
COMPUTING THE MEDIAN WITH UNCERTAINTY∗

TOMÁS FEDER† , RAJEEV MOTWANI‡ , RINA PANIGRAHY§ , CHRIS OLSTON¶, AND

JENNIFER WIDOM¶

SIAM J. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 32, No. 2, pp. 538–547

Abstract. We consider a new model for computing with uncertainty. It is desired to compute a
function f(X1, . . . , Xn), where X1, . . . , Xn are unknown but guaranteed to lie in specified intervals
I1, . . . , In. It is possible to query the precise value of any Xj at a cost cj . The goal is to pin
down the value of f to within a precision δ at a minimum possible cost. We focus on the selection
function f which returns the value of the kth smallest argument. We present optimal offline and
online algorithms for this problem.

Key words. median, selection, uncertainty, query processing, online algorithms

AMS subject classifications. 68W25, 68P99

PII. S0097539701395668

1. Introduction. Consider the following model for computing with uncertainty.
We wish to compute a function f(X1, . . . , Xn) over n real-valued arguments. The val-
ues of the variables X1, . . . , Xn are not known in advance; however, we are provided
with real intervals I1, . . . , In along with a guarantee that, for each j, Xj ∈ Ij . Fur-
thermore, it is possible to query the true value xj of each Xj at a cost cj . The goal
is to pin down the value of f into an interval of size δ ≥ 0. Thus we are faced with
the following optimization problem: Given a function f , precision parameter δ, real
intervals I1, . . . , In, and query costs c1, . . . , cn, pin down the value of f to an interval
of size δ using a set of queries of minimum total cost. Note that there are two natural
versions of this problem: in the online version, the sequence of queries is chosen adap-
tively in that each successive query is answered before the next one is chosen; and, in
the offline version, where the entire set of queries must be specified completely before
the answers are provided, it must be guaranteed that f can be pinned down as desired
regardless of the results of the queries.

This model is motivated by the work of Olston and Widom [4] on query processing
over replicated databases, where local cached copies of databases are used to support
quick processing of queries at client sites. Each data value cached at a client has a
corresponding master copy maintained by a remote database where all the updates
take place. The frequency of updates makes it infeasible to maintain consistency
between the cached copies and master copies, and the data values in the cache are
likely to become stale and drift from the master values. However, the clients store for

∗Received by the editors September 27, 2001; accepted for publication (in revised form) October
24, 2002; published electronically February 20, 2003. A preliminary version of this paper has ap-
peared as an extended abstract in Proceedings of the 32nd Annual ACM Symposium on Theory of
Computing, 2000.

http://www.siam.org/journals/sicomp/32-2/39566.html
†Department of Computer Science, Stanford University, Stanford, CA 94305 (tomas@theory.

stanford.edu).
‡Department of Computer Science, Stanford University, Gates Building 4B, Stanford, CA 94305

(rajeev@ cs.stanford.edu). This author was supported by ARO MURI grant DAAH04-96-1-0007 and
NSF grants IIS-9811904 and IIS-0118173.

§Cisco Systems, 170 West Tasman Drive, San Jose, CA 95134 (rinap@cisco.com).
¶Department of Computer Science, Stanford University, Gates Building 4A, Stanford, CA 94305

(olston@cs.stanford.edu, widom@cs.stanford.edu). C. Olston was supported by NSF grant IIS-
9811947 and an NSF graduate research fellowship. J. Widom was supported by NSF grants IIS–
9811947 and IIS–0118173.

538

COMPUTING THE MEDIAN WITH UNCERTAINTY 539

each cached data value an interval that is guaranteed to contain the master value. In
processing an aggregation query at a client cache, it is desired to compute a function
f defined over the data values to within a specified precision δ. For each data value
Xj , it is possible to query the master copy for the exact value, incurring a cost, rather
than use the interval Ij at the cached copy. In some cases, the cost to query the master
copy of any data value is the same, but in other cases, the master copies are spread
across multiple remote databases, each with a different access cost that is typically
predictable and static. In general, querying the master copy of each data value Xj

incurs a potentially different static cost cj . The goal then is to compute the result of
an aggregation query to within the desired precision at the minimum possible total
cost. Systems considerations sometimes make it desirable to perform all queries to
the master copy en masse, motivating the offline version of the problem.

