1

Data caching(or replication) is a common technique for reducing

Best-Effort Cache Synchronization with Source Cooperation

Chris Olston and Jennifer Widom

Stanford University
{olston, widon} @cs.stanford.edu

Abstract

In environments where exact synchronization between
source data objects and cached copies is not achiev-
able due to bandwidth or other resource constraints,
stale (out-of-date) copies are permitted. It is desirable
to minimize the overaltivergencebetween source ob-
jects and cached copies by selectively refreshing mod-
ified objects. We call the online process of selecting
which objects to refresh in order to minimize diver-
gencebest-effort synchronizationin most approaches

to best-effort synchronization, the cache coordinates the
process and selects objects to refresh. In this paper, we
propose a best-effort synchronization scheduling policy
that exploits cooperation between data sources and the
cache. We also propose an implementation of our pol-
icy that incurs low communication overhead even in en-
vironments with very large numbers of sources. Our
algorithm is adaptive to wide fluctuations in available
resources and data update rates. Through experimen-
tal simulation over synthetic and real-world data, we
demonstrate the effectiveness of our algorithm, and we
quantify the significant decrease in divergence achiev-
able with source cooperation.

Introduction

the latency to access data from remote sources. |deathed

continuously monitor environmental conditions such as sound,
wind, vibration, etc. Due to recent advancements, it should
soon be possible and relatively cheap to deploy large numbers
of battery-powered sensors that communicate via wireless links
[12, 15, 21]. Since many thousands of sensors may be involved,
sensor readings may change frequently, and available bandwidth
tends to be low in wireless environments, it is not generally possi-
ble to propagate every new sensor measurement to a central cache
for monitoring. Similar problems arise in other environments that
use wireless or other low-bandwidth links to maintain replica con-
sistency, such as when volatile data is cached on portable devices
such as PDA's.

Even in environments that use conventional wired network-
ing, exact cache consistency may still be infeasible due to large
quantities of rapidly changing data. For example, in video confer-
encing applicationse(g, [11]), the viewer screen can be thought
of as a cache that maintains copies of video data generated by
remote cameras. Since streaming video data can be very large,
it often becomes necessary to allow some staleness on parts of
the screen. As a final example, consider the problem of indexing
the World-Wide Web. Keeping an up-to-date Web index requires
maintaining information about the latest version of every docu-
ment. Currently, Web indexers are unable to maintain anything
close to exact consistency due to an astronomical number of data
sources and data that is constantly changing.

In environments such as these, where there are not sufficient
network or computational resources to keep up with the data as it
changes, it is simply not possible to keep the cache synchronized

copiesof data objects are kept transactionally consistent with the, s, remote sources. The result s&le caching in which the
source copiesit all times. In practice, transactional cOnsistency cache is permitted to store stale, or out-of-date, copies of source
is often sacrificed due to the complexity and cost of the requiredyia a5 jllustrated in Figure 1. In stale caching environments, it is

protocols [22]. Furthermore, even propagating all updates in gsjraple to minimize the inconsistency between data in the cache
nontransactional fashion may be infeasible: data collections may

be large or frequently updated, and network or computational re-
sources may be limited.

Situations where exact cache consistency is infeasible can be
found in many contexts. As one example, consider sensors that

cache
oooooooono

ooooooooo
OoOoooooooo

(stale) copies of

*This work was supported by the National Science Foundation un- source data objects
der grant 11IS-9817799 and by a National Science Foundation graduate limited
research fellowship. resources

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the ful
citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee.

ACM SIGMOD 2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

Ooooooooono
data objects

Ooooooooono
data objects
source

lDDDDDDDDD
data objects

source source

Figure 1: Stale caching architecture.

and the remote source data. We use the teest-effort synchro- While we cast our approach as coping with limited network
nization for the process of selectively refreshing cached data taesources (bandwidth), our techniques apply more generally to
maintain the cache as close as possible to exactly synchronizesther types of resource limitations. For example, sources may
with the sources, in the presence of limited resources. have limited computational resources available for cache synchro-

Note that we use the ternacheloosely. We assume the cache nization due to local processing load. Caches also may have lim-
contains replicas of all source objects of interest (or data derivedted resources for incorporating updates, especially if they per-
from source objects, such as an index), and we deal only with théorm expensive processing such as data cleaning, aggregation, or
problem of keeping the values of the cached objects up-to-date. index maintenance.

