Best-Effort Cache Synchronization with Source Cooperatioh

Chris Olston and Jennifer Widom
Stanford University
{olston, widon} @cs.stanford.edu

Abstract

In environments where exact synchronization between source data objects and cached copies
is not achievable due to bandwidth or other resource constraiaie,(out-of-date) copies are
permitted. It is desirable to minimize the overdiVergencebetween source objects and cached
copies by selectively refreshing modified objects. We call the online process of selecting which
objects to refresh in order to minimize divergenwmest-effort synchronizationln most ap-
proaches to best-effort synchronization, the cache coordinates the process and selects objects
to refresh. In this paper, we propose a best-effort synchronization scheduling policy that ex-
ploits cooperation between data sources and the cache. We also propose an implementation of
our policy that incurs low communication overhead even in environments with very large num-
bers of sources. Our algorithm is adaptive to wide fluctuations in available resources and data
update rates. Through experimental simulation over synthetic and real-world data, we demon-
strate the effectiveness of our algorithm, and we quantify the significant decrease in divergence
achievable with source cooperation.

1 Introduction

Data caching(or replication) is a common technique for reducing the latency to access data from remote
sources. ldeallycached copie®f data objects are kept transactionally consistent withsth@ce copies

at all times. In practice, transactional consistency is often sacrificed due to the complexity and cost of the
required protocols [PL91]. Furthermore, even propagating all updates in a nontransactional fashion may
be infeasible: data collections may be large or frequently updated, and network or computational resources
may be limited.

Situations where exact cache consistency is infeasible can be found in many contexts. As one example,
consider sensors that continuously monitor environmental conditions such as sound, wind, vibration, etc.
Due to recent advancements, it should soon be possible and relatively cheap to deploy large humbers of
battery-powered sensors that communicate via wireless links [EGPS01, KKP99, PK0O0]. Since many thou-
sands of sensors may be involved, sensor readings may change frequently, and available bandwidth tends to

be low in wireless environments, it is not generally possible to propagate every new sensor measurement to

*This work was supported by the National Science Foundation under grant [1S-9817799 and by a National Science Foundation
graduate research fellowship.

cache

oDooooooono
ooooooooo
ooooooooo

(stale) copies of
source data objects

limited
resources

ooooooooo ooobooooooo oooooooood

data objects data objects data objects

source sour ce sour ce

Figure 1: Stale caching architecture.

a central cache for monitoring. Similar problems arise in other environments that use wireless or other low-
bandwidth links to maintain replica consistency, such as when volatile data is cached on portable devices
such as PDASs.

Even in environments that use conventional wired networking, exact cache consistency may still be
infeasible due to large quantities of rapidly changing data. For example, in video conferencing applications
(e.g, [Dor95]), the viewer screen can be thought of as a cache that maintains copies of video data generated
by remote cameras. Since streaming video data can be very large, it often becomes necessary to allow some
staleness on parts of the screen. As a final example, consider the problem of indexing the World-Wide
Web. Keeping an up-to-date Web index requires maintaining information about the latest version of every
document. Currently, Web indexers are unable to maintain anything close to exact consistency due to an
astronomical number of data sources and data that is constantly changing.

In environments such as these, where there are not sufficient network or computational resources to
keep up with the data as it changes, it is simply not possible to keep the cache synchronized with remote
sources. The result &ale cachingin which the cache is permitted to store stale, or out-of-date, copies of
source data, as illustrated in Figure 1. In stale caching environments, it is desirable to minimize the incon-
sistency between data in the cache and the remote source data. We use thestezffort synchronization
for the process of selectively refreshing cached data to maintain the cache as close as possible to exactly
synchronized with the sources, in the presence of limited resources.

Note that we use the tergacheloosely. We assume the cache contains replicas of all source objects
of interest (or data derived from source objects, such as an index), and we deal only with the problem of

keeping the values of the cached objects up-to-date.

1.1 Source Cooperation

In best-effort synchronization, some policy determines when cached data objects shaftddbed (Re-

member we are assuming that due to limited resources it is not possible to refresh every object on every up-
date.) In most refresh scheduling policiegy, [BP98, CGMOO0Db], the cache plays the central role: refreshes

are scheduled entirely by the cache and implemented by polling the sources, without sources participating in
the scheduling. These policies must try to predict which source data objects have changed, and by how much
[CGMOOb, GEO2]. If source data objects do not behave in predictable ways, the refresh schedule is likely
to result in poor synchronization. Since the best synchronization policy obviously depends on how source
data objects change, improved synchronization can be achieved through some level of source participation
in the refresh scheduling process.

Aside from enabling better synchronization between sources and the cache, there are other, more practi-
cal, advantages of source cooperation in synchronization scheduling. First, sources can have a say in weights
given to different data objects when prioritizing them for refresh. Moreover, sources can exercise control
over the portion of their own bandwidth devoted to cache synchronizatigngiving priority to servicing
local user queries as they occur and participating in cache synchronization with any spare bandwidth. In
contrast, synchronization policies determined entirely by the cache can easily under-utilize available source
bandwidth, leading to poor synchronization, or over-utilize source bandwidth, causing a degradation of lo-
cal processing. This problem is exacerbated when the resources available for synchronization fluctuate over

time, e.g, due to sharing network bandwidth, CPU cycles, or disk 1/0O’s with bursty user requests.

1.2 Overview of Approach

In this paper we study the problem of best-effort cache synchronization with source cooperation. We focus
on stale caching environments with a large number of sources that synchronize their data with a shared
cache. (Recall that we assume the cache contains replicas or derivations of all data objects ofiiaterest,
we are not considering cache replacement algorithms.) The resources for cache synchronization may be
limited at a number of points. First, the capacity of the link connecting the cache to the rest of the network,
the cache-sidebandwidth, may be constrained. Second, the capacity of the link connecting each source to
the rest of the network, theource-side bandwidthmay also be constrained and may vary among sources.
Moreover, all bandwidth capacities may fluctuate over time if traffic is shared with other applications. We
assume a standard underlying network model where any messages for which there is not enough capacity
become enqueued for later transmission.

While we cast our approach as coping with limited network resources (bandwidth), our techniques apply

more generally to other types of resource limitations. For example, sources may have limited computational

resources available for cache synchronization due to local processing load. Caches also may have limited
resources for incorporating updates, especially if they perform expensive processing such as data cleaning,

aggregation, or index maintenance.

1.2.1 Prioritizing Refreshes

In stale caching, the value of an object at the source and cache may differ. This difference idigalied

gence and it can be measured using a number of possible metrics including Boolean freshness (up-to-date or
not), number of changes since refresh, or value deviation. (We define these metrics formally in Section 3.1.)
The best metric to use depends on the data and the caching objectives. Regardless of the divergence metric
used, the goal in best-effort synchronization is to minimize the (weighted) sum of the divergence values for
each source data object and its cached copy. Weights may be assigned to give certain objects preferential
treatment based on criteria such as importance or frequency of access. The choice of divergence metric and
weighting scheme should reflect the objectives of the caching environment since those parameters directly
affect the synchronization policy. We will revisit these issues in detail later in the paper.

If enough resources are available it is possible to achieve near-zero overall divergence, or even exact
transactional consistency if sources will participate in transaction protocols. In environments with lim-
ited resources, since not all changes can be propagated, refreshes should be prioritized based on the diver-
gence metric and weighting scheme. Surprisingly, we will see that prioritizing refreshes based solely on
the weighted divergence between source and cached copies of data objects does not generally lead to good
refresh schedules. We establish a priority policy that achieves much better synchronization. We describe

and justify our policy in Sections 3 and 4, respectively.