Olston and Widom [4] considered functions f which are simple aggregation func-
tions, including

SUM

(
f(X1, . . . , Xn) =

∑
j=1,n

Xj

)
,

MIN(f(X1, . . . , Xn) = min
j=1,n

Xj), and

MAX(f(X1, . . . , Xn) = max
j=1,n

Xj).

It was observed that the SUM problem is isomorphic to the knapsack problem [2]:
Consider the set of Xj ’s that are not queried; clearly, the sum of the corresponding
interval sizes must be at most δ, and the objective function is equivalent to maximizing
the corresponding costs. The case of the selection function, i.e., where the function f
returns the value of its kth smallest argument, and particularly the median, was left
open.

In this paper, we resolve the complexity of the problem of computing the median
(and, in general, the kth smallest element) under the model of computing with uncer-
tainty, in both the offline and the online settings. We begin by expressing the offline
selection problem in terms of an integer linear program (section 3). Not only is this
integer program’s structure critical to the development of our offline algorithms, but
it also helps provide a useful lower bound for the online selection problem. Based on
these insights, we provide a polynomial-time algorithm for the offline case with unit
costs and a general offline algorithm with running time exponential in k (section 4).
Then we apply this tool to the development of an optimal online algorithm and pro-
vide a tight relationship between the performance of the optimal online and offline
algorithms (section 5). We extend our results to obtaining a polynomial-time algo-
rithm for the general offline case based on the use of linear programming (section 6).
We also present a simple approximation algorithm that does not rely on linear pro-
gramming. Finally, we define a class of problems called interval problems and show
that this is equivalent to the offline median problem and includes weighted bipartite
matching as a special case (section 7). It also turns out that our offline selection
problem can be expressed as a min-cost network flow problem (section 7). Finally, we
demonstrate that a mild generalization of our selection problem is NP-hard.

2. Preliminaries. An instance of the selection problem consists of n intervals
I1, I2, . . . , In, an associated real cost cj ≥ 0 for each interval Ij = [l(Ij), r(Ij)], an
integer 1 ≤ k ≤ �n

2 �, and a value δ ≥ 0. Each interval Ij has an unknown point pj .
The aim is to estimate the value of the kth smallest pj with precision δ. An algorithm

540 FEDER, MOTWANI, PANIGRAHY, OLSTON, AND WIDOM

can query an interval Ij , paying cost cj , and obtain the point pj . The interval Ij is
then replaced with the interval I ′j = [pj , pj]. At any point in time, for the current
intervals Ij , the kth smallest point can be pinned down into an interval [l, r].

Lemma 2.1. Given the intervals Ij, the kth smallest point must lie in the interval
[l, r], where l is the kth smallest l(Ij), and r is the (n − k + 1)th largest r(Ij).

Note that this is the smallest interval to which the kth smallest point can be
pinned, in the absence of any other information.

When the algorithm terminates, we must have r − l ≤ δ. We seek an algorithm
that minimizes the worst-case total cost to achieve this bound. In the unit-cost case,
all cj = 1, and the aim is to minimize the number of intervals queried. Two special
cases of interest seek the smallest element, with k = 1, or the median of the elements,
with n odd and k = �n

2 �. The special case in which k = 1 has been addressed in
[4] and turns out to have linear complexity. There are two variants of the problem
we are interested in. In the online version of the problem that was stated above,
we can use the points returned by previous queries to decide which interval to query
next. We are also interested in the offline problem, where the algorithm must decide
which intervals to query at the same time and guarantee that, regardless of the points
obtained in these queries, the estimate [l, r] will have r − l ≤ δ.

3. An integer programming formulation. We shall express the offline prob-
lem as an integer linear program. The structure of this integer program is critical
to the development of our algorithms; also, we obtain from the constraints of this
integer program a lower bound on the worst-case online cost. The integer program
has a variable xj ∈ {0, 1} that expresses whether the interval Ij is queried. The aim is
then to minimize

∑
cjxj . To describe the constraints, we introduce some terminology.

Consider an interval O = [l(O), r(O)] of size |O| = r(O) − l(O) > δ. Let a be the
number of Ij with l(Ij) ≤ l(O), and let b be the number of Ij with r(Ij) ≥ r(O). If
a ≥ k and b ≥ n−k+1, then we say that O is an obstruction. We shall show that, for
all obstructions O, the offline algorithm must satisfy

∑
xj ≥ a+ b−n, where the sum

is over the xj such that Ij contains O. That is, at least a+ b− n intervals containing
O must be queried in order to guarantee the bound δ on the final estimate.

