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Abstract
In environments where exact synchronization between
source data objects and cached copies is not achiev-
able due to bandwidth or other resource constraints,
stale(out-of-date) copies are permitted. It is desirable
to minimize the overalldivergencebetween source ob-
jects and cached copies by selectively refreshing mod-
ified objects. We call the online process of selecting
which objects to refresh in order to minimize diver-
gencebest-effort synchronization. In most approaches
to best-effort synchronization, the cache coordinates the
process and selects objects to refresh. In this paper, we
propose a best-effort synchronization scheduling policy
that exploits cooperation between data sources and the
cache. We also propose an implementation of our pol-
icy that incurs low communication overhead even in en-
vironments with very large numbers of sources. Our
algorithm is adaptive to wide fluctuations in available
resources and data update rates. Through experimen-
tal simulation over synthetic and real-world data, we
demonstrate the effectiveness of our algorithm, and we
quantify the significant decrease in divergence achiev-
able with source cooperation.

1 Introduction
Data caching(or replication) is a common technique for reducing
the latency to access data from remote sources. Ideally,cached
copiesof data objects are kept transactionally consistent with the
source copiesat all times. In practice, transactional consistency
is often sacrificed due to the complexity and cost of the required
protocols [22]. Furthermore, even propagating all updates in a
nontransactional fashion may be infeasible: data collections may
be large or frequently updated, and network or computational re-
sources may be limited.

Situations where exact cache consistency is infeasible can be
found in many contexts. As one example, consider sensors that
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continuously monitor environmental conditions such as sound,
wind, vibration, etc. Due to recent advancements, it should
soon be possible and relatively cheap to deploy large numbers
of battery-powered sensors that communicate via wireless links
[12, 15, 21]. Since many thousands of sensors may be involved,
sensor readings may change frequently, and available bandwidth
tends to be low in wireless environments, it is not generally possi-
ble to propagate every new sensor measurement to a central cache
for monitoring. Similar problems arise in other environments that
use wireless or other low-bandwidth links to maintain replica con-
sistency, such as when volatile data is cached on portable devices
such as PDA’s.

Even in environments that use conventional wired network-
ing, exact cache consistency may still be infeasible due to large
quantities of rapidly changing data. For example, in video confer-
encing applications (e.g., [11]), the viewer screen can be thought
of as a cache that maintains copies of video data generated by
remote cameras. Since streaming video data can be very large,
it often becomes necessary to allow some staleness on parts of
the screen. As a final example, consider the problem of indexing
the World-Wide Web. Keeping an up-to-date Web index requires
maintaining information about the latest version of every docu-
ment. Currently, Web indexers are unable to maintain anything
close to exact consistency due to an astronomical number of data
sources and data that is constantly changing.

In environments such as these, where there are not sufficient
network or computational resources to keep up with the data as it
changes, it is simply not possible to keep the cache synchronized
with remote sources. The result isstale caching, in which the
cache is permitted to store stale, or out-of-date, copies of source
data, as illustrated in Figure 1. In stale caching environments, it is
desirable to minimize the inconsistency between data in the cache
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Figure 1: Stale caching architecture.



and the remote source data. We use the termbest-effort synchro-
nization for the process of selectively refreshing cached data to
maintain the cache as close as possible to exactly synchronized
with the sources, in the presence of limited resources.

Note that we use the termcacheloosely. We assume the cache
contains replicas of all source objects of interest (or data derived
from source objects, such as an index), and we deal only with the
problem of keeping the values of the cached objects up-to-date.

1.1 Source Cooperation

In best-effort synchronization, some policy determines when
cached data objects should berefreshed. (Remember we are
assuming that due to limited resources it is not possible to re-
fresh every object on every update.) In most refresh schedul-
ing policies, e.g., [3, 7], the cache plays the central role: re-
freshes are scheduled entirely by the cache and implemented by
polling the sources, without sources participating in the schedul-
ing. These policies must try to predict which source data objects
have changed, and by how much [7, 13]. If source data objects
do not behave in predictable ways, the refresh schedule is likely
to result in poor synchronization. Since the best synchronization
policy obviously depends on how source data objects change, im-
proved synchronization can be achieved through some level of
source participation in the refresh scheduling process.

Aside from enabling better synchronization between sources
and the cache, there are other, more practical, advantages of
source cooperation in synchronization scheduling. First, sources
can have a say in weights given to different data objects when pri-
oritizing them for refresh. Moreover, sources can exercise control
over the portion of their own bandwidth devoted to cache syn-
chronization,e.g., giving priority to servicing local user queries
as they occur and participating in cache synchronization with any
spare bandwidth. In contrast, synchronization policies determined
entirely by the cache can easily under-utilize available source
bandwidth, leading to poor synchronization, or over-utilize source
bandwidth, causing a degradation of local processing. This prob-
lem is exacerbated when the resources available for synchroniza-
tion fluctuate over time,e.g., due to sharing network bandwidth,
CPU cycles, or disk I/O’s with bursty user requests.

1.2 Overview of Approach

In this paper we study the problem of best-effort cache synchro-
nization with source cooperation. We focus on stale caching en-
vironments with a large number of sources that synchronize their
data with a shared cache. (Recall that we assume the cache con-
tains replicas or derivations of all data objects of interest,i.e., we
are not considering cache replacement algorithms.) The resources
for cache synchronization may be limited at a number of points.
First, the capacity of the link connecting the cache to the rest of
the network, thecache-sidebandwidth, may be constrained. Sec-
ond, the capacity of the link connecting each source to the rest of
the network, thesource-side bandwidth, may also be constrained
and may vary among sources. Moreover, all bandwidth capacities
may fluctuate over time if traffic is shared with other applications.
We assume a standard underlying network model where any mes-
sages for which there is not enough capacity become enqueued
for later transmission.

While we cast our approach as coping with limited network
resources (bandwidth), our techniques apply more generally to
other types of resource limitations. For example, sources may
have limited computational resources available for cache synchro-
nization due to local processing load. Caches also may have lim-
ited resources for incorporating updates, especially if they per-
form expensive processing such as data cleaning, aggregation, or
index maintenance.