1.2.2 Coordinating Refreshes Across Multiple Sources

While a good priority policy is an important first step toward best-effort synchronization, it alone is not
sufficient. When multiple sources are synchronizing their objects with a shared cache, as in Figure 1, they
must share refresh resources such as cache-side bandwidth. Hence, refreshes should be prioritized across all
the sources. In the kinds of environments we are considering, sources are not typically aware of the state of
the content at other sources. Furthermore, no single entity can keep track of the overall priority order across

a large number of sources.

We propose a simple and effective algorithm for scheduling refreshes from a large number of sources
that incurs low communication overhead while achieving synchronization that closely follows the global
priority order. The idea is for each source to prioritize its own modified objects locally based on the overall
priority policy. Ideally, as we will see later, all modified objects having priority above a gladfedsh

threshold7 should be refreshed. However, since the best refresh thregholdries over time due to

cache

ooooooooo
ooooooooo
ooooooooon
(stale) copies of
source data objects

cache-side

| positive positive

refreshes ! ... feedback
refreshes - feedback

. ~"" positive . w S

source-side ‘ feedback source-side j source-side
bandwidth § ()| : bandwidth B (t)| | bandwidth B ()| :
' o &

é“ thresholdt, E« thresholdt, é“ thresholdt,
modified data objects modified data objects modified data object
in priority order in priority order in priority order

source source source

Figure 2: Our approach to best-effort synchronization.

fluctuating available bandwidth and divergence rates, measuring the best valuarfidrbroadcasting it to

all sources is impractical, especially when the number of sources to coordinate is very large and bandwidth
is limited. Consequently, each source must maintain its own independent copy of the refresh threshold, and
some protocol for loosely regulating the individual thresholds needs to be in place.

One way to regulate and coordinate the source refresh thresholds without incurring too much communi-
cation overhead is to rely on occasional feedback messages from the cache requesting that sources raise or
lower their thresholds. Relying on negative feedback messages from the cache to raise thresholds (in order
to reduce the refresh rate) is dangerous since network resources are already overutilized, so unrecoverable
network flooding situations can result. Instead, we propose an adaptive threshold-setting algorithm based on
positive feedback. In our algorithm, sources by default gradually increase their thresholds, to conservatively
reduce the refresh rate in case there is not enough bandwidth. If the cache detects a surplus of bandwidth,
it sends positive feedback messages instructing sources to decrease their thresholds thereby increasing the
overall refresh rate to fill the surpldsOur general approach is illustrated in Figure 2.

A detailed presentation and justification of our threshold-setting algorithm is given in Section 5. In Sec-
tion 6, we show experimental evidence that our algorithm achieves low overall divergence without incurring
excessive communication overhead, even in environments with a large number of sources and fluctuating
resources and data update rates. We also demonstrate quantitatively the advantages of source coopera-
tion in refresh scheduling over having the cache determine the synchronization schedule unilaterally as in
[CGMOO0b].

We differ from the control theory use of feedback terminology, but we feel that “positive feedback” is a good term for increasing
the refresh rate.

1.2.3 Making Cooperation Appealing

A global priority policy, as we have been assuming, may not be realistic in environments where sources do
not agree on the same policy for refresh priority. Moreover, a cache may have criteria for what to maintain
up-to-date that conflicts with the objectives of some soureas, when the sources and cache belong to
different administrative domains as is common on the Web. In Section 7 we describe how to extend our
synchronization techniques to reconcile the potentially different objectives among sources and between
sources and the cache.

Since patrticipating in refresh scheduling may be taxing on the computational resources of the sources, in
Section 8 we outline lightweight mechanisms for sources to monitor the priorities of modified data objects
and schedule refreshes. Techniques for incorporating changes propagated from sources into a cache without

disrupting computation at the cache have already been proposed.fAGMK95, AKGM96].

1.2.4 Bounding Divergence

Finally, in Section 9 we propose a way to provide guaranteed upper bounds on divergence in some certain
environments. We present a synchronization scheduling policy that minimizes the average upper bound on
divergence to suit applications that require strict guarantees about divergence. By contrast, the rest of this
paper addresses the related but distinct problem of minimizing the actual divergence, whose value may be

unknown to applications accessing cached data.

2 Related Work

A wide variety of work in the literature is related to best-effort cache synchronization to some extent. We
outline some of the most relevant work here.

Many stale caching and replication strategies have been proposed. The basic idea is to abandon strict
consistency protocols and instead resort to asynchronous propagation of all database exgg D99,
GL93, PL91], in order to reduce query response time and improve availability. However, all previous ap-
proaches we know of do not consider environments in which there is not enough bandwidth to propagate all
updates. In limited-bandwidth environments, it sometimes becomes necessary to wait for several updates to
an object to accumulate before refreshing, and to explicitly reorder the refreshes to minimize error, as we
propose in our approach.

Reference [LRO1] describes strategies for ordering propagations of complex updates from a single
source to a cache. However, only the freshness divergence metric is considered, and the focus is not on
environments lacking the resources to propagate all updates. Furthermore, [LRO1] does not address the

problem of coordinating refreshes from multiple data sources. ICthe&eeMevideo conferencing project

[Dor95], an application-specific refresh priority scheme is established, but this work also does not address
the problem of coordinating refreshes from multiple data sources.

Theoretical algorithms for merging objects from multiple sources in priority order have been proposed
in the parallel priority queue research areay, [BTZ98, San98]. These algorithms were designed for use
in parallel computing environments with high communication throughput, and consequently require tight
communication among participants. By contrast, we focus on widely distributed environments with limited
communication resources. Also, network flow-control techniques such as TCP/IP have a similar flavor to our
refresh coordination algorithm. However, these techniques alone are not sufficient to address our problem
because they typically do not address application-level semantics such as an overall priority ranking that is
independent of flow rates and queue sizes.

There has been a great deal of work on scheduling events in real-time systems (see [Ram93] for a
survey). Most of this work focuses on scheduling events that have strict completion deadlines, and the goal
is to minimize the fraction of events that miss their deadlines. By contrast, we consider an environment in
which there are no deadlines, and the goal is instead to minimize the time-average of a potentially continuous
inconsistency metric.

Finally, several techniques have been proposed to address the problem of minimizing bandwidth uti-
lization and/or query latency in the presence of constraints on the age or accuracy of cachedydata,
[CKO1, DKPT01, OLWO01, OWO00, UNRO1, YVO0O]. In this paper we address what is essentially the dual

of that problem: maximizing the accuracy of cached data given constraints on available bandwidth.

3 Basis for Best-Effort Scheduling

In this section, we begin by formalizing our notion of divergence, then use the formal definition as a basis

for a priority policy for best-effort synchronization scheduling.

3.1 Divergence

Consider a source data objegtthat undergoes updates over time. LEO) represent the (possibly stale)
cached copy 0D. Let V (O, t) represent the value @? at timet. The value ofO remains constant between
updates. LelV/'(C(0),t) represent the value @f'(O) at timet. ObjectO can berefreshedat timet,., in
which case a message is sent to the cache, and the cached value is set to equal the current source value:
V(C(0),t,) = V(O,t,). (We assume that the time required to propagate a modified object from a source
to the cache is small enough to be neglected.)

In general, let thelivergencebetween a source objetand its cached copg (O) at timet be given by

a numerical functiorD (O, t). When a refresh occurs at timg the divergence value is zer®(O, t,.) = 0.

Between refreshes, the divergence value may become greater than zero, and the exact divergence value
depends on how the source copy relates to the stale cached copy. There are many different ways to measure
divergence that are appropriate in different settings. We define divesyence metrichkere, but the scope

of our work is not limited to these specific metrics.

1. Staleness D4 (O,t) = 0 whenV (C(0),t) = V(O,t); Ds(O,t) = 1 whenV (C(0),t) # V(O,t).2

2. Lag: D;(O,t) = wwhenC(O) isu updates behin@, i.e,, O has been updatedtimes since the last

refresh.