To obtain a finite number of constraints, we introduce some additional terminol-
ogy. A proper obstruction is an obstruction O such that, for some input intervals
Ij , Ij′ , we have l(O) = l(Ij) and r(O) = r(Ij′). A minimal proper obstruction is a
proper obstruction that does not contain any other proper obstructions. The integer
program is then to minimize

∑
cjxj , with xj ∈ {0, 1}, subject to the constraint that

for each minimal proper obstruction Oi,
∑

xj ≥ ai + bi − n, where the sum is over
the xj such that Ij contains Oi. Notice that there are at most k minimal proper
obstructions, since r(Oi) must be one of the k smallest r(Ij).

It will sometimes be convenient, for an obstruction O, to write a+ b− n = d− e,
where d is the number of Ij containing O, and e is the number of Ij inside O, that
is, with l(Ij) > l(O) and r(Ij) < r(O). To see why this equality holds, write it
as n = a + b − d + e; that is, the n intervals can be counted as a intervals with
l(Ij) ≤ l(O) and b intervals with r(Ij) ≥ r(O), subtracting the d intervals that satisfy
both conditions and adding the e intervals that satisfy neither condition.

For the online problem, we let V be the maximum over all minimal proper ob-
structions Oi of the minimum of

∑
cjxj with

∑
xj = ai+ bi −n, where the sums are

over the xj with Ij containing Oi. That is, for each minimal proper obstruction Oi,
we determine the sum of the (ai+ bi−n) smallest costs of intervals containing Oi and
find the worst such Oi.

COMPUTING THE MEDIAN WITH UNCERTAINTY 541

Proposition 3.1. The integer program solves the offline selection problem. The
quantity V is a lower bound on the maximum total cost for the online selection prob-
lem.

Proof. Say that a choice of queried intervals Ij clears an obstruction O if, regard-
less of the points pj returned for the queried intervals, the interval O will no longer
be an obstruction after the queried Ij are replaced by I ′j = [pj , pj]. We show that
O is cleared if and only if

∑
xj ≥ a + b − n, where the sum is over the intervals Ij

containing O.
If
∑

xj ≤ a + b − n − 1 = (a − k) + (b − (n − k + 1)), then for each Ij queried
not containing O, we can return pj = l(Ij) if r(Ij) < r(O) and return pj = r(Ij)
otherwise, with l(Ij) > l(O). Clearly, this choice of pj does not decrease the values
a, b for O. For the Ij queried containing O, we can return pj = l(Ij) for at most
b− (n− k+ 1) of them and return pj = r(Ij) for at most a− k of them. Then O will
still be an obstruction, since there will be still at least k intervals with l(I ′j) ≤ l(O),
and at least n − k + 1 intervals with r(I ′j) ≥ r(O). That is, the obstruction is not
cleared.

For the converse, suppose
∑

xj ≥ a + b − n = (a − k) + (b − (n − k + 1)) + 1.
Then in each queried interval Ij containing O, either a decreases by 1 if pj > l(O)
or b decreases by 1 if pj < r(O). Thus, in the end, we will have either a′ < k or
b′ < n − k + 1, so O will no longer be an obstruction. That is, the obstruction is
cleared. This completes the proof of the equivalence.

A choice of intervals to be queried solves the offline problem if and only if it clears
all obstructions. We show that it is sufficient to consider minimal proper obstructions.
For an obstruction O, the smallest proper obstruction O′ containing it has a′ = a, b′ =
b, and the intervals Ij containing O are the same as those containing O′. Therefore,
the linear constraints for O and O′ are the same, and it is sufficient to consider proper
obstructions. If an obstruction is cleared, then every obstruction containing it is also
cleared, so it is sufficient to consider minimal proper obstructions. This completes
the proof of the characterization of the offline problem as an integer program.

We prove the lower bound V for the online problem. Let O be an obstruction
giving the value V . In the proof that if

∑
xj ≤ a + b − n − 1, then the obstruc-

tion is not cleared, we could have chosen the points returned for the queries one by
one, as the queried intervals are chosen, that is, in an online fashion. Therefore, we
must have

∑
xj ≥ a+ b−n, paying for the a+ b−n intervals of least cost containing

O.