1.2.1 Prioritizing Refreshes

In stale caching, the value of an object at the source and cache
may differ. This difference is calleddivergence, and it can be
measured using a number of possible metrics including Boolean
freshness (up-to-date or not), number of changes since refresh, or
value deviation. (We define these metrics formally in Section 3.1.)
The best metric to use depends on the data and the caching objec-
tives. Regardless of the divergence metric used, the goal in best-
effort synchronization is to minimize the (weighted) sum of the
divergence values for each source data object and its cached copy.
Weights may be assigned to give certain objects preferential treat-
ment based on criteria such as importance or frequency of access.
The choice of divergence metric and weighting scheme should
reflect the objectives of the caching environment since those pa-
rameters directly affect the synchronization policy. We will revisit
these issues in detail later in the paper.

If enough resources are available it is possible to achieve near-
zero overall divergence, or even exact transactional consistency if
sources will participate in transaction protocols. In environments
with limited resources, since not all changes can be propagated,
refreshes should be prioritized based on the divergence metric and
weighting scheme. Surprisingly, we will see that prioritizing re-
freshes based solely on the weighted divergence between source
and cached copies of data objects does not generally lead to good
refresh schedules. We establish a priority policy that achieves
much better synchronization. We describe and justify our policy
in Sections 3 and 4, respectively.

1.2.2 Coordinating Refreshes Across Multiple Sources

While a good priority policy is an important first step toward best-
effort synchronization, it alone is not sufficient. When multiple
sources are synchronizing their objects with a shared cache, as
in Figure 1, they must share refresh resources such as cache-side
bandwidth. Hence, refreshes should be prioritized across all the
sources. In the kinds of environments we are considering, sources
are not typically aware of the state of the content at other sources.
Furthermore, no single entity can keep track of the overall priority
order across a large number of sources.

We propose a simple and effective algorithm for scheduling
refreshes from a large number of sources that incurs low commu-
nication overhead while achieving synchronization that closely
follows the global priority order. The idea is for each source to
prioritize its own modified objects locally based on the overall
priority policy. Ideally, as we will see later, all modified objects
having priority above a globalrefresh thresholdT should be re-
freshed. However, since the best refresh thresholdT varies over
time due to fluctuating available bandwidth and divergence rates,
measuring the best value forT and broadcasting it to all sources is
impractical, especially when the number of sources to coordinate



is very large and bandwidth is limited. Consequently, each source
must maintain its own independent copy of the refresh threshold,
and some protocol for loosely regulating the individual thresholds
needs to be in place.

One way to regulate and coordinate the source refresh thresh-
olds without incurring too much communication overhead is to
rely on occasional feedback messages from the cache requesting
that sources raise or lower their thresholds. Relying on negative
feedback messages from the cache to raise thresholds (in order to
reduce the refresh rate) is dangerous since network resources are
already overutilized, so unrecoverable network flooding situations
can result. Instead, we propose an adaptive threshold-setting al-
gorithm based on positive feedback. In our algorithm, sources by
default gradually increase their thresholds, to conservatively re-
duce the refresh rate in case there is not enough bandwidth. If the
cache detects a surplus of bandwidth, it sends positive feedback
messages instructing sources to decrease their thresholds thereby
increasing the overall refresh rate to fill the surplus.1 Our general
approach is illustrated in Figure 2.

A detailed presentation and justification of our threshold-
setting algorithm is given in Section 5. In Section 6, we show
experimental evidence that our algorithm achieves low overall di-
vergence without incurring excessive communication overhead,
even in environments with a large number of sources and fluctu-
ating resources and data update rates. We also demonstrate quan-
titatively the advantages of source cooperation in refresh schedul-
ing over having the cache determine the synchronization schedule
unilaterally as in [7].

1.2.3 Making Cooperation Appealing

A global priority policy, as we have been assuming, may not be
realistic in environments where sources do not agree on the same
policy for refresh priority. Moreover, a cache may have criteria
for what to maintain up-to-date that conflicts with the objectives
of some sources,e.g., when the sources and cache belong to dif-
ferent administrative domains as is common on the Web. In Sec-
tion 7 we describe how to extend our synchronization techniques
to reconcile the potentially different objectives among sources and
between sources and the cache.

Since participating in refresh scheduling may be taxing on the
computational resources of the sources, in Section 8 we outline
lightweight mechanisms for sources to monitor the priorities of
modified data objects and schedule refreshes. Techniques for in-
corporating changes propagated from sources into a cache without
disrupting computation at the cache have already been proposed
in, e.g., [1, 2].

1.2.4 Bounding Divergence

Finally, in Section 9 we propose a way to provide guaranteed up-
per bounds on divergence in certain environments. We present
a synchronization scheduling policy that minimizes the average
upper bound on divergence to suit applications that require strict
guarantees about divergence. By contrast, the rest of this paper

1We differ from the control theory use of feedback terminology, but
we feel that “positive feedback” is a good term for increasing the refresh
rate.

addresses the related but distinct problem of minimizing the ac-
tual divergence, whose value may be unknown to applications ac-
cessing cached data.

2 Related Work

A wide variety of work in the literature is related to best-effort
cache synchronization to some extent. We outline some of the
most relevant work here.

Many stale caching and replication strategies have been pro-
posed. The basic idea is to abandon strict consistency protocols
and instead resort to asynchronous propagation of all database up-
dates,e.g., [10, 14, 22], in order to reduce query response time and
improve availability. However, all previous approaches we know
of do not consider environments in which there is not enough
bandwidth to propagate all updates. In limited-bandwidth envi-
ronments, it sometimes becomes necessary to wait for several up-
dates to an object to accumulate before refreshing, and to explic-
itly reorder the refreshes to minimize error, as we propose in our
approach.

Reference [16] describes strategies for ordering propagations
of complex updates from a single source to a cache. However,
only the freshness divergence metric is considered, and the fo-
cus is not on environments lacking the resources to propagate all
updates. Furthermore, [16] does not address the problem of coor-
dinating refreshes from multiple data sources. In theCU-SeeMe
video conferencing project [11], an application-specific refresh
priority scheme is established, but this work also does not address
the problem of coordinating refreshes from multiple data sources.

Theoretical algorithms for merging objects from multiple
sources in priority order have been proposed in the parallel pri-
ority queue research area,e.g., [4, 25]. These algorithms were
designed for use in parallel computing environments with high
communication throughput, and consequently require tight com-
munication among participants. By contrast, we focus on widely
distributed environments with limited communication resources.
Also, network flow-control techniques such as TCP/IP have a sim-
ilar flavor to our refresh coordination algorithm. However, these
techniques alone are not sufficient to address our problem because
they typically do not address application-level semantics such as
an overall priority ranking that is independent of flow rates and
queue sizes.

