
Best-Effort Cache Synchronization with Source Cooperation∗

Chris Olston and Jennifer Widom
Stanford University

{olston, widom}@cs.stanford.edu

Abstract

In environments where exact synchronization between source data objects and cached copies
is not achievable due to bandwidth or other resource constraints,stale(out-of-date) copies are
permitted. It is desirable to minimize the overalldivergencebetween source objects and cached
copies by selectively refreshing modified objects. We call the online process of selecting which
objects to refresh in order to minimize divergencebest-effort synchronization. In most ap-
proaches to best-effort synchronization, the cache coordinates the process and selects objects
to refresh. In this paper, we propose a best-effort synchronization scheduling policy that ex-
ploits cooperation between data sources and the cache. We also propose an implementation of
our policy that incurs low communication overhead even in environments with very large num-
bers of sources. Our algorithm is adaptive to wide fluctuations in available resources and data
update rates. Through experimental simulation over synthetic and real-world data, we demon-
strate the effectiveness of our algorithm, and we quantify the significant decrease in divergence
achievable with source cooperation.

1 Introduction

Data caching(or replication) is a common technique for reducing the latency to access data from remote

sources. Ideally,cached copiesof data objects are kept transactionally consistent with thesource copies

at all times. In practice, transactional consistency is often sacrificed due to the complexity and cost of the

required protocols [PL91]. Furthermore, even propagating all updates in a nontransactional fashion may

be infeasible: data collections may be large or frequently updated, and network or computational resources

may be limited.

Situations where exact cache consistency is infeasible can be found in many contexts. As one example,

consider sensors that continuously monitor environmental conditions such as sound, wind, vibration, etc.

Due to recent advancements, it should soon be possible and relatively cheap to deploy large numbers of

battery-powered sensors that communicate via wireless links [EGPS01, KKP99, PK00]. Since many thou-

sands of sensors may be involved, sensor readings may change frequently, and available bandwidth tends to

be low in wireless environments, it is not generally possible to propagate every new sensor measurement to

∗This work was supported by the National Science Foundation under grant IIS-9817799 and by a National Science Foundation
graduate research fellowship.

1

resources
limited

data objects data objects data objects

cache

source sourcesource

source data objects
(stale) copies of

Figure 1: Stale caching architecture.

a central cache for monitoring. Similar problems arise in other environments that use wireless or other low-

bandwidth links to maintain replica consistency, such as when volatile data is cached on portable devices

such as PDA’s.

Even in environments that use conventional wired networking, exact cache consistency may still be

infeasible due to large quantities of rapidly changing data. For example, in video conferencing applications

(e.g., [Dor95]), the viewer screen can be thought of as a cache that maintains copies of video data generated

by remote cameras. Since streaming video data can be very large, it often becomes necessary to allow some

staleness on parts of the screen. As a final example, consider the problem of indexing the World-Wide

Web. Keeping an up-to-date Web index requires maintaining information about the latest version of every

document. Currently, Web indexers are unable to maintain anything close to exact consistency due to an

astronomical number of data sources and data that is constantly changing.

In environments such as these, where there are not sufficient network or computational resources to

keep up with the data as it changes, it is simply not possible to keep the cache synchronized with remote

sources. The result isstale caching, in which the cache is permitted to store stale, or out-of-date, copies of

source data, as illustrated in Figure 1. In stale caching environments, it is desirable to minimize the incon-

sistency between data in the cache and the remote source data. We use the termbest-effort synchronization

for the process of selectively refreshing cached data to maintain the cache as close as possible to exactly

synchronized with the sources, in the presence of limited resources.

Note that we use the termcacheloosely. We assume the cache contains replicas of all source objects

of interest (or data derived from source objects, such as an index), and we deal only with the problem of

keeping the values of the cached objects up-to-date.

2

1.1 Source Cooperation

In best-effort synchronization, some policy determines when cached data objects should berefreshed. (Re-

member we are assuming that due to limited resources it is not possible to refresh every object on every up-

date.) In most refresh scheduling policies,e.g., [BP98, CGM00b], the cache plays the central role: refreshes

are scheduled entirely by the cache and implemented by polling the sources, without sources participating in

the scheduling. These policies must try to predict which source data objects have changed, and by how much

[CGM00b, GE02]. If source data objects do not behave in predictable ways, the refresh schedule is likely

to result in poor synchronization. Since the best synchronization policy obviously depends on how source

data objects change, improved synchronization can be achieved through some level of source participation

in the refresh scheduling process.

Aside from enabling better synchronization between sources and the cache, there are other, more practi-

cal, advantages of source cooperation in synchronization scheduling. First, sources can have a say in weights

given to different data objects when prioritizing them for refresh. Moreover, sources can exercise control

over the portion of their own bandwidth devoted to cache synchronization,e.g., giving priority to servicing

local user queries as they occur and participating in cache synchronization with any spare bandwidth. In

contrast, synchronization policies determined entirely by the cache can easily under-utilize available source

bandwidth, leading to poor synchronization, or over-utilize source bandwidth, causing a degradation of lo-

cal processing. This problem is exacerbated when the resources available for synchronization fluctuate over

time,e.g., due to sharing network bandwidth, CPU cycles, or disk I/O’s with bursty user requests.

1.2 Overview of Approach

In this paper we study the problem of best-effort cache synchronization with source cooperation. We focus

on stale caching environments with a large number of sources that synchronize their data with a shared

cache. (Recall that we assume the cache contains replicas or derivations of all data objects of interest,i.e.,

we are not considering cache replacement algorithms.) The resources for cache synchronization may be

limited at a number of points. First, the capacity of the link connecting the cache to the rest of the network,

thecache-sidebandwidth, may be constrained. Second, the capacity of the link connecting each source to

the rest of the network, thesource-side bandwidth, may also be constrained and may vary among sources.

Moreover, all bandwidth capacities may fluctuate over time if traffic is shared with other applications. We

assume a standard underlying network model where any messages for which there is not enough capacity

become enqueued for later transmission.

While we cast our approach as coping with limited network resources (bandwidth), our techniques apply

more generally to other types of resource limitations. For example, sources may have limited computational

3

resources available for cache synchronization due to local processing load. Caches also may have limited

resources for incorporating updates, especially if they perform expensive processing such as data cleaning,

aggregation, or index maintenance.

1.2.1 Prioritizing Refreshes

In stale caching, the value of an object at the source and cache may differ. This difference is calleddiver-

gence, and it can be measured using a number of possible metrics including Boolean freshness (up-to-date or

not), number of changes since refresh, or value deviation. (We define these metrics formally in Section 3.1.)

The best metric to use depends on the data and the caching objectives. Regardless of the divergence metric

used, the goal in best-effort synchronization is to minimize the (weighted) sum of the divergence values for

each source data object and its cached copy. Weights may be assigned to give certain objects preferential

treatment based on criteria such as importance or frequency of access. The choice of divergence metric and

weighting scheme should reflect the objectives of the caching environment since those parameters directly

affect the synchronization policy. We will revisit these issues in detail later in the paper.

If enough resources are available it is possible to achieve near-zero overall divergence, or even exact

transactional consistency if sources will participate in transaction protocols. In environments with lim-

ited resources, since not all changes can be propagated, refreshes should be prioritized based on the diver-

gence metric and weighting scheme. Surprisingly, we will see that prioritizing refreshes based solely on

the weighted divergence between source and cached copies of data objects does not generally lead to good

refresh schedules. We establish a priority policy that achieves much better synchronization. We describe

and justify our policy in Sections 3 and 4, respectively.