4. Offline problem with unit costs. We now show how to solve the offline
problem efficiently, in the unit-cost case, using the integer program described above.
List the minimal proper obstructions in order, letting O1 < O2 if l(O1) < l(O2) and
r(O1) < r(O2). For the leftmost minimal proper obstruction O1, since all the intervals
Ij containing it have the same cost, we can greedily select Ij with r(Ij) as large as
possible, so as to cover as many Oj as possible with it, until we have chosen a1+b1−n
intervals containing O1. We then move on to O2, with O1 already covered, and choose
additional intervals to cover O2 as needed, again with their right endpoint as far to
the right as possible, until we have chosen at least a2 + b2 − n intervals to cover O2.
We proceed in this fashion, satisfying the constraints on minimal proper obstructions
in order, from left to right.

Theorem 4.1. In the unit-cost case, the integer program that characterizes the
offline selection problem can be solved in polynomial time by a greedy algorithm.

This approach does not seem to work in the general offline case with arbitrary

542 FEDER, MOTWANI, PANIGRAHY, OLSTON, AND WIDOM

costs, since longer intervals might have a larger cost, so that it is not clearly an
advantage to choose them. However, we can obtain an exponential-time algorithm
as follows. Let r be the (n − k + 1)th largest r(Ij). At most k − 1 intervals Ij have
r(Ij) < r. Call these the special intervals, and choose which ones will be queried in
all possible ways, that is, 2k−1 ways. All obstructions have r(O) ≤ r, so we can again
examine the minimal proper obstructions in order from left to right, covering them
with intervals Ij of least possible cost which are not special, using as many intervals
as needed. The right endpoint of intervals that are not special does not matter, since
it is at least r.

This gives an algorithm with a time bound of 2kpoly(n). A tighter time bound
follows from observing that there are at most k minimal proper obstructions Oi, and
by writing ai + bi − n = di − ei, we observe that the number ei of intervals inside Oi

is at most k − 1, so at most k − 1 intervals containing Oi will not be queried. We
can then just identify the at most k − 1 intervals of largest cost that are not special
and have Oi as the first minimal proper obstruction they cover. That is, after poly(n)
preprocessing time, each of the 2k−1 cases involves at most k obstructions and k2

identified intervals, so it uses poly(k) time.
Theorem 4.2. With arbitrary costs, the integer program that characterizes the

offline selection problem can be solved in time poly(n) + 2kpoly(k).
A different approach will later enable us to obtain a polynomial-time algorithm

for the general offline case.

5. The online problem. We now turn to the online problem and consider an
algorithm for the general case with arbitrary costs. The greedy algorithm is as follows.
Determine the interval [l, r], where l is the kth smallest l(Ij) and r is the (n−k+1)th
largest r(Ij). If r − l ≤ δ, then we are done. Otherwise, [l, r] is an obstruction O.
Query the Ij containing O of least cost. Once the point pj is obtained, replace Ij by
I ′j = [pj , pj], and go back to the beginning of the algorithm.

Consider an execution of the greedy algorithm. Let O1, O2,. . . , Os be the se-
quence of obstructions obtained, with Ot containing Ot+1. For the last obstruction
Os, let H be the set of the as + bs − n intervals of least cost containing Os. Clearly,
the total cost of H is at most V , the lower bound established in section 6. We show
that the interval queried at stage t with 1 ≤ t ≤ s is in H, completing the proof.

The proof is by induction on t. Since the intervals in H clear the obstruction
Os, they also clear the obstruction Ot which contains Os. In fact, the intervals in
H containing Ot clear the obstruction Ot because only containing intervals matter in
clearing an obstruction. By inductive hypothesis, the t−1 intervals previously queried
are in H. However, these t− 1 intervals have not cleared Ot. Therefore, H must have
some interval containing Ot other than the t−1 intervals previously queried, and such
an interval in H of least cost c will be queried. In the case in which there are also
intervals of cost c not in H (that is, c is the largest cost in H), then an interval of
cost c not in H may be queried; however, in that case, we can change H by switching
this interval for the interval of cost c containing Ot in H without increasing the total
cost of H.

Theorem 5.1. With arbitrary costs, the greedy polynomial online selection algo-
rithm achieves the cost V of Proposition 3.1, and is therefore optimal.

