
Finding (Recently) Frequent Items in Distributed Data Streams

Amit Manjhi∗ Vladislav Shkapenyuk Kedar Dhamdhere† Christopher Olston
Carnegie Mellon University

{manjhi, vshkap, kedar, olston}@cs.cmu.edu

Abstract
We consider the problem of maintaining frequency

counts for items occurring frequently in the union of
multiple distributed data streams. Naı̈ve methods of
combining approximate frequency counts from multi-
ple nodes tend to result in excessively large data struc-
tures that are costly to transfer among nodes. To mini-
mize communication requirements, the degree of preci-
sion maintained by each node while counting item fre-
quencies must be managed carefully. We introduce the
concept of aprecision gradientfor managing precision
when nodes are arranged in a hierarchical communica-
tion structure. We then study the optimization problem
of how to set the precision gradient so as to minimize
communication, and provide optimal solutions that min-
imize worst-case communication load over all possible
inputs. We then introduce a variant designed to perform
well in practice, with input data that does not conform
to worst-case characteristics. We verify the effective-
ness of our approach empirically using real-world data,
and show that our methods incur substantially less com-
munication than näıve approaches while providing the
same error guarantees on answers.

1. Introduction

The problem of identifying frequently occurring
items in continuous data streams has attracted sig-
nificant attention recently [4, 9, 12, 14, 19, 22]. Po-
tential applications include identifying large network
flows [12], answering iceberg queries [13], computing
iceberg cubes [17] and finding frequent itemsets and as-
sociation rules [1]. However, nearly all prior work on
identifying frequent items in data streams and estimat-
ing their occurrence frequencies falls short of meeting
the needs of the many real-world applications that ex-
hibit one or both of the following two properties:

1. Distributed streams. Streams originate from multi-
ple distributed sources. Data from all sources needs to
be aggregated to arrive at the final result, as in the dis-
tributed streams model of [15].

∗Supported by an ITR grant from the NSF.
†Supported by NSF ITR grants CCR-0085982 and CCR-0122581.

2. Time sensitivity. Recent data is more important than
older data.

We briefly describe two real-world applications ex-
hibiting the properties just mentioned:
1. Monitoring usage in large-scale distributed sys-
tems. Web content providers using the services of a
Content Delivery Network(CDN) like Akamai [2] may
wish to monitor recent access frequencies of content
served (e.g., HTML pages/images), to keep tabs on cur-
rent “hot spots.” The CDN may serve requests from any
of a number of cache nodes (Akamai currently has over
10,000 such nodes); typically requests are served by the
cache node closest to the end-user making the request
in order to minimize latency. Hence, keeping tabs on
overall access frequencies requires distributed monitor-
ing across many CDN cache nodes.

2. Detecting malicious activities in networked sys-
tems:

(a) Detecting worms. Previously unknown Inter-
net worms can be detected by discovering that a large
number of recent traffic flows contain the same bit
string [20]. Distributed monitoring can reduce detection
time.
(b) Detecting DDoS attacks.Early detection ofDis-

tributed Denial of Service(DDoS) attacks is an impor-
tant topic in network security. While a DDoS attack
typically targets a single “victim” node or organization,
there is generally no common path that all packets take.
In fact, even packets sent to the same destination and
originating from within the same organization may fol-
low different routes, due to so-called “hot potato” rout-
ing [3]. This property makes it very difficult to detect
distributed denial of service attacks effectively by only
considering the traffic passing through any single moni-
toring point, and motivates a distributed monitoring ap-
proach. Furthermore, techniques that weigh recent data
more than past data may help in early detection of at-
tacks.

1.1 Problem Variants
Both applications outlined above require algorithms

for identifying recently frequent items in the union
of many distributed streams, and estimating the corre-
sponding occurrence frequencies. In general, we can

1

classify applications of frequent item identification into
four categories, in terms of whether they require (a)
time-sensitivity and (b) distributed monitoring capabil-
ity. We briefly describe each problem variant:

(1) Finding frequent items in a single stream:A sin-
gle node sees an ordered stream of possibly repeating
items. The goal is to maintain frequency counts of items
whose frequency currently exceeds a user-supplied frac-
tion of the size of the overall stream seen so far.

(2) Finding recently frequent items in a single
stream: In this variant recent occurrences of items in
the stream are considered more important than older
occurrences of items. At any given time, a numeric
weight is associated with each item occurrence in the
stream that is a function of the amount of time that has
elapsed since the appearance of the item in the stream.
A commonly-used weighting scheme isexponential de-
cay [7], in which weights are assigned according to
a negative-exponential function of elapsed time. The
goal is to identify items whose cumulative weighted fre-
quency currently exceeds a user-supplied fraction of the
total across all items, and provide an estimate of the cu-
mulative weighted frequencies of any such items.

(3) Finding frequent items in the union of distributed
streams: In this variant there arem ordered streams
S1, S2, . . . , Sm, each produced at a different node in a
distributed environment and consisting of a sequence of
item occurrences. The goal is the same as in Variant
(1), except that item frequencies are computed over the
union of streamsS1, S2, . . . , Sm, instead of over a sin-
gle stream.

(4) Finding recently frequent items in the union of
distributed streams: This variant represents the natural
combination of Variants (2) and (3).

Of these four variants, only Variant (1) has been stud-
ied in prior work. (Some work conducted concurrently
with our own [4,16] also addresses problems quite sim-
ilar to Variants (2) and (3), but there are significant dif-
ferences with our work; see Section 4 for further dis-
cussion.) Algorithms for time-insensitive frequent item
identification over a single stream include those pre-
sented in [9,19,22]. It is straightforward to extend these
algorithms to handle Variant (2), although the effect on
the space bounds and error guarantees of the resulting
algorithms in some cases is nonobvious.

Variants (3) and (4) present a larger challenge. As we
will show, simple adaptations of existing frequent item
identification algorithms to work in a distributed setting
incur excessive communication. In this paper we present
a new framework for distributed frequent item iden-
tification that minimizes communication requirements.
Before outlining our approach we first provide a formal

problem statement that unifies the four variants listed
above.

1.2 Unified Problem Statement
Our problem statement extends that of [22]. There

arem ≥ 1 ordered data streamsS1, S2, . . . , Sm. Each
streamSi consists of a sequence of item occurrences
with time-stamps:〈oi1, ti1〉, 〈oi2, ti2〉, etc. Each item
occurrenceoij is drawn from a fixed universeU of
items, i.e.,∀i, j, oij ∈ U . Arbitrary repetition of item
occurrences in streams is allowed. Each streamSi

is monitored by a correspondingmonitor nodeMi, of
which there arem. Monitored frequency counts for high
frequency items are to be supplied to a centralroot node
R, which may or may not be the same as one of the
monitor nodes.

