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Abstract

We consider the problem of maintaining frequency
counts for items occurring frequently in the union of
multiple distributed data streams. N& methods of
combining approximate frequency counts from multi-

2. Time sensitivity. Recent data is more important than
older data.

We briefly describe two real-world applications ex-
hibiting the properties just mentioned:
1. Monitoring usage in large-scale distributed sys-

ple nodes tend to result in excessively large data struc- tems. Web content providers using the services of a
tures that are costly to transfer among nodes. To mini- Content Delivery NetworkCDN) like Akamai [2] may
mize communication requirements, the degree of preci_ wish to monitor recent access frequencies of content
sion maintained by each node while counting item fre- served (e.g., HTML pages/images), to keep tabs on cur-
quencies must be managed carefully. We introduce therent “hot spots.” The CDN may serve requests from any
Concept of q)recision gradien‘[or managing precision of a number of cache nodes (Akamal currently has over
when nodes are arranged in a hierarchical communica- 10,000 such nodes); typically requests are served by the

tion structure. We then study the optimization problem
of how to set the precision gradient so as to minimize
communication, and provide optimal solutions that min-
imize worst-case communication load over all possible
inputs. We then introduce a variant designed to perform
well in practice, with input data that does not conform

to worst-case characteristics. We verify the effective-
ness of our approach empirically using real-world data,

and show that our methods incur substantially less com-

munication than né&ve approaches while providing the
same error guarantees on answers.

1. Introduction

The problem of identifying frequently occurring

items in continuous data streams has attracted sig-

nificant attention recently [4, 9, 12, 14, 19, 22]. Po-
tential applications include identifying large network
flows [12], answering iceberg queries [13], computing

cache node closest to the end-user making the request
in order to minimize latency. Hence, keeping tabs on
overall access frequencies requires distributed monitor-
ing across many CDN cache nodes.

2. Detecting malicious activities in networked sys-
tems:
(a) Detecting worms. Previously unknown Inter-

net worms can be detected by discovering that a large
number of recent traffic flows contain the same bit
string [20]. Distributed monitoring can reduce detection
time.

(b) Detecting DDoS attacks.Early detection oDis-

tributed Denial of ServicDDoS) attacks is an impor-
tant topic in network security. While a DDoS attack
typically targets a single “victim” node or organization,
there is generally no common path that all packets take.
In fact, even packets sent to the same destination and
originating from within the same organization may fol-
low different routes, due to so-called “hot potato” rout-

iceberg cubes [17] and finding frequent itemsets and as-ing [3]. This property makes it very difficult to detect

sociation rules [1]. However, nearly all prior work on

distributed denial of service attacks effectively by only

identifying frequent items in data streams and estimat- considering the traffic passing through any single moni-

ing their occurrence frequencies falls short of meeting
the needs of the many real-world applications that ex-
hibit one or both of the following two properties:

1. Distributed streams. Streams originate from multi-

ple distributed sources. Data from all sources needs to
be aggregated to arrive at the final result, as in the dis-

tributed streams model of [15].
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toring point, and motivates a distributed monitoring ap-
proach. Furthermore, techniques that weigh recent data
more than past data may help in early detection of at-
tacks.

1.1 Problem Variants

Both applications outlined above require algorithms
for identifying recently frequent items in the union
of many distributed streams, and estimating the corre-
sponding occurrence frequencies. In general, we can



classify applications of frequent item identification into
four categories, in terms of whether they require (a)
time-sensitivity and (b) distributed monitoring capabil-
ity. We briefly describe each problem variant:

(1) Finding frequent items in a single stream:A sin-

gle node sees an ordered stream of possibly repeating?'€ > 1 ordered data streants, S5, . ..

problem statement that unifies the four variants listed
above.
1.2 Unified Problem Statement

Our problem statement extends that of [22]. There
,S,. Each

items. The goal is to maintain frequency counts of items Stream.S; consists of a sequence of item occurrences

whose frequency currently exceeds a user-supplied frac-

tion of the size of the overall stream seen so far.

(2) Finding recently frequent items in a single
stream: In this variant recent occurrences of items in
the stream are considered more important than older
occurrences of items. At any given time, a numeric
weight is associated with each item occurrence in the
stream that is a function of the amount of time that has
elapsed since the appearance of the item in the stream
A commonly-used weighting schemeesgponential de-
cay [7], in which weights are assigned according to
a negative-exponential function of elapsed time. The
goal is to identify items whose cumulative weighted fre-
guency currently exceeds a user-supplied fraction of the
total across all items, and provide an estimate of the cu-
mulative weighted frequencies of any such items.

(3) Finding frequent items in the union of distributed
streams: In this variant there aren ordered streams
S1,959,...,5n, each produced at a different node in a
distributed environment and consisting of a sequence of
item occurrences. The goal is the same as in Variant
(1), except that item frequencies are computed over the
union of streams;, Ss, ..., S, instead of over a sin-
gle stream.

(4) Finding recently frequent items in the union of
distributed streams: This variant represents the natural
combination of Variants (2) and (3).

Of these four variants, only Variant (1) has been stud-
ied in prior work. (Some work conducted concurrently
with our own [4, 16] also addresses problems quite sim-
ilar to Variants (2) and (3), but there are significant dif-

ferences with our work; see Section 4 for further dis- '

cussion.) Algorithms for time-insensitive frequent item

identification over a single stream include those pre-
sentedin [9,19,22]. It is straightforward to extend these
algorithms to handle Variant (2), although the effect on

with time-stamps: {01, ti1), (02, ti2), €tc. Each item
occurrenceo;; is drawn from a fixed univers& of
items, i.e.,vi,j,0;; € U. Arbitrary repetition of item
occurrences in streams is allowed. Each stregm

is monitored by a correspondirmgonitor node);, of
which there aren. Monitored frequency counts for high
frequency items are to be supplied to a centat node

R, which may or may not be the same as one of the
monitor nodes.