We will now compare the performance of the offline algorithm with the worst-case
performance of the online algorithm, both in the unit-cost case and in the general case
with arbitrary costs. For the unit-cost case, we will transform the problem as follows.

Let P be an instance of the problem. Suppose P contains two intervals I1 and I2

COMPUTING THE MEDIAN WITH UNCERTAINTY 543

with I2 inside I1, that is, l(I1) < l(I2) and r(I2) < r(I1). We construct a new instance
P ′ by replacing these two intervals by I ′1 = [l(I1), r(I2)] and I ′2 = [l(I2), r(I1)]. We

repeatedly perform this transformation until we obtain an instance P̂ with no interval
inside another interval.

We first look at the offline problem. Consider the optimal solution for P ′. If both
I ′1 and I ′2 are queried in this solution, obtain a candidate solution for P by querying
both I1 and I2. If only one of I ′1 or I ′2 is queried, then query only I1. If neither I ′1
nor I ′2 is queried, then query neither I1 nor I2.

Since P and P ′ have the same left and right endpoints of intervals, the minimal
proper obstructions O are the same for P and P ′ and have the same value of a+b−n.
Suppose O is such an obstruction. If both I ′1 and I ′2 contain O, then both I1 and I2

contain O; and if only one of I ′1 and I ′2 contain O, then I1 contains O. Therefore, the
candidate solution for P is indeed a solution with the same cost (number of queried
intervals) as the solution for P ′.

Consider now the online problem. Here, the worst-case performance is given by
the minimal proper obstruction O with the largest value a+ b− n. This value, as we
said before, is the same for P and P ′.

Proposition 5.2. Consider the unit-cost case. For the offline selection problem,
the performance on P̂ is at least as bad as the performance on P . For the online
selection problem, the worst-case performance is the same for P̂ as for P .

We can now compare the performance of the optimal offline algorithm with the
worst-case performance of the optimal online algorithm.

Theorem 5.3. The worst-case performance ratio between offline and online se-
lection algorithms is 2k−1

k < 2 in the unit-cost case. Therefore, both algorithms have
the same performance for the smallest element problem, while the ratio for the median
problem is 2n

n+1 . In the case of arbitrary costs, the worst-case ratio equals k.

Proof. We begin with the unit-cost case. By the preceding proposition, it is
sufficient to consider an instance P̂ with no interval inside another interval. The
intervals can then be ordered from left to right, breaking ties between identical inter-
vals arbitrarily, and letting otherwise I1 < I2 if l(I1) ≤ l(I2) and r(I1) < r(I2) or if
l(I1) < l(I2) and r(I1) ≤ r(I2).

Let I1, I2, . . . , In be the intervals in this order. Consider the interval Ik. Clearly
Ik is also the largest obstruction, and so all minimal proper obstructions are contained
in it. We can assume |Ik| > δ; otherwise, no queries are needed. Since no interval is
inside an obstruction, all intervals containing an obstruction will be queried. Let Ik−s

be the first Ij with j ≤ k such that r(Ij) − l(Ik) > δ. Similarly, let Ik+t be the last
Ij with j ≥ k such that r(Ik)− l(Ij) > δ. Clearly 0 ≤ s ≤ k − 1 and 0 ≤ t ≤ n − k.

The intervals preceding Ik−s do not contain any obstruction and will therefore
not be queried by either algorithm. Similarly, the intervals following Ik+t will not
be queried by either algorithm. The intervals from Ik−s to Ik+t contain at least one
obstruction and will therefore be queried by the offline algorithm. Therefore, the
offline algorithm makes s+ t+ 1 queries.

For the online algorithm, it is sufficient to consider the minimal proper obstruc-
tion with the largest number of intervals containing it. The first minimal proper
obstruction is contained at least in the intervals from Ik−s to Ik. The last minimal
proper obstruction is contained at least in the intervals from Ik to Ik+t. Thus the on-
line algorithm makes at least max(s, t)+1 queries in the worst case, and this quantity
is the worst case when the Ij with j < k do not intersect the Ij with j > k.

The ratio s+t+1
max(s,t)+1 with 0 ≤ s ≤ k − 1 and 0 ≤ t ≤ n − k is maximized at

544 FEDER, MOTWANI, PANIGRAHY, OLSTON, AND WIDOM

s = t = k − 1, and it then equals 2k−1
k .