1.2.2 Coordinating Refreshes Across Multiple Sources

While a good priority policy is an important first step toward best-effort synchronization, it alone is not

sufficient. When multiple sources are synchronizing their objects with a shared cache, as in Figure 1, they

must share refresh resources such as cache-side bandwidth. Hence, refreshes should be prioritized across all

the sources. In the kinds of environments we are considering, sources are not typically aware of the state of

the content at other sources. Furthermore, no single entity can keep track of the overall priority order across

a large number of sources.

We propose a simple and effective algorithm for scheduling refreshes from a large number of sources

that incurs low communication overhead while achieving synchronization that closely follows the global

priority order. The idea is for each source to prioritize its own modified objects locally based on the overall

priority policy. Ideally, as we will see later, all modified objects having priority above a globalrefresh

thresholdT should be refreshed. However, since the best refresh thresholdT varies over time due to

4

in priority order
modified data objects

source

threshold

source−side

feedback

3τ

in priority order
modified data objects

source

threshold

source−side

1τ

refreshes

in priority order
modified data objects

source

bandwidth B (t)

threshold

source−side

refreshes

2τ

positive
feedback

(stale) copies of

cache

source data objects

bandwidth C(t)
cache−side

positive
feedback

positive

refreshes

1 2 3bandwidth B (t)bandwidth B (t)

Figure 2: Our approach to best-effort synchronization.

fluctuating available bandwidth and divergence rates, measuring the best value forT and broadcasting it to

all sources is impractical, especially when the number of sources to coordinate is very large and bandwidth

is limited. Consequently, each source must maintain its own independent copy of the refresh threshold, and

some protocol for loosely regulating the individual thresholds needs to be in place.

One way to regulate and coordinate the source refresh thresholds without incurring too much communi-

cation overhead is to rely on occasional feedback messages from the cache requesting that sources raise or

lower their thresholds. Relying on negative feedback messages from the cache to raise thresholds (in order

to reduce the refresh rate) is dangerous since network resources are already overutilized, so unrecoverable

network flooding situations can result. Instead, we propose an adaptive threshold-setting algorithm based on

positive feedback. In our algorithm, sources by default gradually increase their thresholds, to conservatively

reduce the refresh rate in case there is not enough bandwidth. If the cache detects a surplus of bandwidth,

it sends positive feedback messages instructing sources to decrease their thresholds thereby increasing the

overall refresh rate to fill the surplus.1 Our general approach is illustrated in Figure 2.

A detailed presentation and justification of our threshold-setting algorithm is given in Section 5. In Sec-

tion 6, we show experimental evidence that our algorithm achieves low overall divergence without incurring

excessive communication overhead, even in environments with a large number of sources and fluctuating

resources and data update rates. We also demonstrate quantitatively the advantages of source coopera-

tion in refresh scheduling over having the cache determine the synchronization schedule unilaterally as in

[CGM00b].

1We differ from the control theory use of feedback terminology, but we feel that “positive feedback” is a good term for increasing

the refresh rate.

5

1.2.3 Making Cooperation Appealing

A global priority policy, as we have been assuming, may not be realistic in environments where sources do

not agree on the same policy for refresh priority. Moreover, a cache may have criteria for what to maintain

up-to-date that conflicts with the objectives of some sources,e.g., when the sources and cache belong to

different administrative domains as is common on the Web. In Section 7 we describe how to extend our

synchronization techniques to reconcile the potentially different objectives among sources and between

sources and the cache.

Since participating in refresh scheduling may be taxing on the computational resources of the sources, in

Section 8 we outline lightweight mechanisms for sources to monitor the priorities of modified data objects

and schedule refreshes. Techniques for incorporating changes propagated from sources into a cache without

disrupting computation at the cache have already been proposed in,e.g., [AGMK95, AKGM96].

1.2.4 Bounding Divergence

Finally, in Section 9 we propose a way to provide guaranteed upper bounds on divergence in some certain

environments. We present a synchronization scheduling policy that minimizes the average upper bound on

divergence to suit applications that require strict guarantees about divergence. By contrast, the rest of this

paper addresses the related but distinct problem of minimizing the actual divergence, whose value may be

unknown to applications accessing cached data.

2 Related Work

A wide variety of work in the literature is related to best-effort cache synchronization to some extent. We

outline some of the most relevant work here.

Many stale caching and replication strategies have been proposed. The basic idea is to abandon strict

consistency protocols and instead resort to asynchronous propagation of all database updates,e.g., [DRD99,

GL93, PL91], in order to reduce query response time and improve availability. However, all previous ap-

proaches we know of do not consider environments in which there is not enough bandwidth to propagate all

updates. In limited-bandwidth environments, it sometimes becomes necessary to wait for several updates to

an object to accumulate before refreshing, and to explicitly reorder the refreshes to minimize error, as we

propose in our approach.

Reference [LR01] describes strategies for ordering propagations of complex updates from a single

source to a cache. However, only the freshness divergence metric is considered, and the focus is not on

environments lacking the resources to propagate all updates. Furthermore, [LR01] does not address the

problem of coordinating refreshes from multiple data sources. In theCU-SeeMevideo conferencing project

6

[Dor95], an application-specific refresh priority scheme is established, but this work also does not address

the problem of coordinating refreshes from multiple data sources.

Theoretical algorithms for merging objects from multiple sources in priority order have been proposed

in the parallel priority queue research area,e.g., [BTZ98, San98]. These algorithms were designed for use

in parallel computing environments with high communication throughput, and consequently require tight

communication among participants. By contrast, we focus on widely distributed environments with limited

communication resources. Also, network flow-control techniques such as TCP/IP have a similar flavor to our

refresh coordination algorithm. However, these techniques alone are not sufficient to address our problem

because they typically do not address application-level semantics such as an overall priority ranking that is

independent of flow rates and queue sizes.

There has been a great deal of work on scheduling events in real-time systems (see [Ram93] for a

survey). Most of this work focuses on scheduling events that have strict completion deadlines, and the goal

is to minimize the fraction of events that miss their deadlines. By contrast, we consider an environment in

which there are no deadlines, and the goal is instead to minimize the time-average of a potentially continuous

inconsistency metric.

Finally, several techniques have been proposed to address the problem of minimizing bandwidth uti-

lization and/or query latency in the presence of constraints on the age or accuracy of cached data,e.g.,

[CK01, DKP+01, OLW01, OW00, UNR+01, YV00]. In this paper we address what is essentially the dual

of that problem: maximizing the accuracy of cached data given constraints on available bandwidth.

3 Basis for Best-Effort Scheduling

In this section, we begin by formalizing our notion of divergence, then use the formal definition as a basis

for a priority policy for best-effort synchronization scheduling.

3.1 Divergence

Consider a source data objectO that undergoes updates over time. LetC(O) represent the (possibly stale)

cached copy ofO. Let V (O, t) represent the value ofO at timet. The value ofO remains constant between

updates. LetV (C(O), t) represent the value ofC(O) at timet. ObjectO can berefreshedat timetr, in

which case a message is sent to the cache, and the cached value is set to equal the current source value:

V (C(O), tr) = V (O, tr). (We assume that the time required to propagate a modified object from a source

to the cache is small enough to be neglected.)

In general, let thedivergencebetween a source objectO and its cached copyC(O) at timet be given by

a numerical functionD(O, t). When a refresh occurs at timetr, the divergence value is zero:D(O, tr) = 0.

7

Between refreshes, the divergence value may become greater than zero, and the exact divergence value

depends on how the source copy relates to the stale cached copy. There are many different ways to measure

divergence that are appropriate in different settings. We define threedivergence metricshere, but the scope

of our work is not limited to these specific metrics.

1. Staleness: Ds(O, t) = 0 whenV (C(O), t) = V (O, t); Ds(O, t) = 1 whenV (C(O), t) 6= V (O, t).2

2. Lag: Dl(O, t) = u whenC(O) is u updates behindO, i.e., O has been updatedu times since the last

refresh.