1.1 Source Cooperation 1.2.1 Prioritizing Refreshes

N . . In stale caching, the value of an object at the source and cache
In best-effort synchronization, some policy determines when . o . . .
may differ. This difference is calledivergence and it can be

cached data objects should befreshed (Remember we are . : T .
measured using a number of possible metrics including Boolean

assuming that due to limited resources it is not possible to re; .

. freshness (up-to-date or not), number of changes since refresh, or
fresh every object on every update.) In most refresh schedul- L ! : . .
. -] value deviation. (We define these metrics formally in Section 3.1.)
ing policies, e.g, [3, 7], the cache plays the central role: re-

freshes are scheduled entirely by the cache and implemented t{he best metric to use depends on the data and the caching objec-

polling the sources, without sources participating in the scheduI-X/es' Regardless of the divergence metric used, the goal in best-

; . . X .~ effort synchronization is to minimize the (weighted) sum of the
ing. These policies must try to predict which source data ObJectSEiiver ence values for each source data object and its cached co
have changed, and by how much [7, 13]. If source data object 9 J Py.

S ?Neights may be assigned to give certain objects preferential treat-

¥nent based on criteria such as importance or frequency of access.

to result in poor synchronization. Since the best synchronization]_he choice of divergence metric and weighting scheme should
policy obviously depends on how source data objects change, im-

proved synchronization can be achieved through some level o?eflect the objectives of the caching environment since those pa-
source participation in the refresh scheduling process rameters directly affect the synchronization policy. We will revisit

Aside f bling bett hronization bet these issues in detail later in the paper.
side from enabling betler synchronization between sources If enough resources are available it is possible to achieve near-

223rgzecc?§(:2re5{ti$eirr? sa;ecﬁrt:rirz’a?oor:icﬁ;r:gﬂﬁgl’ i‘?;’;n;?uerie%ro overall divergence, or even exact transactional consistency if
P Y 9- ' Sources will participate in transaction protocols. In environments

can have asay in weights given to different data ObJeCtS. when pri ith limited resources, since not all changes can be propagated,

oritizing them_ for refres_h. Moreover, SOUCEs can exercise contro efreshes should be prioritized based on the divergence metric and

over the portion of their own bandwidth devoted to cache Syn'Weighting scheme. Surprisingly, we will see that prioritizing re-
freshes based solely on the weighted divergence between source

chronization,e.g, giving priority to servicing local user queries
as they occur and participating in cache synchronization with anénd cached copies of data objects does not generally lead to good
efresh schedules. We establish a priority policy that achieves

spare bandwidth. In contrast, synchronization policies determine
entirely by the cache can easily under-utilize available SOUrCE . ' h petter synchronization. We describe and justify our policy

bandw!dth, Ieadlpg to poor sync_hronlzatlon, or over_-utlllze SOUrce gactions 3 and 4, respectively.
bandwidth, causing a degradation of local processing. This prob-
lem is exacerbated when the resources available for synchroniz
tion fluctuate over timeg.g, due to sharing network bandwidth,
CPU cycles, or disk 1/O’s with bursty user requests. While a good priority policy is an important first step toward best-
effort synchronization, it alone is not sufficient. When multiple
sources are synchronizing their objects with a shared cache, as
in Figure 1, they must share refresh resources such as cache-side
In this paper we study the problem of best-effort cache synchrobandwidth. Hence, refreshes should be prioritized across all the
nization with source cooperation. We focus on stale caching ensources. In the kinds of environments we are considering, sources
vironments with a large number of sources that synchronize theiare not typically aware of the state of the content at other sources.
data with a shared cache. (Recall that we assume the cache cdrdrthermore, no single entity can keep track of the overall priority
tains replicas or derivations of all data objects of interiest,we order across a large number of sources.

are not considering cache replacement algorithms.) The resources We propose a simple and effective algorithm for scheduling
for cache synchronization may be limited at a number of pointsrefreshes from a large number of sources that incurs low commu-
First, the capacity of the link connecting the cache to the rest ofication overhead while achieving synchronization that closely
the network, theache-sidébandwidth, may be constrained. Sec- follows the global priority order. The idea is for each source to
ond, the capacity of the link connecting each source to the rest gfrioritize its own modified objects locally based on the overall
the network, thesource-side bandwidthmay also be constrained priority policy. Ideally, as we will see later, all modified objects
and may vary among sources. Moreover, all bandwidth capacitiebaving priority above a globakfresh thresholdZ” should be re-

may fluctuate over time if traffic is shared with other applications.freshed. However, since the best refresh threstioidaries over

We assume a standard underlying network model where any me&me due to fluctuating available bandwidth and divergence rates,
sages for which there is not enough capacity become enqueueadeasuring the best value férand broadcasting it to all sources is

for later transmission. impractical, especially when the number of sources to coordinate