There has been a great deal of work on scheduling events in
real-time systems (see [23] for a survey). Most of this work fo-
cuses on scheduling events that have strict completion deadlines,
and the goal is to minimize the fraction of events that miss their
deadlines. By contrast, we consider an environment in which
there are no deadlines, and the goal is instead to minimize the
time-average of a potentially continuous inconsistency metric.

Finally, several techniques have been proposed to address the
problem of minimizing bandwidth utilization and/or query latency
in the presence of constraints on the age or accuracy of cached
data,e.g., [8, 9, 18, 19, 27, 28]. In this paper we address what is
essentially the dual of that problem: maximizing the accuracy of
cached data given constraints on available bandwidth.
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Figure 2: Our approach to best-effort synchronization.

3 Basis for Best-Effort Scheduling
In this section, we begin by formalizing our notion of divergence,
then use the formal definition as a basis for a priority policy for
best-effort synchronization scheduling.

3.1 Divergence

Consider a source data objectO that undergoes updates over time.
Let C(O) represent the (possibly stale) cached copy ofO. Let
V (O, t) represent the value ofO at timet. The value ofO re-
mains constant between updates. LetV (C(O), t) represent the
value ofC(O) at timet. ObjectO can berefreshedat timetr, in
which case a message is sent to the cache, and the cached value is
set to equal the current source value:V (C(O), tr) = V (O, tr).
(We assume that the time required to propagate a modified object
from a source to the cache is small enough to be neglected.)

In general, let thedivergencebetween a source objectO and
its cached copyC(O) at timet be given by a numerical function
D(O, t). When a refresh occurs at timetr, the divergence value
is zero:D(O, tr) = 0. Between refreshes, the divergence value
may become greater than zero, and the exact divergence value de-
pends on how the source copy relates to the stale cached copy.
There are many different ways to measure divergence that are ap-
propriate in different settings. We define threedivergence metrics
here, but the scope of our work is not limited to these specific
metrics.

1. Staleness: Ds(O, t) = 0 whenV (C(O), t) = V (O, t);
Ds(O, t) = 1 whenV (C(O), t) 6= V (O, t).2

2. Lag: Dl(O, t) = u whenC(O) is u updates behindO, i.e.,
O has been updatedu times since the last refresh.

3. Value Deviation: Dv(O, t) = ∆(V (O, t), V (C(O), t)),
where∆(V1, V2) can be any nonnegative function quantify-
ing the difference between two versions of an object.

2Staleness is the reverse of Freshness (staleness = 1 − freshness),
which is commonly used in the literature (e.g., [7, 16]). We use staleness
so that the larger value corresponds to greater divergence.

When the value deviation metric is appropriate, it usually cor-
responds to an application-specific function that models some cost
associated with the discrepancy between the data value stored at
the cache and the actual data value. If the data being cached were
Web documents, for example,∆(V1, V2) might be based on In-
formation Retrieval measures such as TF/IDF vector-space simi-
larity [24]. In the CU-SeeMe video conferencing application [11]
mentioned in Section 2, refreshes are prioritized based on the de-
viation between individual regions of the recorded image and their
counterparts on remote viewer screens. The CU-SeeMe value de-
viation function∆(V1, V2) is based on the sum of the absolute
value of the individual pixel differences, with an additional weight
for differences that occur in nearby pixels. In other applications
such as stock market monitoring that have single numerical val-
ues, the simple value deviation function∆(V1, V2) = |V1 − V2|
is often suitable. Once again, note that our techniques are inde-
pendent of the exact value deviation function or divergence metric
used.

3.2 Weights

In many applications, it is desirable to bias the synchronization
policy toward refreshing certain important objects more aggres-
sively than others.Importancevalues for objects might be as-
signed according to various criteria, including but not limited to
data quality, content provider authority (e.g., PageRank [3]), and
financial considerations. Our approach is independent of the exact
importance criteria, but we assume a numerical importance func-
tion I(O, t) that may or may not change over time. In the special
case where all objects have equal importance,I(O, t) = 1 for all
objects at all times.

In addition to having differing importance, objects also may
differ in the frequency with which they are accessed. Thepop-
ularity of an object refers to some measure of the probability of
access, possibly weighted by the importance of the person or ap-
plication that tends to access the data. The popularity of an object
O at timet is denotedP(O, t). In many applications it is impor-
tant to account for popularity so that scarce resources are used for



synchronizing data that will be accessed frequently, maximizing
the likelihood of accessing closely synchronized data [16].

From importance and popularity we derive an overallweight
W (O, t) for refresh assigned to an objectO at timet:

W (O, t) = I(O, t) · P(O, t)

There could be other multiplicative factors contributing to
W (O, t) besides importance and popularity, based on other as-
pects relevant to cache synchronization. For example, one could
incorporate detailed specifications of the objectives of users as in
[5]. For now, we only assume that sources and the cache agree
on and are aware of the weighting scheme to be used for best-
effort synchronization. In Section 7, we address the possibility of
conflicting interests among different sources and between sources
and the cache.

3.3 Priority Scheduling

The objective of best-effort synchronization is to minimize the
sum of the time-averaged divergence of each object, under the
constraint of limited resources [7]. For the staleness divergence
metric, this objective is equivalent to minimizing the (possibly
weighted) probability of accessing stale data [16]. We begin by
studying a theoretical situation in which all sources and the cache
share knowledge about each others’ state without using network
resources, and sources are aware of available cache-side band-
width. By first considering this idealized situation, we establish
an “ideal” scheduling policy for best-effort synchronization, on
which we can base our practical techniques.

Assuming for the moment that each source is aware of the state
of objects at all other sources, we assert that objects should be
prioritized globally for refreshing according to the following for-
mula:

P (Oi, tnow ) = (tnow − tlast(i)) ·D(Oi, tnow ) · W (Oi, tnow )

−
∫ tnow

tlast(i)

D(Oi, t) · W (Oi, t) dt

P (Oi, tnow ) is therefresh priorityof objectOi at timetnow . It
is a function of the timetlast(i) whenOi was last refreshed, the
current timetnow , and the divergence and weight ofOi during the
interval betweentlast(i) andtnow . The first term is the weighted
product of the time interval since the last refresh and the current
divergence. The subtracted term is the weighted area under the
divergence curve during the interval since the last refresh. The
overall priority functionP (Oi, tnow ) captures the area above the
divergence curve betweentlast(i) andtnow , properly weighted.