* Let S be the sequence-preserving union of streams
Sy, 8, ..., Sn. Further, let(u) be the frequency of oc-
currence of item, in .S up to the current time, weighted
by recency of occurrence in an exponentially decaying
fashion. Mathematically,

c(u) >

(0i,ti)€S,05=u

tnow —t;
T

ol J

wheret,,.., denotes the current time, amdand T are
user-supplied parameters. The parametee (0, 1]
controls the aggressiveness of exponential weighting.
As a special case, setting = 1 causes all item oc-
currences to be weighted equally, regardless of age (as
in Variants (1) and (3) of Section 1.1). The parameter
T > 0 controls the frequency with which answers are
reported, and also the granularity of time-sensitivity. A
time period ofT’ time units is referred to as @&poch

The objective is to supply, at the end of every epoch
(i.e., everyT time units), an estimaté(u) of c(u)
for items occurring inS whose true time-weighted fre-
quencyc(u) exceeds aupport thresholdl. 7 is de-
fined as the product of a user-supplggoport parame-
ter s € [0,1], and the sum of the weighted item occur-
rences seen so far on all input strealis= ¥,,cyc(u),
i.e., 7 = s-N. The amount of allowable inaccuracy
in the frequency estimategu) is governed by a user-
supplied parametet. It is required thad < ¢ < s
(usually,e < s). Each time an answer is produced, it

the space bounds and error guarantees of the resultingnust adhere to the following guarantees:

algorithms in some cases is nonobvious.

Variants (3) and (4) present a larger challenge. As we
will show, simple adaptations of existing frequent item
identification algorithms to work in a distributed setting
incur excessive communication. In this paper we present
a new framework for distributed frequent item iden-
tification that minimizes communication requirements.
Before outlining our approach we first provide a formal

1. All items whose true time-weighted frequency ex-
ceedss- N are output.

2. No item whose true time-weighted frequency is

less thar(s — €)- N is output.

3. Each estimaté(u) supplied in the answer satisfies:

max {0, c(u) —e-N} < é(u) < c(u).



Output: (e, a)-synopsis whose frequency inf; is small. Periodically, at the

end of every epoch, each/; sends its local synopsis

S; to nodeR. Upon receiving all local synopses, node

R combines them into a single unifigd, 1)-synopsis

(€2, 1)- containing estimated item frequencies for the union of

[ Synopses the contents of all input streams in the most recent
epoch. This synopsis is then combined additively with

E7 \ ooooooo g Y”°p$e$ an(e, «)-synopsis containing estimated weighted counts

level O (Root) @

(€,, 1)-synopses

level 1

'e(‘l’_‘za\(/'eg from previous epochs, after multiplying those synopsis
,,,,,,,, counts by, to generate a nev, «)-synopsis valid for
Input streams: S, S, Sy

the current epoch. Lastly, items whose estimated time-
decayed counts exceed the support thresHolthfter
taking into account the error tolerance) in this synopsis
A useful data structure for storing intermediate an- are output!

swers is an(e, «v)-synopsisof item frequencies over a Clearly, strategy SS1 is likely to incur excessive com-
stream or union of several streams. Ana)-synopsis munication because frequency counts for all items, in-
S consists of a (possibly empty) set of time-weighted cluding rare ones, must be transmitted over the network.
frequency estimates each denotedé(u), where each  Furthermore, the root node must process a large num-

Figure 1: Hierarchical communication structure.

S:¢(u) estimate satisfiesiax {0, c(u) — e-Sin} < S: ber of incoming counts. While strategy SS2 alleviates
¢(u) < c(u). S:n denotes the total time-weighted fre-  |oad on the root node to some extent, in the presence
quency of allitems in the synopsiS{(n = ., c(u)). of a large number of monitor nodes and rapid incom-

The salient property of afx, a)-synopsis is that items  ing streams, the root node may still represent a signifi-
with weighted frequency belowS:n need notbe stored,  cant bottleneck. To further reduce the load on the root
resulting in a reduced-size representation. node, nodes can be arranged in a hierarchical commu-
In the extended technical report version of this pa- nication structure (see Figure 1), in which synopses are
per [21] we show how to extend two frequency count- combined additively at intermediate nodes as they make
ing algorithms that producé, 1)-synopses to produce their way to the root. In this setting SS2 compresses
(e, )-synopses, for anyg € (0, 1], to achieve Variant2  data (by dropping small counts) as much as possible at
of Section 1.1. In particular, we show how to do so each leaf node without violating theerror bound. Con-
for lossy counting22] and the algorithm presented in  sequently no further compression can be performed as
both [9] and [19], which we refer to asajority* count- synopses are combined on their way to the root or at
ing. We analyze the correctness and space requirementshe root node itself, making it impossible to eliminate
of the resulting algorithms. We show that the worst-case counts for items whose frequency exceedsaction of
size of time-sensitive synopses is bounded by a time- one or more individual streams but does not exceed

independent constant. fraction in the union of the streams whose synopses are
) combined at a non-leaf node. Hence, if input streams
1.3 Overview of Approach have different distributions of item occurrences, counts

There are two obvious, simple strategies for adapting fOr items of small frequency may reach the root node
single-stream frequency counting algorithms to a dis- unnecessarily under strategy SS2. There are thus two

tributed setting to achieve Variants 3 and 4 of Sec- Main disadvantages of using SS2:

tion 1.1, and both have serious drawbacks: 1. High communication load on root nod&
SS1 (Simple Strategy 1):Periodically, at the end 2. High space requirement d
of every epoch, each monitor nodé; sends to the root Suppose that, instead of applying maximal synopsis

nodeR the exact frequency counts of all items OCCUrring Compression at the leaf nodES, some Compression capa-
in S; over the lastl” time units. Node? then combines  pjlity is reserved until synopses of multiple incoming
the counts received from the monitor nodes with (possi- streams are combined at non-leaf nodes. If that is done,
bly time-decayed) counts maintained over prior epochs, more aggressive compression can be performed by non-
and outputs items whose overall weighted counts exceed|eaf nodes by taking into account the distributions of
the support threshold'". item frequencies over a larger set of input streams. As a
SS2: Each monitor nodeV/; maintains an(e, 1)-

Q. ; ; INote that in both strategies time-sensitivity is only introduced at
SynopsisS; over the recent portion of its local stream nodeR. Itis not possible to introduce time-sensitivity in data before