2.2 Coordinating Refreshes Across Multiple Sources

1.2 Overview of Approach

is very large and bandwidth is limited. Consequently, each sourcaddresses the related but distinct problem of minimizing the ac-
must maintain its own independent copy of the refresh thresholdtual divergence, whose value may be unknown to applications ac-
and some protocol for loosely regulating the individual thresholdscessing cached data.
needs to be in place.
One way to regulate and coordinate the source refresh thresh-
olds without incurring too much communication overhead is to
rely on occasional feedback messages from the cache requesti®) Related Work
that sources raise or lower their thresholds. Relying on negative

feedback messages from the cache to raise thresholds (in order foyyide variety of work in the literature is related to best-effort

reduce the refresh rate) is dangerous since network resources g:ne synchronization to some extent. We outline some of the
already overutilized, so unrecoverable network flooding situationsy,ost relevant work here.

can result. Instead, we propose an adaptive threshold-setting al- . . .

gorithm based on positive feedback. In our algorithm, sources by Many stale cgchlng gnd replication st_rategles_ have been pro-
default gradually increase their thresholds, to conservatively repose_d. The basic idea is to abandon strict c_onS|stency protocols
duce the refresh rate in case there is not enough bandwidth. If th@nd instead resort to asynchronous propagation of all database up-
cache detects a surplus of bandwidth, it sends positive feedbacﬁ’@tese'gv [1(_)’ 14; 22],inorderto reduc_e query response time and
messages instructing sources to decrease their thresholds theréw)rove availability. However, all previous approaches we know

increasing the overall refresh rate to fill the surphu@ur general ©f d0 not consider environments in which there is not enough
approach is illustrated in Figure 2. bandwidth to propagate all updates. In limited-bandwidth envi-

A detailed presentation and justification of our threshold- ronments, it sometimes becomes necessary to wait for several up-

setting algorithm is given in Section 5. In Section 6, we Showdates to an object to accumulate before refreshing, and to explic-

; . . . -itly reorder the refresh minimize error, as we pr in our
experimental evidence that our algorithm achieves low overall dl-ty eorder the refreshes to € €ITor, as We propose in ou

vergence without incurring excessive communication overhead?pproaCh'
even in environments with a large number of sources and fluctu- Reference [16] describes strategies for ordering propagations
ating resources and data update rates. We also demonstrate quafi-complex updates from a single source to a cache. However,
titatively the advantages of source cooperation in refresh schedubnly the freshness divergence metric is considered, and the fo-
ing over having the cache determine the synchronization scheduleus is not on environments lacking the resources to propagate all
unilaterally as in [7]. updates. Furthermore, [16] does not address the problem of coor-
dinating refreshes from multiple data sources. In@éSeeMe
video conferencing project [11], an application-specific refresh

priority scheme is established, but this work also does not address
A global priority policy, as we have been assuming, may not bethe problem of coordinating refreshes from multiple data sources.
realistic in environments where sources do not agree on the same Theoretical algorithms for merging objects from multiple
policy for refresh priority. Moreover, a cache may have criteria sources in priority order have been proposed in the parallel pri-
for what to maintain up-to-date that conflicts with the objectivesority queue research area,g, [4, 25]. These algorithms were
of some sources.g, when the sources and cache belong to dif- designed for use in parallel computing environments with high
ferent administrative domains as is common on the Web. In Seccommunication throughput, and consequently require tight com-
tion 7 we describe how to extend our synchronization techniguesnunication among participants. By contrast, we focus on widely
to reconcile the potentially different objectives among sources andjistributed environments with limited communication resources.
between sources and the cache. Also, network flow-control techniques such as TCP/IP have a sim-
Since participating in refresh scheduling may be taxing on thelar flavor to our refresh coordination algorithm. However, these
computational resources of the sources, in Section 8 we outlingechniques alone are not sufficient to address our problem because
lightweight mechanisms for sources to monitor the priorities ofthey typically do not address application-level semantics such as
modified data objects and schedule refreshes. Techniques for imn overall priority ranking that is independent of flow rates and
corporating changes propagated from sources into a cache withogueue sizes.
disrupting computation at the cache have already been proposed
in, e.qg, [1, 2].

