Computing the Median with Uncertainty

Tomas FEDER* RAJEEV MoTwant!

RINA PANIGRAHY? CHRr1s OLsTON®

JENNIFER WipoMmT

Abstract

We consider a new model for computing with uncertainty.
It is desired to compute a function f(Xi,...,X,) where
Xi1,..., X, are unknown, but guaranteed to lie in specified
intervals I1,...,I,. It is possible to query the precise value
of any X at a cost ¢;. The goal is to pin down the value of
f to within a precision é at a minimum possible cost. We
focus on the selection function f which returns the value of
the kth smallest argument. We present optimal offline and
online algorithms for this problem.

1 Introduction

Consider the following model for computing with uncer-
tainty. We wish to compute a function f(Xi,...,X,) over
n real-valued arguments. The values of the variables X,
..., X are not known in advance; however, we are provided
with real intervals 71, ..., I, along with a guarantee that for
each j, X; € I;. Purthermore, it is possible to query the
true value z; of each X; at a cost ¢;. The goal is to pin
down the value of f into an interval of size § > 0. Thus, we
are faced with the following optimization problem: Given a
function f, precision parameter §, real intervals I, ... I,
and query costs ci1,...,cn, pin down the value of f to an
interval of size 6 using a set of queries of minimum total
cost. Note that there are two natural versions of this prob-
lem: in the online version, the sequence of queries is chosen
adaptively in that each successive query is answered before
the next one is chosen; and, the offline version, where the
entire set of queries must be specified completely before the

*E-mail: tomas@theory.stanford.edu.

tDepartment of Computer Science, Stanford University, CA
94305. E-mail: rajeev@cs.stanford.edu. Supported by ARO
MURI Grant DAAH04-96-1-0007 and NSF Grant [1S-9811904.

{Cisco Systems, San Jose, CA. E-mail: rinap@cisc o.com.

§Department of Computer Science, Stanford University, CA
94305. Supported by NSF Grant I11S-9811947 and an NSF Grad-
uate Research Fellowship. E-mail: olston@cs.stanford.edu.

Department of Computer Science, Stanford University, CA
94305. E-mail: widom@cs.stanford.edu. Supported by NSF
Grant 11S-9811947.

answers are provided and it must be guaranteed that f can
be pinned-down as desired regardless of the results of the
queries.

This model is motivated! by the work of Olston and
Widom [2] on query processing over replicated databases,
where local cached copies of databases are used to support
quick processing of queries at client sites. There is a master
copy of the data where all the updates to the database are
maintained. The frequency of updates makes it infeasible
to maintain consistency between the cached copies and the
master copy, and the data values in the cache are likely to
become stale and drift from the master values. However,
the cached copies store for each data value an interval that
is guaranteed to contain the master value. In processing an
aggregation query at a client cache, it is desired to compute
a function f defined over the data values to within a spec-
ified precision 6. For each data value Xj, it is possible to
query the master copy for the exact value at a cost ¢;, rather
than using the interval I; at the cached copy. The goal then
is to compute the result of an aggregation query to within
the desired precision at minimum possible cost. Systems
considerations sometimes make it desirable to perform all
queries to the master copy en masse, motivating the offline
version of the problem.

Olston and Widom [2] considered functions f which are
simple aggregation functions, including:

Z X;);

SUM(£(X1,..., Xn)

1=1n
MIN(f(X1,...,Xn) = min X;); and,
1=1n
MAX(f(X1,...,X5) = max Xj).
1=1n

It was observed that the SUM problem is isomorphic to the
knapsack problem [1]: Consider the set of X;’s that are not
queried; clearly, the sum of the corresponding interval sizes
must be at most é and the objective function is equivalent
to maximizing the corresponding costs. The case of the se-
lection function, i.e., where the function f returns the value
of its kth smallest argument, and particularly the median,
was left open.