Consider next the case of arbitrary costs. Since the performance of the online
algorithm is given by the worst constraint for a single minimal proper obstruction
and there are at most k such obstructions, the ratio is at most k. An example that
achieves k has n = 2k − 1 and consists of k disjoint intervals Ij of unit-cost plus
k − 1 intervals I ′j of zero cost, with the I ′j containing all the Ij . The offline algorithm
will have to query all the intervals, incurring cost k with the intervals Ij . The online
algorithm queries the I ′j first and, depending on the resulting answers, determines
which single Ij to query, with total cost 1.

6. Offline problem with arbitrary costs. The earlier algorithm for the of-
fline selection problem with arbitrary costs has complexity exponential in k. We now
provide a polynomial-time algorithm for this problem, but this algorithm is noncom-
binatorial and relies on linear programming.

The polytope of the offline selection problem is defined by replacing in the integer
program the conditions xj ∈ {0, 1} with linear constraints 0 ≤ xj ≤ 1, with the
remaining linear constraints being the same.

Theorem 6.1. The vertices of the polytope of the offline selection problem are
all integer vertices (i.e., 0–1 vertices). Therefore, with arbitrary costs, the problem
can be solved in polynomial time by linear programming.

Proof. Consider a vertex x of the polytope. If some xj is either 0 or 1 for x,
then use this value in the constraints where xj occurs. We are thus left with some h
variables with 0 < xj < 1. Since x is a vertex of the polytope, there must be some h
constraints satisfied with equality that define x uniquely. The corresponding h-by-h
square matrix M is a 0–1 matrix M , with the property that, for every column of M ,
the value 1 occurs in consecutive rows, since a variable xj occurs in consecutive linear
constraints. We show that the determinant of such a matrix M is either 0, 1, or −1.
Therefore, the solution must be an integer; that is, all xj for the vertex x are either
0 or 1, completing the proof of optimality.

Assume M has a nonzero determinant. Then some column must have a 1 in the
first row. Consider the column with a 1 in the first row that has the least number
r of 1’s; say it is the first column. Then the 1’s in the first column occur in rows
1, 2, . . . , r. After subtracting the first row from rows 2, . . . , r, we can remove the
first row and the first column and argue inductively for the resulting submatrix M ′.
Notice that the only columns affected by the subtraction are the columns that have a
1 in the first row. These columns, however, have a 1 in rows 1, 2, . . . , r by the choice
of the first column. For such a column, after the subtraction, the 1’s in rows 2, . . . , r
become 0’s, and after the first row is removed, the remaining 1’s in the column will
be in consecutive rows. Therefore, the matrix M ′ has the property of consecutive 1’s
in each column, and the induction goes through.

A linear programming algorithm that finds a vertex of the polytope minimizing
the objective function

∑
cjxj thus solves the problem.

Unfortunately, a linear programming algorithm is not very practical for the ap-
plications at hand. It therefore becomes interesting to seek a combinatorial algorithm
that is polynomial-time. As shown in the next section, the weighted bipartite match-
ing problem is a special case of our offline selection problem, and therefore we cannot
really hope for a simple combinatorial algorithm. In practice, it might be better to
use the following approximation algorithm.

Theorem 6.2. The offline selection problem with arbitrary costs has a 2 log2 k-
approximation polynomial-time algorithm.

COMPUTING THE MEDIAN WITH UNCERTAINTY 545

Proof. Construct a binary tree whose leaves are the minimal proper obstructions
O1, O2, . . . , Ok′ in left to right order, with k′ ≤ k. Place an interval at a node q if
the minimal proper obstructions it contains, Os, Os+1, . . . , Ot, are precisely the leaves
below node q.

Unfortunately, not all intervals correspond to a single node; we argue that in
general, the minimal proper obstructions covered by an interval can be decomposed
into at most 2 log2 k groups, with each group corresponding to a single node q. To
show this, let Pi be the set of nodes on the path from the root to the leaf Oi, and
consider in particular Ps−1 and Pt+1, which are taken to be empty if s = 1 or t = k′,
respectively. Then the nodes selected are precisely the nodes q not on Ps−1 such that
q is the right child of a node on Ps−1 −Pt+1 plus the nodes q not on Pt+1 such that q
is the left child of node on Pt+1−Ps−1. If the binary tree is chosen to be balanced, the
bound of 2 log2 k on the number of nodes q selected follows. (By carefully choosing
the binary tree, the bound can be improved by an asymptotic factor of 2.)