1.2.3 Making Cooperation Appealing

There has been a great deal of work on scheduling events in
real-time systems (see [23] for a survey). Most of this work fo-
cuses on scheduling events that have strict completion deadlines,
1.2.4 Bounding Divergence and the goal is to minimize the fraction of events that miss their

)])] deadlines. By contrast, we consider an environment in which
Finally, in Section 9 we propose a way to provide guaranteed Upghere are no deadlines, and the goal is instead to minimize the

per bounds on divergence in certain environments. \We presefme_average of a potentially continuous inconsistency metric.
a synchronization scheduling policy that minimizes the average

upper bound on divergence to suit applications that require strict Finally, several techniques have been proposed to address the

guarantees about divergence. By contrast, the rest of this pap@Iroblem of minimizing bandwidth utilization and/or query latency
in the presence of constraints on the age or accuracy of cached

lwe differ from the control theory use of feedback terminology, but data,e._g, 8, 9,18, 19, 27, 28]. In this pal?ef ‘{Ve address what is
we feel that “positive feedback” is a good term for increasing the refreshessentially the dual of that problem: maximizing the accuracy of
rate. cached data given constraints on available bandwidth.

cache

ooooooooo
ooooooooo
ooooooooo

cache-side

refreshe

/’/p;ositive _
feedback source—side
bandwidth B (t

source-side
bandwidth B (t

(stale) copies of
source data objects

positive
.. feedback

K positive
3 feedback

&

v
= thresholdr,

modified data object;
in priority order

[

;
= thresholdt,

modified data object
in priority order

[

modified data object]
in priority order

source

Figure 2: Our approach to
3 Basis for Best-Effort Scheduling

In this section, we begin by formalizing our notion of divergence,
then use the formal definition as a basis for a priority policy for
best-effort synchronization scheduling.

3.1 Divergence

Consider a source data obj>hat undergoes updates over time.
Let C(O) represent the (possibly stale) cached copyofLet
V(O,t) represent the value @ at time¢. The value ofO re-
mains constant between updates. L&C'(O),t) represent the
value of C(O) at timet. ObjectO can berefreshedat timet,., in

source

source

best-effort synchronization.

When the value deviation metric is appropriate, it usually cor-
responds to an application-specific function that models some cost
associated with the discrepancy between the data value stored at
the cache and the actual data value. If the data being cached were
Web documents, for examplé\(V1, V2) might be based on In-
formation Retrieval measures such as TF/IDF vector-space simi-
larity [24]. In the CU-SeeMe video conferencing application [11]
mentioned in Section 2, refreshes are prioritized based on the de-
viation between individual regions of the recorded image and their
counterparts on remote viewer screens. The CU-SeeMe value de-
viation functionA(V1, V2) is based on the sum of the absolute
value of the individual pixel differences, with an additional weight

which case a message is sent to the cache, and the cached valuddgdifferences that occur in nearby pixels. In other applications

set to equal the current source vald&(C'(O), t.) = V(O,t.).

such as stock market monitoring that have single numerical val-

(We assume that the time required to propagate a modified obje&{€S: the simple value deviation functidn(Vi, V2) = [Vi — V3|

from a source to the cache is small enough to be neglected.)
In general, let thalivergencebetween a source obje€t and

its cached copy’(O) at timet be given by a numerical function

D(O,t). When a refresh occurs at tinig, the divergence value

is often suitable. Once again, note that our techniques are inde-
pendent of the exact value deviation function or divergence metric
used.

is zero: D(O, tr) = 0. Between refreshes, the divergence value3.2 Weights

may become greater than zero, and the exact divergence value de-

pends on how the source copy relates to the stale cached copyt many applications, it is desirable to bias the synchronization
There are many different ways to measure divergence that are apolicy toward refreshing certain important objects more aggres-
propriate in different settings. We define thaigergence metrics ~ sively than others.Importancevalues for objects might be as-
here, but the scope of our work is not limited to these specificsigned according to various criteria, including but not limited to

metrics.

1. Staleness D,;(O,t) = 0 whenV(C(0),t) = V(O,t);
D, (0,t) = 1whenV(C(0),t) # V(0O,t).2

2. Lag: D;(0,t) = wwhenC(O) is v updates behin@, i.e,,
O has been updatedtimes since the last refresh.

3. Value Deviation: D, (0,t) = A(V(O,t),V(C(0),t)),
whereA(Vi, V2) can be any nonnegative function quantify-
ing the difference between two versions of an object.

2Staleness is the reverse of Freshnessléness = 1 — freshness),
which is commonly used in the literature.g, [7, 16]). We use staleness
so that the larger value corresponds to greater divergence.

data quality, content provider authoritg.¢, PageRank [3]), and
financial considerations. Our approach is independent of the exact
importance criteria, but we assume a numerical importance func-
tionZ (O, t) that may or may not change over time. In the special
case where all objects have equal importai¢€), t) = 1 for all
objects at all times.