In this paper, we resolve the complexity of the problem
of computing the median (and, in general, the kth smallest
element) under the model of computing with uncertainty, in
both the offline and the online settings. We begin by ex-
pressing the offline selection problem in terms of an integer

I There are several other applications of this model, e.g., in
numerical computation, that we will discuss in the final version.

linear program (Section 3). Not only is this integer pro-
gram’s structure critical to the development of our offline
algorithms, but it also helps provide a useful lower bound
for the online selection problem. Based on these insights,
we provide a polynomial-time algorithm for the offline case
with unit costs and a general offline algorithm with run-
ning time exponential in k (Section 4). Then we apply this
tool to the development of an optimal online algorithm and
provide a tight relationship between the performance of the
optimal online and offline algorithms (Section 5). We extend
our results to obtaining a polynomial-time algorithm for the
general offline case based on the use of linear programming
(Section 6). We also present a simple approximation algo-
rithm that does not rely on linear programming. Finally, we
define a class of problems called interval problems and show
that this is equivalent to the offline median problem, and
includes weighted bipartite matching as a special case (Sec-
tion 7). This suggests that there is unlikely to be a simple
combinatorial algorithm for the offline selection problem. As
further evidence, we demonstrate that a mild generalization

thereof is NP-hard.

2 Preliminaries

An instance of the selection problem consists of n intervals
11,15, ..., Iy, an associated real cost ¢; > 0 for each interval
I; =[I(1;),r(1;)], an integer 1 < k < [%], and a value 6 > 0.
Each interval /; has an unknown point p;. The aim is to
estimate the kth smallest p; with precision 6. An algorithm
can query an interval [;, paying cost ¢;, and obtain the point
p;. The interval I; is then replaced with the interval I} =
[p;,p;]. At any point in time, for the current intervals I;,
the kth smallest point can be pinned down into an interval

[r]:

Lemma 1 Given the intervals I;, the kth smallest point
must lie in the interval [l,7], where | is the kth smallest

I(I), andr is the (n — k 4 1)th largest v(1;).

Note that this is the smallest interval to which the kth small-
est point can be pinned, in absence of any other information.

When the algorithm terminates, we must have r — [< é.
We seek an algorithm that minimizes the worst-case to-
tal cost to achieve this bound. In the unit-cost case, all
¢; = 1, and the aim is to minimize the number of intervals
queried. Two special cases of interest seek the smallest ele-
ment, with & = 1, or the median of the elements, with » odd

and k = [Z2]. The problem as described above is an online

problem, tflat is, we can use the points returned by previous
queries to decide which interval to query next. We are also
interested in the offline problem, where the algorithm must
decide which intervals to query at the same time, and guar-
antee that regardless of the points obtained in these queries,

the estimate [I,r] will have r — [< 6.

3 An Integer Programming Formulation

We shall express the offline problem as an integer linear
program. The structure of this integer program is critical
to the development of our algorithms; also, we obtain from
the constraints of this integer program a lower bound on
the worst-case online cost. The integer program has a vari-
able z; € {0,1} that expresses whether the interval I; is
queried. The aim is then to minimize) ¢;z;. To describe
the constraints, we introduce some terminology. Consider

an interval O = [{(0),r(0)] of size |O| = r(0) = {(O) > 6.

Let @ be the number of I; with I(I;) < 1(O), and let b be the
number of I; with r(I;) > r(0). fa > kand b > n—k+1,
then we say that O is an obstruction. We shall show that,
for all obstructions O, the offline algorithm must satisfy
> x; > a+b—n, where the sum is over the z; such that I;
contains O. That is, at least a 4+ b — n intervals containing O
must be queried. Furthermore, satisfying these constraints
guarantees the bound § on the final estimate.

To obtain a finite number of constraints, we introduce
some additional terminology. A proper obstructionis an ob-
struction O such that for some input intervals I, I;/, we have
1(0) =1(I;) and 7(O) = r(I;1). A minimal proper obstruc-
tionis a proper obstruction that does not contain any other
proper obstructions. The integer program is then to mini-
mize Y c;z;, with z; € {0,1}, subject to the constraints, for
each minimal proper obstruction O;, that Z z; > ai+b;i—n.
where the sum is over the z; such that I; contains O;. No-
tice that there are at most ¥ minimal proper obstructions,
since 7(O;) must be one of the k smallest r(1;).