The algorithm then represents each interval by at most 2 log2 k intervals at nodes
q, each with the same cost as the original interval. This may increase the cost of an
optimal solution by a factor of 2 log2 k. The algorithm then solves the problem with
each interval at a single node q in polynomial time.

The algorithm computes at each node q, starting at the leaves Oi and moving up
to the root, how to select intervals at node q so as to leave a requirement of r intervals
having to be chosen at nodes higher than q, on the path from the root to q, for all
possible values r, which we call the demand at node q. Initially, at a leaf Oi, before
choosing which intervals to select at Oi, we have r = ai + bi − n. Suppose a node q
has inherited demands of r′ and r′′ from its children and wishes to achieve demand
r ≤ max(r′, r′′) to pass on to its parent. (At a leaf, there is a single inherited demand
r′ as described above.) Then we must select the max(r′, r′′)− r intervals of least cost
at q. For a given r, we carry out the calculation of total cost with the possible choices
of r′, r′′, and select the one that gives the least total cost for the intervals chosen at
q and its descendants, for the demand r under consideration. At the root, we force
r = 0, since no demand can be satisfied at nodes higher than the root.

7. Interval problems and weighted bipartite matching. We now examine
the expressive power of the offline selection problem. Specifically, we define the notion
of an “interval problem,” show that it is equivalent to the offline median problem,
and show that it includes weighted bipartite matching as a special case. It turns out
that every interval problem can be expressed as a min-cost network flow problem [3].
This allows us to apply combinatorial algorithms for min-cost flow to our selection
problem. We will also show that a mild generalization of the interval problem is in
fact NP-hard.

Definition 7.1. Define an interval problem to be to minimize
∑

cjxj with
xj ∈ {0, 1} subject to k constraints

∑
Si

xj ≥ fi, with the property that each xj occurs
in consecutive constraints.

We know that the offline selection problem is an interval problem. We now show
the converse. The median problem will have δ = 1 − 1

2(k+1) and k minimal proper

obstructions Oi = [i − 1, i] for 1 ≤ i ≤ k. If a variable xj occurs in constraints
s, s+ 1, . . . , t, then we represent it by the interval Ij = [s − 1, t]. We must also have
fi = ai + bi − n = di − ei, with ai, bi ≥ �n

2 �. In order to have fi = di − ei, where di
is the number of variables in the constraint and ei is the number of intervals inside
Oi, we put ei single-point intervals Ij = [pj , pj] inside Oi at i − i

k+1 . To make Oi a
proper obstruction, we add a zero-cost interval Ij = Oi. To ensure that ai, bi ≥ �n

2 �,

546 FEDER, MOTWANI, PANIGRAHY, OLSTON, AND WIDOM

we add a sufficiently large number of zero-cost intervals Ij = [0, k]. It is then clear
that the Oi will be the minimal proper obstructions and will give the corresponding
constraint when the zero-cost intervals that were added are selected.

Proposition 7.2. Every interval problem is an offline median problem.

We may sometimes want to force a constraint
∑

Si
xj ≥ fi to hold with equality.

To achieve this, we choose a large L >
∑

cj and add L
∑

Si
xj to the objective

function. If the constraint can be satisfied with equality, this will be forced by the
minimization, making the added term equal to Lfi. The same L can be used to force
several different constraints to hold with equality, when this is feasible.

It turns out that every interval problem can be expressed as a min-cost network
flow problem and vice versa [3]. We now prove a simpler statement.

Theorem 7.3. The interval problem can express the weighted bipartite matching
problem.

Proof. The case in which all constraints must hold with equality can express the
minimum cost bipartite perfect matching problem. To see this, consider a bipartite
graph G, with k vertices on each side and costs on the edges, that has a perfect
matching; we seek a minimum cost perfect matching. Let 1, 2, . . . , k be the k vertices
on the left, and let 1′, 2′, . . . , k′ be the k vertices on the right. The corresponding
interval problem will have 2k constraints corresponding to these vertices, in the order
1, 2, . . . , k, k′, . . . , 2′, 1′. An edge from i to j′ will correspond to a variable occurring
in the constraints from i to j′ in this order. To force exactly one of the edges incident
to vertex 1 to be selected, we use the bound f1 = 1 for the first constraint, with
equality. To force exactly one additional edge incident to vertex 2 to be selected, we
use the bound f2 = 2 for the second constraint, with equality. In general, we have
fi = fi′ = i, with equality. This completes the representation.