Let S be the sequence-preserving union of streams
S1, S2, . . . , Sm. Further, letc(u) be the frequency of oc-
currence of itemu in S up to the current time, weighted
by recency of occurrence in an exponentially decaying
fashion. Mathematically,

c(u) =
∑

〈oi,ti〉∈S,oi=u

αb tnow−ti
T c

wheretnow denotes the current time, andα andT are
user-supplied parameters. The parameterα ∈ (0, 1]
controls the aggressiveness of exponential weighting.
As a special case, settingα = 1 causes all item oc-
currences to be weighted equally, regardless of age (as
in Variants (1) and (3) of Section 1.1). The parameter
T > 0 controls the frequency with which answers are
reported, and also the granularity of time-sensitivity. A
time period ofT time units is referred to as anepoch.

The objective is to supply, at the end of every epoch
(i.e., everyT time units), an estimatêc(u) of c(u)
for items occurring inS whose true time-weighted fre-
quencyc(u) exceeds asupport thresholdT . T is de-
fined as the product of a user-suppliedsupport parame-
ter s ∈ [0, 1], and the sum of the weighted item occur-
rences seen so far on all input streams,N = Σu∈Uc(u),
i.e., T = s ·N . The amount of allowable inaccuracy
in the frequency estimateŝc(u) is governed by a user-
supplied parameterε. It is required that0 ≤ ε ≤ s
(usually,ε � s). Each time an answer is produced, it
must adhere to the following guarantees:

1. All items whose true time-weighted frequency ex-
ceedss·N are output.

2. No item whose true time-weighted frequency is
less than(s− ε)·N is output.

3. Each estimatêc(u) supplied in the answer satisfies:
max {0, c(u)− ε·N} ≤ ĉ(u) ≤ c(u).

2

R
(ε1, 1)-synopses

level 0 (Root)

Output: (ε, α)-synopsis

level 1

M1
level (l-1)
(Leaves) M2 Md Mm

Input streams: S1 S2 Sd Sm

(ε2, 1)-
synopses

(εl-1, 1)-
synopses

Figure 1: Hierarchical communication structure.

A useful data structure for storing intermediate an-
swers is an(ε, α)-synopsisof item frequencies over a
stream or union of several streams. An(ε, α)-synopsis
S consists of a (possibly empty) set of time-weighted
frequency estimates each denotedS : ĉ(u), where each
S : ĉ(u) estimate satisfiesmax {0, c(u)− ε·S :n} ≤ S :
ĉ(u) ≤ c(u). S :n denotes the total time-weighted fre-
quency of all items in the synopsis (S :n =

∑
u∈U c(u)).

The salient property of an(ε, α)-synopsis is that items
with weighted frequency belowε·S:n need not be stored,
resulting in a reduced-size representation.

In the extended technical report version of this pa-
per [21] we show how to extend two frequency count-
ing algorithms that produce(ε, 1)-synopses to produce
(ε, α)-synopses, for anyα ∈ (0, 1], to achieve Variant 2
of Section 1.1. In particular, we show how to do so
for lossy counting[22] and the algorithm presented in
both [9] and [19], which we refer to asmajority+ count-
ing. We analyze the correctness and space requirements
of the resulting algorithms. We show that the worst-case
size of time-sensitive synopses is bounded by a time-
independent constant.

1.3 Overview of Approach

There are two obvious, simple strategies for adapting
single-stream frequency counting algorithms to a dis-
tributed setting to achieve Variants 3 and 4 of Sec-
tion 1.1, and both have serious drawbacks:

SS1 (Simple Strategy 1):Periodically, at the end
of every epoch, each monitor nodeMi sends to the root
nodeR the exact frequency counts of all items occurring
in Si over the lastT time units. NodeR then combines
the counts received from the monitor nodes with (possi-
bly time-decayed) counts maintained over prior epochs,
and outputs items whose overall weighted counts exceed
the support thresholdT .

SS2: Each monitor nodeMi maintains an(ε, 1)-
synopsisSi over the recent portion of its local stream
Si. Intuitively, the (ε, 1)-synopsis is a reduced sum-
mary of item frequencies that does not include items

whose frequency inSi is small. Periodically, at the
end of every epoch, eachMi sends its local synopsis
Si to nodeR. Upon receiving all local synopses, node
R combines them into a single unified(ε, 1)-synopsis
containing estimated item frequencies for the union of
the contents of all input streams in the most recent
epoch. This synopsis is then combined additively with
an(ε, α)-synopsis containing estimated weighted counts
from previous epochs, after multiplying those synopsis
counts byα, to generate a new(ε, α)-synopsis valid for
the current epoch. Lastly, items whose estimated time-
decayed counts exceed the support thresholdT (after
taking into account the error tolerance) in this synopsis
are output.1

Clearly, strategy SS1 is likely to incur excessive com-
munication because frequency counts for all items, in-
cluding rare ones, must be transmitted over the network.
Furthermore, the root nodeR must process a large num-
ber of incoming counts. While strategy SS2 alleviates
load on the root node to some extent, in the presence
of a large number of monitor nodes and rapid incom-
ing streams, the root node may still represent a signifi-
cant bottleneck. To further reduce the load on the root
node, nodes can be arranged in a hierarchical commu-
nication structure (see Figure 1), in which synopses are
combined additively at intermediate nodes as they make
their way to the root. In this setting SS2 compresses
data (by dropping small counts) as much as possible at
each leaf node without violating theε error bound. Con-
sequently no further compression can be performed as
synopses are combined on their way to the root or at
the root node itself, making it impossible to eliminate
counts for items whose frequency exceedsε fraction of
one or more individual streams but does not exceedε
fraction in the union of the streams whose synopses are
combined at a non-leaf node. Hence, if input streams
have different distributions of item occurrences, counts
for items of small frequency may reach the root node
unnecessarily under strategy SS2. There are thus two
main disadvantages of using SS2:

1. High communication load on root nodeR.

2. High space requirement onR.

Suppose that, instead of applying maximal synopsis
compression at the leaf nodes, some compression capa-
bility is reserved until synopses of multiple incoming
streams are combined at non-leaf nodes. If that is done,
more aggressive compression can be performed by non-
leaf nodes by taking into account the distributions of
item frequencies over a larger set of input streams. As a

1Note that in both strategies time-sensitivity is only introduced at
nodeR. It is not possible to introduce time-sensitivity in data before
it is sent toR, since all item frequencies in the most recent epoch have
weight 1 in our formulation.

3

result, the synopses reaching the root (and the synopsis
maintained over previous epochs at the root) will likely
be significantly smaller than in SS2. On the other hand,
the synopses passed from the leaf nodes to their parents
may be larger than in SS2, which is an undesirable side-
effect.

Indeed, to avoid excessive communication load on
any particular node or link, the amount of compression
performed by each node while creating or combining
synopses must be managed carefully. In hierarchically-
structured monitoring environments we can configure
the amount of compression performed, and conse-
quently, the amount of error introduced at each level so
that synopses follow aprecision gradientas they flow
from leaves to the root. It turns out that worst-case com-
munication load on any link is minimized by using a
gradual precision gradient, rather than either deferring
the introduction of error entirely until data reaches the
root (as in SS1), or introducing the maximum allowable
error at the leaf nodes (as in SS2). Still, the best gradual
precision gradient to use is not obvious.