3. Value Deviation: Dv(O, t) = ∆(V (O, t), V (C(O), t)), where∆(V1, V2) can be any nonnegative

function quantifying the difference between two versions of an object.

When the value deviation metric is appropriate, it usually corresponds to an application-specific function

that models some cost associated with the discrepancy between the data value stored at the cache and the

actual data value. If the data being cached were Web documents, for example,∆(V1, V2) might be based

on Information Retrieval measures such as TF/IDF vector-space similarity [SY73]. In the CU-SeeMe video

conferencing application [Dor95] mentioned in Section 2, refreshes are prioritized based on the deviation

between individual regions of the recorded image and their counterparts on remote viewer screens. The

CU-SeeMe value deviation function∆(V1, V2) is based on the sum of the absolute value of the individual

pixel differences, with an additional weight for differences that occur in nearby pixels. In other applications

such as stock market monitoring that have single numerical values, the simple value deviation function

∆(V1, V2) = |V1 − V2| is often suitable. Once again, note that our techniques are independent of the exact

value deviation function or divergence metric used.

3.2 Weights

In many applications, it is desirable to bias the synchronization policy toward refreshing certain important

objects more aggressively than others.Importancevalues for objects might be assigned according to various

criteria, including but not limited to data quality, content provider authority (e.g., PageRank [BP98]), and

financial considerations. Our approach is independent of the exact importance criteria, but we assume a

numerical importance functionI(O, t) that may or may not change over time. In the special case where all

objects have equal importance,I(O, t) = 1 for all objects at all times.

In addition to having differing importance, objects also may differ in the frequency with which they are

accessed. Thepopularityof an object refers to some measure of the probability of access, possibly weighted

2Staleness is the reverse of Freshness (staleness = 1− freshness), which is commonly used in the literature (e.g., [CGM00b,

LR01]). We use staleness so that the larger value corresponds to greater divergence.

8

by the importance of the person or application that tends to access the data. The popularity of an objectO

at timet is denotedP(O, t). In many applications it is important to account for popularity so that scarce

resources are used for synchronizing data that will be accessed frequently, maximizing the likelihood of

accessing closely synchronized data [LR01].

From importance and popularity we derive an overallweightW (O, t) for refresh assigned to an object

O at timet:

W (O, t) = I(O, t) · P(O, t)

There could be other multiplicative factors contributing toW (O, t) besides importance and popularity, based

on other aspects relevant to cache synchronization. For example, one could incorporate detailed specifica-

tions of the objectives of users as in [CFZ01]. For now, we only assume that sources and the cache agree on

and are aware of the weighting scheme to be used for best-effort synchronization. In Section 7, we address

the possibility of conflicting interests among different sources and between sources and the cache.

3.3 Priority Scheduling

The objective of best-effort synchronization is to minimize the sum of the time-averaged divergence of each

object, under the constraint of limited resources [CGM00b]. For the staleness divergence metric, this ob-

jective is equivalent to minimizing the (possibly weighted) probability of accessing stale data [LR01]. We

begin by studying a theoretical situation in which all sources and the cache share knowledge about each

others’ state without using network resources, and sources are aware of available cache-side bandwidth. By

first considering this idealized situation, we establish an “ideal” scheduling policy for best-effort synchro-

nization, on which we can base our practical techniques.

Assuming for the moment that each source is aware of the state of objects at all other sources, we assert

that objects should be prioritized globally for refreshing according to the following formula:

P (Oi, tnow) = (tnow − tlast(i)) ·D(Oi, tnow) ·W (Oi, tnow)−
∫ tnow

tlast(i)

D(Oi, t) ·W (Oi, t) dt

P (Oi, tnow) is the refresh priorityof objectOi at timetnow . It is a function of the timetlast(i) whenOi

was last refreshed, the current timetnow , and the divergence and weight ofOi during the interval between

tlast(i) andtnow . The first term is the weighted product of the time interval since the last refresh and the

current divergence. The subtracted term is the weighted area under the divergence curve during the interval

since the last refresh. The overall priority functionP (Oi, tnow) captures the area above the divergence curve

betweentlast(i) andtnow , properly weighted.

The two graphs in Figure 3 depict the refresh priority for two different objects, with time on the x-axis

and divergence on the y-axis. Recall thattlast denotes the time of last refresh. ObjectO1 remained relatively

9

t now t now

1Object O 2Object O

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

time timet last t last
di

ve
rg

en
ce

di
ve

rg
en

ce

Figure 3: Two divergence graphs showing priority.

unchanged until recently, then suddenly underwent a significant change. ObjectO2 underwent significant

changes immediately following the last refresh, but has not changed much since then. In each of the graphs,

the area of the shaded region is the unweighted refresh priority for that object. Assuming the two objects

are assigned same weight,O1 will be assigned higher priority for refresh at timetnow thanO2.

Intuitively, higher priority is assigned when refreshing an object is likely to have more long-term benefit

in terms of divergence reduction. Take objectO1 in Figure 3, which diverged slowly after the last refresh.

Assuming it is likely to again diverge slowly if another refresh is performed, a significant reduction in

time-averaged divergence can be achieved by refreshing it immediately rather than leaving it with high

divergence. On the other hand, objectO2 diverged quickly after the last refresh, so if this behavior repeats

itself refreshingO2 again is likely to have relatively little long-term benefit compared with refreshingO1,

even though they have the same current divergence. Mathematical justification and empirical validation of

our refresh priority function are given in Section 4. In Section 10.1 we discuss some potential positive and

negative implications of extending our priority function to take into account a longer history window.

Note that in most cases it is reasonable to assume that importance and popularity weights do not change

rapidly relative to the time scale at which refreshes occur,i.e., W (Oi, t) ≈ W (Oi, tnow) for all tlast(i) ≤
t ≤ tnow . (In fact, in many intuitive weighting schemes, the weights are adjusted very infrequently.) Under

this reasonable approximation, we can rewrite the refresh priority function as:

P (Oi, tnow) ≈
(

(tnow − tlast(i)) ·D(Oi, tnow)−
∫ tnow

tlast(i)

D(Oi, t) dt

)
·W (Oi, tnow)

Assuming for our idealized scenario that sources know how much cache-side bandwidth is available for

refreshes, the ideal synchronization schedule can be achieved as follows. Each time there is enough cache-

side bandwidth to accept a refresh, the object with the highest refresh priority among all objects at all sources

should be refreshed. If the source containing the highest priority object does not have enough source-side

bandwidth available to perform the refresh, then the object with the second highest priority overall should

be refreshed instead, and so on.

10

3.4 Special-Case Priority Functions

The refresh priority formula in Section 3.3 is a general result (justified in Section 4), and applies to any

divergence metric. We now give specialized versions of the general priority function for important special

cases. Consider a scenario where each objectOi is updated according to a Poisson process with parameter

λi. In this common scenario (which has been shown to apply to Web pages [CGM00b], for example), under

the staleness divergence metric specified in Section 3.1, the refresh priority function can be written as:

Ps(Oi, tnow) =
Ds(Oi, tnow)

λi
·W (Oi, tnow)

The intuition behind this formula is quite simple. First, objects whose cached copies are up-to-date have zero

priority, since there is no benefit to repeatedly refreshing the same value. Among objects that are stale, it is

desirable to refresh the least frequently changing ones (properly weighted), since they are the most likely to

remain up-to-date the longest after being refreshed. In [CGM00b], a similar conclusion was reached for the

staleness metric in high-contention scenarios. However, our result differs from the exact result presented in

[CGM00b] because in our scenario, sources have direct knowledge of update times and decide whether to

refresh immediately after each update.