The two graphs in Figure 3 depict the refresh priority for two
different objects, with time on the x-axis and divergence on the
y-axis. Recall thattlast denotes the time of last refresh. Object
O1 remained relatively unchanged until recently, then suddenly
underwent a significant change. ObjectO2 underwent signifi-
cant changes immediately following the last refresh, but has not
changed much since then. In each of the graphs, the area of the
shaded region is the unweighted refresh priority for that object.
Assuming the two objects are assigned same weight,O1 will be
assigned higher priority for refresh at timetnow thanO2.

Intuitively, higher priority is assigned when refreshing an ob-
ject is likely to have more long-term benefit in terms of divergence
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Figure 3: Two divergence graphs showing priority.

reduction. Take objectO1 in Figure 3, which diverged slowly af-
ter the last refresh. Assuming it is likely to again diverge slowly
if another refresh is performed, a significant reduction in time-
averaged divergence can be achieved by refreshing it immediately
rather than leaving it with high divergence. On the other hand, ob-
ject O2 diverged quickly after the last refresh, so if this behavior
repeats itself refreshingO2 again is likely to have relatively little
long-term benefit compared with refreshingO1, even though they
have the same current divergence. Mathematical justification and
empirical validation of our refresh priority function are given in
Section 4. In [20] we discuss some potential positive and neg-
ative implications of extending our priority function to take into
account a longer history window.

Note that in most cases it is reasonable to assume that im-
portance and popularity weights do not change rapidly relative
to the time scale at which refreshes occur,i.e., W (Oi, t) ≈
W (Oi, tnow ) for all tlast(i) ≤ t ≤ tnow . (In fact, in many in-
tuitive weighting schemes, the weights are adjusted very infre-
quently.) Under this reasonable approximation, we can rewrite
the refresh priority function as:

P (Oi, tnow ) ≈ W (Oi, tnow ) ·(
(tnow − tlast(i)) ·D(Oi, tnow )−

∫ tnow

tlast(i)

D(Oi, t) dt

)

Assuming for our idealized scenario that sources know how
much cache-side bandwidth is available for refreshes, the ideal
synchronization schedule can be achieved as follows. Each time
there is enough cache-side bandwidth to accept a refresh, the
object with the highest refresh priority among all objects at all
sources should be refreshed. If the source containing the high-
est priority object does not have enough source-side bandwidth
available to perform the refresh, then the object with the second
highest priority overall should be refreshed instead, and so on.

3.4 Special-Case Priority Functions

The refresh priority formula in Section 3.3 is a general result (jus-
tified in Section 4), and applies to any divergence metric. We now
give specialized versions of the general priority function for im-
portant special cases. Consider a scenario where each objectOi is
updated according to a Poisson process with parameterλi. In this
common scenario (which has been shown to apply to Web pages
[7], for example), under the staleness divergence metric specified
in Section 3.1, the refresh priority function can be written as:

Ps(Oi, tnow ) =
Ds(Oi, tnow )

λi
· W (Oi, tnow )



The intuition behind this formula is quite simple. First, objects
whose cached copies are up-to-date have zero priority, since there
is no benefit to repeatedly refreshing the same value. Among ob-
jects that are stale, it is desirable to refresh the least frequently
changing ones (properly weighted), since they are the most likely
to remain up-to-date the longest after being refreshed. In [7], a
similar conclusion was reached for the staleness metric in high-
contention scenarios. However, our result differs from the exact
result presented in [7] because in our scenario, sources have direct
knowledge of update times and decide whether to refresh imme-
diately after each update.

Under the lag metric (recall Section 3.1), when updates follow
a Poisson model the refresh priority function can be written as:

Pl(Oi, tnow ) =

Dl(Oi, tnow ) · (Dl(Oi, tnow ) + 1)

2λi
·W (Oi, tnow )

which is roughly proportional to the square of the number of up-
dates to the source value not reflected in the cached copy. This
square proportionality indicates that it is especially important to
refresh objects that have undergone many changes. Moreover, the
priority is inversely proportional to the average change rateλi.
This inverse proportionality assigns higher priority to objects that
are not expected to change rapidly in the future. The derivations
of these special-case priority formulae are given in [20].

4 Justification of Refresh Priority Function
In this section we justify, both mathematically and empirically,
why prioritizing objects for refreshing using the formulae pro-
posed in Section 3 is appropriate for best-effort synchronization.
Let us begin by assuming that bandwidth constraints restrict us
to a constantB refreshes/second. Say that there are a total ofn
objectsO1, O2, · · · , On among all the data sources. Furthermore,
say the divergence of each objectOi depends purely on the time
elapsed since the last refresh:D(Oi, tnow ) = D∗(Oi, tnow −
tlast(i)), whereD∗() is any nonnegative function. In this sce-
nario, the optimal refresh schedule is one in which each objectOi

is refreshed at regular intervals determined by a refresh periodTi.
To determine values for the refresh periodsT1, T2, · · · , Tn re-

sulting in the best refresh schedule, we must solve the following
optimization problem: minimize the total time-averaged diver-
genceD =

∑n

i=1
( 1

Ti
·
∫ Ti

0
D∗(Oi, t) dt), subject to the band-

width constraint
∑n

i=1
1
Ti

= B. Using the method of Lagrange
Multipliers [26], the optimal solution has the property that there
is a single constantT such that for alli:

Φi = T (1)

where

Φi = Ti ·D∗(Oi, Ti)−
∫ Ti

0

D∗(Oi, t) dt

T is called therefresh threshold, and it controls the overall refresh
rate. It corresponds to the (unweighted) priority an object must
have in order to be refreshed. A smallT value results in more
refreshes,i.e., a high refresh rate. A largeT value results in a low
refresh rate. The value ofT depends on the maximum bandwidth
B and how fast the objects diverge.