In Section 2 of this paper we study the problem of
how best to set the precision gradient formally. We first
show how use of a gradual precision gradient alleviates
storage requirements at the root nodeR. Then, we de-
rive optimal settings of the precision gradient under two
objectives: (a) minimize load on the root nodeR, and
(b) minimize maximum load on any single communi-
cation link under worst-case input behavior. We then
introduce a variant that aims to achieve low load on all
links in practice, when input data may not exhibit worst-
case characteristics, by exploiting a small sample of the
expected input data obtained in advance.

In Section 3 we confirm our analytical findings of
Section 2 through extensive experimental evaluation on
three real-world data sets. Our experiments demon-
strate that näıve methods of finding frequent items in
distributed streams (SS1 and SS2) can incur high com-
munication and storage costs compared with our meth-
ods. Related work is discussed in Section 4, and we
summarize the paper in Section 5.

2. Finding Frequent Items in Distributed
Streams

In this section we show how to maintain approximate
time-sensitive frequency counts for frequent items in a
distributed setting, and study how to set the precision
gradient so as to minimize communication. Recall that
in our scenario,m monitor nodesM1,M2, . . . ,Mm re-
lay data periodically, once everyT time units, to a cen-
tral root nodeR. Data may be relayed through a hier-
archy of nodes interposed between the monitor nodes
and the central root node, as illustrated in Figure 1. Let

l ≥ 2 denote the number of levels in the hierarchy. We
number the levels from root to leaf, with the root nodeR
of the communication hierarchy representing level0, its
children representing level1, etc., and the monitor nodes
M1, . . . ,Mm representing level(l − 1). Let d ≥ 2 de-
note the fanout of all non-leaf nodes in the hierarchy,
i.e., the number of child nodes relaying data to each in-
ternal node.2

In this hierarchical communication structure, we as-
sociate with each non-root level1 ≤ i ≤ (l − 1) of
the communication hierarchy an error toleranceεi. For
correctness it must be ensured thatε ≥ ε1 ≥ . . . ≥
εl−1 ≥ 0, which gives rise to aprecision gradientalong
the communication hierarchy. (For now we assume that
all nodes at the same level in the hierarchy use the same
error tolerance.) Any values ofε1, . . . , εl−1 satisfying
the above constraints can be used, and the guarantees of
Section 1.2 will hold. The manner in which the preci-
sion gradient (i.e.,ε1, . . . , εl−1 values) is set determines
the size of the synopsis that must be stored persistently
atR, as well as the amount of communication that must
be performed during frequency counting. For now, let us
assume that some precision gradient has been decided
upon. We return to the issue of how best to set the pre-
cision gradient in Section 2.1.

Given a precision gradient, our procedure for com-
puting time-sensitive frequency counts for items occur-
ring frequently inS = S1 ∪ S2 ∪ . . . ∪ Sm is as fol-
lows. Recall that time is divided into equal epochs of
lengthT . During each epoch, each monitor nodeMi in-
vokes a single-stream approximate frequency counting
algorithm, e.g., [9,19,22], using error parameterεl−1 to
generate an(εl−1, 1)-synopsis for the portion of stream
Si seen so far during the current epoch. Each moni-
tor node then sends its(εl−1, 1)-synopsis to its parent
in the communication hierarchy, which combines thed
(εl−1, 1)-synopses it receives from itsd children into
a single(εl−2, 1)-synopsis using either Algorithm 1a
(shown below; based on lossy counting [22]) or Al-
gorithm 1b (shown below; based on majority+ count-
ing [9, 19]). The same process is repeated until each of
R’s children combines thed (ε2, 1)-synopses they re-
ceive into an(ε1, 1)-synopsis which is then sent toR.

The root nodeR maintains at all times a single(ε, α)-
synopsisSA, from which the answer is derived. When,
at the end of each epoch,R receivesd (ε1, 1)-synopses
from its children, R updatesSA using either Algo-
rithm 2a (based on lossy counting) or Algorithm 2b
(based on majority+ counting). Then,R generates the
new answer to be output for the current epoch by find-
ing items inSA whose approximate count inSA exceeds
(s− ε)·SA :n.

2For simplicity we assume all internal nodes of the communication
hierarchy have the same fanout.

4

Algorithm 1: Combine synopses from children (executed by nodes
other than leaves and root)

Inputs: d(εi+1, 1)-synopsesS1, S2, · · · , Sd

Output: single(εi, 1)-synopsisS

Algorithm 1a:

1. SetS :n :=
d∑

j=1
Sj :n

2. For eachu ∈
d
∪

j=1
Sj , setS :ĉ(u) :=

d∑
j=1

Sj :ĉ(u)

3. For eachu ∈ S, setS :ĉ(u) := S :ĉ(u)− (εi − εi+1)·S :n

Algorithm 1b:
1. For eachSj ∈ {S1,S2, . . . ,Sd} and for eachu ∈ Sj :

(a) If S : ĉ(u) exists, setS : ĉ(u) := S : ĉ(u) + Sj : ĉ(u). Else, create
S :ĉ(u); setS :ĉ(u) := Sj :ĉ(u)

(b) If |S| ≥ 1
εi−εi+1

: let u′ := argmin
u∈S

{S :ĉ(u)}. For eachu ∈ S,

setS : ĉ(u) := S : ĉ(u) − S : ĉ(u′); if S : ĉ(u) ≤ 0, eliminate
countS :ĉ(u)

2. SetS :n :=
d∑

j=1
Sj :n

2.1 Setting the Precision Gradient
Our approach is first to setε1 based on space consid-

erations at nodeR (using worst-case analysis), and then
set the remaining error tolerance valuesε2, . . . , εl−1 so
as to minimize communication.

The value ofε1 determines the maximum size of the
synopsisSA that must be stored by nodeR at all times.
If Algorithm 2b is used by the root node, the size of
SA is at most 1

ε−ε1
counts at all times. Otherwise, if

Algorithm 2a is used, analysis of the maximum size
of SA is similar to the analysis of [22] and our own
analysis in [21] of time-sensitive lossy counting over a
single-stream, yielding the following results. If no time-
sensitivity is employed (α = 1), the size ofSA is at most
ln ((ε−ε1)·SA:n)

ε−ε1
counts (formula adapted from [22]); for

α < 1, the size is at most(1+ε−ε1)·(3+ln (2·k·β+k))
ε−ε1

counts, whereβ = dlog 1
α
(1 + 2

ε−ε1
)e + 1 andk de-

notes the maximum number of item occurrences on any
input stream during any single epoch. As long as stream
rates remain steady, usingε1 < ε, the synopsisSA does
not grow with time after reaching a steady-state size. In
contrast, whenε1 = ε (as in strategy SS2), the space
requirement increases with time as we demonstrate em-
pirically in Section 3.3. Our approach is to setε1 such
that the worst-case size ofSA (under the maximum pos-
sible stream ratek) is below any space constraint atR.