Under the lag metric (recall Section 3.1), when updates follow a Poisson model the refresh priority

function can be written as:

Pl(Oi, tnow) =
Dl(Oi, tnow) · (Dl(Oi, tnow) + 1)

2λi
·W (Oi, tnow)

which is roughly proportional to the square of the number of updates to the source value not reflected in

the cached copy. This square proportionality indicates that it is especially important to refresh objects that

have undergone many changes. Moreover, the priority is inversely proportional to the average change rate

λi. This inverse proportionality assigns higher priority to objects that are not expected to change rapidly in

the future. The derivations of these special-case priority formulae are given in Section 4.2.

4 Justification of Refresh Priority Function

In this section we justify, both mathematically and empirically, why prioritizing objects for refreshing using

the formulae proposed in Section 3 is appropriate for best-effort synchronization. Let us begin by assuming

that bandwidth constraints restrict us to a constantB refreshes/second. Say that there are a total ofn objects

O1, O2, · · · , On among all the data sources. Furthermore, say the divergence of each objectOi depends

purely on the time elapsed since the last refresh:D(Oi, tnow) = D∗(Oi, tnow − tlast(i)), whereD∗() is

any nonnegative function. In this scenario, the optimal refresh schedule is one in which each objectOi is

refreshed at regular intervals determined by a refresh periodTi.

11

To determine values for the refresh periodsT1, T2, · · · , Tn resulting in the best refresh schedule, we must

solve the following optimization problem: minimize the total time-averaged divergenceD =
∑n

i=1(
1
Ti
·∫ Ti

0 D∗(Oi, t) dt), subject to the bandwidth constraint
∑n

i=1
1
Ti

= B. Using the method of Lagrange Multi-

pliers [Ste91], the optimal solution has the property that there is a single constantT such that for alli:

Φi = T (1)

where

Φi = Ti ·D∗(Oi, Ti)−
∫ Ti

0
D∗(Oi, t) dt

T is called therefresh threshold, and it controls the overall refresh rate. It corresponds to the (unweighted)

priority an object must have in order to be refreshed. A smallT value results in more refreshes,i.e., a

high refresh rate. A largeT value results in a low refresh rate. The value ofT depends on the maximum

bandwidthB and how fast the objects diverge.

Interestingly, it is possible to discover the optimal refresh policy without directly solving for the refresh

periodsT1, T2, · · · , Tn if, for all 1 ≤ i ≤ n, Φi monotonically increases asTi increases. Under this

monotonicity assumption, the optimal schedule can be determined online as the current timetnow advances

by monitoring what the value ofTi would be if objectOi were selected for refresh at the current time:

Ti = tnow − tlast(i). In this scheme, every objectOi would have a proposed refresh periodTi at all times.

Given a proposedTi value for objectOi, Φi can be computed using the relationship betweentnow , tlast(i),

andTi along with the relationship betweenD() andD∗(). Note that we are now able to drop the assumption

that objects diverge in the same manner after each refresh. We can rewriteΦi as the refresh priority at time

tnow :

P (Oi, tnow) = (tnow − tlast(i)) ·D(Oi, tnow)−
∫ tnow

tlast(i)

D(Oi, t) dt (2)

Thus, when an object’s refresh priority reachesT , that object should be refreshed. Under the monotonic-

ity assumption, the refresh priority of each object monotonically increases with time, so there is exactly one

point in time at which the priority equalsT , which is the optimal refresh time. By adding weights, we

arrive at our original priority function in Section 3.3. In realistic environments, the update patterns of ob-

jects and amount of available bandwidth are likely to fluctuate over time, so the best value for the refresh

thresholdT changes as well. In Section 5, we give an algorithm for finding and dynamically adjustingT in

a multiple-source environment as bandwidth and update patterns fluctuate.

12

4.1 Priority Monotonicity

We showed that if priority is expected to increase monotonically, the best time to refresh an objectOi occurs

as soon as its priority reaches the refresh thresholdT . We now demonstrate that the priority of any object

Oi, P (Oi, t), is indeed expected to increase monotonically with timet. Taking the derivative ofP (Oi, t) in

Equation (2) with respect to time, we obtain:

∂

∂t
P (Oi, t) = (t − tlast(i)) ·

∂

∂t
D(Oi, t) (3)

From this equation, it is easy to see that the expected value of the change in priority∂
∂tP (Oi, t) is non-

negative if the expected change in divergence is nonnegative. The latter must be true over time because

divergence can never become negative, therefore it must increase at least as much as it decreases. Therefore,

unless some special knowledge of future update patterns indicates that an object’s source value will con-

verge back toward the cached value, causing divergence to temporarily decrease, priority can be expected to

increase monotonically over time.

4.2 Derivation of Special Cases

Now consider the special cases from Section 3.4. Recall that in those special cases each objectOi is updated

according to a Poisson process with parameterλi. Suppose there have beenui updates to objectOi since

the last refresh. The expected time elapsed since the last refresh istnow − tlast(i) = ui
λi

.

If the lag divergence metric is used, the divergence afterui updates without a refresh isDl(Oi, tnow) =

ui. Immediately following theui-th update, the integral of divergence since the last refresh,
∫ tnow

tlast(i)
D(Oi, t)dt,

is expected to equal1λi
·
∑ui−1

x=0 x = ui·(ui−1)
2λi

. Putting it all together, we obtain:

Pl(Oi, tnow) =
ui

λi
·Dl(Oi, tnow)− ui · (ui − 1)

2λi
=

Dl(Oi, tnow) · (Dl(Oi, tnow) + 1)
2λi

Using the staleness divergence metric, immediately following theui-th update the integral of divergence

since the last refresh is expected to equalui−1
λi

. This gives:

Ps(Oi, tnow) =
ui

λi
·Ds(Oi, tnow)− ui − 1

λi
=

Ds(Oi, tnow)
λi

4.3 Empirical Validation of Priority Function

As discussed in Section 1.2.1, it may appear surprising that it is not a good scheduling strategy to simply

prioritize objects according to weighted divergence,i.e., P (Oi, t) = D(Oi, t)·W (Oi, t). To validate our less

intuitive priority function empirically, we performed some simulations. We simulated a single data source

containingn objects, connected to a cache with bandwidth that supports up to10 refreshes per second. Each

13

simulated objectOi was updated with probabilityλi each second, and upon each update, the object’s value

was either incremented or decremented by1, with equal probability (following a random walk pattern).

In our first experiment, we set all weights to1 and randomly assignedλi values to objects following a

uniform distribution. We varied the number of objects fromn = 1 to 1000 and configured the simulator to

prioritize objects for refresh under each of the three divergence metrics: staleness, lag, and value deviation

with ∆(V1, V2) = |V1−V2|. In all runs, the difference in overall time-averaged divergence observed between

our priority function and the simpler alternative was less than10%.

However, when we introduced some skew into the data parameters, our priority function proved to be

significantly better than the simpler alternative. For example, we simulatedn = 100 objects, a randomly-

selected half of which were assigned a weight of10 while the other half received a weight of1. An

independently- and randomly-selected half of the objects were updated with probability0.01 while the other

half were updated consistently every second. Under the staleness, lag, and deviation metrics, the simple pri-

ority function resulted in a64%, 74%, and84% increase in overall time-averaged divergence, respectively,

compared with our priority function.

5 Threshold-Setting Algorithm

In Sections 3 and 4 we established our approach: prioritize objects and refresh only those whose priority is

above a certain refresh thresholdT , whereT depends on the available bandwidth and the divergence rates

of the objects. Unfortunately, determining the best value forT would require solving a very large system

of equations in most cases: one weighted instance of Equation (1) for each object plus an extra equation

for the constraint. Moreover, the available bandwidth and divergence rates may fluctuate widely over time,

so most likely there is no single best threshold value that works well all the time. Even if a central site

(such as the cache) could gather all the required information and calculateT , if T changes over time and

communication is limited then it may be difficult or impossible to ensure that allm sources are aware of the

current threshold valueT , especially if the number of sources is very large. In our approach each sourceSj

maintains its own local refresh threshold valueTj. Whenever a sourceSj has enough source-side bandwidth

to perform a refresh, it refreshes the object with the highest refresh priority if that priority is above the local

refresh thresholdTj.