Si. |ntUi.tive|y’ the (e, 1_)-synopsis is a reduced SUM- it is sent toR, since all item frequencies in the most recent epoch have
mary of item frequencies that does not include items weight 1 in our formulation.




result, the synopses reaching the root (and the synopsid > 2 denote the number of levels in the hierarchy. We
maintained over previous epochs at the root) will likely number the levels from root to leaf, with the root ndéle
be significantly smaller than in SS2. On the other hand, of the communication hierarchy representing leyégts
the synopses passed from the leaf nodes to their parenthildren representing levé| etc., and the monitor nodes
may be larger than in SS2, which is an undesirable side- My, ..., M,, representing levell — 1). Letd > 2 de-
effect. note the fanout of all non-leaf nodes in the hierarchy,
Indeed, to avoid excessive communication load on i.e., the number of child nodes relaying data to each in-
any particular node or link, the amount of compression ternal node?
performed by each node while creating or combining In this hierarchical communication structure, we as-
synopses must be managed carefully. In hierarchically- sociate with each non-root leveél < i < (I — 1) of
structured monitoring environments we can configure the communication hierarchy an error toleraiagceFor
the amount of compression performed, and conse- correctness it must be ensured that ¢; > ... >
guently, the amount of error introduced at each level so ¢;_; > 0, which gives rise to @recision gradientilong
that synopses follow arecision gradientas they flow the communication hierarchy. (For now we assume that
from leaves to the root. It turns out that worst-case com- all nodes at the same level in the hierarchy use the same
munication load on any link is minimized by using a error tolerance.) Any values af, ..., ¢ satisfying
gradual precision gradient, rather than either deferring the above constraints can be used, and the guarantees of
the introduction of error entirely until data reaches the Section 1.2 will hold. The manner in which the preci-
root (as in SS1), or introducing the maximum allowable sion gradient (i.e¢y, ..., €1 values) is set determines
error at the leaf nodes (as in SS2). Still, the best gradual the size of the synopsis that must be stored persistently
precision gradient to use is not obvious. at R, as well as the amount of communication that must
In Section 2 of this paper we study the problem of be performed during frequency counting. For now, let us
how best to set the precision gradient formally. We first assume that some precision gradient has been decided
show how use of a gradual precision gradient alleviates upon. We return to the issue of how best to set the pre-
storage requirements at the root ndg@le Then, we de-  cision gradient in Section 2.1.
rive optimal settings of the precision gradient undertwo  Given a precision gradient, our procedure for com-
objectives: (a) minimize load on the root noéte and puting time-sensitive frequency counts for items occur-
(b) minimize maximum load on any single communi- ring frequently inS = S; U S, U ... U S, is as fol-
cation link under worst-case input behavior. We then lows. Recall that time is divided into equal epochs of
introduce a variant that aims to achieve low load on all lengthT'. During each epoch, each monitor nadg in-
links in practice, when input data may not exhibit worst- vokes a single-stream approximate frequency counting
case characteristics, by exploiting a small sample of the algorithm, e.qg., [9, 19, 22], using error parameier to
expected input data obtained in advance. generate afe;—1, 1)-synopsis for the portion of stream
S; seen so far during the current epoch. Each moni-

In Section 3 we confirm our analytical findings of de th 4 X .
Section 2 through extensive experimental evaluation on {0F node then sends iig;_,, 1)-synopsis to its parent

three real-world data sets. Our experiments demon- IN the communication hierarchy, which combines the
strate that nize methods of finding frequent items in  (€1—1,1)-Synopses it receives from it children into
distributed streams (SS1 and SS2) can incur high com-& Single (€2, 1)-synopsis using either Algorithm 1a
munication and storage costs compared with our meth- (sh_own below; based on lossy counting [_22]) or Al-
ods. Related work is discussed in Section 4, and we gorlthm 1b (shown below; basgd on majoﬁtycqunt-
summarize the paper in Section 5. ing [9, _19]). The same process is repeated until each of
R’s children combines thd (e, 1)-synopses they re-
P : P ceive into an(ey, 1)-synopsis which is then sent .
2. Finding Frequent Items in Distributed The root nodeR? maintains at all times a single, «)-

Streams synopsisS 4, from which the answer is derived. When,

In this section we show how to maintain approximate at the end of each epock, receivesd (e;, 1)-synopses
time-sensitive frequency counts for frequent items in a from its children, R updatesS, using either Algo-
distributed setting, and study how to set the precision "ithm 2a (based on lossy counting) or Algorithm 2b
gradient so as to minimize communication. Recall that (based on majority counting). Then,? generates the
in our scenarioyn monitor nodes\, Mo, . .., M,, re- new answer to be output for the current epoch by find-
lay data periodically, once eveffy time units, to a cen-  INg itemsinS, whose approximate count 8y exceeds
tral root nodeR. Data may be relayed through a hier- (s —€)-Sa:n.
archy of nodes interposed b"_:‘tween thg monitor nodes  2rqr simplicity we assume all internal nodes of the communication
and the central root node, as illustrated in Figure 1. Let hierarchy have the same fanout.




Algorithm 1: Combine synopses from children (executed by nodes
other than leaves and root)

Inputs: d(e;+1,1)-synopsesSy, Sz, - - -,
Output: single(e;, 1)-synopsisS

Sa

Algorithm 1a:

d
1. SetS:in:= Y Sjn
j=1
d d
2. For eachs € _U S]-, setS:é(u) == > S;:

3. For eachu € 8 setS:é(u) :== 8

Algorithm 1b:

1. ForeactS; € {S1,S2,...,84} and for eachs € S;:

(@) If S:¢(u) exists, seS:é(u) := S:é(u) + S;:
S:é(u); SetS'é(u) = 8j:6(u)

é(u). Else, create

(D) IF|S] > - tletu := argmin{S:é(u)}. Foreach: € S,
ueS
setS.c(u) = S.c(u) — S:e(u); if S:é(u) < 0, eliminate

countS:é(u)

d
2. SetS:n *ZS mn
=

2.1 Setting the Precision Gradient

Our approach is first to set based on space consid-
erations at nod& (using worst-case analysis), and then
set the remaining error tolerance valugs. .., ¢, SO
as to minimize communication.

