foundation graduate research
fellowship. 3Although we use the term “visualization environment” throughout
Lcalled a “surface” in Pad [13]. this paper, our analysis also applies more generally to multiple view
2portals have many names, including “wormholes” in Tioga-2 [2], systems that contain views that are related (usually via an underlying
the predecessor to DataSplash. spatial model).

of eliminating inappropriate behaviors, we consider a
specific example setting—a fully visually programmable
environment—and describe rules to be applied. We then
analyze the resulting reduced set of behaviors. We omit
an exhaustive analysis of possible settings.

The analysis in this paper focuses uniquely on the
binary choice of which user operations trigger which
other operations. We do not consider the exact behavior
when changes are propagated via triggering. For exam-
ple, when the user enlarges a magnifying glass, either the
same portion of the canvas remains visible but is shown
atincreased magnificationd., no triggering), or a larger
portion of the canvas is shown at the same magnification
(i.e. triggering). Our analysis addresses which of these

Since portals allow users to instantly navigate to antwo scenarios may occur, but not how much more of the
other location and/or another canvas, they can be useganvas becomes visible nor how much the magnification
to create visual versions of hyperlinks and bookmarksincreases. These issues are orthogonal to the discussion
There are also many other uses for portals. Portal#$n this paper.
can be used to implement a variety of tools to help the Others have focused on modeling the way operations
user browse and understand the data being visualized b3re correlated in specific behaviors [3, 5, 6, 10], often us-
showing multiple views simultaneously. The views caning a spatial model. However, we are not aware of any
show different representations of the data, or data at difwork on enumerating fundamental behaviors. Further-
ferent levels of magnification. For exampteagnifying ~ more, to our knowledge no work has focused on making
glasseq2, 13] show a magnified view of the data below recommendations for choosing a reduced set of behav-
them and can in some cases be repositioned by the useiors from the large space of possible behaviors we iden-

Each portal tool comes in many varieties, dependindify-
on how the user is permitted to interact with the tool. For The remainder of this paper is structured as follows.
example, the user may or may not be permitted to reposiAfter giving an overview of some useful portal tools in
tion a magnifying glass. When the user pans and zooms3€ction 2, we present our model for portals in Section 3,
magnifying glasses can travel with the user or remainvhich focuses on a set of fundamental binary properties
fixed relative to the canvas. Furthermore, the user mayhat determine the portal behavior. To reduce the space of
or may not be allowed to pan and zoom the child canvag/lowed behaviors by eliminating confusing behaviors,
inside the magnifying glass. If zooming inside the mag-We propose rules in Section 4. Next, in Section 5, we
nifying glass is allowed, it may change the magnifica-describe rules to further reduce the space for an exam-
tion factor, zoom the entire parent canvas along with thedle setting by eliminating inappropriate behaviors, and
child canvas inside the magnifying glass, automaticallywe analyze the remaining reduced set of behaviors. Sec-
resize the magnifying glass, or apply some combinatioriion 6 considers a real visualization environment, and
of these effects. Finally, if resizing the magnifying glass demonstrates some problems associated with behaviors
is allowed, enlarging it may increase the magnification,that do not conform to the suggested rules. Finally, in
or alternatively cause more data to become visible withSection 7, we discuss avenues for future work.
the same magnification.

In this paper, we concentrate on the properties thaR Portal Tools
governwhich user operations are allowed and which usa-rn

Figure 1: An example DataSplash visualization with por-
tals.

operations trigger which other operations. Considerin n this section, we give examples of portal tols. We

only these fundamental properties we have identifiedtoglkse Egcﬂ%{)ﬂrtg;?}) JIh(I:SE)rIrSw ez:r}ne;(]r;a;:;/s\t/l;/reieléis; SOLSSELUJ_
there arel25 possible behaviors for each portal. En- ' !

abling all possible behaviors is probably not a good ide Ing on which aspects are visually programmable by the

for several reasons. First, it is unlikely that the user Caahser and which are not. Since there are so many vari-

: Ntions on each tool, each requiring a different behavior,
be expected to understand al5 behaviors. Second, .we omit a thorough discussion. Instead, in Section 3, we

some of the behaviors may have confusing effects. Fi- : :
nally, many of the behaviors may simply not be useful orggﬁ;c?oi gfzet g:t;lfndamental properties that govern the
appropriate, depending on the setting. P '

This paper addresses this issue by formally defining2
the behavior space and proposing a two-step proceduré
for reducing the behavior space to a handful of intuitiveVisual hyperlinksare analogous to hypertext hyperlinks
and appropriate behaviors. The first step eliminates befe.g, between Web pages) in that they allow the user to
haviors that are confusing. For this purpose we proposéstantly navigate between a location on one canvas to
a set of rules that can be applied in all settings. The secsome location on another canvas. Additionally, visual
ond step eliminates those behaviors that are not apprdiyperlinks display the contents of the destination in a
priate in a particular setting. To illustrate the processsub-window, to provide a “preview” of the destination.