3. Value Deviation: D,(0,t) = A(V(0,t),V(C(0),t)), whereA(V;,V,) can be any nonnegative

function quantifying the difference between two versions of an object.

When the value deviation metric is appropriate, it usually corresponds to an application-specific function
that models some cost associated with the discrepancy between the data value stored at the cache and the
actual data value. If the data being cached were Web documents, for exaxiple V) might be based
on Information Retrieval measures such as TF/IDF vector-space similarity [SY73]. In the CU-SeeMe video
conferencing application [Dor95] mentioned in Section 2, refreshes are prioritized based on the deviation
between individual regions of the recorded image and their counterparts on remote viewer screens. The
CU-SeeMe value deviation functioft(V7, 15) is based on the sum of the absolute value of the individual
pixel differences, with an additional weight for differences that occur in nearby pixels. In other applications
such as stock market monitoring that have single numerical values, the simple value deviation function
A(Vy,Va) = |Vi — V4| is often suitable. Once again, note that our techniques are independent of the exact

value deviation function or divergence metric used.

3.2 Weights

In many applications, it is desirable to bias the synchronization policy toward refreshing certain important
objects more aggressively than othdmsportancevalues for objects might be assigned according to various
criteria, including but not limited to data quality, content provider authoetg,(PageRank [BP98]), and
financial considerations. Our approach is independent of the exact importance criteria, but we assume a
numerical importance functiah(O, t) that may or may not change over time. In the special case where all
objects have equal importanc®0, t) = 1 for all objects at all times.

In addition to having differing importance, objects also may differ in the frequency with which they are

accessed. Theopularity of an object refers to some measure of the probability of access, possibly weighted

2Staleness is the reverse of Freshnessiness = 1 — freshness), which is commonly used in the literature.g, [CGMOOb,

LRO1]). We use staleness so that the larger value corresponds to greater divergence.

by the importance of the person or application that tends to access the data. The popularity of af object
at timet is denotedP (O, t). In many applications it is important to account for popularity so that scarce
resources are used for synchronizing data that will be accessed frequently, maximizing the likelihood of
accessing closely synchronized data [LRO1].

From importance and popularity we derive an ovenadightV (O, t) for refresh assigned to an object
O attimet:

W(0,t) = Z(0,t) - P(O,1t)

There could be other multiplicative factors contributing®@O, t) besides importance and popularity, based

on other aspects relevant to cache synchronization. For example, one could incorporate detailed specifica-
tions of the objectives of users as in [CFZ01]. For now, we only assume that sources and the cache agree on
and are aware of the weighting scheme to be used for best-effort synchronization. In Section 7, we address

the possibility of conflicting interests among different sources and between sources and the cache.

3.3 Priority Scheduling

The objective of best-effort synchronization is to minimize the sum of the time-averaged divergence of each
object, under the constraint of limited resources [CGMOOb]. For the staleness divergence metric, this ob-
jective is equivalent to minimizing the (possibly weighted) probability of accessing stale data [LR0O1]. We
begin by studying a theoretical situation in which all sources and the cache share knowledge about each
others’ state without using network resources, and sources are aware of available cache-side bandwidth. By
first considering this idealized situation, we establish an “ideal” scheduling policy for best-effort synchro-
nization, on which we can base our practical techniques.

Assuming for the moment that each source is aware of the state of objects at all other sources, we assert

that objects should be prioritized globally for refreshing according to the following formula:

tnmu
P(Ou tnow) = (tnow - tlast(i)) : D(Oza tnow) : W(Ou tnow) - / D(Ozu t) . W(Oza t) dt

blast (i)

P(O;, tnow) is therefresh priority of objectO; at timet,,,,. It is a function of the time ;) whenO;
was last refreshed, the current timg,,, and the divergence and weight@f during the interval between
tiast(s) @Ndty,e,. The first term is the weighted product of the time interval since the last refresh and the
current divergence. The subtracted term is the weighted area under the divergence curve during the interval
since the last refresh. The overall priority functiB®O;, t,,..,) captures the area above the divergence curve
between,,; ;) andt,..,, properly weighted.

The two graphs in Figure 3 depict the refresh priority for two different objects, with time on the x-axis

and divergence on the y-axis. Recall tha}; denotes the time of last refresh. Objéltremained relatively

Object O, Object O,
\ N\

tiast time t how tiast time t now

divergence

divergence
7227

Figure 3: Two divergence graphs showing priority.

unchanged until recently, then suddenly underwent a significant change. Objecderwent significant
changes immediately following the last refresh, but has not changed much since then. In each of the graphs,
the area of the shaded region is the unweighted refresh priority for that object. Assuming the two objects
are assigned same weight; will be assigned higher priority for refresh at timg,,, thanOs.

Intuitively, higher priority is assigned when refreshing an object is likely to have more long-term benefit
in terms of divergence reduction. Take objéltin Figure 3, which diverged slowly after the last refresh.
Assuming it is likely to again diverge slowly if another refresh is performed, a significant reduction in
time-averaged divergence can be achieved by refreshing it immediately rather than leaving it with high
divergence. On the other hand, objékt diverged quickly after the last refresh, so if this behavior repeats
itself refreshingO, again is likely to have relatively little long-term benefit compared with refreshiing
even though they have the same current divergence. Mathematical justification and empirical validation of
our refresh priority function are given in Section 4. In Section 10.1 we discuss some potential positive and
negative implications of extending our priority function to take into account a longer history window.

Note that in most cases it is reasonable to assume that importance and popularity weights do not change
rapidly relative to the time scale at which refreshes occer, W (O;,t) ~ W(O;, tnow) for all £,y <
t < thow. (In fact, in many intuitive weighting schemes, the weights are adjusted very infrequently.) Under

this reasonable approximation, we can rewrite the refresh priority function as:

tnmu
P(Oza tnow) R ((tnow - tlast(i)) : D(Ozv tnow) - / D(Oza t) dt) : W(Oza tnow)

Ligst ()

Assuming for our idealized scenario that sources know how much cache-side bandwidth is available for
refreshes, the ideal synchronization schedule can be achieved as follows. Each time there is enough cache-
side bandwidth to accept a refresh, the object with the highest refresh priority among all objects at all sources
should be refreshed. If the source containing the highest priority object does not have enough source-side
bandwidth available to perform the refresh, then the object with the second highest priority overall should

be refreshed instead, and so on.

10

3.4 Special-Case Priority Functions

The refresh priority formula in Section 3.3 is a general result (justified in Section 4), and applies to any
divergence metric. We now give specialized versions of the general priority function for important special
cases. Consider a scenario where each oljeis updated according to a Poisson process with parameter
A;. In this common scenario (which has been shown to apply to Web pages [CGMOO0b], for example), under
the staleness divergence metric specified in Section 3.1, the refresh priority function can be written as:

Ds(0i7 tnow)

Ps(intnow) = .

: W(Ou tnow)

The intuition behind this formula is quite simple. First, objects whose cached copies are up-to-date have zero
priority, since there is no benefit to repeatedly refreshing the same value. Among objects that are stale, it is
desirable to refresh the least frequently changing ones (properly weighted), since they are the most likely to
remain up-to-date the longest after being refreshed. In [CGMO0O0Db], a similar conclusion was reached for the
staleness metric in high-contention scenarios. However, our result differs from the exact result presented in
[CGMO0O0b] because in our scenario, sources have direct knowledge of update times and decide whether to
refresh immediately after each update.