The value of¢; determines the maximum size of the
synopsisS 4 that must be stored by nodeat all times.

If Algorithm 2b is used by the root node, the size of
Sa is at most—e counts at all times. Otherwise, if
Algorithm 2a is used analysis of the maximum size
of S, is similar to the analysis of [22] and our own
analysis in [21] of time-sensitive lossy counting over a
single-stream, yielding the following results. If no time-
sensitivity is employed( = 1), the size ofS 4 is at most
In((e=ev)Sain) coynts (formula adapted from [22]); for

€—€1
a < 1, the size is at mostite=a)(3+n 2k5+k))
! N €—€q

counts, where3 = [logs1 (1 + 2-)] + 1 andk de-

Algorithm 2: Update the answer synopsis (executed at the root
node R)

Input: d (e1, 1)-synopsesS, ...,Sq, Sa
Output: new answefe, «)-synopsisS 4

Algorithm 2a:

1. SetSa:n = a-Sa:n + E?lej:n

2. Foreachs € S4, setS4:é(u) :== a-Sa:é(u)

3. For eachu € jQISj, setSa:é(u) := Sa:é(u) + E?zlsj:é(u)
4. Foreachu € Sy, setSa:¢é(u) == Sa:é(u) —

(e — 61)'2?=1$j!n

Algorithm 2b:

1. SetSa:n = a-San + zgzlsj;n

2. Foreachu € S4, setS4:é(u) := a-Sa:é(u)

3. For eachsS; € {S1,852,...,84} and for eachu € S;:

(@) If Sa:é(u) exists, setSq:¢é(u) 1= Sa:é(u) + S;:
createS 4 :¢(u); setSa:é(u) := Sj:é(u)

é(u). Else,

! = argmin{Sa:é(u)}. Foreachu €
uUES 4

S, setSa:é(u) := Sa:é(u) — Sa:é(u); if Sa:é(u) <0,

eliminate countS 4 :¢é(u)

Output: (g, o)-synopsis

Root node:
(g4, 1)-synopses

() (k)
(5, 1)-synopses

b &

S, S S

Monitor nodes:

Input streams:

Figure 2: Example topology.

on communication using the following rather contrived
but simple example that highlights the effect clearly; our

experimental results presented later in Section 3 are con-

ducted over real-world data.

2.1.1 Motivating Example

notes the maximum number of item occurrences on any
input stream during any single epoch. As long as stream  Figure 2 shows the communication topology we use
rates remain steady, usiag < ¢, the synopsiss 4 does for our example. We assume Algorithm 1a is used at the
not grow with time after reaching a steady-state size. In intermediate nodes. Suppose the overall user-specified
contrast, where; = ¢ (as in strategy SS2), the space error tolerancee = 0.05, and for simplicity assume
requirement increases with time as we demonstrate em-¢; ~ ¢ = 0.05. Suppose that during one epott0
pirically in Section 3.3. Our approach is to ggtsuch items occur on each df;, Sy, S3 and.Sy, drawn from
that the worst-case size 8f; (under the maximum pos-  a universe of 27 distinct items. For ease of comprehen-
sible stream rat&) is below any space constraint/at sion, we partition the 27 distinct items into three cate-
Given a value foe; (such that; < ¢), the remaining gories: A, B, and C. Category A contains one item and
error tolerance values,, ..., ¢, making up the pre-  categories B and C each contain 13. The frequency of
cision gradient determine the communication load in- occurrence in each input stream of items in each cat-
curred. We illustrate the effect of the precision gradient egory is given in the shaded region of Table 2. The



Table 1: Communication loads in example scenario.

Load on Maximum load on any| Maximum
€2 root nodeR link excluding load on
links to R any link
0 2 27 27
0.03 2 14 14
0.05 54 14 27

Table 2: Link loads in example scenario.

M1—>11and My — I & I - R&
Mz — I My — Iz I — R
€2 category | frequency|| cat. | freq. cat. | freq.
estimate est. est.
0 A 9 A 9 A 8
B 6 B 1
C 1 (© 6
0.03 A 6 A 6 A 8
B 3 C 3
0.05 A 4 A 4 A 8
B 1 Cc 1 B 1
C 1

single item in category A occurs nine times in each of
S1,S52,53 andS,. Each item in category B occurs six
times each inS; and.S3 but only once each it%; and
S4. The opposite is true for items in category C: each
occurs once in each df; and.Ss but six times in each
of Sy andS,.

Table 1 summarizes the effects of varying which
determines the amount of error introduced at level 2
(nodesM; - - M), assuming lossy counting with per-

by e5-100 = 0.03-100 = 3. Hence, estimated counts
transmitted in synopses from the leaf nodés - - M,

to nodesl; andl are less than their actual countsdyy
some counts fall below zero and are eliminated. Once
these synopses are received at nofeand I,, Algo-
rithm la is invoked, in which synopsis counts received
from leaf nodes are first combined additively, and then
decremented bge; — €2)-200 = 0.02-200 = 4. For the
single item in Category A, leaf nodéd; and M, each
supply a count o6 to nodel;, for a combined count of
12, which is then decremented Byfor a final estimated
count of8 to be sent to nod&k. Items in Categories

B and C each have combined counts3ddt 7;, which

fall below zero when decremented bynd thus are not
transmitted taR.