1 Visual Hyperlinks

Satellite Image
Street Map (kilometers) Shattuck Shattuck
(miles)

part

Rose

pgdalena

)
D
E
D
-
®
-
o
3
D

OZEQ
=~

il
g
B

esta)
Firelight

\irginial
Hearst
Ashby
Virginia
Hearst

Ashby

Figure 2: A visualization showing a satellite image in Figure 3: Two snapshots of a map visualization having a

the parent canvas and a street map in a coordinated viemiovable magnifying glass with the lens and lehsle-

tool. pendencies enabled. The user can go from the before im-
age (left) to the afterimage (right) either by repositioning

2.2 Bookmarks the magnifying glass or by panning the magnified image

Bookmarksare visual hyperlinks that remain on the inside the magnifying glass.

screen at all times and allow the user to instantly nav- . . .

igate to the location displayed in the bookmark portal. Filters and movable filters can either manvas-

Indexesn Pad++ [3] are similar to bookmark tools. stationaryor user-stationary Canvas-stationary filters
are stationary relative to the parent canvas, and do not

remain with the user during navigation unless the user
explicitly moves them. Canvas-stationary filters are of-

A coordinated view, 15] is a portal tool that remains ten k_ep_t posmo_ned near a particular region of the canvas
on the screen at all times and shows a different represefbat is interesting to see through a filter. On the other
tation of the data in the main window. The data shownhand, user-stationary filters remain fixed in position and
the main window and is not related to the position of theters are useful when the user_wlshes to see a_flltere_d view
portal. Coordinated views can be quite useful in applica-0f €very part of the canvas visited, possibly in conjunc-
tions such as astronomy, medical imaging, comparativéon with the regular, unfiltered view.

cartography, and structural analysis, where data objects

have several alternative representations showing differ2.6 Magnifying Glasses

ent characteristics [15]. For example, Figure 2 illustrates o)

a visualization displaying a satellite image in the paren?® magnifying glas$2, 13] is a portal tool that shows a
canvas and a street map of the same geographic region fRagnified (zoomed in) view of the region of the canvas
a coordinated view tool. underneattt.

Movable magnifying glassese magnifying glasses
that the user is allowed to reposition (and resize). Mov-
able magnifying glasses can help the user see different
An overviewis a portal tool that shows a demagnified portions of the canvas in detail without navigating. For
(zoomed out) copy of the canvas and is fixed on theexample, a movable magnifying glass might be useful
screen to help orient the user during navigation. In thevhen using a map visualization to view street names that
literature, the combination of overview portal and parentare otherwise too small to read without zooming in, as
canvas is called aoverview and detaiview [7]. illustrated in Figure 3 (the reader should ignore the cap-
tion for now, as it contains concepts that have not yet
. been introduced).

2.5 Filters As with filters, magnifying glasses and movable mag-
Filters [13] show a different graphical representation of nifying glasses can either be canvas-stationary or user-
the region of the canvas that is occluded by the portal obstationary. Both types can be useful. For example, con-
ject. Filters are useful for displaying two different repre- sider a map visualization used to convey driving direc-
sentations of the same data. tions between two points. When viewing the entire route

Movable filtersare filters that the user is allowed to in freeway-level detail on the screen, it may be useful
reposition and resize. Afterward, whatever region of theto have one canvas-stationary magnifying glass over the
parent canvas is newly occluded by the filter is insteadstarting location and another over the destination show-
displayed inside the filter, as the alternative representaing detailed street maps. Alternatively, consider a doc-
tion. Movable filters allow the user to interactively ad- ument visualization. A user-stationary magnifying glass
just the region of the canvas being filtered. This can be a

; ; ; 4We draw a distinction between filters (which show a different
useful behavior for a number of reasons outlined in [6]'graphical representation of a given region of a canvas) from magni-

Magic Lensesn the SeefThrOUgh Interface [6, 15] and fying glasses (which show a larger or smaller region of a canvas). We
Pad++ [3] are movable filter tools. discuss hybrid tools in the following subsection.

2.3 Coordinated Views

2.4 Overviews

User Operation | Frame Edited
parent navigation (panning ar
zooming in the parent canvas) parent visible frame
manipulating (resizing and
repositioning) the portal object portal frame
child navigation (panning and
zooming in the child canvas) | child visible frame

[o1

parent visible frame

portal frame

child visbleframe Figure 5: Summary of which user operations edit which

frames.

portion of the bar chart without affecting the parent can-

vas.
In addition to editing the parent and child visible
parent canvas child canvas frames via parent and child navigation, a user can edit
the portal frame by manipulating the portal object. Re-
Figure 4: Portal model. call that a portal can be thought of as a special object

.) . that displays another canvas. Some environments permit
could be positioned in the center of the screen to facili-ysers to move and resize portal objects in the same man-

periphery. make one of the portals in Figure 1 smaller and reposi-
_ tion it. Figure 5 summarizes which user operations edit
2.7 Hybrid Tools which frames.

Hybrid tools can be created that have properties taken, While other models are possible, we believe these
from several portal tools. For example, a magnify-t ree frames represent the minimal set of entities needed

ing glassffilter hybrid would simultaneously magnify the 0 describe what appears on the screen. The parent frame
data and change its representation. Such tools are pai€Scribes what portion of the parent canvas is displayed,
ticularly common in semantic zoom [13] environments "€ Portal frame specifies the position of the portal, and
that display different representations of data dependin(\ﬁj1e child frame determines what portion of the child can-
on the magpnification level. as appears inside the portal.
The three frames in this model can be thought of as
having an ordering in terms of conceptual distance from
3 Portal Model the user. First, the parent visible frame is the closest to
In this section we present the model used in this papeithe user since it controls what the user sees of the parent
Our model is simple enough to capture the semantics ofanvas. Second, the portal frame is an element of the
many environments with portals. Figure 4 illustrates aparent canvas, where it can be manipulated by the user.
side-view of our model, with the user on the left. Third, the child visible frame is the farthest from the user,
The vertical line immediately to the right of the user because editing it requires navigating the child canvas,
represents the parent canvas. Tagent visible framg which is conceptually located beneath the parent canvas.
or simply parent frame, is the two-dimensional region of To indicate this order, we writparent visible frame-
the parent canvas displayed on the screen. This frameortal frame:- child visible frame The order of frames
corresponds to the entire window in Figure 1. The parentn terms of conceptual distance from the user is a useful
canvas may contain one or more portals. Each portal hagoncept that we will invoke later in the paper.
aportal frame which is a two-dimensional region of the Some environmentse(g, DataSplash [12]) support
parent canvas. The border of each square in Figure 1 is@ultiple levels of nesting, where portals can contain por-
portal frame. tals, and so on, and thus have additional frames beyond
The vertical line on the right represents the child can-the three discussed. In DataSplash, the user is only per-
vas associated with a portal. Note that each portal in thenitted to edit the three closest frames (the parent visible,
parent canvas can point to a different child canvas. Thgortal, and child visible frames), and cannot edit frames
child visible frame or simply child frame, is the two- of grandchild portals without first entering the child por-
dimensional region of the child canvas that is displayedal. Therefore, in this paper we consider only the three
inside the portal. This frame corresponds to one of theclosest frames. However, our model easily generalizes to
bar charts in Figure 1. environments that permit the user to edit frames of nested
The position and size of each frame can be adjustegortals.
by the user. Editing the parent visible frame is accom- Now that we have presented our model for portals, we
plished viaparent navigationoperationsj.e,, pan and turn to a discussion of portal properties. Although there
zoom. Similarly, many environments suppolild nav- are a multitude of properties that portals can have, we
igation, which allows the user to edit the child visible wish our model to be basic enough to capture the seman-
frame. For example, a user could potentially pan andics of as many environments with portals as possible.
zoom one of the child canvases in Figure 1 to enlarge & herefore, our model considers only two types of binary