Under the lag metric (recall Section 3.1), when updates follow a Poisson model the refresh priority
function can be written as:

Dl(Oiutnow) : (Dl(oiptnow) + 1)
2\

B(Oiatnow) - . W(Oiatnow)

which is roughly proportional to the square of the number of updates to the source value not reflected in
the cached copy. This square proportionality indicates that it is especially important to refresh objects that
have undergone many changes. Moreover, the priority is inversely proportional to the average change rate
;. This inverse proportionality assigns higher priority to objects that are not expected to change rapidly in

the future. The derivations of these special-case priority formulae are given in Section 4.2.

4 Justification of Refresh Priority Function

In this section we justify, both mathematically and empirically, why prioritizing objects for refreshing using
the formulae proposed in Section 3 is appropriate for best-effort synchronization. Let us begin by assuming
that bandwidth constraints restrict us to a constaméfreshes/second. Say that there are a totalalfjects
01,09,---,0, among all the data sources. Furthermore, say the divergence of each@ppepends

purely on the time elapsed since the last refreBHO;, thow) = D*(Oistnow — tiast(s)), WhereD*() is

any nonnegative function. In this scenario, the optimal refresh schedule is one in which eaclDpligect

refreshed at regular intervals determined by a refresh pé&tiod

11

To determine values for the refresh periddsTs, - - - , T, resulting in the best refresh schedule, we must
solve the following optimization problem: minimize the total time-averaged divergénee Z;’:l(% .
fOT D*(0;,t) dt), subject to the bandwidth constraint; Ti = B. Using the method of Lagrange Multi-
pliers [Ste91], the optimal solution has the property that there is a single cofistth that for all:

o, =T (1)

where
T;
B =T D" (0T~ [DY (05 d
0

7T is called therefresh thresholdand it controls the overall refresh rate. It corresponds to the (unweighted)
priority an object must have in order to be refreshed. A smallalue results in more refreshesg., a

high refresh rate. A larg& value results in a low refresh rate. The value/oflepends on the maximum
bandwidthB and how fast the objects diverge.

Interestingly, it is possible to discover the optimal refresh policy without directly solving for the refresh
periodsTy, T, ---,T, if, for all 1 < i < n, ®; monotonically increases a@§ increases. Under this
monotonicity assumptionhe optimal schedule can be determined online as the current fyp@dvances
by monitoring what the value df; would be if objectO; were selected for refresh at the current time:
T; = tnow — tiast(i)- IN this scheme, every objeCt; would have a proposed refresh peribdat all times.
Given a proposed; value for objectO;, ®; can be computed using the relationship betwegn, (),
andT; along with the relationship betwedn() and D*(). Note that we are now able to drop the assumption

that objects diverge in the same manner after each refresh. We can @yasehe refresh priority at time

tnow:

tTLD’LU
P(Oza tnow) = (tnow - tlast(i)) : D(Ozv tnow) - / D(Oza t) dt (2)

brast (i)
Thus, when an object’s refresh priority reachigghat object should be refreshed. Under the monotonic-
ity assumption, the refresh priority of each object monotonically increases with time, so there is exactly one
point in time at which the priority equal®, which is the optimal refresh time. By adding weights, we
arrive at our original priority function in Section 3.3. In realistic environments, the update patterns of ob-
jects and amount of available bandwidth are likely to fluctuate over time, so the best value for the refresh
threshold7 changes as well. In Section 5, we give an algorithm for finding and dynamically adjdsiimg

a multiple-source environment as bandwidth and update patterns fluctuate.

12

4.1 Priority Monotonicity

We showed that if priority is expected to increase monotonically, the best time to refresh anpljectrs
as soon as its priority reaches the refresh threstiol&Ve now demonstrate that the priority of any object
0;, P(O;,t), is indeed expected to increase monotonically with timBaking the derivative oP(0;, t) in
Equation (2) with respect to time, we obtain:

0 0

aP(Oi,t) = (t — tiast(i)) - aD(Oi,t))

From this equation, it is easy to see that the expected value of the change in pggd?(t@i,t) iS non-

negative if the expected change in divergence is nonnegative. The latter must be true over time because
divergence can never become negative, therefore it must increase at least as much as it decreases. Therefore,
unless some special knowledge of future update patterns indicates that an object’s source value will con-
verge back toward the cached value, causing divergence to temporarily decrease, priority can be expected to

increase monotonically over time.

4.2 Derivation of Special Cases

Now consider the special cases from Section 3.4. Recall that in those special cases each abjgtated
according to a Poisson process with paramaterSuppose there have beenupdates to objead; since

the last refresh. The expected time elapsed since the last refigsh is ¢1,4(;) = ;L

If the lag divergence metric is used, the divergence afterpdates without a refresh i3;(O;, t,01) =

u;. Immediately following the:;-th update, the integral of divergence since the last refﬁﬁj‘(’_) D(O;,t)dt,

is expected to equa/% Sy = %{1) Putting it all together, we obtain:

Uj

i

Uj + (uz - 1) _ Dl(oiatnow) . (Dl(Oiatnow) + 1)

-Pl(intnow) - 2)\Z 2)\Z

. Dl(0i7 tnow) -

Using the staleness divergence metric, immediately following:ffte update the integral of divergence
since the last refresh is expected to edﬂgﬂ. This gives:
ui_l Ds(Oiatnow)

: Ds Oiatnow - =
() N N

Uj

Y

4.3 Empirical Validation of Priority Function

As discussed in Section 1.2.1, it may appear surprising that it is not a good scheduling strategy to simply
prioritize objects according to weighted divergeriae, P(O;,t) = D(0O;,t)-W(0O;,t). To validate our less
intuitive priority function empirically, we performed some simulations. We simulated a single data source

containingn objects, connected to a cache with bandwidth that supports Wpredreshes per second. Each

13

simulated objecO; was updated with probability; each second, and upon each update, the object’s value
was either incremented or decremented. byith equal probability (following a random walk pattern).

In our first experiment, we set all weights tand randomly assignek values to objects following a
uniform distribution. We varied the number of objects fram= 1 to 1000 and configured the simulator to
prioritize objects for refresh under each of the three divergence metrics: staleness, lag, and value deviation
with A(V1, Va) = |Vi —V4|. Inall runs, the difference in overall time-averaged divergence observed between
our priority function and the simpler alternative was less th@if.

However, when we introduced some skew into the data parameters, our priority function proved to be
significantly better than the simpler alternative. For example, we simulatedl 00 objects, a randomly-
selected half of which were assigned a weightl6fwhile the other half received a weight af An
independently- and randomly-selected half of the objects were updated with prol@bilityhile the other
half were updated consistently every second. Under the staleness, lag, and deviation metrics, the simple pri-
ority function resulted in #4%, 74%, and84% increase in overall time-averaged divergence, respectively,

compared with our priority function.

5 Threshold-Setting Algorithm

In Sections 3 and 4 we established our approach: prioritize objects and refresh only those whose priority is
above a certain refresh threshdd where7 depends on the available bandwidth and the divergence rates
of the objects. Unfortunately, determining the best valueZforvould require solving a very large system

of equations in most cases: one weighted instance of Equation (1) for each object plus an extra equation
for the constraint. Moreover, the available bandwidth and divergence rates may fluctuate widely over time,
so most likely there is no single best threshold value that works well all the time. Even if a central site
(such as the cache) could gather all the required information and cal@ulafte/” changes over time and
communication is limited then it may be difficult or impossible to ensure that @burces are aware of the
current threshold valug, especially if the number of sources is very large. In our approach each sfurce
maintains its own local refresh threshold vailie Whenever a sourcg; has enough source-side bandwidth

to perform a refresh, it refreshes the object with the highest refresh priority if that priority is above the local
refresh threshold;.