From Table 1 we observe a tradeoff between commu-
nication load on the root nod® and load on links not
connected taR. Furthermore, in this particular case (al-
though not always true in general), of our three example
strategies, the strategy of using a gradual precision gra-
dient (2 = 0.03) is best with respect to all three metrics.
To see why, consider that if error tolerances are made
large for levels of the communication hierarchy close to
the leaves (in the most extreme case, by setting = ¢,
as in SS2), some locally-infrequent items are eliminated
early, thereby reducing communication near the leaves.
However, an undesirable side-effect arises in the pres-
ence of items just frequent enough at one or more leaf
nodes to survive elimination locally, but not frequent
enough overall to exceed the error threshold (as with
items in categories B and C in our example). Counts for

epoch batch processing is used to produce the initial such items may avoid being eliminated until very late
synopses at the leaf nodes. Three measures of com{or, worse, may never be eliminated), thus resulting in
munication load are reported: (1) load on the root node increased communication near the root. Hence, there is

R, (2) maximum load on any link excluding links 9,
and (3) maximum load on any link. In all cases, com-

munication load is measured in terms of the number of

a tradeoff between high communication among non-root
nodes and heavy load on the root ndéle
The best way to set the precision gradient depends

frequency counts transmitted during the epoch. Setting on the application scenario. For some applications the

€2 = 0.05 corresponds to simple strategy SS2 outlined

most important criterion may be to minimize load on

in Section 1.3. (We do not report measurements for SS1, the root nodeR where the answers are generated, which

in whiche; = 0 andey, = 0, since communication load

may need to devote the majority of its resources to other

is higher than under any of our three example strategiescritical tasks for the application, even if that means in-

under all three metrics.)

creased load on the nodes responsible for monitoring

To understand how these numbers come about, con-streams and merging synopses. For other applications,

sider Table 2, which shows, for each settingegf the

it is most important to minimize the maximum load on

frequency estimate for items of each category sent alongany link to ensure that large volumes of input data can

each link. In the case in which, = 0, the esti-
mated counts sent from leaf nod&g - - M, to nodes
I; and I, (shown with shaded background) are exact.
All other values in Table 2 are underestimates. We fo-
cus on the case in whick, = 0.03 to illustrate how

be handled without overloading network resources.
Next, we study the optimization problem of how best
to select the precision gradient and synopsis-merging al-
gorithm to use at each node, in order to achieve one of
two objectives: (1) minimize communication load on

these underestimates are computed. At each leaf nodethe root nodeR, or (2) minimize worst-case commu-

whene; = 0.03 application of the lossy counting algo-
rithm leads to undercounting of each item’s frequency

nication load on the most heavily-loaded link in the hi-
erarchy. Communication load is measured in terms of



the number of frequency counts transmitted during one link, provided buffer space at each node is sufficient to
epoch. We study each optimization objective in turn in store all inputs arriving during one epoch. Then, we de-
Sections 2.1.2 and 2.1.3, and provide optimal algorithm rive the optimal precision gradient when Algorithm 1a

choices and settings for the error toleranges. ., ¢;_1
making up the precision gradient.
world data is unlikely to exhibit worst-case behavior, in

Then, since real-

is used at each node.
We begin with the issue of selecting a synopsis-
merging algorithm.

Section 2.1.4 we propose a variant that seeks to achieve

low load on the most heavily-loaded link, under non-

Observation 1 If, presented with identical inputs, Al-

worst-case inputs for which estimated data distributions gorithm 1b produces outpu and Algorithm 1a pro-

are available.

2.1.2 Minimizing Total Load on the Root Node

Using Algorithm 1a at all applicable nodes and set-
tinge; = 0forall 2 < i < [—1, whereby all decrement-
ing and elimination of synopsis counts is performed by
children of root node?, minimizes communication load
on the root nodeR under any input streams. We term
this strategy MinRootLoad.

Lemma 1 Given a value for,, for any input streams
no values ok,, ..., ¢ satisfyinge; > e2 > ... >
€;—1 and no choice of synopsis-merging algorithm re-
sults in lower total communication load on noftghan
the values, = ¢35 = ... = ¢,_1 = 0 and Algorithm 1a,

assuming buffer space at each node is sufficient to storeproof:

all inputs arriving during one epoch.

Proof: Consider nodeX, an arbitrary child of the
root nodeR. Let Sx denote the union of all streams

arriving at the monitor nodes belonging to the subtree

rooted atX during one epoch. Since &gy, 1)-synopsis
is sent fromX to R, for any setting ofes, ... €1,
counts for all items with frequencyc(v) > €; - |Sx]|
are sent over the link fronX to R (here, |Sx| de-
notes the number of item occurrences39g). Using
€2 = €3 = ... = ¢_1 = 0 and Algorithm l1a at X, it is
easy to see that an iteawill be sent over the link from
X to Ronly if ¢(u) > €;-|Sx|. Therefore, this setting
of es,...,¢_1 along with the use of Algorithm la

results in the smallest possible number of counts sent

over the link fromX to R. Since this property holds for
any child X of R, strategy MinRootLoad minimizes the
total communication load o®, for any input streams.
O

2.1.3 Minimizing Worst-Case Maximum Load on
Any Link
In this section we show how to sef,...,¢_1 and

duces outputS’, thenS :n = &' : n and for all items
u€S,S:é(u) > 8 :é(u).

Observation 2 Consider two sets of inputs to one
of Algorithm 1a or Algorithm 1b. Letnput,
{81,82,...,Sd}, and inputs {S{,Sé,,Sé}
where for allj (1 < j < d), S;:n = S} :n and for
allitemsu € S}, S;:¢(u) > Sj:¢(u). Letinput, lead
to outputS, whereasinput, lead to outputS’. Then
S:n = S":nandforallitemsy € S, S:é(u) > 8" :¢(u).

Lemma 2 At any nodeX use of Algorithm la results in
no higher communication on any link than use of Algo-
rithm 1b.

Follows from Observation 1 and multiple
invocations of Observation 2. |

Lemma 3 Given a choice between Algorithms 1a and
1b under any precision gradient, use of Algorithm la at
each node minimizes the maximum load on any link.

Proof: Follows from Lemma 2. O

It is trivial to extend this result to include leaf nodes,
replacing Algorithm 1a with the original lossy counting
algorithm.

Next, we show how to seb, . .., ¢_; assuming Al-
gorithm 1a is used at each node, and the lossy counting
algorithm is used to generate the local synopsis at each
monitor node. We also assume the buffer each monitor
node uses for lossy counting is large enough to store fre-
quency counts of all items arriving on the input stream
during any one epoch. As we later confirm in Section 3,
this assumption poses no problem in practice, particu-
larly if the epoch duration is small. For our worst-case
analysis, we extend the set of possible inputs in two mi-
nor ways:

1. The occurrence frequency of an item arriving on an

how to select a synopsis-merging algorithm to use at input stream can be a positive real number.
each node so as to minimize the maximum load on any 2. Associated with each itemis a weightw,, € [0, 1].

communication link, in the worst case over all possible

In an epoch, at most one item occurrence per input

input streams. We provide a two step solution. First, we stream can be an occurrence of an item of weight less

show that for any precision gradiedy, . . ., ¢;_1, use of

than 1. The cost of transmitting the count of iterwith

Algorithm 1a at each node minimizes the load on every weightw,, is w,. In a synopsisS:n = > w, -c¢(u).