As the best global thresholdT changes over time, ideally the individual local threshold values

T1,T2, · · · ,Tm are maintained close toT to ensure the best overall synchronization schedule. We pro-

pose an adaptive algorithm in which the cache and sources work together to adjust the refresh thresholds

dynamically, as was illustrated in Figure 2 and discussed briefly in Section 1.2.2. The desired properties of

such an algorithm are threefold. First, the algorithm should cause the individual local thresholds to converge

14

on the overall best threshold as conditions change. Second, the algorithm should incur as little commu-

nication overhead as possible so as to reserve as much bandwidth as possible for actual refreshes. Third

and most importantly, the algorithm must be designed so that it is not possible for a huge excess of refresh

messages to become queued in the network for a long period of time. It is crucial to avoid network flooding

since refresh messages would be stalled leading to increased cache divergence.

As discussed in Section 1.2.2, the threshold-setting algorithm should avoid relying on negative feedback

from the cache. Otherwise, it would be very difficult to recover from situations where the bandwidth is

flooded and both refreshes and feedback messages are delayed. A more stable strategy is for the cache to

send positive feedback messages when the refresh rate is too slow, asking sources to decrease their thresholds

and thereby increase the overall refresh rate. In the absence of feedback, sources can assume that the refresh

rate is too fast and should reduce the refresh rate by increasing their thresholds.

In our algorithm, the cache continually monitors cache-side bandwidth utilization. If underutilized, the

cache uses the excess bandwidth to send positive feedback messages to as many sources as possible (until

the excess bandwidth is utilized), asking them each to decrease their thresholds by a multiplicative factor

ω. If it is not possible to provide feedback to every source, the sources with the highest local thresholds

are selected to receive feedback. (For the cache to track the source thresholds, each source can piggyback

its current local threshold in refresh messages.) When a sourceSj receives a feedback message from the

cache, it decreases its local thresholdTj by settingTj := Tj

ω , unless it is already sending at the full capacity

of the source-side bandwidth, in which case it leavesTj unmodified.3 In lieu of negative feedback, every

time sourceSj refreshes an object, it increases its local thresholdTj by a multiplicative factor(θ · α) by

settingTj := Tj · (θ · α). Because our algorithm is adaptive, any initial values for theTj ’s can be used and

we assume a warm-up period.

The threshold decrease parameterω controls how aggressively the cache requests more refreshes. The

threshold increase parameterθ controls how quickly sources slow down the refresh rate in the absence of

positive feedback. In Section 6.1 we determine good settings for these two parameters. The factorα is

used to accelerate the rate of threshold increase in cases where network flooding is likely. If the elapsed

time ∆tfeedback since the last feedback message was received at a source is less than the expected feedback

periodPfeedback , thenα = 1. However, whenever∆tfeedback > Pfeedback , α = ∆tfeedback
Pfeedback

. The expected

feedback periodPfeedback is estimated as the ratio of the total number of sources divided by the average

cache-side bandwidth. It is not at all critical that the expected feedback period value be exact—it need only

be a rough estimate.

3We want to avoid situations in which sources have large queues of over-threshold objects due to source-side bandwidth limi-

tations. In such situations, if more source bandwidth suddenly becomes available, sources may flood the cache with refreshes that

far exceed the cache bandwidth capacity. If, however, the cache does have plenty of bandwidth available, it will soon send positive

feedback messages to the sources, triggering the right amount of additional refreshing.

15

6 Experimental Evaluation

We now discuss an experimental evaluation that we performed to determine good settings for the parameters

ω and θ, to assess the effectiveness of our algorithm, and to compare against synchronization schedules

determined by the cache alone. We constructed a discrete event simulator for an environment with one

cache andm sources each containingn objects. In our simulations, the available cache-side and source-

side bandwidth fluctuate over time following a sine wave pattern. The average cache-side and source-

side bandwidths are controlled by simulation parametersBC andBS, respectively. The maximum rate of

bandwidth change is controlled by simulation parameter∆mB. When∆mB = 0, the amount of available

bandwidth remains constant. In our simulations, all messages have the same size, and each message requires

1 unit of bandwidth. For most of our experiments, we used synthetic data sets generated following a random

walk as described in Section 4.3. Weights vary over time following sine-wave patterns with randomly-

assigned amplitudes and periods. We also used one real data set, introduced in Section 6.2.1.

6.1 Parameter Settings

To determine the best settings for the threshold increase parameterθ and decrease parameterω (Section 5),

we performed a variety of simulations. We used synthetic random-walk data generated for a wide variety

of configurations having up to100, 000 objects overall, with fluctuating weights among as many asm =

1000 sources. We also varied the amount of cache-side and source-side bandwidth available, where both

bandwidth constraints were either held constant (∆mB = 0) or allowed to fluctuate over time at a variety of

rates. We measured average divergence over a period of5000 seconds, after an initial warm-up period.

Although our algorithm is not overly sensitive to the parametersθ andω, it is important to set them

carefully. Settingω too large may cause refresh messages to be sent too aggressively, thereby increasing the

latency for refreshes and raising the overall divergence. However, having a small value forω may lead to

underutilization of bandwidth, which also leads to increased divergence. Settingθ too large causes sources

to back off on refreshes too quickly, resulting in many positive feedback messages that reduce the bandwidth

available for refreshes. On the other hand, settingθ too low sacrifices adaptiveness.

Overall, under all three divergence metrics, we found that the lowest average divergence resulted with

threshold increase factorθ = 1.1 and threshold decrease factorω = 10. With these settings, whenever a

source refreshes an object, it increases its local threshold by10% (or more ifα > 1 because it detects that

the network seems to be flooded). Further, whenever a source receives positive feedback from the cache

and it is not sending at maximum source-side capacity, it reduces its local threshold to10% of its value.

The difference in the order of magnitude betweenθ andω is due to the fact that increases (due to refreshes)

are much more common than decreases (due to feedback). We did not find that our algorithm was overly

16

value deviation metric

theoretically achievable divergence

ra
tio

of
ac

tu
al

to
id

ea
ld

iv
er

g
en

ce

250200150100500

4

3.5

3

2.5

2

1.5

1

lag metric

theoretically achievable divergence

ra
tio

of
ac

tu
al

to
id

ea
ld

iv
er

g
en

ce

1600014000120001000080006000400020000

4

3.5

3

2.5

2

1.5

1

staleness metric

theoretically achievable divergence

ra
tio

of
ac

tu
al

to
id

ea
ld

iv
er

g
en

ce

121086420

4

3.5

3

2.5

2

1.5

1

Figure 4: Comparison against the idealized scenario.

sensitive to the exact parameter settings (e.g., θ = 1.2 andω = 20 gave similar results).

6.2 Algorithm Effectiveness

Having determined good settings for the algorithm parameters, we ran a series of simulations comparing the

divergence resulting from our algorithm with the divergence resulting from the global policy attainable only

in the idealized and unrealistic scenario discussed in Section 3. Our comparison was performed using syn-

thetic random-walk data where each objectOi is randomly assigned a Poisson update rate parameterλi. We

simulatedm ∈ {1, 10, 100, 1000} sources, and varied the number of objects per source:n ∈ {1, 10, 100},

giving up to100, 000 objects total. Objects were assigned weights randomly and weights were allowed to

fluctuate over time. The average source-side bandwidth was varied between runs inBS ∈ {10, 100} and

the average cache-side bandwidth was varied inBC ∈ {10, 100, 1000, 10000, 100000}. Finally, the band-

width change rate was varied between runs in∆mB ∈ {0, 0.005, 0.05, 0.25}. We measured the average

divergence over a period of5000 seconds, after an initial warm-up period.