S-nav

properties, which we consider fundamental, caffadhe
editability, which applies to frames, arfdtame depen-
dency which applies to ordered pairs of frames. Each
property of either type can be either enabled or disabled.
A set of enabled properties is calledh@havior Various

plemented as portals with different behaviors. We now
discuss the editability and dependency properties in turn.

3.1 Frame Editability Properties

It is possible to disallow edits to one or more frames by s-nav-1
disabling itseditability property Recall from Figure 5

that the parent and child frames are edited by parent andligure 6: A graph of the behavior having all the frame
child navigation operations, respectively, and the portajependencies enabled. The nodes are displayed in order
frame is edited by repositioning and resizing the portalof conceptual distance from the user, from left to right.

ObjeCt. It is often desirable to disallow edits to certain The name of each dependency is shown next to its corre-
frames in some behaviors. For example, some behaviokgyonding edge.

require portals to remain fixed and do not permit users
to resize or reposition portals. Therefore, each portal hagf a portal as a directed araph with three vertices. one
three binary editability properties, one for each frame P grap y

For convenience, we writelitable(A) to indicate that a ‘for each frame (parent visible, portal, and child visible).
frame A is editable. An edge from framed to frame B means that the frame

dependencyl — B is enabled. Figure 6 shows a graph
for the behavior with all the frame dependencies enabled.
The nodes are displayed in order of conceptual distance
In the absence of any dependencies between frames, eafthm the user, from left to right. Each edge in the graph
frame is independent. In other words, editing one frames labeled with the name we give to the corresponding
does not affect the other two frames. For example, makdependency.

ing one of the portals in Figure 1 smaller does not af- Next, we describe the three forward dependencies
fect the child visible frame, which remains the same Size(which we Ca”sticky, s-nay and'ens and their inverses
Thus, the same child frame (the entire bar chart) will be(sticky-!, s-nav-!, andlens™!) in Sections 3.2.1, 3.2.2,

displayed in the now smaller portal frarhe. and 3.2.3. Then, in Section 3.3, we descdependency
Frame dependencieare properties that cause one mappingswhich specify the exact way in which editing

frame to change automatically when the user edits ana frame automatically changes a dependent frame.
other frame. Dependencies are one-way links between

ordered pairs of frames, of which there are six. Each

dependency can either be enabled or disabled. If a de- i _ L)

pendency from framel to frameB (written A — B)is 3:2.1 Sticky and Sticky " Dependencies

enabled, whenever the user edits the position and/or size .

of frame A, the position and/or size of franfe changes e refer to the dependenqgyarent visible frame—

automatically. Of course, a dependenty— B cannot portal frameas thest_lcky dependeng¢which can be _used

be enabled unless framisis editable. On the other hand, {0 Mmake portals “stick to the screen” [2, 3]. In this sce-

even if frameB is not editable, the dependency can benario, when the user edits the parent framg(by pan-

used. Editability only restricts direct editing, while still Ning and zooming), the portal frame changes so that its

allowing indirect editing via frame dependencies. ForSiZ€ and position relative to the parent frame remain con-

notational convenience, we writé ~» B if a (possibly stant. The sticky (_jependency is useful f(_)r portals that are

empty) chain of dependencies is enabled from fraime intended to remain on the screen at all tirfes.

frameB. Note that since editing a frame always changes The sticky ! dependencis the inverse of the sticky

it, A — AandA ~» A are trivially true for any framel. dependencyportal frame— parent visible frame This
There are six possible frame dependencies in oudependency is useful when moving a portal should auto-

three-frame model. We classify the dependencies intanatically change the parent frame. This dependency is

forward and reverse dependencies. A dependencygften temporarily applied when the user drags an object

A — B is forward if A = B, and reverse other- off the edge of the screen, allowing the parent frame to

wise. Each forward dependendy— B has an inverse, follow the drag. For the sake of simplicity, in this paper

B — Athatis a reverse dependency. Conversely, the inwe limit ourselves to behaviors that arise from perma-

verse of a reverse dependency is a forward dependenayently enabling the sticky' dependency.

It is useful to think of the frame dependency properties

3.2 Frame Dependency Properties

5For the purposes of this paper, we assume that the shape of the 5This property and its inverse can also be applied to objects other
child visible frame must be the same as the shape of the portal framehan portals. For example, shapes such as triangles or circles may be
When these frames are rectangles, the aspect ratios must be equal. sticky.