As will become clear later, both of these enhancements Lemma 4 For fixed7 and A, given any input instance

allow load on a link to be expressed as a continuous
function, which in turn simplifies our worst-case analy-

I, itis possible to find an input instandé € Z,,. such
thatw(I',7,A) > w(I,T,A).

sis. Neither enhancement alters the worst-case input sig-

nificantly. First, during an epoch, at most one item oc-

currence per input stream can have non-integral weight.

Second, any input with real-valued item frequencies can
be transformed into an input with nearly integral fre-
guencies that yields identical results by multiplying each
frequency by a large number, and dividing all answers
produced by the same number.

For notational ease, we transform the problem of set-
ting e, ..., €1 to that of settingA,, ..., A;_1, where
for all 2 <i<l-— 2, A7 =€ — €11 andAl_l = €]—_1-.
It is required thatd; > Oforall2 < ¢ <[ -1, and
thatEﬁ;%Ai < ¢;. A; denotes therecision marginat
level 4, i.e., the difference between the error tolerances
at level: and level + 1.

Let the vectorA = (Aq, As,...,A;_1). Let I de-
note the contents of all input streaifis, . . . , S,,, during
a single epoch. Lef denote the set of all possible in-
stances of .

Given an input/, a communication hierarchy (de-
fined by degre@ and number of level§), and a setting
of the precision gradienf\, let w represent the maxi-
mum load on any link in the communication hierarchy:

w(l,T,A) = kelrirﬁ);:(ﬂ{load(kj)}

Worst-case loadll” is defined as:
W(T,A) = max{w(l,T,A)}

Given a communication hierarch¥y, the objective is to
setA such that the worst-case [0&H (7, A) is mini-
mized.

We first show that it is sufficient to consider a specific
subset of all instances of the general problem for worst-
case analysis. Then we find precision gradient valhes

values that cause the worst-case load under any of thes

instances to be minimal.

There exists a subs#t,. of the set of all input in-
stance¥ such that for all instancese 7 — Z,,.., there
exists an instancé’ € Z,. such that for anyT, A,
w(l',T,A) > w(I,T,A). HenceZ,. denotes the set
of worst-case inputsinstancel is a member ofZ,,.. if
and only if it satisfies each of the following three prop-
erties:

P1:For any two input streams$; andS);, there is no item
occurrence common to bo#y andS;.

P2 For any input streany;, all items occurring inS;
occur with equal frequency.

P3: For any two input streams; and .S;, both the
number of item occurrences, and the number of distinct
items, inS; andS; are equal.

Proof: Our proof of Lemma 4 is rather involved, and is
provided in [21]. O

From Lemma 4 we know it is sufficient to consider
the setZ,,. for worst-case communication load. Hence,
we can rewrite our expression for (7, A) as:

W(T? A) - Irg%ii{w(l7 Ta A)}
Property P3 off,,. implies that the total number of item
occurrences at any leaf node is the same. .eate-
note this number|f;| = nforall 1 < i < m). Let
te(j) denote the total number of item occurrences ar-
riving on streams monitored by at the leaf nodes of a
subtree rooted at a node at leyellt is easy to see that
te(j) = d—1=7) .n, wherel is the number of levels in
the communication hierarchy antis the fanout of all
non-leaf nodes. The next lemma shows that worst-case
inputs induce a high degree of symmetry on the resulting
synopses.

Lemma5 For any input instancd € Z,,., the follow-
ing two properties hold for th@’ (e;, 1)-synopses re-
layed by thei’ level+j nodes to their parents:

1. No item is present in more than one synopsis.

2. The estimated frequency counts corresponding to any
two items, even if present in two different synopses, have
the same value.

Proof: See [21]. a

Due to the high degree of symmetry formalized in
Lemma 5, the count for each item is eliminated (due to

(%)eing decremented and falling below zero) at the same

evel of the communication hierarchy. Let us call this

level z. If all counts are dropped at the leaf level, then

2 = [ — 1. If all counts are retained through the entire

process and are sent to the root ndti¢level 0), then

x = 0. Otherwise, all counts are dropped at some inter-
mediate level <z <[ —2.

The most heavily loaded link(s) are the ones leading
to levelz. To see why, consider that no data is transmit-
ted on subsequent links and previous links have lower
load since data is spread more thinly (in any communi-
cation hierarchyZ’, the number of links between levels
decreases monotonically as data moves from leaves to
the root).

When synopses are combined at nodes of lgvel
using Algorithm 1, the frequency count estimate of
each item is decremented by the quantitf) - A; (let



A; = ¢ — XIZLA,). Hence, the true frequency count
of any item occurring on some input stream must be
C =32 (te(j) - Aj) + 6, whered is a small quan-
tity3. The number of items present in each input stream
is thus 2. Since synopses faf' '~ input streams
are transmitted through a node at lewglthe load on
the most heavily loaded link(s) iB(z) = d'=2=- &
Clearly, the maximum value dk(z) is achieved when

d — 0. The expression foL(x) can be simplified to:

1

L(x) (A;-de—i+1)

= -1
Ej:erl
Now, our expression for the worst-case load on any

link can be reduced to:

W(T,A) = maxl_Q{L(;L’)}

r=0,1,...,
We desire to minimize¥ (7, A) subject to the con-
straints A,..., Ay > 0 andLi2LA; < e It
is easy to show that this minimum is achieved when

LOO)=L(1)=---=L(I-2).