As the best global threshold@ changes over time, ideally the individual local threshold values
7,75, ---,7,, are maintained close t® to ensure the best overall synchronization schedule. We pro-
pose an adaptive algorithm in which the cache and sources work together to adjust the refresh thresholds
dynamically, as was illustrated in Figure 2 and discussed briefly in Section 1.2.2. The desired properties of

such an algorithm are threefold. First, the algorithm should cause the individual local thresholds to converge

14

on the overall best threshold as conditions change. Second, the algorithm should incur as little commu-
nication overhead as possible so as to reserve as much bandwidth as possible for actual refreshes. Third
and most importantly, the algorithm must be designed so that it is not possible for a huge excess of refresh
messages to become queued in the network for a long period of time. It is crucial to avoid network flooding
since refresh messages would be stalled leading to increased cache divergence.

As discussed in Section 1.2.2, the threshold-setting algorithm should avoid relying on negative feedback
from the cache. Otherwise, it would be very difficult to recover from situations where the bandwidth is
flooded and both refreshes and feedback messages are delayed. A more stable strategy is for the cache to
send positive feedback messages when the refresh rate is too slow, asking sources to decrease their thresholds
and thereby increase the overall refresh rate. In the absence of feedback, sources can assume that the refresh
rate is too fast and should reduce the refresh rate by increasing their thresholds.

In our algorithm, the cache continually monitors cache-side bandwidth utilization. If underutilized, the
cache uses the excess bandwidth to send positive feedback messages to as many sources as possible (until
the excess bandwidth is utilized), asking them each to decrease their thresholds by a multiplicative factor
w. If it is not possible to provide feedback to every source, the sources with the highest local thresholds
are selected to receive feedback. (For the cache to track the source thresholds, each source can piggyback
its current local threshold in refresh messages.) When a séyroeceives a feedback message from the
cache, it decreases its local thresh®}doy setting7; := % unless it is already sending at the full capacity
of the source-side bandwidth, in which case it lea¥esinmodified® In lieu of negative feedback, every
time sourceS; refreshes an object, it increases its local thresigltdy a multiplicative factor(d - «) by
setting7; := 7; - (¢ -). Because our algorithm is adaptive, any initial values forAjie can be used and
we assume a warm-up period.

Thethreshold decrease parametercontrols how aggressively the cache requests more refreshes. The
threshold increase parametércontrols how quickly sources slow down the refresh rate in the absence of
positive feedback. In Section 6.1 we determine good settings for these two parameters. The factor
used to accelerate the rate of threshold increase in cases where network flooding is likely. If the elapsed

time Atrcqnacr SINCE the last feedback message was received at a source is less than the expected feedback

At feedback
P feedback

feedback period’..qu.c1 IS €stimated as the ratio of the total number of sources divided by the average

period Precdpack, thena = 1. However, wheneveAt recivack > Preedbacks @ = . The expected

cache-side bandwidth. It is not at all critical that the expected feedback period value be exact—it need only

be a rough estimate.

3We want to avoid situations in which sources have large queues of over-threshold objects due to source-side bandwidth limi-
tations. In such situations, if more source bandwidth suddenly becomes available, sources may flood the cache with refreshes that
far exceed the cache bandwidth capacity. If, however, the cache does have plenty of bandwidth available, it will soon send positive

feedback messages to the sources, triggering the right amount of additional refreshing.

15

6 Experimental Evaluation

We now discuss an experimental evaluation that we performed to determine good settings for the parameters
w and#@, to assess the effectiveness of our algorithm, and to compare against synchronization schedules
determined by the cache alone. We constructed a discrete event simulator for an environment with one
cache andn sources each containingobjects. In our simulations, the available cache-side and source-

side bandwidth fluctuate over time following a sine wave pattern. The average cache-side and source-
side bandwidths are controlled by simulation parameigrsand Bg, respectively. The maximum rate of
bandwidth change is controlled by simulation paramétgyB. WhenA,,, B = 0, the amount of available
bandwidth remains constant. In our simulations, all messages have the same size, and each message requires
1 unit of bandwidth. For most of our experiments, we used synthetic data sets generated following a random
walk as described in Section 4.3. Weights vary over time following sine-wave patterns with randomly-

assigned amplitudes and periods. We also used one real data set, introduced in Section 6.2.1.

6.1 Parameter Settings

To determine the best settings for the threshold increase parafreatdrdecrease parametefSection 5),

we performed a variety of simulations. We used synthetic random-walk data generated for a wide variety
of configurations having up t©00, 000 objects overall, with fluctuating weights among as manyras-

1000 sources. We also varied the amount of cache-side and source-side bandwidth available, where both
bandwidth constraints were either held constaxy,(B = 0) or allowed to fluctuate over time at a variety of

rates. We measured average divergence over a perig@hofseconds, after an initial warm-up period.

Although our algorithm is not overly sensitive to the parameteemdw, it is important to set them
carefully. Settingv too large may cause refresh messages to be sent too aggressively, thereby increasing the
latency for refreshes and raising the overall divergence. However, having a small valuenfoy lead to
underutilization of bandwidth, which also leads to increased divergence. Séttilmgarge causes sources
to back off on refreshes too quickly, resulting in many positive feedback messages that reduce the bandwidth
available for refreshes. On the other hand, setfitgp low sacrifices adaptiveness.

Overall, under all three divergence metrics, we found that the lowest average divergence resulted with
threshold increase factdr= 1.1 and threshold decrease factor= 10. With these settings, whenever a
source refreshes an object, it increases its local threshold%y(or more ifa > 1 because it detects that
the network seems to be flooded). Further, whenever a source receives positive feedback from the cache
and it is not sending at maximum source-side capacity, it reduces its local threshalé tof its value.

The difference in the order of magnitude betw@eandw is due to the fact that increases (due to refreshes)

are much more common than decreases (due to feedback). We did not find that our algorithm was overly

16

value deviation metric
4 T T T T

lag metric
T T T T T

3.5 -

25 -

15 —

m | |

4
3.5

3
2.5

2
1.5

1

0

ratio of actual to ideal divergence
ratio of actual to ideal divergence

1 %‘ ﬁ:+ | | 4 + 1 1 1 1 t +
0 50 100 150 200 250 2000 4000 6000 8000 10000 12000 14000 16000
theoretically achie\@ble divergence theoretically achievable divergence

staleness metric
4 T T T T T

3.5 -

3 —

25 -

ratio of actual to ideal divergenc

‘;
2 #ﬁ + -1
=+ +
15 A -
.
1 I S b e o
0 2 4 6 8 10 12

theoretically achievable divergence

Figure 4: Comparison against the idealized scenatrio.

sensitive to the exact parameter settingg{6 = 1.2 andw = 20 gave similar results).

6.2 Algorithm Effectiveness

Having determined good settings for the algorithm parameters, we ran a series of simulations comparing the
divergence resulting from our algorithm with the divergence resulting from the global policy attainable only
in the idealized and unrealistic scenario discussed in Section 3. Our comparison was performed using syn-
thetic random-walk data where each objégtis randomly assigned a Poisson update rate paramgtéve
simulatedm € {1, 10,100, 1000} sources, and varied the number of objects per source:{1, 10,100},
giving up to100, 000 objects total. Objects were assigned weights randomly and weights were allowed to
fluctuate over time. The average source-side bandwidth was varied between mgssn{10,100} and
the average cache-side bandwidth was varieBine {10,100, 1000, 10000, 100000}. Finally, the band-
width change rate was varied between runf\in B € {0,0.005,0.05,0.25}. We measured the average
divergence over a period 6000 seconds, after an initial warm-up period.