3.2.2 S-nav and S-nav! Dependencies disabling each dependency. However, we do make two
minor restrictions on dependency mappings to simplify
our analysis without loss of applicability. It is our be-
lief that systems that do not meet these restrictions have
‘unintuitive and undesirable behaviors. Specifically, we
}Snly consider environments that obeyapping transitiv-

{Qf andmapping inversionwhich we discuss next.

We refer to the dependenpgrent visible frame- child
visible frameas thes-nav dependend§or synchronous
navigation), which can be used to apply navigation per
formed in the parent canvas to the child canvas (possibl
with a transformation) [16]. In other words, navigating
the parent canvas causes the child canvas inside the por
to automatically navigate. This dependency is useful for, , o
portals whose view is somehow linked to the view of the3'3'1 Mapping Transitivity
parent, as in coordinated views (Section 2.3) and certaiin environments withmapping transitivity if dependen-
varieties of other tools. ciesX - Y,Y — Z,andX — Z are enabled, then the
Thes-nav'! dependencys the inverse of the s-nav mapping for theX — Z dependency is the composition
dependencychild visible frame— parent visible frame of the mappings folX — Y andY — Z. In general,
In certain behaviors, navigation in the child canvas autothe composition of mappings along any path frafto
matically navigates the parent. Some varieties of coordiZ must produce the same mappingXs— Z. We say

nated views and other tools use this effect. that a dependenc¥ — Z is derivable via transitivityif
there is a pathX ~» Z other thanX — Z. This means
3.2.3 Lens and Lens! Dependencies that the mapping foX — Z can be derived by compos-

) ing a sequence of mappings for dependencies fkbin

We refer to the dependencgortal frame — child 7
visible frameas thelens dependencyhich creates be- Environments that do not employ mapping transitivity
haviors where editing the portal frame affects which partcan allow confusing behaviors. Consider a behavior with
of the child canvas is displayed inside the portal. Thisthe following three dependencie’ — Y, Y — Z,
dependency is useful for movable filters and magnifyingang x — Z. Editing X to X’ automatically changes
glasses (seel Sections 2.5 and 2.6). Y to Y’ andZ to Z'. If mapping transitivity is not em-

Thelen§_ de_p(_andencys the inverse of the lens de- ployed, then manually editiny to Y’ can changeZ to
pendencychild visible frame portal frame When the something other tha”. This is counter intuitive.
lens™* dependency is enabled, navigating the child can- As a concrete example, consider a behavior with de-
vas inside the portal changes the portal’s position and/opendencieparent — portal (sticky), portal — child
size on the surface of the parent canvas. This dependen@éns)l andparent — child (s-nav). Say that moving
can be used for many purposes, including to create a varthe portal to the right by one unit automatically pans the
ety of movable filters in which panning the child canvaschild canvas to the right by some amount The user
to change the region being filtered automatically repocan also cause the portal to move one unit to the right
sitions the filter above the Correspondlng region in the|nd|rect|y via the St|cky dependency by panning the par-

parent canvas. ent. Without mapping transitivity, doing so pans the child
canvas by some amount other thanThis effect is con-
3.3 Dependency Mappings fusing because intuitively the user expects the child can-

When a dependencyt — B is enabled, it is useful to Yt?esggr?;ndi?&tlyhmh would occur if they had moved

ghink Odf the relationriship bg_ttvv%erlgramasa?g Bmii a On the other hand, with mapping transitivity, the s-nav
epenadency mappiritom edits by the user ot frame to mapping is derivable from the sticky and lens mappings.

changes automatically performed on frameAlthough In this case, whenever the portal is moved (either directly,

a detailed discussion of dependency mappings is beyond, - . ;
the scope of this paper, which focuses instead on the b& indirectly by panning the parent), the same effect is

. . (Sfhanifest on the child frame. This effect is determined
nary chplce of yvhlch dependencies are enabled, we glvgOlely by the lens dependency mapping.
a short illustrative example.

Consider a magnifying glass with the lens dependenc
enabled. One interesting dependency mapping for th
lens dependency might have, among other things, the folln environments withmapping inversionif a depen-
lowing characteristic. If the user enlarges the magnifyingdency A — B is enabled in conjunction with its in-
glass (portal frame), then the region of data displayedierse B8 — A), then the two mappings are inverses
inside the magnifying glass (child frame) also enlargesof each other. In other words, when two frames are co-
Such a mapping could be used to maintain a fixed radependent, the user can directly edit either frame to pro-
tio between the portal frame and child frame sizes, toduce the same effect.
hold the magnification factor constant. In this situation, Having two frames that are co-dependent without
the magnification factor is a parameter in the dependencynapping inversion is confusing. For example, consider
mapping. the canvas with a coordinated view illustrated in Fig-

Ideally, we would like our analysis in this paper to ure 2. Say the user pans the satellite image (parent can-
be orthogonal to the choice of dependency mappingsyas) to the right by one kilometer, which causes the street
since we concentrate on the binary choice of enabling omap (child canvas) inside the coordinated view to pan to

.3.2 Mapping Inversion

the right by 0.625 miles. Without mapping inversion,
manually panning the street map to the right(b§25 1O
miles does not pan the satellite image to the right by Q O
one kilometer, as would be expected when the parent and A Q B
child frames are co-dependent. m ’—‘

Mapping inversion can be seen as a special case of
mapping transitivity. Consider two co-dependent framesFigure 7: A behavior with bypassing as the user pans
A andB. By mapping transitivity, the mapping along the upward in the parent canvas.
pathA — B — A must equal the mapping fot — A,
which is the identity mapping. andportal — child enabled. Moving the portal automat-