In addition to having differing importance, objects also may
differ in the frequency with which they are accessed. Php-
ularity of an object refers to some measure of the probability of
access, possibly weighted by the importance of the person or ap-
plication that tends to access the data. The popularity of an object
O attimet is denotedP (O, t). In many applications it is impor-
tant to account for popularity so that scarce resources are used for

synchronizing data that will be accessed frequently, maximizing Object O

the likelihood of accessing closely synchronized data [16].
From importance and popularity we derive an ovevaight
W (O,) for refresh assigned to an obje®tat timet:

o
7

divergence
divergence

;////////////7////////////////////////%
/

\

W(0,t) =Z(0,t) - P(O,t) \\\\\\

There could be other multiplicative factors contributing to \\\\\\\
L

W(O,t) besides importance and popularity, based on other as-
pects relevant to cache synchronization. For example, one could t 4 time t now tast time t now
incorporate detailed specifications of the objectives of users as in

[5]. For now, we only assume that sources and the cache agree Figure 3: Two divergence graphs showing priority.

on and are aware of the weighting scheme to be used for best-

effort synchronization. In Section 7, we address the possibility ofreduction. Take objead; in Figure 3, which diverged slowly af-
conflicting interests among different sources and between sourcaer the last refresh. Assuming it is likely to again diverge slowly

and the cache. if another refresh is performed, a significant reduction in time-
averaged divergence can be achieved by refreshing itimmediately
3.3 Priority Scheduling rather than leaving it with high divergence. On the other hand, ob-

ject O diverged quickly after the last refresh, so if this behavior
repeats itself refreshing@, again is likely to have relatively little
ong-term benefit compared with refreshiflg, even though they
) . L - LT NCE ave the same current divergence. Mathematical justification and
metric, this objective is equivalent to minimizing the (possibly - L -) . .

; o) . empirical validation of our refresh priority function are given in
weighted) probability of accessing stale data [16]. We begin by,

.) L . Section 4. In [20] we discuss some potential positive and neg-

studying a theoretical situation in which all sources and the CaChetive implications of extending our oriority function to take into
share knowledge about each others’ state without using networfil P 9 P y

. . %ccount a longer history window.
resources, and sources are aware of available cache-side band- h o .
Note that in most cases it is reasonable to assume that im-

width. By first considering this idealized situation, we establish
an “ideal” scheduling policy for best-effort synchronization, on portance and popularity weights do not change rapidly relative
g policy Y ’ to the time scale at which refreshes occue., W (0;,t) =~

which we can base our practical techniques. W (O, tow) foF all tiasisy < t < tuow. (I fact, in many in-

Assuming for the moment that each source is aware of the statg . A . ; .

. . Litive weighting schemes, the weights are adjusted very infre-

of objects at all other sources, we assert that objects should be : oo .

I : . ; quently.) Under this reasonable approximation, we can rewrite
prioritized globally for refreshing according to the following for-

. the refresh priority function as:
mula:

P(Ou tnow) ~ W(Ou tnmu) :
P(Ou tnmu) = (tnmu - tlast(i)) ° D(Oz7 tnmu) ° W(Oz7 tnow) <

The objective of best-effort synchronization is to minimize the
sum of the time-averaged divergence of each object, under th

tnow
(tnaw - tlast(i)) : D(Oza tnaw) - /
t

last (i)

tnow P
—/ D(Oi,t) - W(0i,t) dt (0i, 1))

Liast(i)

Assuming for our idealized scenario that sources know how
much cache-side bandwidth is available for refreshes, the ideal
. ; . . synchronization schedule can be achieved as follows. Each time
purrent timet,,.,, and the divergence a_nd We'gh.t@t dunng the there is enough cache-side bandwidth to accept a refresh, the
interval betweert ,,(;) andtn,w. The first term is the weighted object with the highest refresh priority among all objects at all

product of the time interval since the last refresh and the currengOurces should be refreshed. If the source containing the high-
divergence. The subtracted term is the weighted area under trlgz :

. ; X . st priority object does not have enough source-side bandwidth
divergence curve during the interval since the last refresh. Th b y oY) g

| priority functionP(O i th b th vailable to perform the refresh, then the object with the second
overall priority function (Oi tnow) Captures the area above the highest priority overall should be refreshed instead, and so on.
divergence curve betweep,; ;) andt...,, properly weighted.