Figure 4 shows the results of our experiments using the value deviation, lag, and staleness divergence
metrics. One data point is plotted for every combination of the parameters described above. The y-axis
shows the ratio of the average divergence resulting from our pragmatic algorithm to the average divergence

theoretically attainable in the idealized scenario. Data points are arranged along the x-axis according to

17

fixed bandwidth fluctuating bandwidth

061 T T T T T T T 0.9 T T T T T T T

] | ideal scenario=— | & oge ideal scenaric—=— |
g 05 our algorithm-e-—-- 5 - our algorithm--e-- |
o (o)
—_ A —
[(]
= = _
© ©
()] —
()] (=2}
g g .
g g -
© @

- - -

0 10 20 3 40 50 60 70 80 0 10 20 3 40 50 60 70 80
available bandwidth average available bandwidth

Figure 5: Average divergence over wind buoy data.

the theoretically attainable average divergence. The actual divergence values along the x-axis reflect the
weighting scheme and vary depending on the bandwidth availability relative to the data update rates, so they
are not particularly meaningful.

From Figure 4, we can see that as the average theoretically attainable divergence increases (due to
low bandwidth and/or many rapidly diverging objects), our algorithm attains divergence nearly as good as
the ideal case. On the other hand, when divergence is small, the absolute difference between the divergence
achieved by our algorithm and that of the idealized case is small. Overall, our algorithm results in divergence
that is close to that theoretically attainable in the idealized case. Sections 6.2.1 and 6.3 give further evidence

to support this claim.

6.2.1 Effectiveness on Real-World Data

To further verify the effectiveness of our algorithm, we performed some experiments on a real-world data
set gathered from weather buoys in January 2000 by the Pacific Marine Environmental Laboratory [McPO1].
We simulated monitoring wind vectors from = 40 buoys spread out in the ocean, which perform mea-
surements every0 minutes. Each wind vector is made up of two numeric components, giviagR data
values per data source (buoy). All data values were equally weighted.

Using the value deviation divergence metric witiiV;, V5) = |V} — V4|, we simulated seven days worth
of wind data, using the first day as a warm-up period. The maximum total number of messages transmitted
per minute over the satellite link (cache-side bandwidth) was constrained. In the graphs in Figure 5, the
(average) maximum bandwidth is plotted on the x-axis and the resulting average value deviation per data
value is shown on the y-axis. The first graph shows the results of experiments in which the maximum
bandwidth was fixed as a constant betwéeand80. In the second graph, available bandwidth fluctuated
with time following a sine wave pattern with a peak relative change rate,pB = 0.25. The wind velocity

values monitored were generally in the rangebet0, with typical values of around, so0.5 on the y-

18

axis for example indicates roughly)% divergence. Figure 5 shows that the divergence achieved by our

threshold-setting algorithm closely follows the divergence theoretically achievable in the idealized scenario.

6.3 Comparison Against Cache-Based Scheduling

Finally, to quantify the benefits of source cooperation in synchronization scheduling, we compared our
cooperative approach against a recent fully cache-driven approach by Cho and Garcia-Molina [CGMO0O0b].
In their approach, which we will refer to as “CGM,” the cache schedules all refreshes and polls sources for
values. The refresh frequency for each obj@gtis set independently based on an estimate of its average
update rate\;. The goal is to minimize the staleness metric (without weights) and the overall bandwidth
utilization is controlled by a numeric parameter which was shown not to be solvable mathematically
[CGMOOb]. The CGM policy was shown to be the optimal cache-based synchronization scheduling policy,
given the correct setting fgr [CGMOOb]. In our experiments, we used repeated runs to experimentally
determine the correct setting for their parameter

Our comparison was performed over synthetic random-walk data where each @bjesctandomly
assigned a Poisson update rate paramgteince the polling model used in the CGM approach assumes
no limitations on source-side bandwidth, we only placed a limitation on cache-side bandwidth, which we
varied between runs. We simulated € {10, 100, 1000} sources, witm = 10 objects per source (results
for n = 100 objects per source were similar). We varied the bandwidth capacity betigdérand 90%
of the total number of objects.¢., between0.1 - m - n and0.9 - m - n) between runs. Since the CGM
approach assumes a fixed amount of available bandwidth, this quantity was held constant during each run
(i.,e, A, B = 0). We measured the average unweighted staleness over a pefiod séconds, after an
initial warm-up period. (We used a shorter measurement period in this experiment than in previous ones
since the bandwidth doesn't fluctuate over time.)

Figure 6 shows the results of our comparisons#for= 10, 100, and1000 sources. In each graph, the
x-axis is bandwidth capacity as a fraction of the total number of objects:. The y-axis shows average
divergence (staleness, in this case), and the five data lines correspond to five different theoretical or practical
synchronization techniques. “ldeal cooperative” is the idealized algorithm discussed throughout this paper,
“our algorithm” is self-explanatory, and “ideal cache-based” corresponds to CGM under two theoretical
assumptions: that the cache can request refreshes without performing any communication to sources, and
that the cache is aware of the exact update ratesmlfues) of all of the objects. “CGM1” and “CGM2”
are practical implementations of the CGM techniques. First, since refreshes require polling, each refresh
incurs a round-trip message from the cache to a source. Second, the cache must estimate the object update
rates { values) based on observations taken during prior refreshes. Two methods for estimating an object’s

update rate are suggested in [CGMO00a]. The first method can be used if the source keeps track of the time

19

m = 10 sources

m = 100 sources

) m
N 0
Q Q
S T T T g 1 T —T L
< ideal cooperative -a-- < ideal cooperative -a--
3 o8 our algorithm-- e - B ost our algorithm-- e -- |
8 . ideal cache-based-- 8 ideal cache-based2--
§ 06 B CGM 1--0-- S osf B CGM1-o-
= 04 T . > 04f AL g -
© Tl © . e
N ol A - ~-g
S 02 e - S o2k A -
o e . ‘o)
g 0 I [S W T g 0 I L a o T
® 9 0.2 04 0.6 08 1 ® o 0.2 04 06 08 1
bandwidth fraction bandwidth fraction
)]
g m = 1000 sources
S 1
5] T L T .
© ideal cooperative -a--
L o8k ~our algorithm-- e -- |
8 e ideal cache-based--
g 06 B, CGM1-o-
= g CGM 2 &
) R
> 04 g -
© N e
A\\ ‘\ - \"fj
g‘) 0.2 A i
© o e Al
g 0 I L g 1 &
cu A \d
0 0.2 0.4 0.6 0.8 1

bandwidth fraction

Figure 6: Comparison against cache-based synchronization policies.

at which the most recent update to each object occurred; this approach is CGM1. The second method for

estimating update rates is used if the cache can only determine whether an object has been updated since the

last refresh, but not when it was updated; this approach is CGM2.

By comparing the “ideal cooperative” and “ideal cache-based” curves in the graphs in Figure 6, we can

see that, at least theoretically, cooperative scheduling enables much lower divergence than a cache-based

policy. Furthermore, by comparing the curve for our algorithm against the two pragmatic CGM curves, the

attainable benefit of cooperative scheduling over cache-based techniques is demonstrated.

7 Cooperation in Competitive Environments

So far we have assumed that there is a single priority function and refresh policy about which all participants

(sources and cache) agree. However, in some environments, sources may differ in their criteria for deciding

what content to keep up-to-date at a cache. Moreover, a cache’s objectives of what to store and maintain

up-to-date may not coincide with the goals of the sources. More concretely, the cache may request that

sources implement a certain priority policy, determined by a divergence function and weights, but a given

source may prefer a different priority policy derived from its own divergence function and weights. The

result is that there may be two conflicting refresh priorities for each object.

As an example, consider a Web indexer, whose objective might be to focus resources on maintaining

20

high-importance or high-popularity Web pages up-to-date in the index. Content providers’ criteria for prior-
itizing pages for synchronization may differ from that of the indexer, and each content provider might have
different criteria. For example, a retailer might wish to notify the Web indexer whenever a special offer is
added to their Web site, for advertising purposes. In general, if the cache and a source disagree on the best
refresh priority policy, how can a compromise be made?