We say that a dependency — B is derivable via ically pans the child canvas, and panning the parent au-
inversionif the inverse dependendy — A is enabled. tomatically moves the portal but does not pan the child
This means that the mapping fdr— B can be derived canvas. Since behaviors that do not obey dependency
from the mapping fo3 — A by inverting it. Note that transitive are unintuitive, we recommend the use of the
whenever a dependency and its inverse are both enablefbllowing rule:
they are always mutually derivable via inversion. Dependency Transitivity Rule: VX, Y, Z((X — Y) A

(Y = 2)= (X — 2))

4 Reducing the Number of Behaviors _
4.2 No Bypassing

The behaviorof a portal is defined by the set of frame .))
editability and frame dependency properties that are enWVe strongly believe thatypassingcan be confusing for
abled. We count the number of possible behaviors, keepghe user. Recall from Section 3 that frames have an order
ing in mind that a dependeney— B cannot be enabled based on conceptual distance from the user. Bypassing
unless framel is editable. First, if none of the frames are occurs when editing one frame automatically changes a
editable, the only valid behavior has no dependenciescloser or farther frame without changing an intermediate
Second, if any one of the three frames is editable, it iframe. The No Bypassing rule states that no dependency
possible to select any subset of the two outgoing depencan bypass a frame in the conceptual distance order. In
dencies from the enabled frame, for a subtota-af be- ~ other words, if editing one frame automatically changes
haviors with any one frame editable. Third, if any two of @ closer or farther frame, then it must also change all
the three frames are editable, then any subset of the fodfames in between.
outgoing dependencies from the two enabled frames can For example, consider a behavior where the only en-
be selected, giving - 2* behaviors. Finally, if all three abled dependency isarent— child (s-nav). Figure 7
frames are editable, there @&behaviors. Summing up illustrates the effect of panning upward in the parent can-
the possibilities, there afe20+3-22+3.244+1.26 = 125 vas. The portal frame remains stationary relative to the
different behaviors, considering only the frame editabil-other objects in the parent canvas, yet the child canvas
ity and frame dependency properties. inside the portal pans. This behavior can be quite con-
Presenting the user with a choice of any possible befusing, so we suggest the following rule:
havior for each portal is probably not a good idea for sev-No Bypassing Rule:vX. Y, Z((X — Z)A((X > Y >
eral reasons. First, it is unlikely that the user canbe exZ) V (Z =Y > X)) = (X —Y))
pected to understand a5 behaviors. Second, some of
the behaviors may have confusing effects. Finally, many; 3 Only Forward Derivable Reverse Dependencies

of the behaviors may not be appropriate, depending on)))
the setting. Behaviors with reverse dependencies are usually confus-

In the remainder of this section, we present a set ofng. In general, users expect edits of a frame to propagate
rules that eliminate confusing behaviors in all settings.to more distant frames via forward dependencies, but not

Then, in Section 5, we focus on a specific example setthe other way around. _

ting and discuss ways to further limit the space to be- However, reverse dependencies can make sense when
haviors that are appropriate for the particular setting wethey are derivable via transitivity or inversion (recall Sec-
consider. tions 3.3.1 and 3.3.2) from some sequence of dependen-
cies that includes a forward dependency. When this is
the case, we say that a reverse dependenéyrigard
derivable written formally as:forward-derivabl¢ B —

We recommend enforcingependency transitivityin a ~ A) < (A — B)V3Xy, Xa, ... X ((X1 = B) A (Xy =
behavior that is not dependency transitive, when the usefl) AV1 <i <k — 1(X; — X(41)) AVI < i <k, 1 <
explicitly edits frameY’, frameZ automatically changes, j < k(X; # X;) A 31 <i <k — 1(X; = X(i41)))-

4.1 Dependency Transitivity

but when the user edits some other fraxighat auto- Since the user is aware of the forward dependency,
matically change%’, frameZ does not change. This is the reverse dependency from which it is derived does not
counterintuitive. come as a surprise. The notion that behaviors with non-

For example, consider a behavior that is not depenforward derivable reverse dependencies are confusing is
dency transitive with only dependencprent— portal ~ best illustrated through three examples. The first two

S-nav

10 29
sty O

frame frame
e y©lm

Figure 9. Two sequences of snapshots of a visualiza-
Figure 8: A graph of DataSplash Behavior 3, which hastion having a coordinated view with the sticky, s-nav, s-
all reverse dependencies derivable. nav~!, and lens! dependencies enabled. The top two
snapshots illustrate the display before and after reposi-
examples describe intuitive behaviors with reverse detioning the coordinated view portal. The bottom two
pendencies that are forward derivable via inversion angnapshots illustrate the display before and after panning
transitivity, respectively. The third example illustrates aleft in either the parent or the child canvas.
confusing behavior with a reverse dependency that is not. i .
forward derivable. sider the behavior with only the lens dependency en-
First, we describe an intuitive behavior with a reverse@0!€d- Repositioning the portal has no effect on the child

dependency that is forward derivable via inversion. Con-Canvas inside (as with a visual bookmark). However,
sider a behavior with both the lens and lehglependen- Panning the child canvas automatically moves the portal.

cies enabled. Clearly, the lensdependency is derivable Figure 10 illustrates the display before and after reposi-
from the lens dependency via inversion (Section 3.3.2)tioning the portal (top) and panning the child canvas to
In this behavior, repositioning the portal automatically the right (bottom). This is effect is counter-intuitive. The
pans the child canvas inside (as with a movable magnify¥Ser has no reason to expect panning the child canvas to
ing glass). If the user manually pans the child canvas, th@ave any reverse effects like moving the portal, because
portal is automatically repositioned appropriately. Fig-thelens " dependency is not forward derivable.