Interestingly, it is possible to discover the optimal refresh pol-
icy without directly solving for the refresh periodsT1, T2, · · · , Tn

if, for all 1 ≤ i ≤ n, Φi monotonically increases asTi increases.
Under thismonotonicity assumption, the optimal schedule can be
determined online as the current timetnow advances by monitor-
ing what the value ofTi would be if objectOi were selected for
refresh at the current time:Ti = tnow − tlast(i). In this scheme,
every objectOi would have a proposed refresh periodTi at all
times. Given a proposedTi value for objectOi, Φi can be com-
puted using the relationship betweentnow , tlast(i), andTi along
with the relationship betweenD() andD∗(). Note that we are
now able to drop the assumption that objects diverge in the same
manner after each refresh. We can rewriteΦi as the refresh prior-
ity at timetnow :

P (Oi, tnow ) =

(tnow − tlast(i)) ·D(Oi, tnow )−
∫ tnow

tlast(i)

D(Oi, t) dt (2)

Thus, when an object’s refresh priority reachesT , that object
should be refreshed. Under the monotonicity assumption, the re-
fresh priority of each object monotonically increases with time, so
there is exactly one point in time at which the priority equalsT ,
which is the optimal refresh time. By adding weights, we arrive
at our original priority function in Section 3.3. In realistic envi-
ronments, the update patterns of objects and amount of available
bandwidth are likely to fluctuate over time, so the best value for
the refresh thresholdT changes as well. In Section 5, we give an
algorithm for finding and dynamically adjustingT in a multiple-
source environment as bandwidth and update patterns fluctuate.

4.1 Priority Monotonicity

We showed that if priority is expected to increase monotonically,
the best time to refresh an objectOi occurs as soon as its priority
reaches the refresh thresholdT . We now demonstrate that the
priority of any objectOi, P (Oi, t), is indeed expected to increase
monotonically with timet. Taking the derivative ofP (Oi, t) in
Equation (2) with respect to time, we obtain:

∂

∂t
P (Oi, t) = (t− tlast(i)) ·

∂

∂t
D(Oi, t) (3)

From this equation, it is easy to see that the expected value of
the change in priority∂

∂t
P (Oi, t) is nonnegative if the expected

change in divergence is nonnegative. The latter must be true over
time because divergence can never become negative, therefore it
must increase at least as much as it decreases. Therefore, unless
some special knowledge of future update patterns indicates that
an object’s source value will converge back toward the cached
value, causing divergence to temporarily decrease, priority can be
expected to increase monotonically over time.

4.2 Empirical Validation of Priority Function

As discussed in Section 1.2.1, it may appear surprising that it is
not a good scheduling strategy to simply prioritize objects accord-
ing to weighted divergence,i.e., P (Oi, t) = D(Oi, t) ·W (Oi, t).
To validate our less intuitive priority function empirically, we per-
formed some simulations. We simulated a single data source con-



tainingn objects, connected to a cache with bandwidth that sup-
ports up to10 refreshes per second. Each simulated objectOi was
updated with probabilityλi each second, and upon each update,
the object’s value was either incremented or decremented by1,
with equal probability (following a random walk pattern).

In our first experiment, we set all weights to1 and randomly
assignedλi values to objects following a uniform distribution. We
varied the number of objects fromn = 1 to 1000 and configured
the simulator to prioritize objects for refresh under each of the
three divergence metrics: staleness, lag, and value deviation with
∆(V1, V2) = |V1−V2|. In all runs, the difference in overall time-
averaged divergence observed between our priority function and
the simpler alternative was less than10%.

However, when we introduced some skew into the data param-
eters, our priority function proved to be significantly better than
the simpler alternative. For example, we simulatedn = 100 ob-
jects, a randomly-selected half of which were assigned a weight of
10 while the other half received a weight of1. An independently-
and randomly-selected half of the objects were updated with prob-
ability 0.01 while the other half were updated consistently every
second. Under the staleness, lag, and deviation metrics, the sim-
ple priority function resulted in a64%, 74%, and84% increase
in overall time-averaged divergence, respectively, compared with
our priority function.

5 Threshold-Setting Algorithm

In Sections 3 and 4 we established our approach: prioritize ob-
jects and refresh only those whose priority is above a certain re-
fresh thresholdT , whereT depends on the available bandwidth
and the divergence rates of the objects. Unfortunately, determin-
ing the best value forT would require solving a very large system
of equations in most cases: one weighted instance of Equation (1)
for each object plus an extra equation for the constraint. More-
over, the available bandwidth and divergence rates may fluctuate
widely over time, so most likely there is no single best threshold
value that works well all the time. Even if a central site (such as
the cache) could gather all the required information and calculate
T , if T changes over time and communication is limited then it
may be difficult or impossible to ensure that allm sources are
aware of the current threshold valueT , especially if the number
of sources is very large. In our approach each sourceSj main-
tains its own local refresh threshold valueTj . Whenever a source
Sj has enough source-side bandwidth to perform a refresh, it re-
freshes the object with the highest refresh priority if that priority
is above the local refresh thresholdTj .

As the best global thresholdT changes over time, ideally the
individual local threshold valuesT1, T2, · · · , Tm are maintained
close toT to ensure the best overall synchronization schedule.
We propose an adaptive algorithm in which the cache and sources
work together to adjust the refresh thresholds dynamically, as was
illustrated in Figure 2 and discussed briefly in Section 1.2.2. The
desired properties of such an algorithm are threefold. First, the al-
gorithm should cause the individual local thresholds to converge
on the overall best threshold as conditions change. Second, the
algorithm should incur as little communication overhead as pos-
sible so as to reserve as much bandwidth as possible for actual
refreshes. Third and most importantly, the algorithm must be
designed so that it is not possible for a huge excess of refresh

messages to become queued in the network for a long period of
time. It is crucial to avoid network flooding since refresh mes-
sages would be stalled leading to increased cache divergence.

As discussed in Section 1.2.2, the threshold-setting algorithm
should avoid relying on negative feedback from the cache. Oth-
erwise, it would be very difficult to recover from situations where
the bandwidth is flooded and both refreshes and feedback mes-
sages are delayed. A more stable strategy is for the cache to send
positive feedback messages when the refresh rate is too slow, ask-
ing sources to decrease their thresholds and thereby increase the
overall refresh rate. In the absence of feedback, sources can as-
sume that the refresh rate is too fast and should reduce the refresh
rate by increasing their thresholds.