Under conflicting priorities, we can partition resources among satisfying source priorities and satisfying
the cache priority. Le® represent the fraction of the cache-side bandwidth dedicated to satisfying source
priorities, so(1 —) is the fraction dedicated to cache priority. The paramétenight be set by the cache
administrator. In loosely coupled environments, a relatively labgealue can serve as an incentive for
data sources to affiliate with the cooperative environment because they will be given an opportunity to keep
content they value up-to-date at the cache, even if the cache prefers to focus on different content. There are
at least three conceivable ways to divide up¥hiaction of the cache-side bandwidth dedicated to fulfilling

the needs of sources:

1. All sources are given an equal share.
2. Sources are given a share proportional to the number of cached objects from the source.

3. Sources are given a share proportional to the degree to which the source contributes to satisfying the

objectives of the cache.

In options (1) and (2), all participating sources or objects are given equal treatment. In option (3),
sources are allocated resources for their own purposes only if they bring significant value to the cache by
offering objects that the cache wants to maintain highly synchronized. In our Web index example, in option
(3) Web content providers with many documents that the index deems to be of high value would be allocated
a relatively large amount of synchronization resources to use as they see fit.

To implement options (1) or (2), the cache can monitor the total available cache bandwidth and inform
sources with each feedback message how much bandwidth (in terms of humber of refreshes per second)
they have been allocated. Then, sources can refresh objects based on their own priority scheme at the
rate specified by the cache. The remaining cache bandwidth would be dedicated to refreshes following
the cache’s priority, using the threshold-based algorithm proposed in Section 5. To implement option (3),
sources would be permitted to, on average, piggytﬁaﬁﬁk objects of their own choosing along with every

object refreshed based on the cache’s priority using the threshold policy.

21

8 Priority Monitoring Techniques

In this section, we discuss some practical considerations in how sources monitor the refresh priority of their
updated objects. Sources need to detect when an object’s priority exceeds the refresh threshold and refresh
it, assuming sufficient source-side bandwidth. If source-side bandwidth is a limiting factor, sources can
maintain a priority queue so that the highest-priority updated object can be located quickly whenever spare
bandwidth becomes available. We first discuss what sources need to do to compute the priority of their

objects in Section 8.1, and then discuss when sources should measure the priority in Section 8.2.

8.1 How to Measure Priority

If the lag or staleness metrics are employed and objects are updated according to a Poisson process, then
an object’s priority depends uniquely on update times and not data. One simple way for the source to
track priorities is to monitor when updates occur. The number of updates to an object since the last refresh
determines its divergence value. The number of updates divided by the time elapsed since the last refresh
gives an estimate for the Poisson paramateklternatively, the parametérmay be monitored over a longer

period of time. From an estimate farand the divergence value, the refresh priority can be computed using

the formulae given in Section 3.4. If it is impossible or too invasive to track the exact number of updates,
one of the techniques proposed in [CGMO00a] can be used to estimdfehe value deviation metric is
employed, we need to compare an object’s value with the older cached value to measure its divergence,

which determines the priority.

8.2 When to Measure Priority

Surprisingly, although the refresh priority depends on time, an object’s priority can only change when an
update occurs. Equation (3) in Section 4.1 shows the derivative of priority with respect to time. Note that if
divergence remains constang,, %D(Oi, t) = 0, then the priority also remains constant. Thus, an object’s
priority only changes when its divergence changes, which can only occur as a result of updates to the source
object.

Therefore, to track the exact priority of an object, sources only need to recompute the priority when an
update is made to that object. Since the priority depends on the integral of the divergence values since the
last refresh, the source also needs to maintain a running total of the past divergence values weighted by the
amount of time the value was active. The data necessary to compute this running total only needs to be
modified each time an update occurs. Detecting updates requires the use of triggers or a similar mechanism.
If triggers are not supported or are deemed too expensive, object priority can be monitored more loosely

using sampling technigues, discussed next.

22

8.2.1 Sampling for Priority

By sampling data values periodically, sources can compute divergence estimates. The current divergence of
each object can be measured directly during each sample, and the sum of divergence values since the last
refresh can be estimated based on past samples. Note that it is not necessary to sample at regular intervals—
each sampled value can be assumed to have been active during the period beginning and ending halfway
between successive samples. Therefore, sampling can be scheduled whenever it is convenient for the source.
If the priority of an objectO; is nearing the refresh threshold, it might be appropriate to schedule the
next sample ofD; based on a prediction of when the priority is expected to reach the threshold. In cases
where divergence increases roughly linearly, this prediction can be made based on the rate of diggrgence
which can be estimated based on previous samples.
Given an estimate fqw;, the projected divergence at timgure > tnow 1S D(Oj, thow) + pi + (tputure —
tnow). Betweert,,,, andt ..., the integral of divergence values is projected to increagéhy, . —tnow)-
(D(O;y trow)+ %) Therefore, after some algebraic simplification, the projected priority at time

tfuture is:

P(Oza tfuture) = P(Oza tnow) + % : (t?uture - t%ow) ’ W(Ozv tnow)

By solving fort,...., we can determine the time at which the priority is expected to reach the refresh
threshold7:

(T - P(Oza tnow))
Pi* W(Oiatnow)

2, 2
tfuture = tlast(i) + (tnow - tlast(i)) +

If a data source has extra resources available, it may make sense to schedule the next sample somewhat
before that time, in case the divergence rate accelerates. The exact method used to predict the divergence
rate and schedule the next sample, as well as a good choice for the regular sampling frequency, are all topics

for future work.

9 Divergence Bounding

Some applications may require guaranteed upper bounds on the divergence of objects accessed at the cache.
For example, it may be important to know with certainty that a data value is below a strict threshold or
critical value. We can easily guarantee divergence bounds at the cache when the source objects have known
maximum divergence rates. L&t be an upper bound on the total time required to refresh ogjgétLet

R; be the maximum divergence rate of objést The upper bound on divergence since the last refresh at

“More generally,L; could represent the end-to-end latency between the time a real-world event occurs, triggering a change to
the source data, and the time an application reading data from the cache sees the change.

23

time ¢y,5¢(3 1S B(Ois tnow) = Ri + ((tnow — tiast(i)) + Li)- In applications requiring divergence bounds, it
may be appropriate to perform best-effort synchronization with the goal of minimizing the upper bounds,
instead of minimizing actual divergence values. Substitui{@);, t,,.,) for D(O;, t,.) In our priority
function of Section 3.3, we obtain the following optimal priority function for minimizing the sum of the
time-averaged divergence bounds, assuming the weights do not change drastically between refreshes:

R; - (tnow - tlazst(i))2
2

P(OZ, tnow) = . W(Oza tnow)

The threshold-based algorithm from Section 5 for coordinating refreshes from multiple sources can be used

in conjunction with this priority policy.

10 Summary and Future Work

We proposed, mathematically justified, and empirically verified an algorithm for best-effort cache synchro-
nization with source cooperation. Source cooperation in the synchronization process is advantageous for a
number of reasons. First, source cooperation enables better scheduling policies than would otherwise be pos-
sible, resulting in improved synchronization over cache-centric approaches. Second, sources can be given
a say in the relative priority of their objects for synchronization. Finally, sources can exercise fine-grained
control over the source-side bandwidth used for cache synchronization so that exactly the right amount of
bandwidth can be devoted to servicing user queries.

We began by defining and justifying a priority policy for refreshing cached objects when bandwidth is
limited. We then proposed an algorithm for implementing the policy, while regulating the synchronization
rate to match the available bandwidth without excessive communication. Our algorithm adjusts local refresh
thresholds adaptively at a large number of data sources as conditions fluctuate. We presented simulation
results on both synthetic and real-world data sets to demonstrate that our techniques are effective. We also
demonstrated empirically that source cooperation in synchronization scheduling leads to considerably less

cache divergence over the more conventional approach in which the cache unilaterally schedules refreshes.