ure 3 illustrates an example display before and after per-, Since behaviors with underivable reverse dependen-

forming either of these operations to a movable magni£I€S areé confusing, we propose the following rule:
fying glass in a map visualization. This is an intuitive Only Forward Derivable Reverse Dependencies Rule:

behavior because changing what region is displayed i’1yX5}Y(())§))> 1) Hlorward-denveblel =) =

side the magnifying glass automatically repositions the™

magnifying glass over the corresponding region of the)
mag. ing 9 P 979 5 Example Setting

We now describe an intuitive behavior with a re- Applying the usability rules presented in Section 4 re-
verse dependency that is forward derivable via transitivduces the size of the behavior space fro2h potential
ity. Consider the behavior whose dependency graph igehaviors ta32 intuitive behaviors. We omit a detailed
illustrated in Figure 8 having the sticky, s-nav, s-ndy discussion of all intuitive behaviors. Not all of these be-
and lens' dependencies enabled. The lehslepen- haviors are appropriate in every setting. In this section
dency is derivable from the s-nal and sticky depen- we describe additional rules to further reduce the set of
dencies via transitivity (Section 3.3.1). In this behav-behaviors for a visualization environment that permits
ior, panning the parent canvas automatically moves théhe user to edit any frame and to visually program any
portal frame and pans the child canvas (as with a codependency mapping.
ordinated view). In addition, panning the child canvas Given a mappingV/, user edits that altek/ can be
automatically pans the parent canvas and moves the pothought of asprogrammingM, and edits that do not
tal frame in the same manner as if the parent had beeaiter A/ can be thought of abrowsingwith respect to
panned manually. Intuitively, panning the child producesjs. Consider two framesl and B with the dependency
the same effect as panning the parent (via the sshav 4 — B enabled using mapping/, and no other de-
dependency), which among other things moves the pompendencies among frames. Editing fraBeoes not af-
tal frame (via the sticky dependency). Figure 9 illustratesfect frameA, and thus programs the relationship between
the display before and after repositioning a coordinatedramesA and B: mapping). On the other hand, edit-
view tool (top) and panning left in either the parent or ing frameA causes framé to be changed according to
child canvas (bottom). the mapping and does not alter the mapping. Therefore,

Now that we have presented two examples of intu-editing A is considered browsing with respectio.
itive behaviors with forward derivable reverse dependen- For example, consider a magnifying glass with the
cies, we give an example of a confusing behavior with alens dependency enabled and the téngependency dis-
reverse dependency that is not forward derivable. Conabled. A dependency mapping for the lens dependency

lens1

s-nav-1

@ @ frames are editable, which resultslihbehaviors. Then,
we apply the Independent Programmability rule to each

A A pair of frames, which leaves the following set of five be-
haviors that are intuitive and fully editable and have all

dependencies independently programmable:

1. Dependencied}
@ B Editable:{parent, portal, chily

A A 2. Dependenciedsticky}

Editable:{parent, portal, child

) _ .. 3. Dependenciedsticky, s-nay
Figure 10: Two sequences of snapshots of a visualization Editable:{parent, portal, chily
having a portal with only the lens dependencies en-]
abled, which is not forward derivable. The top two snap- 4. Dependenciedlens} .
shots illustrate the display before and after repositioning ~ Editable:{parent, portal, chili
the coordinated view portal. The bottom two snapshots P)
illustrate the display before and after panning the child S EDgi[t):&gfa{npc;g.nsglggﬁgl,nce;:/i,léen}s

canvas to the right.)))
In this reduced set of behaviors, all dependencies are

might cause the child frame to be automatically enlargedini-directional since this setting requires independent
when the user enlarges the portal frame. The ratio of th@rogrammability of all dependencies, and they are for-
portal frame to parent frame sizes is a parameter in thevard since our usability rules do not permit underivable
lens dependency mapping that controls the magnificatioreverse dependencies. Our usability rules also eliminate
factor, as discussed in Section 3.3. Since the'léme- the behaviorgs-naw and{s-nav, leng, which both ex-
pendency is disabled, editing the child frame does nohibit bypassing, andsticky, leng, which violates de-
affect the portal frame, and thus programs the magnificapendency transitivity. We now turn to a discussion of the
tion factor. five allowed behaviors.

In the fully programmable setting, we would like ev- Behavior 1 has no dependencies, and can be used to
ery dependency to hgrogrammablemeaning that there implement visual hyperlinks (Section 2.1). Behavior 2
is a way for the user to program its dependency mapean be used to construct bookmarks (Section 2.2).
ping. A dependency is programmable if the dependent Coordinated views (Section 2.3) and overview tools
frame is editable and the inverse dependency is disabledSection 2.4) use Behavior 3. The sticky dependency en-
Enabling the inverse dependency would cause the twgures that the portal frame is always in the same posi-
frames to be co-dependent, so that no edits could alteion relative to the parent visible framieg,, is fixed on
the relationship between frames. Note that although inthe screen. Using the s-nav dependency with the identity
verse dependencies are undesirable in this setting, thayapping, the child visible frame always shows the same
are useful in other settings with browse-only characterisset of objects as the parent visible frame, giving rise to a
tics. coordinated view. Alternatively, using a different s-nav

It is also desirable for all dependencies toibde- dependency mapping that causes the child visible frame
pendently programmab]eneaning that programming its to be larger than the parent visible frame, we have an
mapping does not also program any other mapping. lroverview tool.
mapping transitive environments (which we consider in Finally, Behaviors 4 and 5 can be used to con-
this paper as discussed in Section 3.3), a dependenajruct movable filters (Section 2.5) and movable magni-
A — B is independently programmable if all mappings fying glasses (Section 2.6). The lens dependency maps
for dependencies pointing tB are derivable via tran- changes to the portal frame to changes to the child visi-
sitivity from each other. In this case, all dependencyble frame so that moving or resizing the portal changes
mappings pointing taB are really just incarnations of which part of the child canvas is filtered or magni-
the same mapping, which can be programmed indeperfied. Using Behavior 4, the filter or magnifying glass
dently of other mappings that do not point @ The is canvas-stationary, since its size and position is static
formal rule for enforcing independent programmability relative to the parent canvas, independent of navigation.