Given a value forε1 (such thatε1 < ε), the remaining
error tolerance valuesε2, . . . , εl−1 making up the pre-
cision gradient determine the communication load in-
curred. We illustrate the effect of the precision gradient

Algorithm 2: Update the answer synopsis (executed at the root
nodeR)

Input: d (ε1, 1)-synopsesS1, . . . ,Sd, SA

Output: new answer(ε, α)-synopsisSA

Algorithm 2a:
1. SetSA:n := α·SA:n + Σd

j=1Sj :n

2. For eachu ∈ SA, setSA:ĉ(u) := α·SA:ĉ(u)

3. For eachu ∈
d
∪

j=1
Sj , setSA:ĉ(u) := SA:ĉ(u) + Σd

j=1Sj :ĉ(u)

4. For eachu ∈ SA, setSA:ĉ(u) := SA:ĉ(u)− (ε− ε1)·Σd
j=1Sj :n

Algorithm 2b:
1. SetSA:n := α·SA:n + Σd

j=1Sj :n

2. For eachu ∈ SA, setSA:ĉ(u) := α·SA:ĉ(u)

3. For eachSj ∈ {S1,S2, . . . ,Sd} and for eachu ∈ Sj :

(a) If SA : ĉ(u) exists, setSA : ĉ(u) := SA : ĉ(u) + Sj : ĉ(u). Else,
createSA:ĉ(u); setSA:ĉ(u) := Sj :ĉ(u)

(b) If |SA| ≥ 1
ε−ε1

, let u′ := argmin
u∈SA

{SA : ĉ(u)}. For eachu ∈

SA, setSA : ĉ(u) := SA : ĉ(u) − SA : ĉ(u′); if SA : ĉ(u) ≤ 0,
eliminate countSA:ĉ(u)

R

I2I1

M4M3M2M1

S1 S2 S3 S4

(ε2, 1)-synopses

(ε1, 1)-synopses

Input streams:

Monitor nodes:

Root node:

Output: (ε, α)-synopsis

Figure 2: Example topology.

on communication using the following rather contrived
but simple example that highlights the effect clearly; our
experimental results presented later in Section 3 are con-
ducted over real-world data.

2.1.1 Motivating Example

Figure 2 shows the communication topology we use
for our example. We assume Algorithm 1a is used at the
intermediate nodes. Suppose the overall user-specified
error toleranceε = 0.05, and for simplicity assume
ε1 ≈ ε = 0.05. Suppose that during one epoch100
items occur on each ofS1, S2, S3 andS4, drawn from
a universe of 27 distinct items. For ease of comprehen-
sion, we partition the 27 distinct items into three cate-
gories: A, B, and C. Category A contains one item and
categories B and C each contain 13. The frequency of
occurrence in each input stream of items in each cat-
egory is given in the shaded region of Table 2. The

5

Table 1: Communication loads in example scenario.
Load on Maximum load on any Maximum

ε2 root nodeR link excluding load on
links to R any link

0 2 27 27
0.03 2 14 14
0.05 54 14 27

Table 2: Link loads in example scenario.

M1 → I1 and M2 → I1 & I1 → R &
M3 → I2 M4 → I2 I2 → R

ε2 category frequency cat. freq. cat. freq.
estimate est. est.

0 A 9 A 9 A 8
B 6 B 1
C 1 C 6

0.03 A 6 A 6 A 8
B 3 C 3

0.05 A 4 A 4 A 8
B 1 C 1 B 1

C 1

single item in category A occurs nine times in each of
S1, S2, S3 andS4. Each item in category B occurs six
times each inS1 andS3 but only once each inS2 and
S4. The opposite is true for items in category C: each
occurs once in each ofS1 andS3 but six times in each
of S2 andS4.

Table 1 summarizes the effects of varyingε2, which
determines the amount of error introduced at level 2
(nodesM1 - - M4), assuming lossy counting with per-
epoch batch processing is used to produce the initial
synopses at the leaf nodes. Three measures of com-
munication load are reported: (1) load on the root node
R, (2) maximum load on any link excluding links toR,
and (3) maximum load on any link. In all cases, com-
munication load is measured in terms of the number of
frequency counts transmitted during the epoch. Setting
ε2 = 0.05 corresponds to simple strategy SS2 outlined
in Section 1.3. (We do not report measurements for SS1,
in which ε1 = 0 andε2 = 0, since communication load
is higher than under any of our three example strategies
under all three metrics.)

To understand how these numbers come about, con-
sider Table 2, which shows, for each setting ofε2, the
frequency estimate for items of each category sent along
each link. In the case in whichε2 = 0, the esti-
mated counts sent from leaf nodesM1 - - M4 to nodes
I1 and I2 (shown with shaded background) are exact.
All other values in Table 2 are underestimates. We fo-
cus on the case in whichε2 = 0.03 to illustrate how
these underestimates are computed. At each leaf node,
whenε2 = 0.03 application of the lossy counting algo-
rithm leads to undercounting of each item’s frequency

by ε2 ·100 = 0.03 ·100 = 3. Hence, estimated counts
transmitted in synopses from the leaf nodesM1 - - M4

to nodesI1 andI2 are less than their actual counts by3;
some counts fall below zero and are eliminated. Once
these synopses are received at nodesI1 andI2, Algo-
rithm 1a is invoked, in which synopsis counts received
from leaf nodes are first combined additively, and then
decremented by(ε1 − ε2)·200 = 0.02·200 = 4. For the
single item in Category A, leaf nodesM1 andM2 each
supply a count of6 to nodeI1, for a combined count of
12, which is then decremented by4 for a final estimated
count of8 to be sent to nodeR. Items in Categories
B and C each have combined counts of3 at I1, which
fall below zero when decremented by4 and thus are not
transmitted toR.

From Table 1 we observe a tradeoff between commu-
nication load on the root nodeR and load on links not
connected toR. Furthermore, in this particular case (al-
though not always true in general), of our three example
strategies, the strategy of using a gradual precision gra-
dient (ε2 = 0.03) is best with respect to all three metrics.
To see why, consider that if error tolerances are made
large for levels of the communication hierarchy close to
the leaves (in the most extreme case, by settingεl−1 = ε,
as in SS2), some locally-infrequent items are eliminated
early, thereby reducing communication near the leaves.
However, an undesirable side-effect arises in the pres-
ence of items just frequent enough at one or more leaf
nodes to survive elimination locally, but not frequent
enough overall to exceed the error threshold (as with
items in categories B and C in our example). Counts for
such items may avoid being eliminated until very late
(or, worse, may never be eliminated), thus resulting in
increased communication near the root. Hence, there is
a tradeoff between high communication among non-root
nodes and heavy load on the root nodeR.

The best way to set the precision gradient depends
on the application scenario. For some applications the
most important criterion may be to minimize load on
the root nodeR where the answers are generated, which
may need to devote the majority of its resources to other
critical tasks for the application, even if that means in-
creased load on the nodes responsible for monitoring
streams and merging synopses. For other applications,
it is most important to minimize the maximum load on
any link to ensure that large volumes of input data can
be handled without overloading network resources.