Figure 4 shows the results of our experiments using the value deviation, lag, and staleness divergence

metrics. One data point is plotted for every combination of the parameters described above. The y-axis

shows the ratio of the average divergence resulting from our pragmatic algorithm to the average divergence

theoretically attainable in the idealized scenario. Data points are arranged along the x-axis according to

17

our algorithm
ideal scenario

fixed bandwidth

available bandwidth

av
er

ag
e

d
iv

er
ge

nc
e

80706050403020100

0.6

0.5

0.4

0.3

0.2

0.1

0

our algorithm
ideal scenario

fluctuating bandwidth

average available bandwidth

av
er

ag
e

d
iv

er
ge

nc
e

80706050403020100

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 5: Average divergence over wind buoy data.

the theoretically attainable average divergence. The actual divergence values along the x-axis reflect the

weighting scheme and vary depending on the bandwidth availability relative to the data update rates, so they

are not particularly meaningful.

From Figure 4, we can see that as the average theoretically attainable divergence increases (due to

low bandwidth and/or many rapidly diverging objects), our algorithm attains divergence nearly as good as

the ideal case. On the other hand, when divergence is small, the absolute difference between the divergence

achieved by our algorithm and that of the idealized case is small. Overall, our algorithm results in divergence

that is close to that theoretically attainable in the idealized case. Sections 6.2.1 and 6.3 give further evidence

to support this claim.

6.2.1 Effectiveness on Real-World Data

To further verify the effectiveness of our algorithm, we performed some experiments on a real-world data

set gathered from weather buoys in January 2000 by the Pacific Marine Environmental Laboratory [McP01].

We simulated monitoring wind vectors fromm = 40 buoys spread out in the ocean, which perform mea-

surements every10 minutes. Each wind vector is made up of two numeric components, givingn = 2 data

values per data source (buoy). All data values were equally weighted.

Using the value deviation divergence metric with∆(V1, V2) = |V1−V2|, we simulated seven days worth

of wind data, using the first day as a warm-up period. The maximum total number of messages transmitted

per minute over the satellite link (cache-side bandwidth) was constrained. In the graphs in Figure 5, the

(average) maximum bandwidth is plotted on the x-axis and the resulting average value deviation per data

value is shown on the y-axis. The first graph shows the results of experiments in which the maximum

bandwidth was fixed as a constant between1 and80. In the second graph, available bandwidth fluctuated

with time following a sine wave pattern with a peak relative change rate of∆mB = 0.25. The wind velocity

values monitored were generally in the range of0–10, with typical values of around5, so 0.5 on the y-

18

axis for example indicates roughly10% divergence. Figure 5 shows that the divergence achieved by our

threshold-setting algorithm closely follows the divergence theoretically achievable in the idealized scenario.

6.3 Comparison Against Cache-Based Scheduling

Finally, to quantify the benefits of source cooperation in synchronization scheduling, we compared our

cooperative approach against a recent fully cache-driven approach by Cho and Garcia-Molina [CGM00b].

In their approach, which we will refer to as “CGM,” the cache schedules all refreshes and polls sources for

values. The refresh frequency for each objectOi is set independently based on an estimate of its average

update rateλi. The goal is to minimize the staleness metric (without weights) and the overall bandwidth

utilization is controlled by a numeric parameterµ, which was shown not to be solvable mathematically

[CGM00b]. The CGM policy was shown to be the optimal cache-based synchronization scheduling policy,

given the correct setting forµ [CGM00b]. In our experiments, we used repeated runs to experimentally

determine the correct setting for their parameterµ.

Our comparison was performed over synthetic random-walk data where each objectOi is randomly

assigned a Poisson update rate parameterλi. Since the polling model used in the CGM approach assumes

no limitations on source-side bandwidth, we only placed a limitation on cache-side bandwidth, which we

varied between runs. We simulatedm ∈ {10, 100, 1000} sources, withn = 10 objects per source (results

for n = 100 objects per source were similar). We varied the bandwidth capacity between10% and90%

of the total number of objects (i.e., between0.1 · m · n and0.9 · m · n) between runs. Since the CGM

approach assumes a fixed amount of available bandwidth, this quantity was held constant during each run

(i.e., ∆mB = 0). We measured the average unweighted staleness over a period of500 seconds, after an

initial warm-up period. (We used a shorter measurement period in this experiment than in previous ones

since the bandwidth doesn’t fluctuate over time.)

Figure 6 shows the results of our comparison form = 10, 100, and1000 sources. In each graph, the

x-axis is bandwidth capacity as a fraction of the total number of objectsm · n. The y-axis shows average

divergence (staleness, in this case), and the five data lines correspond to five different theoretical or practical

synchronization techniques. “Ideal cooperative” is the idealized algorithm discussed throughout this paper,

“our algorithm” is self-explanatory, and “ideal cache-based” corresponds to CGM under two theoretical

assumptions: that the cache can request refreshes without performing any communication to sources, and

that the cache is aware of the exact update rates (λ values) of all of the objects. “CGM1” and “CGM2”

are practical implementations of the CGM techniques. First, since refreshes require polling, each refresh

incurs a round-trip message from the cache to a source. Second, the cache must estimate the object update

rates (λ values) based on observations taken during prior refreshes. Two methods for estimating an object’s

update rate are suggested in [CGM00a]. The first method can be used if the source keeps track of the time

19

CGM 2
CGM 1

ideal cache-based
our algorithm

ideal cooperative

m = 10 sources

bandwidth fraction

av
er

ag
e

d
iv

er
ge

nc
e

(s
ta

le
ne

ss
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

CGM 2
CGM 1

ideal cache-based
our algorithm

ideal cooperative

m = 100 sources

bandwidth fraction

av
er

ag
e

d
iv

er
ge

nc
e

(s
ta

le
ne

ss
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

CGM 2
CGM 1

ideal cache-based
our algorithm

ideal cooperative

m = 1000 sources

bandwidth fraction

av
er

ag
e

d
iv

er
ge

nc
e

(s
ta

le
ne

ss
)

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 6: Comparison against cache-based synchronization policies.

at which the most recent update to each object occurred; this approach is CGM1. The second method for

estimating update rates is used if the cache can only determine whether an object has been updated since the

last refresh, but not when it was updated; this approach is CGM2.

By comparing the “ideal cooperative” and “ideal cache-based” curves in the graphs in Figure 6, we can

see that, at least theoretically, cooperative scheduling enables much lower divergence than a cache-based

policy. Furthermore, by comparing the curve for our algorithm against the two pragmatic CGM curves, the

attainable benefit of cooperative scheduling over cache-based techniques is demonstrated.

7 Cooperation in Competitive Environments

So far we have assumed that there is a single priority function and refresh policy about which all participants

(sources and cache) agree. However, in some environments, sources may differ in their criteria for deciding

what content to keep up-to-date at a cache. Moreover, a cache’s objectives of what to store and maintain

up-to-date may not coincide with the goals of the sources. More concretely, the cache may request that

sources implement a certain priority policy, determined by a divergence function and weights, but a given

source may prefer a different priority policy derived from its own divergence function and weights. The

result is that there may be two conflicting refresh priorities for each object.

As an example, consider a Web indexer, whose objective might be to focus resources on maintaining

20

high-importance or high-popularity Web pages up-to-date in the index. Content providers’ criteria for prior-

itizing pages for synchronization may differ from that of the indexer, and each content provider might have

different criteria. For example, a retailer might wish to notify the Web indexer whenever a special offer is

added to their Web site, for advertising purposes. In general, if the cache and a source disagree on the best

refresh priority policy, how can a compromise be made?