It will sometimes be convenient, for an obstruction O,
to write ¢« + b —n = d — e, where d is the number of I;
containing O, and e is the number of /; inside O, that 1s,
with {(I;) > {(O) and r(I;) < r(O). That is, the number of
intervals containing O not queried is at most the number of
intervals inside O. To see why this equality holds, write it
as n = a+b—d+e;that is, the n intervals can be counted as
a intervals with I(I;) < 1(O), b intervals with r(I;) > r(O),
subtracting the d intervals that satisfy both conditions, and
adding the e intervals that satisfy neither condition.

For the online problem, welet V' be the maximum over all
minimal proper obstructions O; of the minimum of) ¢,z
with Zx] = a; + b; — n, where the sums are over the z;
with I; containing O;. That is, for each minimal proper
obstruction O;, we determine the sum of the (a; 4+ b; — n)
smallest costs of intervals containing O;, and find the worst

such O;.

Proposition 1 The integer program solves the offline se-
lection problem. The quantity V s a lower bound on the
mazimum total cost for the online selection problem.

PrROOF SKETCH: Say that a choice of queried intervals
I; clears an obstruction O if, regardless of the points p;
returned for the queried intervals, the interval O will no
longer be an obstruction after the queried I; are replaced
by I} = [pj,p;]. We show that O is cleared if and only if
> x; > a+b— n, where the sum is over the intervals I;
containing O.

Ifzgc] <a4+b—-n—-1=(a—-k)+(b—(n—-Fk+1)),
then for each I; queried not containing O, we can return
p; = U(I;) if r(I;) < r(O0), and return p; = r(I;) otherwise,
with I(I;) > I(O). Clearly, this choice of p; does not decrease
the values a, b for O. For the I; queried containing O, we
can return p; = I(I;) for at most b — (n — k + 1) of them,
and return p; = r(I;) for at most ¢ — k of them. Then O
will still be an obstruction, since there will be still at least
k intervals with I(I}) < 1(O), and at least n — k+ 1 intervals
with r(1]) > r(0). That is, the obstruction is not cleared.

For the converse, suppose » z; > a+b—n=(a—k)+
(b —(n—k+ 1))+ 1. Then each interval I; containing O
queried, either a decreases by 1if p; > I(O), or b decreases
by 1if p; < r(O). So in the end, we will have either o’ < &k
ord <n—k+1,so O will no longer be an obstruction. That
is, the obstruction is cleared. This completes the proof of
the equivalence.

A choice of intervals to be queried solves the offline prob-
lem if and only if it clears all obstructions. We show that

it 1s sufficient to consider minimal proper obstructions. For
an obstruction O, the smallest proper obstruction O’ con-
taining it has @’ = a, b’ = b, and the intervals I, contain-
ing O are the same as those containing O’. Therefore the
linear constraints for O and O’ are the same, and it is suf-
ficient to consider proper obstructions. If an obstruction is
cleared, then every obstruction containing it is also cleared,
so it is sufficient to consider minimal proper obstructions.
This completes the proof of the characterization of the of-
fline problem as an integer program.

We prove the lower bound V for the online problem. Let
O be an obstruction giving the value V. In the proof that if
Z z; < a+b—n—1, then the obstruction is not cleared, we
could have chosen the points returned for the queries one by
one, as the queried intervals are chosen; that is, in an online
fashion. Therefore we must have Z z; > a+ b—n, paying
for the a + b — n intervals of least cost containing O.