Next, we study the optimization problem of how best
to select the precision gradient and synopsis-merging al-
gorithm to use at each node, in order to achieve one of
two objectives: (1) minimize communication load on
the root nodeR, or (2) minimize worst-case commu-
nication load on the most heavily-loaded link in the hi-
erarchy. Communication load is measured in terms of

6

the number of frequency counts transmitted during one
epoch. We study each optimization objective in turn in
Sections 2.1.2 and 2.1.3, and provide optimal algorithm
choices and settings for the error tolerancesε2, . . . , εl−1

making up the precision gradient. Then, since real-
world data is unlikely to exhibit worst-case behavior, in
Section 2.1.4 we propose a variant that seeks to achieve
low load on the most heavily-loaded link, under non-
worst-case inputs for which estimated data distributions
are available.

2.1.2 Minimizing Total Load on the Root Node
Using Algorithm 1a at all applicable nodes and set-

ting εi = 0 for all 2 ≤ i ≤ l−1, whereby all decrement-
ing and elimination of synopsis counts is performed by
children of root nodeR, minimizes communication load
on the root nodeR under any input streams. We term
this strategy MinRootLoad.

Lemma 1 Given a value forε1, for any input streams
no values ofε2, . . . , εl−1 satisfyingε1 ≥ ε2 ≥ . . . ≥
εl−1 and no choice of synopsis-merging algorithm re-
sults in lower total communication load on nodeR than
the valuesε2 = ε3 = . . . = εl−1 = 0 and Algorithm 1a,
assuming buffer space at each node is sufficient to store
all inputs arriving during one epoch.

Proof: Consider nodeX, an arbitrary child of the
root nodeR. Let SX denote the union of all streams
arriving at the monitor nodes belonging to the subtree
rooted atX during one epoch. Since an(ε1, 1)-synopsis
is sent fromX to R, for any setting ofε2, . . . , εl−1,
counts for all itemsv with frequencyc(v) ≥ ε1 · |SX |
are sent over the link fromX to R (here, |SX | de-
notes the number of item occurrences inSX). Using
ε2 = ε3 = . . . = εl−1 = 0 and Algorithm 1a at X, it is
easy to see that an itemu will be sent over the link from
X to R only if c(u) ≥ ε1 · |SX |. Therefore, this setting
of ε2, . . . , εl−1 along with the use of Algorithm 1a
results in the smallest possible number of counts sent
over the link fromX to R. Since this property holds for
any childX of R, strategy MinRootLoad minimizes the
total communication load onR, for any input streams.
�

2.1.3 Minimizing Worst-Case Maximum Load on
Any Link

In this section we show how to setε2, . . . , εl−1 and
how to select a synopsis-merging algorithm to use at
each node so as to minimize the maximum load on any
communication link, in the worst case over all possible
input streams. We provide a two step solution. First, we
show that for any precision gradientε2, . . . , εl−1, use of
Algorithm 1a at each node minimizes the load on every

link, provided buffer space at each node is sufficient to
store all inputs arriving during one epoch. Then, we de-
rive the optimal precision gradient when Algorithm 1a
is used at each node.

We begin with the issue of selecting a synopsis-
merging algorithm.

Observation 1 If, presented with identical inputs, Al-
gorithm 1b produces outputS and Algorithm 1a pro-
duces outputS ′, thenS : n = S ′ : n and for all items
u ∈ S, S :ĉ(u) ≥ S ′ :ĉ(u).

Observation 2 Consider two sets of inputs to one
of Algorithm 1a or Algorithm 1b. Letinput1 =
{S1,S2, . . . ,Sd}, and input2 = {S ′

1,S ′
2, . . . ,S ′

d}
where for allj (1 ≤ j ≤ d), Sj : n = S ′

j : n and for
all itemsu ∈ S ′

j , Sj : ĉ(u) ≥ S ′
j : ĉ(u). Let input1 lead

to outputS, whereasinput2 lead to outputS ′. Then
S :n = S ′ :n and for all itemsu ∈ S,S :ĉ(u) ≥ S ′ :ĉ(u).

Lemma 2 At any nodeX use of Algorithm 1a results in
no higher communication on any link than use of Algo-
rithm 1b.

Proof: Follows from Observation 1 and multiple
invocations of Observation 2. �

Lemma 3 Given a choice between Algorithms 1a and
1b under any precision gradient, use of Algorithm 1a at
each node minimizes the maximum load on any link.

Proof: Follows from Lemma 2. �
It is trivial to extend this result to include leaf nodes,
replacing Algorithm 1a with the original lossy counting
algorithm.

Next, we show how to setε2, . . . , εl−1 assuming Al-
gorithm 1a is used at each node, and the lossy counting
algorithm is used to generate the local synopsis at each
monitor node. We also assume the buffer each monitor
node uses for lossy counting is large enough to store fre-
quency counts of all items arriving on the input stream
during any one epoch. As we later confirm in Section 3,
this assumption poses no problem in practice, particu-
larly if the epoch duration is small. For our worst-case
analysis, we extend the set of possible inputs in two mi-
nor ways:

1. The occurrence frequency of an item arriving on an
input stream can be a positive real number.
2. Associated with each itemu is a weightwu ∈ [0, 1].
In an epoch, at most one item occurrence per input
stream can be an occurrence of an item of weight less
than 1. The cost of transmitting the count of itemu with
weightwu is wu. In a synopsis,S :n =

∑
wu ·c(u).

7

As will become clear later, both of these enhancements
allow load on a link to be expressed as a continuous
function, which in turn simplifies our worst-case analy-
sis. Neither enhancement alters the worst-case input sig-
nificantly. First, during an epoch, at most one item oc-
currence per input stream can have non-integral weight.
Second, any input with real-valued item frequencies can
be transformed into an input with nearly integral fre-
quencies that yields identical results by multiplying each
frequency by a large number, and dividing all answers
produced by the same number.

For notational ease, we transform the problem of set-
ting ε2, . . . , εl−1 to that of setting∆2, . . . ,∆l−1, where
for all 2 ≤ i ≤ l − 2,∆i = εi − εi+1 and∆l−1 = εl−1.
It is required that∆i ≥ 0 for all 2 ≤ i ≤ l − 1, and
thatΣl−1

i=2∆i ≤ ε1. ∆i denotes theprecision marginat
level i, i.e., the difference between the error tolerances
at leveli and leveli + 1.

Let the vector∆ = (∆2,∆3, . . . ,∆l−1). Let I de-
note the contents of all input streamsS1, . . . , Sm during
a single epoch. LetI denote the set of all possible in-
stances ofI.

Given an inputI, a communication hierarchyT (de-
fined by degreed and number of levelsl), and a setting
of the precision gradient∆, let w represent the maxi-
mum load on any link in the communication hierarchy:

w(I, T ,∆) = max
k∈links(τ)

{load(k)}

Worst-case loadW is defined as:

W (T ,∆) = max
I∈I

{w(I, T ,∆)}

Given a communication hierarchyT , the objective is to
set∆ such that the worst-case loadW (T ,∆) is mini-
mized.

We first show that it is sufficient to consider a specific
subset of all instances of the general problem for worst-
case analysis. Then we find precision gradient values∆
values that cause the worst-case load under any of these
instances to be minimal.