Solving for A,, ..., A;_1, we obtain: A; = € -
%,2 < ¢ < l—2andA;_; = ¢ -
m. Translating to error tolerances, we set
6 = e Uittt forall 2 < i < 1—1. This

setting ofe, . .., ;1 minimizes worst-case communi-
cation load on any link. We term this strategy Min-
MaxLoad WC. Under this strategy, the maximum pos-
sible load on any link isL,. = % counts
per epoch. Lastly, we note that MinMaxLo&WC re-
mains the optimal precision gradient even if nodes of

the same level can have differanvalues. Informally,

counts is delayed until a better estimate of the overall
distribution is available closer to the root, thereby en-
abling more effective pruning. In the opposite extreme,
when all input streams contain identical distributions of
item occurrences, there is no benefit to delaying prun-
ing, and performing maximal pruning at the leaf nodes
(asin strategy SS2) is most effective at minimizing com-
munication. In fact, it is easy to show that SS2 is the op-
timal strategy for minimizing the maximum load on any
link when all input streams are comprised of identical
distributions; we omit a formal proof. (Note, however,
that SS2 still incurs a high space requirement on the root
nodeR since it setg; = e.)

We posit that most real-world data falls somewhere
between these two extremes. To determine where ex-
actly a data set lies with regard to the two extremes,
we estimate the commonality between input streams
S1,...,Sm by inspecting an epoch worth of data from
each stream. We computecemmonality parameter
ve0,1]asy = &5 %, whereG, and L; are
defined over strean; as follows. The quantityz; is
defined as the number of distinct items occurringbjn
that occur at least|.S;| times inS; and also at least|S|
timesinS = S;USyU---US,,, where|S| denotes the
number of item occurrences ifi during the epoch of
measurement. The quantify is defined as the number
of distinct items occurring it%; that occur at least: |.S;|
times inS;. Hence, commonality parametemeasures
the fraction of items frequent enough in one input stream
to be included in a leaf-level synopsis by strategy2
that are also at least as frequent globally (in the union of
all input streams).

A natural hybrid strategy is to use a linear com-
bination of MinMaxLoadWC and SS2, weighted by

since with worst-case inputs all incoming streams have V- 1he strategy is as follows: set = (1 —v)-

identical characteristics, maximum link load cannot be
improved by using non-uniformvalues for nodes at a
given level; we omit a formal proof for brevity.

2.1.4 Good Precision Gradients for Non-Worst-Case
Inputs

Real data is unlikely to exhibit worst-case character-

(61 :

-1 =(1-7) (El'm) + v-(e). We term
this hybrid strategy MinMaxLoadNWC (for non-worst-
case). Commonality parameter= 1 implies that lo-
cally frequent items are also globally frequent, and SS2
(modified to use; < €) is a good choice. Conversely,

%) +-(e)for2 <i < (I—2),and

istics. Consequently, strategies that are optimal in the v = 0 indicates that MinMaxLoadVC is a good choice.

worst case may not always perform well in practice. In
terms of minimizing the maximum communication load

on any link, the worst-case inputs are ones in which the
set of items occurring on each input stream are disjoint.

When this situation arises, a gradual precision gradient
is best to use (as shown in Section 2.1.3). Using a grad-

ual precision gradient, some of the pruning of frequency

3Recall that we allow the frequency of an item to be a real number.
4More precisely, each stream contajrs | items of weight each,
and one item of weight= Z — | &]. Note that each input stream

contains at most one item with weight less than 1, as stipulated earlier.

For0 < ~v < 1, a weighted mixture of the two strategies
is best.

2.1.5 Summary

The precision gradient strategies we have introduced
are summarized in Table 3. Sample precision gradients
are illustrated in Figure 3.

3. Experimental Evaluation

In this section we evaluate the performance of our
newly-proposed strategies for setting the precision gra-



Table 3: Summary of precision gradient settings studied.
Strategy

For the web applications, we used Java Servlet ver-
sions of two publicly available dynamic Web applica-
Simple Strategy 1 (SS1) Transmits raw data to root node (1.3) tion benchmarks: RUBIS [10] and RUBBoS [10]. RU-
Simple Strategy 2 (SS2) Reduces data maximally at leaves (1.3)  BiS is modeled after eBay [11], an online auction site,

Description (Section Introduced) ‘

MinRootLoad Minimizes total load on root in all and RUBBoS is modeled after slashdot [23], an on-
cases (2.1.2) line bulletin-board, so we refer them ascTioN and

MinMaxLoad WC Minimizes worst-case maximum load BBOARD, respectively. We used the suggested config-
on any link (2.1.3) uration parameters for each application, and ran each

MinMaxLoad NWC Achieves low load on heaviest-loaded | benchmark for 40 hours on a single node.We then parti-

link, under non-worst-case inputs (2.1.4) tioned the database requests into 216 groups in a round-
robin fashion, honoring user session boundaries. We
simulated a distributed execution of each benchmark

—SSs1 - SS2 MinRootLoad

—& MinMaxLoad_WC -~ MinMaxLoad_NWC with 216 nodes each executing one group of database
input leaf  Treelovel() root requests and also serving as a monitor node.
0 ‘ For all data sets, we simulated an environment with
& 40002 216 monitoring node_sm =216) and a communicat?on
g hierarchy of fanout sixd = 6). Consequently, our sim-
§00004 ulated communication hierarchy consisted of four lev-
- els including the root nodd (:_ 4). We sets = 0.01,
ué’J e = 0.1-s, ande; = 0.9-e. Our simulated monitor nodes
0.0008 - used lossy counting [22] in batch mode, whereby fre-
quency estimates were reduced only at the end of each