_ The two _graphs _in F_igure 3 depict the refresh priority for two 3.4 Special-Case Priority Functions
different objects, with time on the x-axis and divergence on the
y-axis. Recall that,,s; denotes the time of last refresh. Object The refresh priority formula in Section 3.3 is a general result (jus-
O: remained relatively unchanged until recently, then suddenlytified in Section 4), and applies to any divergence metric. We now
underwent a significant change. Obj&2t underwent signifi- give specialized versions of the general priority function for im-
cant changes immediately following the last refresh, but has noportant special cases. Consider a scenario where each 6hjict
changed much since then. In each of the graphs, the area of thgdated according to a Poisson process with parametén this
shaded region is the unweighted refresh priority for that objectcommon scenario (which has been shown to apply to Web pages
Assuming the two objects are assigned same wei@htwill be [7], for example), under the staleness divergence metric specified
assigned higher priority for refresh at timg,,, thanO-. in Section 3.1, the refresh priority function can be written as:

Intuitively, higher priority is assigned when refreshing an ob- D4(Oi, tnow)
jectis likely to have more long-term benefit in terms of divergence Ps(0s, tnow) =)\7; - W(0i, tnow)

P(O;, tnow) is therefresh priorityof objectO; at timet,oy. It
is a function of the time,,.;;) whenO; was last refreshed, the

The intuition behind this formula is quite simple. First, objects Interestingly, it is possible to discover the optimal refresh pol-
whose cached copies are up-to-date have zero priority, since therey without directly solving for the refresh periods, 75, - - -, Tp,
is no benefit to repeatedly refreshing the same value. Among obi, for all 1 < i < n, ®; monotonically increases &3 increases.
jects that are stale, it is desirable to refresh the least frequentliynder thismonotonicity assumptioihe optimal schedule can be
changing ones (properly weighted), since they are the most likelyletermined online as the current tihg,, advances by monitor-
to remain up-to-date the longest after being refreshed. In [7], ang what the value of’; would be if objectO; were selected for
similar conclusion was reached for the staleness metric in highrefresh at the current timél; = tnow — tia0(i)- In this scheme,
contention scenarios. However, our result differs from the exacevery objectO; would have a proposed refresh peridgat all
result presented in [7] because in our scenario, sources have diretiines. Given a proposef; value for objectD;, ®; can be com-
knowledge of update times and decide whether to refresh immeputed using the relationship betwegn., t.s¢(;), and7; along
diately after each update. with the relationship betwee®() and D*(). Note that we are

Under the lag metric (recall Section 3.1), when updates follownow able to drop the assumption that objects diverge in the same
a Poisson model the refresh priority function can be written as: manner after each refresh. We can rewditeas the refresh prior-

ity at timet,ow:
Pl(0i7 tnow) =
Dl(0i7 tnow) . (Dl(Ou tnmu) + 1)
2

P(Ou tnow) -

W (O trow)
ich i ; (tnow = tiast(s)) * D(Ois tnow) — / D(Os,t)dt (2)

which is roughly proportional to the square of the number of up- tlast (s

dates to the source value not reflected in the cached copy. This

square proportionality indicates that it is especially important to Thus, when an object’s refresh priority reachigsthat object

refresh objects that have undergone many changes. Moreover, tisgould be refreshed. Under the monotonicity assumption, the re-

priority is inversely proportional to the average change pate fresh priority of each object monotonically increases with time, so

This inverse proportionality assigns higher priority to objects thatthere is exactly one point in time at which the priority equals

are not expected to change rapidly in the future. The derivationgvhich is the optimal refresh time. By adding weights, we arrive

of these special-case priority formulae are given in [20]. at our original priority function in Section 3.3. In realistic envi-
ronments, the update patterns of objects and amount of available

4 Justification of Refresh Priority Function bandwidth are likely to fluctuate over time, so the best value for
the refresh threshol@ changes as well. In Section 5, we give an

In this section we justify, both mathematically and empirically, algorithm for finding and dynamically adjustirij in a multiple-

why prioritizing objects for refreshing using the formulae pro- source environment as bandwidth and update patterns fluctuate.
posed in Section 3 is appropriate for best-effort synchronization.