There exists a subsetIwc of the set of all input in-
stancesI such that for all instancesI ∈ I − Iwc, there
exists an instanceI ′ ∈ Iwc such that for anyT , ∆,
w(I ′, T ,∆) ≥ w(I, T ,∆). Hence,Iwc denotes the set
of worst-case inputs. InstanceI is a member ofIwc if
and only if it satisfies each of the following three prop-
erties:

P1:For any two input streamsSi andSj , there is no item
occurrence common to bothSi andSj .
P2: For any input streamSi, all items occurring inSi

occur with equal frequency.
P3: For any two input streamsSi and Sj , both the
number of item occurrences, and the number of distinct
items, inSi andSj are equal.

Lemma 4 For fixedT and∆, given any input instance
I, it is possible to find an input instanceI ′ ∈ Iwc such
thatw(I ′, T ,∆) ≥ w(I, T ,∆).

Proof: Our proof of Lemma 4 is rather involved, and is
provided in [21]. �

From Lemma 4 we know it is sufficient to consider
the setIwc for worst-case communication load. Hence,
we can rewrite our expression forW (T ,∆) as:

W (T ,∆) = max
I∈Iwc

{w(I, T ,∆)}

Property P3 ofIwc implies that the total number of item
occurrences at any leaf node is the same. Letn de-
note this number (|Si| = n for all 1 ≤ i ≤ m). Let
tc(j) denote the total number of item occurrences ar-
riving on streams monitored by at the leaf nodes of a
subtree rooted at a node at levelj. It is easy to see that
tc(j) = d(l−1−j) ·n, wherel is the number of levels in
the communication hierarchy andd is the fanout of all
non-leaf nodes. The next lemma shows that worst-case
inputs induce a high degree of symmetry on the resulting
synopses.

Lemma 5 For any input instanceI ∈ Iwc, the follow-
ing two properties hold for thedj (εj , 1)-synopses re-
layed by thedj level-j nodes to their parents:

1. No item is present in more than one synopsis.

2. The estimated frequency counts corresponding to any
two items, even if present in two different synopses, have
the same value.

Proof: See [21]. �

Due to the high degree of symmetry formalized in
Lemma 5, the count for each item is eliminated (due to
being decremented and falling below zero) at the same
level of the communication hierarchy. Let us call this
level x. If all counts are dropped at the leaf level, then
x = l − 1. If all counts are retained through the entire
process and are sent to the root nodeR (level 0), then
x = 0. Otherwise, all counts are dropped at some inter-
mediate level1 ≤ x ≤ l − 2.

The most heavily loaded link(s) are the ones leading
to levelx. To see why, consider that no data is transmit-
ted on subsequent links and previous links have lower
load since data is spread more thinly (in any communi-
cation hierarchyT , the number of links between levels
decreases monotonically as data moves from leaves to
the root).

When synopses are combined at nodes of leveli
using Algorithm 1, the frequency count estimate of
each item is decremented by the quantitytc(i) ·∆i (let

8

∆1 = ε1 − Σl−1
i=2∆i). Hence, the true frequency count

of any item occurring on some input stream must be
C = Σl−1

j=x+1(tc(j) ·∆j) + δ, whereδ is a small quan-
tity3. The number of items present in each input stream
is thus n

C
4. Since synopses fordl−1−x input streams

are transmitted through a node at levelx, the load on
the most heavily loaded link(s) isL(x) = dl−2−x · n

C .
Clearly, the maximum value ofL(x) is achieved when
δ → 0. The expression forL(x) can be simplified to:

L(x) =
1

Σl−1
j=x+1(∆j ·dx−j+1)

Now, our expression for the worst-case load on any
link can be reduced to:

W (T ,∆) = max
x=0,1,...,l−2

{L(x)}

We desire to minimizeW (T ,∆) subject to the con-
straints∆2, . . . ,∆l−1 ≥ 0 and Σl−1

j=2∆j ≤ ε1. It
is easy to show that this minimum is achieved when
L(0) = L(1) = · · · = L(l − 2).

Solving for ∆2, . . . ,∆l−1, we obtain: ∆i = ε1 ·
d−1

(l−2)·(d−1)+d , 2 ≤ i ≤ l − 2 and ∆l−1 = ε1 ·
d

(l−2)·(d−1)+d . Translating to error tolerances, we set

εi = ε1 · (l−1−i)·(d−1)+d
(l−2)·(d−1)+d for all 2 ≤ i ≤ l − 1. This

setting ofε2, . . . , εl−1 minimizes worst-case communi-
cation load on any link. We term this strategy Min-
MaxLoadWC. Under this strategy, the maximum pos-
sible load on any link isLwc = (l−2)·(d−1)+d

d·ε1 counts
per epoch. Lastly, we note that MinMaxLoadWC re-
mains the optimal precision gradient even if nodes of
the same level can have differentε values. Informally,
since with worst-case inputs all incoming streams have
identical characteristics, maximum link load cannot be
improved by using non-uniformε values for nodes at a
given level; we omit a formal proof for brevity.

2.1.4 Good Precision Gradients for Non-Worst-Case
Inputs

Real data is unlikely to exhibit worst-case character-
istics. Consequently, strategies that are optimal in the
worst case may not always perform well in practice. In
terms of minimizing the maximum communication load
on any link, the worst-case inputs are ones in which the
set of items occurring on each input stream are disjoint.
When this situation arises, a gradual precision gradient
is best to use (as shown in Section 2.1.3). Using a grad-
ual precision gradient, some of the pruning of frequency

3Recall that we allow the frequency of an item to be a real number.
4More precisely, each stream containsb n

C
c items of weight1 each,

and one item of weight= n
C
− b n

C
c. Note that each input stream

contains at most one item with weight less than 1, as stipulated earlier.

counts is delayed until a better estimate of the overall
distribution is available closer to the root, thereby en-
abling more effective pruning. In the opposite extreme,
when all input streams contain identical distributions of
item occurrences, there is no benefit to delaying prun-
ing, and performing maximal pruning at the leaf nodes
(as in strategy SS2) is most effective at minimizing com-
munication. In fact, it is easy to show that SS2 is the op-
timal strategy for minimizing the maximum load on any
link when all input streams are comprised of identical
distributions; we omit a formal proof. (Note, however,
that SS2 still incurs a high space requirement on the root
nodeR since it setsε1 = ε.)

We posit that most real-world data falls somewhere
between these two extremes. To determine where ex-
actly a data set lies with regard to the two extremes,
we estimate the commonality between input streams
S1, . . . , Sm by inspecting an epoch worth of data from
each stream. We compute acommonality parameter
γ ∈ [0, 1] asγ = 1

m ·
∑m

i=1
Gi

Li
, whereGi andLi are

defined over streamSi as follows. The quantityGi is
defined as the number of distinct items occurring inSi

that occur at leastε·|Si| times inSi and also at leastε·|S|
times inS = S1 ∪S2 ∪ · · · ∪Sm, where|S| denotes the
number of item occurrences inS during the epoch of
measurement. The quantityLi is defined as the number
of distinct items occurring inSi that occur at leastε·|Si|
times inSi. Hence, commonality parameterγ measures
the fraction of items frequent enough in one input stream
to be included in a leaf-level synopsis by strategySS2
that are also at least as frequent globally (in the union of
all input streams).