Consequently, the weighted bipartite matching problem is a special case of the
weighted offline median problem. We use this expressiveness of the weighted offline
median problem to show that a slight generalization is computationally hard.

The median problem with multiplicities is the median problem with the additional
provision that some specified intervals, when queried, return two points instead of just
one. This is like having, in the median problem, pairs of identical intervals that must
be simultaneously queried or not queried.

Theorem 7.4. The weighted offline median problem with multiplicities is NP-
complete.

Proof. The problem corresponds as before to a general interval problem, except
that now, for some of the variables, the quantity 2xj instead of xj appears in the con-
straints. We can again force equality to hold in the constraints by using appropriate
costs. The special case of bipartite matching from before now generalizes to a bipar-
tite flow problem. In this problem, vertices on the left have a given supply amount,
vertices on the right have a given demand amount, and vertices on the left are joined
to vertices on the right by edges of capacity 1 or 2. The supplies and demands must
be satisfied by sending flow across the edges but in such a way that the flow across
an edge is either zero or the full capacity of the edge.

We show that this bipartite flow problem is NP-complete. The reduction is from
3SAT. In fact, we assume that every variable x in the 3SAT instance occurs at most
twice as a positive literal x and at most twice as a negative literal x. Every 3SAT
instance can be made to satisfy this assumption by replacing every variable with
several variables forced to be equal by a cycle of implications; the implications in the
cycle account for one positive and one negative occurrence, so each variable in the

COMPUTING THE MEDIAN WITH UNCERTAINTY 547

cycle can be used again, once as positive and once as negative.
To express such a 3SAT instance as a bipartite flow problem, we put a vertex

on the right for each literal x or x, with demand 2. We put a vertex on the left for
each clause, with supply 1, and with three capacity 1 edges joining it to the literals
occurring in the clause on the right. Thus the supply 1 must be sent to one of the
three literals occurring in the clause, which we can take to be a satisfying literal for
the clause. Notice that the demand bound of 2 will hold, since no literal occurs in
more than two clauses. We must ensure that complementary literals are not both
chosen as satisfying literals. To achieve this, we put a vertex on the left for each
variable x, with supply 2, and with capacity 2 edges joining it to both literals x and
x. Thus only one of the two literals will have demand left to be chosen by the clauses
on the left. Thus the supply on the left can be sent while satisfying the demand
bounds on the right if and only if the instance has a solution. It then remains to force
the demands of 2 to be met exactly, and this is done by providing additional 2v − w
units of supply to be sent along capacity 1 edges to any vertex on the right, where v
is the number of variables and w is the number of clauses. This completes the proof
of NP-completeness.

It is natural to consider the related problem, where, when an interval Ij is queried,
instead of returning a single point pj in Ij , we obtain a subinterval of Ij of length at
most δ′. If the new parameter δ′ satisfies δ′ ≤ δ, where δ is the parameter for the
required precision as before, then all the results obtained above go through (unit-cost
or arbitrary cost, online or offline), since an obstruction O has length greater than δ,
so that an interval containing it will no longer contain it after the interval length is
reduced to at most δ′. On the other hand, if δ′ > δ, then the problem has no solution
(unless no queries are needed), since queried intervals Ij can be answered so as to still
contain a sufficiently small obstruction O.

Acknowledgment. We would like to thank Suresh Venkatasubramanian for sev-
eral helpful discussions.

REFERENCES

[1] T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom, Computing the me-
dian with uncertainty, in Proceedings of the 32nd Annual ACM Symposium on Theory of
Computing, ACM, New York, 2000, pp. 602–607.

[2] O. H. Ibarra and C. E. Kim, Fast approximation algorithms for the knapsack and sum of
subset problems, J. ACM, 22 (1975), pp. 463–468.

[3] G. L. Nemhauser and L. A. Wosley, Integer and Combinatorial Optimization, Wiley, New
York, 1988.

[4] C. Olston and J. Widom, Offering a precision-performance tradeoff for aggregation queries
over replicated data, in Proceedings of the 26th International Conference on Very Large
Data Bases, Cairo, Egypt, 2000, http://www-db.stanford.edu/pub/papers/trapp-ag.ps.