4 Offline Problem with Unit Costs

We now show how to solve the offline problem efficiently,
in the unit-cost case, using the integer program described
above. List the minimal proper obstructions in order, let-
ting 07 < Oz if [(O1) < 1(02) and r(01) < r(O2). For the
leftmost minimal proper obstruction O;, since all the inter-
vals I; containing it have the same cost, we can greedily
select I; with r(I;) as large as possible, so as to possibly
cover as many O; as possible with it, until we have chosen
a1 + b1 — n intervals containing 0. We then move on to O2,
with O; already covered, and chose additional intervals to
cover O as needed, again with their right endpoint as far to
the right as possible, until we have chosen at least as +b2—n
intervals to cover Oz. We proceed in this fashion, satisfy-
ing the constraints on minimal proper obstructions in order,
from left to right.

Theorem 1 In the unit-cost case, the integer program that
characterizes the offline selection problem can be solved in
polynomial time by a greedy algorithm.

This approach does not seem to work in the general of-
fline case with arbitrary costs, since longer intervals might
have a larger cost, so that it is not clearly an advantage to
choose them. However, we can obtain an exponential-time
algorithm as follows. Let r be the (n — k + 1)th largest
r(I;). At most k — 1 intervals I; have r(I;) < r. Call these
the special intervals, and chose which ones will be queried
in all possible ways, that is, 2°7' ways. All obstructions
have r(O) < r, so we can again examine the minimal proper
obstructions in order from left to right, covering them with
intervals [; of least possible cost which are not special, as
many as needed. The right endpoint of intervals that are
not special does not matter, since it is at least r.

This gives an algorithm with a time bound of 2% poly(n).
A tighter time bound follows from observing that there are
at most k& minimal proper obstructions O;, and by writing
a;+b;—n = d;—e;, we observe that the number e; of intervals
inside O; is at most k—1, so at most k—1 intervals containing
O; will not be queried. We can then just identify the at most
k — 1 intervals of largest cost that are not special and have
O; as the first minimal proper obstruction they cover. That
is, after poly(n) preprocessing time, each of the 2k—1 cages
involves at most k obstructions and k2 identified intervals,
so it uses poly(k) time.

Theorem 2 With arbitrary costs, the integer program that
characterizes the offline selection problem can be solved in
time poly(n) + 2" poly(k).

A different approach will later enable us to obtain a
polynomial-time algorithm for the general offline case.

5 The Online Problem

We now turn to the online problem, and consider an algo-
rithm for the general case with arbitrary costs. The greedy
algorithm is as follows. Determine the interval [I,r], where
lis the kth smallest {(I;) and r is the (n — k + 1)th largest
r(l;). If r —1 < & then we are done. Otherwise [I,r] is
an obstruction O. Query the I; containing O of least cost.
Once the point p; is obtained, replace I; by I] = [p;, p,],
and go back to the beginning of the algorithm.

Consider an execution of the greedy algorithm. Let O4,
Oz, ..., O; be the sequence of obstructions obtained, with
O, containing O:41. For the last obstruction O, let H be
the set of the as + b. — n intervals of least cost containing
Og;. Clearly, the total cost of H is at most V. We show
that the interval queried at stage ¢ with 1 <t < sisin H,
completing the proof.

The proof is by induction on ¢. Since the intervals in H
clear the obstruction Os, they also clear the obstruction O;
which contains O.. In fact the intervals in H containing O
clear the obstruction Oy, because only containing intervals
matter in clearing an obstruction. By inductive hypothesis,
the ¢ — 1 intervals previously queried are in H. However,
these ¢t — 1 intervals have not cleared O;. Therefore H must
have some interval containing O, other than the ¢ — 1 inter-
vals previously queried, and such an interval in H of least
cost ¢ will be queried. In the case where there are also in-
tervals of cost ¢ not in H (that is, ¢ is the largest cost in H),
then an interval of cost ¢ not in H may be queried, but then
we can change H by switching this interval for the interval
of cost ¢ containing O; in H, without increasing the total
cost of H.

Theorem 3 With arbitrary costs, the greedy polynomial on-
line selection algorithm achieves the cost V' of Proposition
1, and is therefore optimal.

We will now compare the performance of the offline al-
gorithm with the worst-case performance of the online algo-
rithm, both in the unit-cost case and in the general case with
arbitrary costs. For the unit-cost case, we will transform the
problem, as follows.