of a dependencyl — B is: Alternatively, using Behavior 5, the filter or magnifying
Independent Programmability Rule for A — B: glass is user-stationary, so it remains fixed on the screen.
(A — B) = editable(B) A =(B — A) AVX((X — Each of these behaviors is fully and independently
B)= (X~ A)V (A~ X)) programmable. To see this, consider the most restrictive

To obtain a reduced set of behaviors for a fully ed-case of Behavior 5, where all three forward dependen-
itable and independently programmable environment, weies are enabled. The sticky mapping is programmed by
start by applying our usability rules suggested in Sec-editing the portal frame, and the lens mapping is pro-
tion 4, which reduces the size of the behavior spad2to grammed by editing the child visible frame. Since map-
intuitive behaviors. To further reduce the set of allowedping transitivity is employed, the s-nav mapping is de-
behaviors in this setting, we start by asserting that alfined as the composition of the sticky and lens mappings

S-nav

and is not a separate mapping available for programming.
Therefore, Behavior 5 is fully and independently pro-

6 Case Study: DataSplash

grammable, as are the other behaviors with fewer depen- sticky
The authors of this paper were involved in the DataS-
plash prototype implementation [12] as part of the Tioga

dencies.
parent visible
frame

project at UC Berkeley [14]. The DataSplash prototype
was designed and implemented before the analysis of this
paper was conducted. Therefore, it does not conform to s-nav-1
all of the rules outlined here. We discuss the behaviors
allowed in DataSplash, and show that in cases where theigure 11: A graph of DataSplash Behavior 6, which vi-
rules in the paper were not followed, behaviors can be|ates dependency transitivity.
undesirable.

DataSplash employs mapping transitivity and map- Behavior 6, illustrated in Figure 11, also violates de-

ping inversion, and allows the following set of six be- pendency transitivity. Since editing the portal frame au-
haviors, the last two of which violate dependency transi-tomatically changes the child frame but does not also

tivity: change the parent frame, it does not make sense that edit-
. ing the child frame should change the parent frame. For
1. Dependencieg} , example, consider a magnifying glass. Moving the mag-
Editable:{parent, portal, chil nifying glass around has the expected effect: it causes a
2. Dependenciegsticky} magn!f!cation of the; region of the canvas _underneath_the
Editable: {parent, portal, chilg repositioned magnifying glass to appear in the magnify-
ing glass. Panning the magnified region not only auto-
3. Dependencieqsticky, s-nav, s-nav!, lens™!'} matically repositions the magnifying glass, but also pans
Editable:{parent, portal, chily the parent. The latter effect can be surprising and con-
. fusing.
4. Dependenciegilens} _ One way to convert Behavior 6 into a less con-
Editable: {parent, portal, chili fusing behavior is to remove the s-ndvdependency.
5. Dependenciegsticky, leng This more intuitive behavior can be used for movable
Editable:{parent, portal, chil magnifying glasses whose lens dependency is not pro-

grammable. When the user pans the child inside the

6. Dependencieqsticky, s-nav, s-nav!, lens, lens'} magnifying glass, the magnifying glass moves so as to
Editable:{parent, portal, child remain correctly positioned relative to the parent canvas.

i) Similarly, when the user zooms the child inside the mag-

Behaviors 1, 2, and 4 are the same as Behaviors 1, 4ifying glass, the magnifying glass automatically resizes
and 4 in t_he fuII_y programmab_le setting (see_Secuon 5_)-to maintain the same magnification factor.

Behavior 3, illustrated in Figure 8, was discussed in |5 practice, Behavior 6 was effectively converted into
Section 4.3 and has two forward derivable reverse dey ess confusing behavior in another way. While experi-
pendencies. It is similar to Behavior 3 in the fully pro- menting with the DataSplash prototype, we never edited
grammable setting and can be used to construct coordine child frame directly for portals using Behavior 6 be-
nated views and overviews that have an independentl¥y se it was confusing. Thus, child frame editability was
programmable sticky dependency. However, the s-naggfectively disabled. Notice that if we remove child ed-
dependency mapping.g, the demagnification factor of japjjity from Behavior 6, the s-nav* and lens! depen-
an overview tool, is not programmable since the parenfencies become meaningless and are removed, and the
and child frames are co-dependent. behavior no longer violates transitivity and is similar to

Behavior 5 is inconsistent and confusing because it vigyly programmable Behavior 5 (see Section 5), but with
olates the Dependency Transitivity rule, which was rec-piid editability disabled.

ommended for usability in Section 4.1. The user can edit
the portal, causing the child to automatically navigate.
However, if the user pans or zooms the parent, the por-7 Summary and Future Work

tal follows the user, but the child does not automaticallyln this paper, we presented a model for portals and fun-
navigate. Another way to see how this is problematic isdamental binary properties that govern their behavior and
that the dependency mapping initially set up between thgave examples of useful tools that come in many varieties
portal frame and child frame(g, making them the same with different properties. Since the space of possible be-
for a movable filter) is destroyed when the user navigatedaviors is quite large, we introduced rules that can be
the parent. Our experience with the DataSplash protoapplied to eliminate confusing behaviors. We then sug-
type confirms this lack of usability. Behavior 5 was nevergested additional rules to apply to eliminate inappropri-
used. ate behaviors for an example setting and examined the

resulting reduced set of behaviors. Finally, we analyzed [4] B. B. Bederson and B. McAlister. Jazz: An extensible
the set of behaviors available in a real visualization envi-
ronment, focusing on behaviors that violate our rules and
the resulting adverse effects.