A natural hybrid strategy is to use a linear com-
bination of MinMaxLoadWC and SS2, weighted by
γ. The strategy is as follows: setεi = (1 − γ) ·(
ε1 · (l−1−i)·(d−1)+d

(l−2)·(d−1)+d

)
+ γ ·(ε) for 2 ≤ i ≤ (l − 2), and

εl−1 = (1 − γ) ·
(
ε1 · d

(l−2)·(d−1)+d

)
+ γ ·(ε). We term

this hybrid strategy MinMaxLoadNWC (for non-worst-
case). Commonality parameterγ = 1 implies that lo-
cally frequent items are also globally frequent, and SS2
(modified to useε1 < ε) is a good choice. Conversely,
γ = 0 indicates that MinMaxLoadWC is a good choice.
For0 < γ < 1, a weighted mixture of the two strategies
is best.

2.1.5 Summary
The precision gradient strategies we have introduced

are summarized in Table 3. Sample precision gradients
are illustrated in Figure 3.

3. Experimental Evaluation
In this section we evaluate the performance of our

newly-proposed strategies for setting the precision gra-

9

Table 3: Summary of precision gradient settings studied.

Strategy Description (Section Introduced)

Simple Strategy 1 (SS1) Transmits raw data to root nodeR (1.3)

Simple Strategy 2 (SS2) Reduces data maximally at leaves (1.3)

MinRootLoad Minimizes total load on root in all

cases (2.1.2)

MinMaxLoad WC Minimizes worst-case maximum load

on any link (2.1.3)

MinMaxLoad NWC Achieves low load on heaviest-loaded

link, under non-worst-case inputs (2.1.4)

0

0.0002

0.0004

0.0006

0.0008

0.001

4 3 2 1 0

Tree level (i)

SS1 SS2 MinRootLoad
MinMaxLoad_WC MinMaxLoad_NWC

E
rr

or
 to

le
ra

nc
e

 ε
i

input leaf root

Figure 3: Precision gradients forε = 0.001, γ = 0.5.

dient, using the two naı̈ve strategies suggested in Sec-
tion 1 as baselines. We begin in Section 3.1 by describ-
ing the real-world data and simulated distributed mon-
itoring environment we used. Then, in Section 3.2, we
analyze the data using our model of Section 2.1.4 to de-
rive appropriate parameters for our MinMaxLoadNWC
strategy that is geared toward performing in the presence
of non-worst-case data. We report our measurements of
space utilization on nodeR in Section 3.3, and provide
measurements of communication load in Section 3.4.

3.1 Data Sets

As described in Section 1, our motivating applica-
tions include detecting DDoS attacks and monitoring
“hot spots” in large-scale distributed systems. For the
first type of application, we used traffic logs from Inter-
net2 [18], and sought to identify hosts receiving large
numbers of packets recently. For the second type, we
sought to identify frequently-issued SQL queries in two
dynamic Web application benchmarks configured to ex-
ecute in a distributed fashion.

The INTERNET2 [18] traffic traces were obtained
by collecting anonymized netflow data from nine core
routers of the Abilene network. Data were collected for
one full day of router operation and were broken into
288 five-minute epochs. To simulate a larger number of
nodes, we divided the data from each router in a ran-
dom fashion. We simulated an environment with 216
network nodes, which also serve as monitor nodes.

For the web applications, we used Java Servlet ver-
sions of two publicly available dynamic Web applica-
tion benchmarks: RUBiS [10] and RUBBoS [10]. RU-
BiS is modeled after eBay [11], an online auction site,
and RUBBoS is modeled after slashdot [23], an on-
line bulletin-board, so we refer them asAUCTION and
BBOARD, respectively. We used the suggested config-
uration parameters for each application, and ran each
benchmark for 40 hours on a single node.We then parti-
tioned the database requests into 216 groups in a round-
robin fashion, honoring user session boundaries. We
simulated a distributed execution of each benchmark
with 216 nodes each executing one group of database
requests and also serving as a monitor node.

For all data sets, we simulated an environment with
216 monitoring nodes (m = 216) and a communication
hierarchy of fanout six (d = 6). Consequently, our sim-
ulated communication hierarchy consisted of four lev-
els including the root node (l = 4). We sets = 0.01,
ε = 0.1·s, andε1 = 0.9·ε. Our simulated monitor nodes
used lossy counting [22] in batch mode, whereby fre-
quency estimates were reduced only at the end of each
epoch (in all cases, less than 64KB of buffer space was
used), to create synopses over local streams. The epoch
duration T was set to 5 minutes for the INTERNET2 data
set and 15 minutes for the other two data sets.

3.2 Data Characteristics
Using samples of each of our three data sets, we

estimated the commonality parameterγ for each data
set. Recall that we useγ to parameterize our strategy
MinMaxLoad NWC presented in Section 2.1.4. We ob-
tainedγ values of 0.675, 0.839 and 0.571 for the INTER-
NET2, AUCTION and BBOARD data sets respectively.
Hence, theAUCTION data set exhibited the most com-
monality among all three data sets. Results presented
in Section 3.4 show thatAUCTION indeed has the most
commonality.

3.3 Space Requirement on Root Node
Figure 4 plots space utilization at the root nodeR

as a function of time (in units of epochs), using Algo-
rithm 2a to generate the synopsis, for different values of
the decay parameterα, using two different strategies for
the precision gradient. The plots shown are for the IN-
TERNET2 data set. The y-axis of each graph plots the
current number of counts stored in the(ε, α)-synopsis
SA maintained by the root nodeR. Figure 4a plots syn-
opsis size under our MinMaxLoadWC strategy under
three different values ofα: 0.6, 0.9 and 1. As pre-
dicted by our analysis in [21], whenα < 1 the size of
SA remains roughly constant after reaching steady-state,
whereas whenα = 1 synopsis size increases logarith-
mically with time (similar results were obtained for the

10

0

100

200

300

400

500

600

1 21 41 61 81

Time (epoch #)

co

un
ts

α = 0.6 α = 0.9 α = 1.0

(a) MinMaxLoad WC

0

1000

2000

3000

4000

5000

6000

7000

8000

1 21 41 61 81

Time (epoch #)

co

un
ts

α = 0.6

(b) SS2

Figure 4: Space needed at nodeR to store answer synop-
sisSA.

non-distributed single-stream case). In contrast, when
SS2 is used to set the precision gradient (Figure 4b),
the space requirement is almost an order of magnitude
greater. This difference in synopsis size occurs because
in SS2 frequency counts are only pruned from synopses
at leaf nodes, so counts for all items that are locally fre-
quent in one or more local streams reach the root node.
No pruning power is reserved for the root node, and
therefore no count inSA is ever discarded, irrespec-
tive of theα value. (The same situation occurs if Al-
gorithm 2b is used instead of Algorithm 2a.) This result
underscores the importance of settingε1 < ε in order to
limit the size ofSA, as discussed in Section 2.1.