Let P be an instance of the problem. Suppose P con-
tains two intervals I; and Iz with I3 inside [y, that is 1(11) <
[(I) and 7(I>) < r([1). We construct a new instance P’
by replacing these two intervals by I = [I(I1),r(l2)] and
I = [I(I2),7(I1)]. We repeatedly perform this transforma-
tion until we obtain an instance P with no interval inside
another interval.

We first look at the offline problem. Consider the optimal
solution for P’. If both I] and I} are queried in this solution,
obtain a candidate solution for P by querying both [; and
I>. If only one of I] or I} is queried, then query only I;. If
neither I] nor I is queried, then query neither I; nor Is.

Since P and P’ have the same left and right endpoints of
intervals, the minimal proper obstructions O are the same
for P and P’, and have the same a +b — n. If O is such an
obstruction, then if both I] and I} contain O, then both I)
and I contain O; and if only one of I{ and I contain O,

then [; contains O. Therefore the candidate solution for P
is indeed a solution, with the same cost, that is, number of
queried intervals, as the solution for P’.

Consider now the online problem. Here, the worst-case
performance is given by the minimal proper obstruction O
with the largest value a+b—mn. This value, as we said before,
is the same for P and P’.

Proposition 2 Consider the unit-cost case. For the offline
selection problem, the performance on P is at least as bad
as the performance on P. For the online selection problem,
the worst-case performance is the same for P as for P.

We can now compare the performance of the optimal
offline algorithm with the worst-case performance of the op-
timal online algorithm.

Theorem 4 The worst-case performance ratio between of-

fline and online selection algorithms is %T_l < 2 in the unit-

cost case. So both algorithms have the same performance for

the smallest2element problem, while the ratio for the median
n

problem is = In the case of arbitrary costs, the worst-case

ratio equals k.

Proor SKETCH: We begin with the unit-cost case. By
the preceding proposition, it is sufficient to consider an in-
stance P with no interval inside another interval. The in-
tervals can then be ordered from left to right, breaking ties
between identical intervals arbitrarily, and letting otherwise
L < Lifl(L) <I(lz) and r(I1) < r(l2), or if (1) < I(12)
and r(I) < r(l2).

Let 11,12, ..., I, be the intervals in this order. Consider
the interval I. Clearly [} is also the largest obstruction, and
so all minimal proper obstructions are contained in it. We
can assume |Ix| > §, otherwise no queries are needed. Since
no interval is inside an obstruction, all intervals containing
an obstruction will be queried. Let I be the first I; with
J < k such that r(I;) — I(Ix) > 6. Similarly, let Ir4¢ be
the last I; with j > & such that r(Ix) — {(I;) > §. Clearly
0<s<k—land0<t<n-—k.

The intervals preceding Ix_. do not contain any obstruc-
tion and will therefore not be queried by either algorithm.
Similarly, the intervals following /x4: will not be queried by
either algorithm. The intervals from Ix_. to Ix4: contain
at least one obstruction and will therefore be queried by the
offline algorithm. So the offline algorithm makes s + ¢4 1
queries.

For the online algorithm, it is sufficient to consider the
minimal proper obstruction with the largest number of in-
tervals containing it. The first minimal proper obstruction
is contained at least in the intervals from [r_. to Ix. The
last minimal proper obstruction is contained at least in the
intervals from [to Ix4+. So the online algorithm makes at
least max(s,t) + 1 queries in the worst case, and this quan-
tity is the worst case when the I; with j < k do not intersect
the 7; with 7 > k.