0.001 L L

epoch (in all cases, less than 64KB of buffer space was
Figure 3: Precision gradients fore = 0.001, v = 0.5. used), to create synopses over local streams. The epoch
duration T was set to 5 minutes for theTERNET2 data

dient, using the two rige strategies suggested in Sec- set and 15 minutes for the other two data sets.
tion 1 as baselines. We begin in Section 3.1 by describ-

ing the real-world data and simulated distributed mon- 3.2 Data Characteristics
itoring environment'we used. Then, in Sgction 3.2, we Using samples of each of our three data sets, we
analyze the _data using our model of S_ectlon 2.1.4to de- ggtimated the commonality parametefor each data
rive appropriate parameters for our MinMaxLoBvC set. Recall that we use to parameterize our strategy
strategy that is geared toward performing in the presence pjinMaxLoad NWC presented in Section 2.1.4. We ob-
of non-worst-case data. We report our measurements Oftainedy values of 0.675, 0.839 and 0.571 for therEr-
space utilization on nod& in Section 3.3, and provide NET2, AUCTION and BBOARD data sets respectively.
measurements of communication load in Section 3.4. Hence, theaUCTION data set exhibited the most com-
monality among all three data sets. Results presented
3.1 Data Sets in Secti)én 3.4 sghow thatucTioN indeed has thg most
As described in Section 1, our motivating applica- commonality.
tions include detecting DDoS attacks and monitoring .
“hot spots” in large-scale distributed systems. For the 3-3 Space Requirement on Root Node
first type of application, we used traffic logs from Inter- Figure 4 plots space utilization at the root noRe
net2 [18], and sought to identify hosts receiving large as a function of time (in units of epochs), using Algo-
numbers of packets recently. For the second type, werithm 2a to generate the synopsis, for different values of
sought to identify frequently-issued SQL queries in two the decay parametes; using two different strategies for
dynamic Web application benchmarks configured to ex- the precision gradient. The plots shown are for the |
ecute in a distributed fashion. TERNET2 data set. The y-axis of each graph plots the
The INTERNET2 [18] traffic traces were obtained current number of counts stored in the «)-synopsis
by collecting anonymized netflow data from nine core S, maintained by the root nod®. Figure 4a plots syn-
routers of the Abilene network. Data were collected for opsis size under our MinMaxLoad/C strategy under
one full day of router operation and were broken into three different values ofi: 0.6, 0.9 and 1. As pre-
288 five-minute epochs. To simulate a larger number of dicted by our analysis in [21], whem < 1 the size of
nodes, we divided the data from each router in a ran- S remains roughly constant after reaching steady-state,
dom fashion. We simulated an environment with 216 whereas whem = 1 synopsis size increases logarith-
network nodes, which also serve as monitor nodes. mically with time (similar results were obtained for the
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SisSa. thousands).

non-distributed single-stream case). In contrast, when

SS2 is used to_ set the. precision gradient (Figure.4b), Load performs poorly in terms of maximum load on any
the space requirement is almost an order of magnltude“nk, as shown in Figure 5b because no early elimination

greater. This difference in synopsis size occurs because

i1 SS2 frequency counts are onlv pruned from Svno Sesof counts for infrequent items is performed and, con-
4 y 1y p ynop sequently, synopses sent from the grand-children of the
at leaf nodes, so counts for all items that are locally fre-

Lent in one or more local streams reach the root node root node to the children of the root node tend to be quite
ﬁl runin wer is reserved for the root nod nd'large. As expected, MinMaxLoadWC performs best

O pruning power IS reserved for the root node, and e that metric on all data sets. For gwcTioN data
therefore no count iS4 is ever discarded, irrespec-

tive of thea value. (The same situation occurs if Al- set, even though SS2 outperforms MinMaxL

gorithm 2b is used instead of Algorithm 2a.) This result t()trc: dbs?trg)t(g eCt,a?n&Zf(a;_?ead\?\jvtgeishsﬂwsnﬁ)ioogrsglg
underscores the importance of settiag< ¢ in order to 9y P y

limit the size ofS 4, as discussed in Section 2.1 a factor of over two. For theMTERNETZ- andBBOARD
’ o data sets, the improvement over SS2 is more than a fac-

. tor of three. On the negative side, total communica-
3.4 Communication Load tion (not shown in graphs) is somewhat higher under

Figure 5 shows our communication measurements MinMaxLoad WC than under SS2 (increase of between
under each of our two metrics, for each of our three data 7-5% and 49.5%, depending on the data set).
sets, under each of the five strategies for setting the pre-
cision gradient listed in Table 3. First of all, as expected, 4. Related Work
the overhead of SS1 is excessive under both metrics.
Second, by inspecting Figure 5a we see that strategy Most prior work on identifying frequent items in data
MinRootLoad does indeed incur the least load on the streams [6, 8,9, 19, 22] only considers the single-stream
root nodeR in all cases, as predicted by our analysis of case. While we are not aware of any work on maintain-
Section 2.1.2. Under this metric, MinRootLoad outper- ing frequency counts for frequent items in a distributed
forms both simple strategies SS1 and SS2 by a factor of stream setting, work by Babcock and Olston [5] does ad-

five or more in all cases measured. However, MinRoot-
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dress arelated problem. In [5] the problem is to monitor
continuously changing numerical values, which could
represent frequency counts, in a distributed setting. The
objective is to maintain a list of the tdpaggregated val-

ues, where each aggregated value represents the sum of

a set of individual values, each of which is stored on a
different node. The work of [5] assumes a single-level
communication topology and does not consider how to
manage synopsis precision in hierarchical communica-
tion structures using in-network aggregation, which is
the main focus of this paper.

The work most closely related to ours is the recent
work of Greenwald and Khanna [16], which addresses
the problem of computing approximate quantiles in a
general communication topology. Their technique can
be used to find frequencies of frequent items to within a
configurable error tolerance. The work in [16] focuses
on providing an asymptotic bound on the maximum load
on any link (our result adheres to the same asymptotic
bound). It does not, however, address how best to con-
figure a precision gradient in order to minimize load,
which is the particular focus of our work.

5. Summary

In this paper we studied the problem of finding fre-
guent items in the union of multiple distributed streams.

The central issue is how best to manage the degree of

approximation performed as partial synopses from mul-

tiple nodes are combined. We characterized this process

for hierarchical communication topologies in terms of
a precision gradient followed by synopses as they are
passed from leaves to the root and combined incremen-
tally. We studied the problem of finding the optimal
precision gradient under two alternative and incompati-
ble optimization objectives: (1) minimizing load on the
central node to which answers are delivered, and (2)
minimizing worst-case load on any communication link.
We then introduced a heuristic designed to perform well
for the second objective in practice, when data does no
conform to worst-case input characteristics. Our experi-

t

mental results on three real-world data sets showed that

our methods of setting the precision gradient are greatly
superior to n&ve strategies under both metrics, on all
data sets studied.
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