Under conflicting priorities, we can partition resources among satisfying source priorities and satisfying

the cache priority. LetΨ represent the fraction of the cache-side bandwidth dedicated to satisfying source

priorities, so(1 −Ψ) is the fraction dedicated to cache priority. The parameterΨ might be set by the cache

administrator. In loosely coupled environments, a relatively largeΨ value can serve as an incentive for

data sources to affiliate with the cooperative environment because they will be given an opportunity to keep

content they value up-to-date at the cache, even if the cache prefers to focus on different content. There are

at least three conceivable ways to divide up theΨ fraction of the cache-side bandwidth dedicated to fulfilling

the needs of sources:

1. All sources are given an equal share.

2. Sources are given a share proportional to the number of cached objects from the source.

3. Sources are given a share proportional to the degree to which the source contributes to satisfying the

objectives of the cache.

In options (1) and (2), all participating sources or objects are given equal treatment. In option (3),

sources are allocated resources for their own purposes only if they bring significant value to the cache by

offering objects that the cache wants to maintain highly synchronized. In our Web index example, in option

(3) Web content providers with many documents that the index deems to be of high value would be allocated

a relatively large amount of synchronization resources to use as they see fit.

To implement options (1) or (2), the cache can monitor the total available cache bandwidth and inform

sources with each feedback message how much bandwidth (in terms of number of refreshes per second)

they have been allocated. Then, sources can refresh objects based on their own priority scheme at the

rate specified by the cache. The remaining cache bandwidth would be dedicated to refreshes following

the cache’s priority, using the threshold-based algorithm proposed in Section 5. To implement option (3),

sources would be permitted to, on average, piggybackΨ
1−Ψ objects of their own choosing along with every

object refreshed based on the cache’s priority using the threshold policy.

21

8 Priority Monitoring Techniques

In this section, we discuss some practical considerations in how sources monitor the refresh priority of their

updated objects. Sources need to detect when an object’s priority exceeds the refresh threshold and refresh

it, assuming sufficient source-side bandwidth. If source-side bandwidth is a limiting factor, sources can

maintain a priority queue so that the highest-priority updated object can be located quickly whenever spare

bandwidth becomes available. We first discuss what sources need to do to compute the priority of their

objects in Section 8.1, and then discuss when sources should measure the priority in Section 8.2.

8.1 How to Measure Priority

If the lag or staleness metrics are employed and objects are updated according to a Poisson process, then

an object’s priority depends uniquely on update times and not data. One simple way for the source to

track priorities is to monitor when updates occur. The number of updates to an object since the last refresh

determines its divergence value. The number of updates divided by the time elapsed since the last refresh

gives an estimate for the Poisson parameterλ. Alternatively, the parameterλ may be monitored over a longer

period of time. From an estimate forλ and the divergence value, the refresh priority can be computed using

the formulae given in Section 3.4. If it is impossible or too invasive to track the exact number of updates,

one of the techniques proposed in [CGM00a] can be used to estimateλ. If the value deviation metric is

employed, we need to compare an object’s value with the older cached value to measure its divergence,

which determines the priority.

8.2 When to Measure Priority

Surprisingly, although the refresh priority depends on time, an object’s priority can only change when an

update occurs. Equation (3) in Section 4.1 shows the derivative of priority with respect to time. Note that if

divergence remains constant,i.e., ∂
∂tD(Oi, t) = 0, then the priority also remains constant. Thus, an object’s

priority only changes when its divergence changes, which can only occur as a result of updates to the source

object.

Therefore, to track the exact priority of an object, sources only need to recompute the priority when an

update is made to that object. Since the priority depends on the integral of the divergence values since the

last refresh, the source also needs to maintain a running total of the past divergence values weighted by the

amount of time the value was active. The data necessary to compute this running total only needs to be

modified each time an update occurs. Detecting updates requires the use of triggers or a similar mechanism.

If triggers are not supported or are deemed too expensive, object priority can be monitored more loosely

using sampling techniques, discussed next.

22

8.2.1 Sampling for Priority

By sampling data values periodically, sources can compute divergence estimates. The current divergence of

each object can be measured directly during each sample, and the sum of divergence values since the last

refresh can be estimated based on past samples. Note that it is not necessary to sample at regular intervals—

each sampled value can be assumed to have been active during the period beginning and ending halfway

between successive samples. Therefore, sampling can be scheduled whenever it is convenient for the source.

If the priority of an objectOi is nearing the refresh threshold, it might be appropriate to schedule the

next sample ofOi based on a prediction of when the priority is expected to reach the threshold. In cases

where divergence increases roughly linearly, this prediction can be made based on the rate of divergenceρi,

which can be estimated based on previous samples.

Given an estimate forρi, the projected divergence at timetfuture ≥ tnow is D(Oi, tnow) + ρi · (tfuture −
tnow). Betweentnow andtfuture , the integral of divergence values is projected to increase by(tfuture−tnow)·
(D(Oi, tnow)+ ρi·(tfuture−tnow)

2). Therefore, after some algebraic simplification, the projected priority at time

tfuture is:

P (Oi, tfuture) = P (Oi, tnow) +
ρi

2
· (t2future − t2now) ·W (Oi, tnow)

By solving for tfuture , we can determine the time at which the priority is expected to reach the refresh

thresholdT :

tfuture = tlast(i) +

√
(tnow − tlast(i))2 +

2 · (T − P (Oi, tnow))
ρi ·W (Oi, tnow)

If a data source has extra resources available, it may make sense to schedule the next sample somewhat

before that time, in case the divergence rate accelerates. The exact method used to predict the divergence

rate and schedule the next sample, as well as a good choice for the regular sampling frequency, are all topics

for future work.

9 Divergence Bounding

Some applications may require guaranteed upper bounds on the divergence of objects accessed at the cache.

For example, it may be important to know with certainty that a data value is below a strict threshold or

critical value. We can easily guarantee divergence bounds at the cache when the source objects have known

maximum divergence rates. LetLi be an upper bound on the total time required to refresh objectOi.4 Let

Ri be the maximum divergence rate of objectOi. The upper bound on divergence since the last refresh at

4More generally,Li could represent the end-to-end latency between the time a real-world event occurs, triggering a change to

the source data, and the time an application reading data from the cache sees the change.

23

time tlast(i) is B(Oi, tnow) = Ri · ((tnow − tlast(i)) + Li). In applications requiring divergence bounds, it

may be appropriate to perform best-effort synchronization with the goal of minimizing the upper bounds,

instead of minimizing actual divergence values. SubstitutingB(Oi, tnow) for D(Oi, tnow) in our priority

function of Section 3.3, we obtain the following optimal priority function for minimizing the sum of the

time-averaged divergence bounds, assuming the weights do not change drastically between refreshes:

P (Oi, tnow) =
Ri · (tnow − tlast(i))2

2
·W (Oi, tnow)

The threshold-based algorithm from Section 5 for coordinating refreshes from multiple sources can be used

in conjunction with this priority policy.

10 Summary and Future Work

We proposed, mathematically justified, and empirically verified an algorithm for best-effort cache synchro-

nization with source cooperation. Source cooperation in the synchronization process is advantageous for a

number of reasons. First, source cooperation enables better scheduling policies than would otherwise be pos-

sible, resulting in improved synchronization over cache-centric approaches. Second, sources can be given

a say in the relative priority of their objects for synchronization. Finally, sources can exercise fine-grained

control over the source-side bandwidth used for cache synchronization so that exactly the right amount of

bandwidth can be devoted to servicing user queries.