. sttt
The ratio (s, 0FT

is maximized at s = ¢t =k — 1, and it then equals

Consider next the case of arbitrary costs. Since the per-
formance of the online algorithm is given by the worst con-
straint for a single minimal proper obstruction, and there
are at most k such obstructions, the ratio is at most k. An
example that achieves k has n = 2k — 1, and consists of k
disjoint intervals I; of unit-cost, plus & — 1 intervals IJ' of
zero cost, with the IJ' containing all the /;. The offline algo-
rithm will have to query all the intervals, incurring in cost

with0<s<k—land 0<t<n—k
2k—1
—.

k with the intervals I;. The online algorithm queries the
IJ' first, and depending on the resulting answers, determines

which single I; to query, with total cost 1.
|

6 Offline Problem with Arbitrary Costs

The earlier algorithm for the offline selection problem with
arbitrary costs has complexity exponential in k. We now
provide a polynomial-time algorithm for this problem, but
this algorithm is non-combinatorial and relies on linear pro-
gramming.

The polytope of the offline selection problem is defined by
replacing in the integer program the conditions z; € {0,1}
with linear constraints 0 < z; < 1, with the remaining linear
constraints being the same.

Theorem 5 The vertices of the polytope of the offline se-
lection problem are all integer vertices (that is 0-1 vertices).
Therefore, with arbitrary costs, the problem can be solved in
polynomial time by linear programming.

Proor SKETCH: Consider a vertex z of the polytope.
If some z; is either 0 or 1 for x, then use this value in the
constraints where z; occurs. We are thus left with some
h variables with 0 < z; < 1. Since z is a vertex of the
polytope, there must be some h constraints satisfied with
equality that define ¢ uniquely. The corresponding h by h
square matrix M is a 0—1 matrix M, with the property that
for every column of M, the value 1 occurs in consecutive
rows, since a variable #; occurs in consecutive linear con-
straints. We show that the determinant of such a matrix M
is either 0, 1 or —1. Therefore the solution must be integer,
that is, all z; for the vertex z are either 0 or 1, completing
the proof.

So assume M has a nonzero determinant. Then some
column must have a 1 in the first row. Consider the column
with a 1 in the first row that has the least number r of 1s,
say 1t is the first column. Then the 1sin the first column oc-
cur in rows 1,2, ..., r. After subtracting the first row from
rows 2,...,r, we can remove the first row and the first col-
umn, and argue inductively for the resulting submatrix M.
Notice that the only columns affected by the subtraction are
the columns that have a 1 in the first row. These columns,

however, have a 1in rows 1,2,...,r by the choice of the first
column. For such a column, after the subtraction, the 1s in
rows 2,...,r become 0s, and after the first row is removed,

the remaining 1s in the column will be in consecutive rows.
So the matrix M’ has the property of consecutive 1s in each
column, and the induction goes through.

A linear programming algorithm that finds a vertex of
the polytope minimizing the objective function Z c;x; thus
solves the problem.

Unfortunately, a linear-programming algorithm is not
very practical for the applications at hand. It therefore be-
comes interesting to seek a combinatorial algorithm that is
polynomial-time. But, as shown in the next section, the
weighted bipartite matching problem is a special case of
our offline selection problem, and therefore we cannot re-
ally hope for a simple combinatorial algorithm. In practice,
it might be better to use the following approximation algo-
rithm.

Theorem 6 The offline selection problem with arbitrary costs

has a 2log, k-approxzimation polynomial-time algorithm.

ProoF SKETCH: Construct a binary tree whose leaves
are the minimal proper obstructions Oy, O2,...,Oy in left
to right order, with k' < k. Place an interval at a node ¢ if
the minimal proper obstructions it contains, Os, Osy1, ..., Oy,
are precisely the leaves below node g.

Unfortunately, not all intervals correspond to a single
node; we argue that in general, the minimal proper obstruc-
tions covered by an interval can be decomposed into at most
2log, k groups, with each group corresponding to a single
node ¢. To show this, let P; be the set of nodes on the path
from the root to the leaf O;, and consider in particular Ps_;
and Piy1, which are taken to be empty if s =1 or t = &/, re-
spectively. Then the nodes selected are precisely the nodes
g not on P._; such that ¢ is the right child of a node on
P._1— P41, plus the nodes ¢ not on P;41 such that ¢ is the
left child of node on Pry1 — P._i1. If the binary tree is cho-
sen to be balanced, the bound of 2log, k on the number of
nodes ¢ selected follows. (By carefully choosing the binary
tree, the bound can be improved by an asymptotic factor of
2.)