10.1 Future Work

We briefly outline a few avenues of future work:
e In our approach, the refresh priority of an object is based solely on the updates that have occurred
since the last refresh. Although our experiments indicate that this approach works quite well, it might

be interesting to consider priority functions based on a longer history period, to trade adaptiveness

and reduced state for possibly more reliable predictions of future behavior.

24

¢ In some applications we may need to maintain mutual consistency requirements among objects being

cached [UNR 01], which would constrain the order in which refreshes could be performed.

¢ We can extend our techniques to environments where the cost to refresh objects is not uniform, pos-
sibly because they have different sizes. Accounting for non-uniform cost in the priority function is
a simple matter of extending the weight to include a factor inversely proportional to cost. However,
then the highest priority object could have high cost and potentially require more resources than are
currently available, while a lower priority object could be refreshed. It is not obvious how best to

manage bandwidth usage in a dynamic environment when objects have non-uniform cost.

¢ If objects are large, we may want refresh messages to encode the difference (delta) between the cur-
rent source copy and the out-of-date cached copy, rather than sending the entire object. Incorporating
such atechniques.g, [LHM 786, MDFK97], into our approach would require some significant mod-

ifications because the refresh cost may increase with the number of updates to the source copy.

¢ In some environments it may be appropriate to amortize network bandwidth by packaging several
data objects into the same message for refreshing. Doing so will cause some refreshes to be delayed
artificially while the source waits for other refreshes to accumulate. It would be interesting to ex-
plore the tradeoff between packaging multiple refresh messages together to save bandwidth versus the

increased divergence resulting from delaying refreshes.

Acknowledgments

We thank Mike Franklin, Hector Garcia-Molina, Rajeev Motwani, Mema Roussopoulos, and Nick Rous-
sopoulos for their helpful discussions and feedback. We also thank Junghoo Cho for providing useful infor-

mation regarding the CGM algorithm.

References

[AGMK95] B. Adelberg, H. Garcia-Molina, and B. Kao. Applying update streams in a soft real-time
database system. Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Datapages 245-256, San Jose, California, May 1995.

[AKGM96] B. Adelberg, B. Kao, and H. Garcia-Molina. Database support for efficiently maintaining de-
rived data. InProceedings of the International Conference on Extending Database Technology
pages 223-240, Avignon, France, March 1996.

[BP9g] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engitre- In
ceedings of the Seventh International World Wide Web Confer8nisbane, Australia, April
1998.

25

[BTZ98]

[CFZ01]

[CGMO00a]

[CGMOOb]

[CKO1]

[DKP+01]

[Dor95]
[DRD99]

[EGPS01]

[GEO02]

[GLY3]

[KKP99]

[LHM *+86]

[LRO1]

G. S. Brodal, J. L. Taff, and C. D. Zaroliagis. A parallel priority queue with constant time
operations.Journal of Parallel and Distributed Computing9(1):4-21, February 1998.

M. Cherniack, M. J. Franklin, and S. Zdonik. Expressing user profiles for data recharging.
IEEE Personal Communications: Special Issue on Pervasive Comp@8{#hg32—-38, August
2001.

J. Cho and H. Garcia-Molina. Estimating frequency of change. Technical report,
Stanford University Computer Science Department, 2000. http://dbpubs.stanford.edu/pub/
2000-4.

J. Cho and H. Garcia-Molina. Synchronizing a database to improve freshneBsoceed-
ings of the ACM SIGMOD International Conference on Management of, Ppatges 117-128,
Dallas, Texas, May 2000.

E. Cohen and H. Kaplan. Refreshment policies for web content cacheBroteedings of
the Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM 2001) Anchorage, Alaska, April 2001.

P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy. Adaptive push-pull:
Disseminating dynamic Web data. Rroceedings of the Tenth International World Wide Web
ConferenceHong Kong, China, May 2001.

T. Dorcey. CU-SeeMe desktop videoconferencing softw@annexions9(3), March 1995.

L. Do, P. Ram, and P. Drew. The need for distributed asynchronous transactidhrecéed-
ings of the ACM SIGMOD International Conference on Management of, Ppages 534-535,
Philadelphia, Pennsylvania, June 1999.

D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the world with wireless sensor
networks. InProceedings of the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP 20Q13alt Lake City, Utah, May 2001.

A. Gal and J. Eckstein. Managing periodically updated data in relational databases: A stochas-
tic modeling approachJournal of the ACM (to appearp002.

R. A. Golding and D. D. E. Long. Modeling replica divergence in a weak-consistency protocol
for global-scale distributed data bases. Technical report UCSC-CRL-93-09, Computer and
Information Sciences Board, University of California, Santa Cruz, 1993.

J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: Mobile networking for
“smart dust”. InProceedings of the ACM/IEEE International Conference on Mobile Computing
and Network Monitoring (MobiCom 99pages 271-278, Seattle, Washington, August 1999.

B. Lindsay, L. Haas, C. Mohan, H. Pirahesh, and P. Wilms. A snapshot differential refresh
algorithm. InProceedings of the ACM SIGMOD International Conference on Management of
Data, pages 53—-60, Washington, D.C., May 1986.

A. Labrinidis and N. Roussopoulos. Update propagation strategies for improving the quality
of data on the Web. IProceedings of the Twenty-Seventh International Conference on Very
Large Data Basegages 391-400, Rome, Italy, September 2001.

26

[McPO1]

[MDFK97]

[OLWO1]

[OW00]

[PKOO]

[PLO1]

[Ram93]

[San98]

[Ste91]
[SY73]

[UNR*01]

[YVOO]

M. J. McPhaden. Tropical Atmosphere Ocean Project, Pacific Marine Environmental Labora-
tory, 2001. http://www.pmel.noaa.gov/taol.

J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy. Potential benefits of delta en-
coding and data compression for http. Rroceedings of the ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communjgaaiges
181-194, Cannes, France, September 1997.

C. Olston, B. T. Loo, and J. Widom. Adaptive precision setting for cached approximate values.
In Proceedings of the ACM SIGMOD International Conference on Management offizafes
355-366, Santa Barbara, California, May 2001.

C. Olston and J. Widom. Offering a precision-performance tradeoff for aggregation queries
over replicated data. IRroceedings of the Twenty-Sixth International Conference on Very
Large Data Basegages 144-155, Cairo, Egypt, September 2000.

G.J. Pottie and W.J. Kaiser. Wireless integrated network serSomsmunications of the ACM
43(5):551-558, May 2000.

C. Pu and A. Leff. Replica control in distributed systems: An asynchronous approach. In
Proceedings of the ACM SIGMOD International Conference on Management of pegas
377-386, Denver, Colorado, May 1991.

K. Ramamritham. Real-time databasdaternational Journal of Distributed and Parallel
Databases1(2):199-226, 1993.

P. Sanders. Randomized priority queues for fast parallel actmasal of Parallel and Dis-
tributed Computing49(1):86—97, February 1998.

J. StewartCalculus: Early Transcendentals, Second Editi@mooks/Cole, 1991.

G. Salton and C. S. Yang. On the specification of term values in automatic indelkingal
of Documentation29:351-372, 1973.

B. Urgaonkar, A. G. Ninan, M. S. Raunak, P. Shenoy, and K. Ramamritham. Maintaining
mutual consistency for cached Web objects Pmceedings of the Twenty-First International
Conference on Distributed Computing SysteRit®enix, Arizona, April 2001.

H. Yu and A. Vahdat. Design and evaluation of a continuous consistency model for replicated
services. InProceedings of the Fourth Symposium on Operating Systems Design and Imple-
mentation San Diego, California, October 2000.

27