3.4 Communication Load

Figure 5 shows our communication measurements
under each of our two metrics, for each of our three data
sets, under each of the five strategies for setting the pre-
cision gradient listed in Table 3. First of all, as expected,
the overhead of SS1 is excessive under both metrics.
Second, by inspecting Figure 5a we see that strategy
MinRootLoad does indeed incur the least load on the
root nodeR in all cases, as predicted by our analysis of
Section 2.1.2. Under this metric, MinRootLoad outper-
forms both simple strategies SS1 and SS2 by a factor of

0

500

1000

1500

2000

2500

3000

3500

4000

INTERNET2 AUCTION BBOARD

SS1 SS2 MinRootLoad
MinMaxLoad_WC MinMaxLoad_NWC

247k 10k 296k 132k 20k

co

un
ts

 tr
an

sm
itt

ed
 (

pe
r

ep
oc

h)

(a) Load on root nodeR

0

500

1000

1500

2000

2500

3000

3500

4000

INTERNET2 AUCTION BBOARD

SS1 SS2 MinRootLoad
MinMaxLoad_WC MinMaxLoad_NWC

43k 21k 52k 19k 23k 7k

co

un
ts

 tr
an

sm
itt

ed
 (

pe
r

ep
oc

h)
(b) Maximum load on any link

Figure 5: Communication measurements (“k” denotes
thousands).

five or more in all cases measured. However, MinRoot-
Load performs poorly in terms of maximum load on any
link, as shown in Figure 5b because no early elimination
of counts for infrequent items is performed and, con-
sequently, synopses sent from the grand-children of the
root node to the children of the root node tend to be quite
large. As expected, MinMaxLoadNWC performs best
under that metric on all data sets. For theAUCTION data
set, even though SS2 outperforms MinMaxLoadWC
(to be expected because of the highγ value), our hy-
brid strategy MinMaxLoadNWC is superior to SS2 by
a factor of over two. For the INTERNET2 andBBOARD

data sets, the improvement over SS2 is more than a fac-
tor of three. On the negative side, total communica-
tion (not shown in graphs) is somewhat higher under
MinMaxLoad WC than under SS2 (increase of between
7.5% and 49.5%, depending on the data set).

4. Related Work

Most prior work on identifying frequent items in data
streams [6, 8, 9, 19, 22] only considers the single-stream
case. While we are not aware of any work on maintain-
ing frequency counts for frequent items in a distributed
stream setting, work by Babcock and Olston [5] does ad-

11

dress a related problem. In [5] the problem is to monitor
continuously changing numerical values, which could
represent frequency counts, in a distributed setting. The
objective is to maintain a list of the topk aggregated val-
ues, where each aggregated value represents the sum of
a set of individual values, each of which is stored on a
different node. The work of [5] assumes a single-level
communication topology and does not consider how to
manage synopsis precision in hierarchical communica-
tion structures using in-network aggregation, which is
the main focus of this paper.

The work most closely related to ours is the recent
work of Greenwald and Khanna [16], which addresses
the problem of computing approximate quantiles in a
general communication topology. Their technique can
be used to find frequencies of frequent items to within a
configurable error tolerance. The work in [16] focuses
on providing an asymptotic bound on the maximum load
on any link (our result adheres to the same asymptotic
bound). It does not, however, address how best to con-
figure a precision gradient in order to minimize load,
which is the particular focus of our work.

5. Summary

In this paper we studied the problem of finding fre-
quent items in the union of multiple distributed streams.
The central issue is how best to manage the degree of
approximation performed as partial synopses from mul-
tiple nodes are combined. We characterized this process
for hierarchical communication topologies in terms of
a precision gradient followed by synopses as they are
passed from leaves to the root and combined incremen-
tally. We studied the problem of finding the optimal
precision gradient under two alternative and incompati-
ble optimization objectives: (1) minimizing load on the
central node to which answers are delivered, and (2)
minimizing worst-case load on any communication link.
We then introduced a heuristic designed to perform well
for the second objective in practice, when data does not
conform to worst-case input characteristics. Our experi-
mental results on three real-world data sets showed that
our methods of setting the precision gradient are greatly
superior to näıve strategies under both metrics, on all
data sets studied.

Acknowledgments

We thank Arvind Arasu and Dawn Song for their
valuable input and assistance.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. InVLDB, 1994.

[2] I. Akamai Technologies. Akamai. http://www.
akamai.com/ .

[3] A. Akella, A. Bharambe, M. Reiter, and S. Seshan. De-
tecting DDoS attacks on ISP networks. InPODS Work-
shop on Management and Processing of Data Streams,
2003.

[4] A. Arasu and G. S. Manku. Approximate quantiles and
frequency counts over sliding windows. InPODS, 2004.

[5] B. Babcock and C. Olston. Distributed top-k monitoring.
In SIGMOD, 2003.

[6] M. Charikar, K. Chen, and M. Farach-Colton. Find-
ing frequent items in data streams. InInternational
Colloquium on Automata, Languages and Programming,
2002.

[7] E. Cohen and M. Strauss. Maintaining time-decaying
stream aggregates. InPODS, 2003.

[8] G. Cormode and S. Muthukrishnan. What’s hot and
what’s not: Tracking frequent items dynamically. In
PODS, 2003.

[9] E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Fre-
quency estimation of internet packet streams with limited
space. InEuropean Symposium on Algorithms, 2003.

[10] DynaServer. RUBis and RUBBos.http://www.cs.
rice.edu/CS/Systems/DynaServer/ .

[11] eBay Inc. eBay.http://www.ebay.com .

[12] C. Estan and G. Varghese. New directions in traffic mea-
surement and accounting. InSIGCOMM, 2002.

[13] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Mot-
wani, and J. Ulmann. Computing iceberg queries effi-
ciently. InVLDB, 1998.

[14] P. B. Gibbons and Y. Matias. New sampling-based
summary statistics for improving approximate query an-
swers. InSIGMOD, 1998.

[15] P. B. Gibbons and S. Tirthapura. Estimating simple func-
tions on the union of data streams. InSymposium on
Parallel Algorithms and Architectures, 2001.

[16] M. Greenwald and S. Khanna. Power-conserving com-
putation of order-statistics over sensor networks. In
PODS, 2004.

[17] J. Han, J. Pei, G. Dong, and K. Wang. Efficient com-
putation of iceberg queries with complex measures. In
SIGMOD, 2001.

[18] Internet2. Internet2 Abilene Network. http://
abilene.internet2.edu .

[19] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A sim-
ple algorithm for finding frequent elements in streams
and bags.ACM Trans. Database Syst., 2003.

[20] H.-A. Kim and B. Karp. Autograph: Toward automated,
distributed worm signature detection. InProceedings of
the 13th Usenix Security Symposium, 2004.

[21] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Ol-
ston. Finding (recently) frequent items in distributed
data streams. Technical report, 2004.http://www.
cs.cmu.edu/˜manjhi/freqItems.pdf .

[22] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. InVLDB, 2002.

[23] Open Source Development Network Inc. Slashdot.
http://slashdot.org .

12