In our algorithm, the cache continually monitors cache-side
bandwidth utilization. If underutilized, the cache uses the excess
bandwidth to send positive feedback messages to as many sources
as possible (until the excess bandwidth is utilized), asking them
each to decrease their thresholds by a multiplicative factorω. If
it is not possible to provide feedback to every source, the sources
with the highest local thresholds are selected to receive feedback.
(For the cache to track the source thresholds, each source can pig-
gyback its current local threshold in refresh messages.) When
a sourceSj receives a feedback message from the cache, it de-
creases its local thresholdTj by settingTj :=

Tj

ω
, unless it is

already sending at the full capacity of the source-side bandwidth,
in which case it leavesTj unmodified.3 In lieu of negative feed-
back, every time sourceSj refreshes an object, it increases its
local thresholdTj by a multiplicative factor(θ · α) by setting
Tj := Tj · (θ · α). Because our algorithm is adaptive, any initial
values for theTj ’s can be used and we assume a warm-up period.

The threshold decrease parameterω controls how aggres-
sively the cache requests more refreshes. Thethreshold increase
parameterθ controls how quickly sources slow down the refresh
rate in the absence of positive feedback. In Section 6.1 we de-
termine good settings for these two parameters. The factorα is
used to accelerate the rate of threshold increase in cases where
network flooding is likely. If the elapsed time∆tfeedback since the
last feedback message was received at a source is less than the
expected feedback periodPfeedback , thenα = 1. However, when-

ever∆tfeedback > Pfeedback , α =
∆tfeedback
Pfeedback

. The expected feed-
back periodPfeedback is estimated as the ratio of the total number
of sources divided by the average cache-side bandwidth. It is not
at all critical that the expected feedback period value be exact—it
need only be a rough estimate.

6 Experimental Evaluation
We now discuss an experimental evaluation that we performed
to determine good settings for the parametersω andθ, to assess
the effectiveness of our algorithm, and to compare against syn-
chronization schedules determined by the cache alone. We con-
structed a discrete event simulator for an environment with one

3We want to avoid situations in which sources have large queues of
over-threshold objects due to source-side bandwidth limitations. In such
situations, if more source bandwidth suddenly becomes available, sources
may flood the cache with refreshes that far exceed the cache bandwidth
capacity. If, however, the cache does have plenty of bandwidth available,
it will soon send positive feedback messages to the sources, triggering the
right amount of additional refreshing.



cache andm sources each containingn objects. In our simula-
tions, the available cache-side and source-side bandwidth fluctu-
ate over time following a sine wave pattern. The average cache-
side and source-side bandwidths are controlled by simulation pa-
rametersBC andBS , respectively. The maximum rate of band-
width change is controlled by simulation parameter∆mB. When
∆mB = 0, the amount of available bandwidth remains constant.
In our simulations, all messages have the same size, and each mes-
sage requires1 unit of bandwidth. For most of our experiments,
we used synthetic data sets generated following a random walk
as described in Section 4.2. Weights vary over time following
sine-wave patterns with randomly-assigned amplitudes and peri-
ods. We also used one real data set, introduced in Section 6.2.1.

6.1 Parameter Settings

To determine the best settings for the threshold increase parameter
θ and decrease parameterω (Section 5), we performed a variety
of simulations. We used synthetic random-walk data generated
for a wide variety of configurations having up to100, 000 objects
overall, with fluctuating weights among as many asm = 1000
sources. We also varied the amount of cache-side and source-side
bandwidth available, where both bandwidth constraints were ei-
ther held constant (∆mB = 0) or allowed to fluctuate over time at
a variety of rates. We measured average divergence over a period
of 5000 seconds, after an initial warm-up period.

Although our algorithm is not overly sensitive to the param-
etersθ and ω, it is important to set them carefully. Settingω
too large may cause refresh messages to be sent too aggressively,
thereby increasing the latency for refreshes and raising the over-
all divergence. However, having a small value forω may lead
to underutilization of bandwidth, which also leads to increased
divergence. Settingθ too large causes sources to back off on re-
freshes too quickly, resulting in many positive feedback messages
that reduce the bandwidth available for refreshes. On the other
hand, settingθ too low sacrifices adaptiveness.

Overall, under all three divergence metrics, we found that the
lowest average divergence resulted with threshold increase factor
θ = 1.1 and threshold decrease factorω = 10. With these set-
tings, whenever a source refreshes an object, it increases its local
threshold by10% (or more ifα > 1 because it detects that the net-
work seems to be flooded). Further, whenever a source receives
positive feedback from the cache and it is not sending at maxi-
mum source-side capacity, it reduces its local threshold to10% of
its value. The difference in the order of magnitude betweenθ and
ω is due to the fact that increases (due to refreshes) are much more
common than decreases (due to feedback). We did not find that
our algorithm was overly sensitive to the exact parameter settings
(e.g., θ = 1.2 andω = 20 gave similar results).

6.2 Algorithm Effectiveness

Having determined good settings for the algorithm parameters,
we ran a series of simulations comparing the divergence result-
ing from our algorithm with the divergence resulting from the
global policy attainable only in the idealized and unrealistic sce-
nario discussed in Section 3. Our comparison was performed
using synthetic random-walk data where each objectOi is ran-
domly assigned a Poisson update rate parameterλi. We simu-
lated m ∈ {1, 10, 100, 1000} sources, and varied the number
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Figure 4: Comparison against the idealized scenario.

of objects per source:n ∈ {1, 10, 100}, giving up to100, 000
objects total. Objects were assigned weights randomly and
weights were allowed to fluctuate over time. The average source-
side bandwidth was varied between runs inBS ∈ {10, 100}
and the average cache-side bandwidth was varied inBC ∈
{10, 100, 1000, 10000, 100000}. Finally, the bandwidth change
rate was varied between runs in∆mB ∈ {0, 0.005, 0.05, 0.25}.
We measured the average divergence over a period of5000 sec-
onds, after an initial warm-up period.

Figure 4 shows the results of our experiments using the value
deviation, lag, and staleness divergence metrics. One data point is
plotted for every combination of the parameters described above.
The y-axis shows the ratio of the average divergence resulting
from our pragmatic algorithm to the average divergence theoreti-
cally attainable in the idealized scenario. Data points are arranged
along the x-axis according to the theoretically attainable average
divergence. The actual divergence values along the x-axis reflect
the weighting scheme and vary depending on the bandwidth avail-
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Figure 5: Average divergence over wind buoy data.

ability relative to the data update rates, so they are not particularly
meaningful.