The algorithm then represents each interval by at most
2log, k intervals at nodes ¢, each with the same cost as the
original interval. This may increase the cost of an optimal
solution by a factor of 2log, k. The algorithm then solves the
problem with each interval at a single node ¢ in polynomial
time.

The algorithm computes at each node ¢, starting at the
leaves O; and moving up to the root, how to select intervals
at node ¢ so as to leave a requirement of r intervals having
to be chosen at nodes higher than ¢, on the path from the
root to ¢, for all possible values r, which we call the demand
at node ¢. Initially, at a leaf O;, before choosing which inter-
vals to select at O;, we have r = a; +b; —n. Suppose a node
¢ has inherited demands of r' and r” from its children, and
wishes to achieve demand r < max(r’,r"), to pass on to its
parent. (At a leaf, there is a single inherited demand ' as
described above.) Then we must select the max(r’,r") —r
intervals of least cost at ¢. For a given r, we carry out the
calculation of total cost with the possible choices of r', +",
and select the one that gives the least total cost for the in-
tervals chosen at ¢ and its descendants, for the demand r
under consideration. At the root, we force r = 0, since no
demand can be satisfied at nodes higher than the root.

7 Interval Problems and Weighted Bipartite Matching

We now examine the expressive power of the offline selection
problem. Specifically, we define the notion of an “interval
problem,” show that it is equivalent to the offline median
problem, and includes weighted bipartite matching as a spe-
cial case. This makes it seem unlikely that we can obtain
a simple combinatorial algorithm for the selection problem.
In fact, we will also show that a mild generalization of the
interval problem is in fact NP-hard.

Definition 1 Define an interval problem to be to minimize
> cjzy with o5 € {0,1} subject to k constraints Zs, T; >
fi, with the property that each x; occurs in consecutive con-
straints.

We know that the offline selection problem is an interval
problem. We now show the converse. The median problem

will have 6§ =1 — 2(;—4_1) and k& minimal proper obstructions
O; = [t —1,i] for 1 < ¢ < k. If a variable z; occurs in
constraints s,s+1,...,¢ then we represent it by the interval
I; =[s—1,¢]. We must also have f; = a; +b; —n = d; — ey,
with a;,b; > [%] In order to have f; = d; — e;, where
d; 1s the number of variables in the constraint and e; is
the number of intervals inside O;, we put e; single-point
intervals I; = [p;, p;] inside O; at i — 37. To make O; a
proper obstruction, we add a zero cost interval I; = O;. To
ensure that a;,b; > [5], we add a sufficiently large number
of cost zero intervals I; = [0,k]. Tt is then clear that the
O; will be the minimal proper obstructions and will give the
corresponding constraint when the zero cost intervals that

were added are selected.

Proposition 3 FEvery interval problem is an offline median
problem.

We may sometimes want to force a constraint Zs z; >
;

fi to hold with equality. To achieve this, we choose a large
L >3%"c;and add L) «, to the objective function. If the

constraint can be satisfied with equality, this will be forced
by the minimization, making the added term equal Lf;. The
same [can be used to force several different constraints to
hold with equality, when this is feasible.

Theorem 7 The interval problem can express the weighted
bipartite matching problem.

Proor SKETCH: The case where all constraints must hold
with equality can express the minimum cost bipartite per-
fect matching problem. To see this, consider a bipartite
graph G with & vertices on each side and costs on the edges,
that has a perfect matching; we seek a minimum cost perfect
matching. Let 1,2,... k be the k vertices on the left and let
1,2',..., k' be the k vertices on the right. The correspond-
ing interval problem will have 2k constraints corresponding
to these vertices, in the order 1,2,... k k',...,2, 1. An
edge from ¢ to 3’ will correspond to a variable occurring in
the constraints from 4 to j' in this order. To force exactly
one of the edges incident to vertex 1 to be selected, we use
the bound fi = 1 for the first constraint, with equality. To
force exactly one additional edge incident to vertex 2 to be
selected, we use the bound f> = 2 for the second constraint,
with equality. In general, we have f; = f;; = ¢, with equal-
ity. This completes the representation.