Let us begin by assuming that bandwidth constraints restrict ug 1 Priority Monotonicity

to a constanB refreshes/second. Say that there are a total of

objectsO;, O, - - -, O, among all the data sources. Furthermore, We showed that if priority is expected to increase monotonically,
say the divergence of each obj&2t depends purely on the time the best time to refresh an obj&@t occurs as soon as its priority
elapsed since the last refresM(O;, tnow) = D*(O:, tnow — reaches the refresh threshald We now demonstrate that the
Liast(s)), WhereD*() is any nonnegative function. In this sce- priority of any objectD;, P(O;, t), is indeed expected to increase
nario, the optimal refresh schedule is one in which each oflect monotonically with timet. Taking the derivative of?(O;,) in

is refreshed at regular intervals determined by a refresh p&tiod Equation (2) with respect to time, we obtain:

To determine values for the refresh perid@dsTs, - - -, T, re-
sulting in the best refresh schedule, we must solve the following QP(Oi, t) = (t — tiasi(i)) - QD(Oi, t) (3)
optimization problem: minimize the total time-averaged diver- ot ot

genceD = > (4 - [, D*(Oi,t) dt), subject to the band- From this equation, it is easy to see that the expected value of
width constrainty " . A = B. Using the method of Lagrange the change in priorityé%P(Oi, t) is nonnegative if the expected

Multipliers [26], the ép?fmal solution has the property that there change in divergence is nonnegative. The latter must be true over
is a single constarif such that for alk: time because divergence can never become negative, therefore it
must increase at least as much as it decreases. Therefore, unless

D, =7 Q) some special knowledge of future update patterns indicates that

an object’s source value will converge back toward the cached
value, causing divergence to temporarily decrease, priority can be
expected to increase monotonically over time.

where

T;

b, =T, - D"(0;, T;) —/ D*(O;,t) dt

0
7 is called theefresh thresholdand it controls the overall refresh 4.2 Empirical Validation of Priority Function
rate. It corresponds to the (unweighted) priority an object mustAs discussed in Section 1.2.1, it may appear surprising that it is
have in order to be refreshed. A smdllvalue results in more notagood scheduling strategy to simply prioritize objects accord-
refreshesi.e., a high refresh rate. A largg value resultsinalow ing to weighted divergencee., P(O;, t) = D(0;,t)- W (O, t).
refresh rate. The value Gf depends on the maximum bandwidth To validate our less intuitive priority function empirically, we per-
B and how fast the objects diverge. formed some simulations. We simulated a single data source con-

tainingn objects, connected to a cache with bandwidth that supmessages to become queued in the network for a long period of
ports up tol0 refreshes per second. Each simulated olffgavas time. It is crucial to avoid network flooding since refresh mes-
updated with probability\; each second, and upon each update,sages would be stalled leading to increased cache divergence.
the object’s value was either incremented or decrementet by As discussed in Section 1.2.2, the threshold-setting algorithm
with equal probability (following a random walk pattern). should avoid relying on negative feedback from the cache. Oth-

In our first experiment, we set all weights taand randomly erwise, it would be very difficult to recover from situations where
assigned\; values to objects following a uniform distribution. We the bandwidth is flooded and both refreshes and feedback mes-
varied the number of objects from= 1 to 1000 and configured sages are delayed. A more stable strategy is for the cache to send
the simulator to prioritize objects for refresh under each of thepositive feedback messages when the refresh rate is too slow, ask-
three divergence metrics: staleness, lag, and value deviation witing sources to decrease their thresholds and thereby increase the
A(V1, Vo) = |Vi — V2. In all runs, the difference in overall time- overall refresh rate. In the absence of feedback, sources can as-
averaged divergence observed between our priority function andume that the refresh rate is too fast and should reduce the refresh
the simpler alternative was less theits. rate by increasing their thresholds.

However, when we introduced some skew into the data param- In our algorithm, the cache continually monitors cache-side
eters, our priority function proved to be significantly better than bandwidth utilization. If underutilized, the cache uses the excess
the simpler alternative. For example, we simulateg: 100 ob- bandwidth to send positive feedback messages to as many sources
jects, arandomly-selected half of which were assigned a weight ofis possible (until the excess bandwidth is utilized), asking them
10 while the other half received a weight bf An independently- each to decrease their thresholds by a multiplicative factolf
and randomly-selected half of the objects were updated with probit is not possible to provide feedback to every source, the sources
ability 0.01 while the other half were updated consistently every with the highest local thresholds are selected to receive feedback.
second. Under the staleness, lag, and deviation metrics, the sinfFor the cache to track the source thresholds, each source can pig-
ple priority function resulted in &4%, 74%, and84% increase gyback its current local threshold in refresh messages.) When
in overall time-averaged divergence, respectively, compared witla sourceS; receives a feedback message from the cache, it de-

our priority function. creases its local thresholf by settingZ; := % unless it is
already sending at the full capacity of the source-side bandwidth,
5 Threshold-Setting Algorithm in which case it leaveg; unmodified® In lieu of negative feed-