We began by defining and justifying a priority policy for refreshing cached objects when bandwidth is

limited. We then proposed an algorithm for implementing the policy, while regulating the synchronization

rate to match the available bandwidth without excessive communication. Our algorithm adjusts local refresh

thresholds adaptively at a large number of data sources as conditions fluctuate. We presented simulation

results on both synthetic and real-world data sets to demonstrate that our techniques are effective. We also

demonstrated empirically that source cooperation in synchronization scheduling leads to considerably less

cache divergence over the more conventional approach in which the cache unilaterally schedules refreshes.

10.1 Future Work

We briefly outline a few avenues of future work:

• In our approach, the refresh priority of an object is based solely on the updates that have occurred

since the last refresh. Although our experiments indicate that this approach works quite well, it might

be interesting to consider priority functions based on a longer history period, to trade adaptiveness

and reduced state for possibly more reliable predictions of future behavior.

24

• In some applications we may need to maintain mutual consistency requirements among objects being

cached [UNR+01], which would constrain the order in which refreshes could be performed.

• We can extend our techniques to environments where the cost to refresh objects is not uniform, pos-

sibly because they have different sizes. Accounting for non-uniform cost in the priority function is

a simple matter of extending the weight to include a factor inversely proportional to cost. However,

then the highest priority object could have high cost and potentially require more resources than are

currently available, while a lower priority object could be refreshed. It is not obvious how best to

manage bandwidth usage in a dynamic environment when objects have non-uniform cost.

• If objects are large, we may want refresh messages to encode the difference (delta) between the cur-

rent source copy and the out-of-date cached copy, rather than sending the entire object. Incorporating

such a technique,e.g., [LHM +86, MDFK97], into our approach would require some significant mod-

ifications because the refresh cost may increase with the number of updates to the source copy.

• In some environments it may be appropriate to amortize network bandwidth by packaging several

data objects into the same message for refreshing. Doing so will cause some refreshes to be delayed

artificially while the source waits for other refreshes to accumulate. It would be interesting to ex-

plore the tradeoff between packaging multiple refresh messages together to save bandwidth versus the

increased divergence resulting from delaying refreshes.

Acknowledgments

We thank Mike Franklin, Hector Garcia-Molina, Rajeev Motwani, Mema Roussopoulos, and Nick Rous-

sopoulos for their helpful discussions and feedback. We also thank Junghoo Cho for providing useful infor-

mation regarding the CGM algorithm.

References

[AGMK95] B. Adelberg, H. Garcia-Molina, and B. Kao. Applying update streams in a soft real-time
database system. InProceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 245–256, San Jose, California, May 1995.

[AKGM96] B. Adelberg, B. Kao, and H. Garcia-Molina. Database support for efficiently maintaining de-
rived data. InProceedings of the International Conference on Extending Database Technology,
pages 223–240, Avignon, France, March 1996.

[BP98] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine. InPro-
ceedings of the Seventh International World Wide Web Conference, Brisbane, Australia, April
1998.

25

[BTZ98] G. S. Brodal, J. L. Tr¨aff, and C. D. Zaroliagis. A parallel priority queue with constant time
operations.Journal of Parallel and Distributed Computing, 49(1):4–21, February 1998.

[CFZ01] M. Cherniack, M. J. Franklin, and S. Zdonik. Expressing user profiles for data recharging.
IEEE Personal Communications: Special Issue on Pervasive Computing, 8(4):32–38, August
2001.

[CGM00a] J. Cho and H. Garcia-Molina. Estimating frequency of change. Technical report,
Stanford University Computer Science Department, 2000. http://dbpubs.stanford.edu/pub/
2000-4.

[CGM00b] J. Cho and H. Garcia-Molina. Synchronizing a database to improve freshness. InProceed-
ings of the ACM SIGMOD International Conference on Management of Data, pages 117–128,
Dallas, Texas, May 2000.

[CK01] E. Cohen and H. Kaplan. Refreshment policies for web content caches. InProceedings of
the Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM 2001), Anchorage, Alaska, April 2001.

[DKP+01] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy. Adaptive push-pull:
Disseminating dynamic Web data. InProceedings of the Tenth International World Wide Web
Conference, Hong Kong, China, May 2001.

[Dor95] T. Dorcey. CU-SeeMe desktop videoconferencing software.Connexions, 9(3), March 1995.

[DRD99] L. Do, P. Ram, and P. Drew. The need for distributed asynchronous transactions. InProceed-
ings of the ACM SIGMOD International Conference on Management of Data, pages 534–535,
Philadelphia, Pennsylvania, June 1999.

[EGPS01] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the world with wireless sensor
networks. InProceedings of the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP 2001), Salt Lake City, Utah, May 2001.

[GE02] A. Gal and J. Eckstein. Managing periodically updated data in relational databases: A stochas-
tic modeling approach.Journal of the ACM (to appear), 2002.

[GL93] R. A. Golding and D. D. E. Long. Modeling replica divergence in a weak-consistency protocol
for global-scale distributed data bases. Technical report UCSC-CRL-93-09, Computer and
Information Sciences Board, University of California, Santa Cruz, 1993.

[KKP99] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: Mobile networking for
“smart dust”. InProceedings of the ACM/IEEE International Conference on Mobile Computing
and Network Monitoring (MobiCom 99), pages 271–278, Seattle, Washington, August 1999.

[LHM +86] B. Lindsay, L. Haas, C. Mohan, H. Pirahesh, and P. Wilms. A snapshot differential refresh
algorithm. InProceedings of the ACM SIGMOD International Conference on Management of
Data, pages 53–60, Washington, D.C., May 1986.

[LR01] A. Labrinidis and N. Roussopoulos. Update propagation strategies for improving the quality
of data on the Web. InProceedings of the Twenty-Seventh International Conference on Very
Large Data Bases, pages 391–400, Rome, Italy, September 2001.

26

[McP01] M. J. McPhaden. Tropical Atmosphere Ocean Project, Pacific Marine Environmental Labora-
tory, 2001. http://www.pmel.noaa.gov/tao/.

[MDFK97] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy. Potential benefits of delta en-
coding and data compression for http. InProceedings of the ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication, pages
181–194, Cannes, France, September 1997.

[OLW01] C. Olston, B. T. Loo, and J. Widom. Adaptive precision setting for cached approximate values.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages
355–366, Santa Barbara, California, May 2001.

[OW00] C. Olston and J. Widom. Offering a precision-performance tradeoff for aggregation queries
over replicated data. InProceedings of the Twenty-Sixth International Conference on Very
Large Data Bases, pages 144–155, Cairo, Egypt, September 2000.

[PK00] G.J. Pottie and W.J. Kaiser. Wireless integrated network sensors.Communications of the ACM,
43(5):551–558, May 2000.

[PL91] C. Pu and A. Leff. Replica control in distributed systems: An asynchronous approach. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, pages
377–386, Denver, Colorado, May 1991.

[Ram93] K. Ramamritham. Real-time databases.International Journal of Distributed and Parallel
Databases, 1(2):199–226, 1993.

[San98] P. Sanders. Randomized priority queues for fast parallel access.Journal of Parallel and Dis-
tributed Computing, 49(1):86–97, February 1998.

[Ste91] J. Stewart.Calculus: Early Transcendentals, Second Edition. Brooks/Cole, 1991.

[SY73] G. Salton and C. S. Yang. On the specification of term values in automatic indexing.Journal
of Documentation, 29:351–372, 1973.

[UNR+01] B. Urgaonkar, A. G. Ninan, M. S. Raunak, P. Shenoy, and K. Ramamritham. Maintaining
mutual consistency for cached Web objects. InProceedings of the Twenty-First International
Conference on Distributed Computing Systems, Phoenix, Arizona, April 2001.

[YV00] H. Yu and A. Vahdat. Design and evaluation of a continuous consistency model for replicated
services. InProceedings of the Fourth Symposium on Operating Systems Design and Imple-
mentation, San Diego, California, October 2000.

27