There are numerous avenues for future work in this
area. First, we plan to explore models for dependency
mappings. Some models for displaying portals treat the [g)
portal frame as a physical window, where moving closer
enlarges the visible area of the child. With other models,
portals are like hanging pictures rather than windows in
this respect.

In addition, we plan to consider environments that [7]
permit partial editability €.g, where panning is permit-
ted but not zooming), and partial programming of depen-
dencies €.g, where zooming the child of a magnifying
glass changes the magnification, but panning does nofg;
change the magnified region). Furthermore, we plan to
consider environments where frame editability and de-
pendency programmability are temporary states, rather
than static properties of a behavior.

Some environments suppagplicated portalg2, 5]
(called “splash” portals in DataSplash [11, 12]). Portals
can be automatically replicated, one for each data item
in a data set. For example, Figure 1 shows a map visual-
ization of the U.S. states (the filled polygons) in which a
replicated portal displays a bar chart for each major city.
In some cases, it may be desirable to have dependencigi®]
between child frames of replicated portals, so that nav-
igating one portal automatically navigates others. We
plan to study the interaction of dependencies between
child frames and the dependencies discussed in this pa-
per, such as the s-nav dependency.

Finally, since portals are so complex, more work re-
mains to be done on intuitive ways to convey to the user
the behavior and dependency mappings of each portal.

Acknowledgments

We thank the other members of the DataSplash re-
search group at UC Berkeley: Alexander Aiken, Michael
Chu, Vuk Ercegovac, Mark Lin, Mybrid Spalding, and
Michael Stonebraker. They provided many useful dis-[13]
cussions. We also thank Ed Chi and Jock Mackinlay for
helpful feedback.

References

(1]

C. Ahlberg and E. Wistrand. IVEE: An information vi-
sualization and exploration environment. Rroceedings
of the First Information Visualization Symposium (InfoVis
'95), Atlanta, Georgia, October 1995.

[2] A. Aiken, J. Chen, M. Stonebraker, and A. Woodruff.

(3]

Tioga-2: A direct manipulation database visualization en-
vironment. InProceedings of the 12th International Con-
ference on Data Engineeringrages 208-217, New Or-
leans, Louisiana, February 1996.

B. B. Bederson, J. D. Hollan, K. Perlin, J. Meyer, D. Ba-
con, and G. W. Furnas. Pad++: A zoomable graphical
sketchpad for exploring alternate interface physics. In
Journal of Visual Languages and Computinglume 7:1,
pages 3-31, March 1996.

[5]

9]

(11]

(12]

(14]

(15]

(16]

2D+ zooming graphics toolkit in java. Technical report,
University of Maryland, May 1999.

Belmont. CrossGraphs: Multidimensional graphical re-
porting and data visualization. White paper, Belmont Re-
search, Inc., 2000.

E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and

T. DeRose. Toolglass and magic lenses: The see-through
interface. InProceedings of the ACM SIGGRAPH Com-
puter Graphics Annual Conference Seripages 73-80,
Anaheim, California, August 1993.

S. K. Card, J. D. Mackinlay, and B. Shneidermam-
formation Visualization: Using Vision to Thinlpages
285-286. Morgan-Kaufmann, San Francisco, California,
1998.

M. Derthick, J. A. Kolojejchick, and S. F. Roth. An in-
teractive visualization environment for data exploration.
In Proceedings of the Third International Conference on
Knowledge Discovery and Data Miningages 2—9, New-
port Beach, California, August 1997.

M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Don-
jerkovic, S. Lawande, J. Myllymaki, and K. Wenger. DE-
Vise: Integrated querying and visual exploration of large
datasets. IProceedings of the ACM SIGMOD Interna-
tional Conference on Management of Datmges 301—
312, Tucson, Arizona, May 1997.

C. North and B. Shneiderman. Snap-together visualiza-
tion: A user interface for coordinating visualizations of
a relational database. Proceedings of the 5th Interna-
tional Working Conference on Advanced Visual Interfaces
(AVI 2000) Palermo, Italy, May 2000.

C. Olston, M. Stonebraker, A. Aiken, and J. M. Heller-
stein. VIQING: Visual Interactive QueryING. IRro-
ceedings of the 14th IEEE Symposium on Visual Lan-
guages pages 162-169, Halifax, Canada, September
1998.

C. Olston, A. Woodruff, A. Aiken, M. Chu, V. Ercegovac,
M. Lin, M. Spalding, and M. Stonebraker. DataSplash.
In Proceedings of the ACM SIGMOD International Con-
ference on Management of Dafsages 550-552, Seattle,
Washington, June 1998.

K. Perlin and D. Fox. Pad: An alternative approach to the
computer interface. liProceedings of the 20th Interna-
tional Conference on Computer Graphics and Interactive
Techniquespages 57—-64, Anaheim, California, August
1993.

M. Spalding and A. Woodruff. DataSplash: A database
visualization environment developed by the UC Berkeley
Tioga project, 1998. http://datasplash.cs.berkeley.edu.

M. C. Stone, K. Fishkin, and E. A. Bier. The mov-
able filter as a user interface tool. Rroceedings of the
ACM SIGCHI Conference on Human Factors in Com-
puting Systemsages 306—-312, Boston, Massachusetts,
April 1994,

A. Woodruff, A. Su, M. Stonebraker, C. Paxson, J. Chen,
A. Aiken, P. Wisnovsky, and C. Taylor. Navigation and

coordination primitives for multidimensional browsers.

In Proceedings of the 3rd IFIP 2.6 Working Conference
on Visual Database Systepmsages 360-371, Lausanne,

Switzerland, March 1995.