From Figure 4, we can see that as the average theoretically at-
tainable divergence increases (due to low bandwidth and/or many
rapidly diverging objects), our algorithm attains divergence nearly
as good as the ideal case. On the other hand, when divergence is
small, the absolute difference between the divergence achieved
by our algorithm and that of the idealized case is small. Overall,
our algorithm results in divergence that is close to that theoreti-
cally attainable in the idealized case. Sections 6.2.1 and 6.3 give
further evidence to support this claim.

6.2.1 Effectiveness on Real-World Data

To further verify the effectiveness of our algorithm, we performed
some experiments on a real-world data set gathered from weather
buoys in January 2000 by the Pacific Marine Environmental Labo-
ratory [17]. We simulated monitoring wind vectors fromm = 40
buoys spread out in the ocean, which perform measurements ev-
ery 10 minutes. Each wind vector is made up of two numeric
components, givingn = 2 data values per data source (buoy). All
data values were equally weighted.

Using the value deviation divergence metric with∆(V1, V2) =
|V1 − V2|, we simulated seven days worth of wind data, using
the first day as a warm-up period. The maximum total number
of messages transmitted per minute over the satellite link (cache-
side bandwidth) was constrained. In the graphs in Figure 5, the
(average) maximum bandwidth is plotted on the x-axis and the
resulting average value deviation per data value is shown on the
y-axis. The first graph shows the results of experiments in which
the maximum bandwidth was fixed as a constant between1 and
80. In the second graph, available bandwidth fluctuated with time

following a sine wave pattern with a peak relative change rate of
∆mB = 0.25. The wind velocity values monitored were gener-
ally in the range of0–10, with typical values of around5, so0.5
on the y-axis for example indicates roughly10% divergence. Fig-
ure 5 shows that the divergence achieved by our threshold-setting
algorithm closely follows the divergence theoretically achievable
in the idealized scenario.

6.3 Comparison Against Cache-Based Scheduling

Finally, to quantify the benefits of source cooperation in syn-
chronization scheduling, we compared our cooperative approach
against a recent fully cache-driven approach by Cho and Garcia-
Molina [7]. In their approach, which we will refer to as “CGM,”
the cache schedules all refreshes and polls sources for values. The
refresh frequency for each objectOi is set independently based
on an estimate of its average update rateλi. The goal is to mini-
mize the staleness metric (without weights) and the overall band-
width utilization is controlled by a numeric parameterµ, which
was shown not to be solvable mathematically [7]. The CGM
policy was shown to be the optimal cache-based synchronization
scheduling policy, given the correct setting forµ [7]. In our ex-
periments, we used repeated runs to experimentally determine the
correct setting for their parameterµ.

Our comparison was performed over synthetic random-walk
data where each objectOi is randomly assigned a Poisson update
rate parameterλi. Since the polling model used in the CGM ap-
proach assumes no limitations on source-side bandwidth, we only
placed a limitation on cache-side bandwidth, which we varied be-
tween runs. We simulatedm ∈ {10, 100, 1000} sources, with
n = 10 objects per source (results forn = 100 objects per source
were similar). We varied the bandwidth capacity between10%
and90% of the total number of objects (i.e., between0.1 · m · n
and0.9 ·m ·n) between runs. Since the CGM approach assumes a
fixed amount of available bandwidth, this quantity was held con-
stant during each run (i.e., ∆mB = 0). We measured the average
unweighted staleness over a period of500 seconds, after an ini-
tial warm-up period. (We used a shorter measurement period in
this experiment than in previous ones since the bandwidth doesn’t
fluctuate over time.)

Figure 6 shows the results of our comparison form = 10,
100, and1000 sources. In each graph, the x-axis is bandwidth
capacity as a fraction of the total number of objectsm · n. The
y-axis shows average divergence (staleness, in this case), and the
five data lines correspond to five different theoretical or practical
synchronization techniques. “Ideal cooperative” is the idealized
algorithm discussed throughout this paper, “our algorithm” is self-
explanatory, and “ideal cache-based” corresponds to CGM under
two theoretical assumptions: that the cache can request refreshes
without performing any communication to sources, and that the
cache is aware of the exact update rates (λ values) of all of the
objects. “CGM1” and “CGM2” are practical implementations of
the CGM techniques. First, since refreshes require polling, each
refresh incurs a round-trip message from the cache to a source.
Second, the cache must estimate the object update rates (λ values)
based on observations taken during prior refreshes. Two methods
for estimating an object’s update rate are suggested in [6]. The
first method can be used if the source keeps track of the time at
which the most recent update to each object occurred; this ap-
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Figure 6: Comparison against cache-based synchronization
policies.

proach is CGM1. The second method for estimating update rates
is used if the cache can only determine whether an object has been
updated since the last refresh, but not when it was updated; this
approach is CGM2.

By comparing the “ideal cooperative” and “ideal cache-based”
curves in the graphs in Figure 6, we can see that, at least theo-
retically, cooperative scheduling enables much lower divergence
than a cache-based policy. Furthermore, by comparing the curve
for our algorithm against the two pragmatic CGM curves, the at-
tainable benefit of cooperative scheduling over cache-based tech-
niques is demonstrated.

7 Cooperation in Competitive Environments

So far we have assumed that there is a single priority function and
refresh policy about which all participants (sources and cache)
agree. However, in some environments, sources may differ in

their criteria for deciding what content to keep up-to-date at a
cache. Moreover, a cache’s objectives of what to store and main-
tain up-to-date may not coincide with the goals of the sources.
More concretely, the cache may request that sources implement a
certain priority policy, determined by a divergence function and
weights, but a given source may prefer a different priority policy
derived from its own divergence function and weights. The re-
sult is that there may be two conflicting refresh priorities for each
object.

As an example, consider a Web indexer, whose objective might
be to focus resources on maintaining high-importance or high-
popularity Web pages up-to-date in the index. Content providers’
criteria for prioritizing pages for synchronization may differ from
that of the indexer, and each content provider might have differ-
ent criteria. For example, a retailer might wish to notify the Web
indexer whenever a special offer is added to their Web site, for
advertising purposes. In general, if the cache and a source dis-
agree on the best refresh priority policy, how can a compromise
be made?