Consequently, the weighted bipartite matching problem
is a special case of the weighted offline median problem. We
use this expressiveness of the weighted offline median prob-
lem to show that a slight generalization is computationally
hard.

The median problem with multiplicities is the median
problem with the additional provision that some specified
intervals, when queried, return two points instead of just
one. This is like having, in the median problem, pairs of
identical intervals that must be simultaneously queried or
not queried.

Theorem 8 The weighted offline median problem with mul-
tiplicities 1s NP-complete.

ProoF SKETCH: The problem corresponds as before to
a general interval problem, except that now, for some of
the variables, the quantity 2z; instead of #; appears in the

constraints. We can again force equality to hold in the con-
straints by using appropriate costs. The special case of bi-
partite matching from before now generalizes to a bipartite
flow problem. In this problem, vertices on the left have a
given supply amount, vertices on the right have a given de-
mand amount, and vertices on the left are joined to vertices
on the right by edges of capacity 1 or 2. The supplies and
demands must be satisfied by sending flow across the edges,
but in such a way that the flow across an edge is either zero
or the full capacity of the edge.

We show that this bipartite flow problem is NP-complete.
The reduction is from 3SAT. In fact, we assume that every
variable z in the 3SAT instance occurs at most twice as a
positive literal x, and at most twice as a negative literal 7.
Every 3SAT instance can be made to satisfy this assumption,
by replacing every variable with several variables forced to
be equal by a cycle of implications; the implications in the
cycle account for one positive and one negative occurrence,
so each variable in the cycle can be used again, once as
positive and once as negative.

To express such a 3SAT instance as a bipartite flow prob-
lem, we put a vertex on the right for each literal = or T, with
demand 2. We put a vertex on the left for each clause, with
supply 1, and with three capacity 1 edges joining it to the
literals occurring in the clause on the right. Thus the sup-
ply 1 must be sent to one of the three literals occurring in
the clause, which we can take to be a satisfying literal for
the clause. Notice that the demand bound of 2 will hold,
since no literal occurs in more than two clauses. We must
ensure that complementary literals are not both chosen as
satisfying literals. To achieve this, we put a vertex on the
left for each variable z, with supply 2, and with capacity 2
edges joining it to both literals z and . Thus only one of
the two literals will have demand left to be chosen by the
clauses on the left. Thus the supply on the left can be sent
while satisfying the demand bounds on the right if and only
if the instance has a solution. It then remains to force the
demands of 2 to be met exactly, and this is done by pro-
viding additional 2v — w units of supply to be sent along
capacity 1 edges to any vertex on the right, where v is the
number of variables and w is the number of clauses. This
completes the proof of NP-completeness.

It is natural to consider the related problem where, when
an interval [; is queried, instead of returning a single point
p; in I}, we obtain a subinterval of I; of length at most &§'. If
the new parameter & satisfies 6’ < &, where § is the param-
eter for the required precision as before, then all the results
obtained above go through (unit-cost or arbitrary cost, on-
line or offline), since an obstruction O has length greater
than 6, so that an interval containing it will no longer con-
tain it after the interval length is reduced to at most §’. On
the other hand, if ' > §, then the problem has no solu-
tion (unless no queries are needed), since queried intervals
1; can be answered so as to still contain a sufficiently small
obstruction O.

References

[1] O.H. Ibarra and C.E. Kim. Fast approximation algorithms
for the knapsack and sum of subset problems. Journal of the
ACM 22 (1975): 463-468.

[2] C. Olston and J. Widom. Bounded Aggregation: Offer-
ing a Precision-Performance Tradeoff in Replication Sys-
tems. Submitted for publication. Stanford Technical Report
http://wwu-db.stanford.edu/pub/papers/trapp-ag.ps.