Under conflicting priorities, we can partition resources among
satisfying source priorities and satisfying the cache priority. Let
Ψ represent the fraction of the cache-side bandwidth dedicated to
satisfying source priorities, so(1 − Ψ) is the fraction dedicated
to cache priority. The parameterΨ might be set by the cache ad-
ministrator. In loosely coupled environments, a relatively largeΨ
value can serve as an incentive for data sources to affiliate with
the cooperative environment because they will be given an oppor-
tunity to keep content they value up-to-date at the cache, even if
the cache prefers to focus on different content. There are at least
three conceivable ways to divide up theΨ fraction of the cache-
side bandwidth dedicated to fulfilling the needs of sources:

1. All sources are given an equal share.

2. Sources are given a share proportional to the number of
cached objects from the source.

3. Sources are given a share proportional to the degree to which
the source contributes to satisfying the objectives of the
cache.

In options (1) and (2), all participating sources or objects are
given equal treatment. In option (3), sources are allocated re-
sources for their own purposes only if they bring significant value
to the cache by offering objects that the cache wants to main-
tain highly synchronized. In our Web index example, in option
(3) Web content providers with many documents that the index
deems to be of high value would be allocated a relatively large
amount of synchronization resources to use as they see fit.

To implement options (1) or (2), the cache can monitor the
total available cache bandwidth and inform sources with each
feedback message how much bandwidth (in terms of number of
refreshes per second) they have been allocated. Then, sources
can refresh objects based on their own priority scheme at the rate
specified by the cache. The remaining cache bandwidth would
be dedicated to refreshes following the cache’s priority, using the
threshold-based algorithm proposed in Section 5. To implement
option (3), sources would be permitted to, on average, piggyback

Ψ
1−Ψ

objects of their own choosing along with every object re-
freshed based on the cache’s priority using the threshold policy.



8 Priority Monitoring Techniques
In this section, we discuss some practical considerations in how
sources monitor the refresh priority of their updated objects.
Sources need to detect when an object’s priority exceeds the
refresh threshold and refresh it, assuming sufficient source-side
bandwidth. If source-side bandwidth is a limiting factor, sources
can maintain a priority queue so that the highest-priority updated
object can be located quickly whenever spare bandwidth becomes
available. We first discuss what sources need to do to compute
the priority of their objects in Section 8.1, and then discuss when
sources should measure the priority in Section 8.2.

8.1 How to Measure Priority

If the lag or staleness metrics are employed and objects are up-
dated according to a Poisson process, then an object’s priority
depends uniquely on update times and not data. One simple way
for the source to track priorities is to monitor when updates occur.
The number of updates to an object since the last refresh deter-
mines its divergence value. The number of updates divided by
the time elapsed since the last refresh gives an estimate for the
Poisson parameterλ. Alternatively, the parameterλ may be mon-
itored over a longer period of time. From an estimate forλ and the
divergence value, the refresh priority can be computed using the
formulae given in Section 3.4. If it is impossible or too invasive to
track the exact number of updates, one of the techniques proposed
in [6] can be used to estimateλ. If the value deviation metric is
employed, we need to compare an object’s value with the older
cached value to measure its divergence, which determines the pri-
ority.

8.2 When to Measure Priority

Surprisingly, although the refresh priority depends on time, an
object’s priority can only change when an update occurs. Equa-
tion (3) in Section 4.1 shows the derivative of priority with re-
spect to time. Note that if divergence remains constant,i.e.,
∂
∂t

D(Oi, t) = 0, then the priority also remains constant. Thus, an
object’s priority only changes when its divergence changes, which
can only occur as a result of updates to the source object.

Therefore, to track the exact priority of an object, sources only
need to recompute the priority when an update is made to that
object. Since the priority depends on the integral of the diver-
gence values since the last refresh, the source also needs to main-
tain a running total of the past divergence values weighted by the
amount of time the value was active. The data necessary to com-
pute this running total only needs to be modified each time an
update occurs. Detecting updates requires the use of triggers or
a similar mechanism. If triggers are not supported or are deemed
too expensive, object priority can be monitored more loosely us-
ing sampling techniques, discussed in [20].

9 Divergence Bounding
Some applications may require guaranteed upper bounds on the
divergence of objects accessed at the cache. For example, it may
be important to know with certainty that a data value is below a
strict threshold or critical value. We can easily guarantee diver-
gence bounds at the cache when the source objects have known

maximum divergence rates. LetLi be an upper bound on the
total time required to refresh objectOi.4 Let Ri be the max-
imum divergence rate of objectOi. The upper bound on di-
vergence since the last refresh at timetlast(i) is B(Oi, tnow ) =
Ri · ((tnow − tlast(i))+ Li). In applications requiring divergence
bounds, it may be appropriate to perform best-effort synchroniza-
tion with the goal of minimizing the upper bounds, instead of
minimizing actual divergence values. SubstitutingB(Oi, tnow )
for D(Oi, tnow ) in our priority function of Section 3.3, we obtain
the following optimal priority function for minimizing the sum of
the time-averaged divergence bounds, assuming the weights do
not change drastically between refreshes:

P (Oi, tnow ) =
Ri · (tnow − tlast(i))

2

2
· W (Oi, tnow )

The threshold-based algorithm from Section 5 for coordinating
refreshes from multiple sources can be used in conjunction with
this priority policy.

10 Summary

We proposed, mathematically justified, and empirically verified
an algorithm for best-effort cache synchronization with source co-
operation. Source cooperation in the synchronization process is
advantageous for a number of reasons. First, source cooperation
enables better scheduling policies than would otherwise be possi-
ble, resulting in improved synchronization over cache-centric ap-
proaches. Second, sources can be given a say in the relative prior-
ity of their objects for synchronization. Finally, sources can exer-
cise fine-grained control over the source-side bandwidth used for
cache synchronization so that exactly the right amount of band-
width can be devoted to servicing user queries.

We began by defining and justifying a priority policy for re-
freshing cached objects when bandwidth is limited. We then pro-
posed an algorithm for implementing the policy, while regulating
the synchronization rate to match the available bandwidth with-
out excessive communication. Our algorithm adjusts local refresh
thresholds adaptively at a large number of data sources as condi-
tions fluctuate. We presented simulation results on both synthetic
and real-world data sets to demonstrate that our techniques are ef-
fective. We also demonstrated empirically that source cooperation
in synchronization scheduling leads to considerably less cache di-
vergence over the more conventional approach in which the cache
unilaterally schedules refreshes. There are several interesting av-
enues for future work, discussed in [20].
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