back, every time sourcé; refreshes an object, it increases its
In Sections 3 and 4 we established our approach: prioritize oblocal thresholdZ; by a multiplicative factor(f - o) by setting
jects and refresh only those whose priority is above a certain re7; := 7; - (6 -). Because our algorithm is adaptive, any initial
fresh thresholdl", where7 depends on the available bandwidth values for the7;’s can be used and we assume a warm-up period.
and the divergence rates of the objects. Unfortunately, determin- The threshold decrease parameter controls how aggres-
ing the best value fof would require solving a very large system sively the cache requests more refreshes. thieshold increase
of equations in most cases: one weighted instance of Equation (})arameterd controls how quickly sources slow down the refresh
for each object plus an extra equation for the constraint. Morerate in the absence of positive feedback. In Section 6.1 we de-
over, the available bandwidth and divergence rates may fluctuateermine good settings for these two parameters. The facisr
widely over time, so most likely there is no single best thresholdused to accelerate the rate of threshold increase in cases where
value that works well all the time. Even if a central site (such asnetwork flooding is likely. If the elapsed tim®&¢.cqsqcr Since the
the cache) could gather all the required information and calculatéast feedback message was received at a source is less than the
T, if T changes over time and communication is limited then it expected feedback perid®..qpqcx, thena = 1. However, when-
may be difficult or impossible to ensure that all sources are ever At feedvack > Plecdback, @ = w The expected feed-
aware of thc_e current threshold valde especially if the number back periodPy.aaer is estimated afsee{lﬁlaék-ratio of the total number
of sources is very large. In our approach each soStcenain-

OV of sources divided by the average cache-side bandwidth. It is not
tains its own local refresh threshold valiiz Whenever a source ¢ o) critical that the expected feedback period value be exact—it
S; has enough source-side bandwidth to perform a refresh, it repaaq only be a rough estimate.
freshes the object with the highest refresh priority if that priority
is above the local refresh threshaigl

As the best global thresholfi changes over time, ideally the 6 EXpe”mental Evaluation

individual local threshold valueg:, 7z, - - -, 7,, are maintained e now discuss an experimental evaluation that we performed
close to7 to ensure the best overall synchronization scheduleq getermine good settings for the parametemmndd, to assess

We propose an adaptive algorithm in which the cache and sourcege effectiveness of our algorithm, and to compare against syn-
work together to adjust the refresh thresholds dynamically, as wagnronization schedules determined by the cache alone. We con-

illustrated in Figure 2 and discussed briefly in Section 1.2.2. Thestrycted a discrete event simulator for an environment with one
desired properties of such an algorithm are threefold. First, the al-
gorithm should cause the individual local thresholds to converge *We want to avoid situations in which sources have large queues of

on the overall best threshold as conditions change. Second ﬂ{é/er—threshold objects due to source-side bandwidth limitations. In such
. . . o i ' " situations, if more source bandwidth suddenly becomes available, sources
algorithm should incur as little communication overhead as pos; ay flood the cache with refreshes that far exceed the cache bandwidth

sible so as to reserve as much bandwidth as possible for actu pacity. If, however, the cache does have plenty of bandwidth available,

refreshes. Third and most importantly, the algorithm must beit will soon send positive feedback messages to the sources, triggering the
designed so that it is not possible for a huge excess of refrestight amount of additional refreshing.

cache andn sources each containingobjects. In our simula-
tions, the available cache-side and source-side bandwidth fluctu-
ate over time following a sine wave pattern. The average cache-
side and source-side bandwidths are controlled by simulation pa-
rametersB¢c and Bg, respectively. The maximum rate of band-
width change is controlled by simulation parametgy, B. When
A,, B = 0, the amount of available bandwidth remains constant.
In our simulations, all messages have the same size, and each mesz
sage requires$ unit of bandwidth. For most of our experiments,
we used synthetic data sets generated following a random walk
as described in Section 4.2. Weights vary over time following
sine-wave patterns with randomly-assigned amplitudes and peri-
ods. We also used one real data set, introduced in Section 6.2.1.

value deviation metric
T T T

IN

3.5

3

25

ual to ideal dlvergence

2

15

r”—‘ﬁ:+ I I 4 +
100 150 200 250
theoretlcally achievable divergence

S
o
=1
©
o

lag metric

6.1 Parameter Settings

To determine the best settings for the threshold increase parameter
0 and decrease parameter(Section 5), we performed a variety

of simulations. We used synthetic random-walk data generated
for a wide variety of configurations having up160, 000 objects
overall, with fluctuating weights among as manyras= 1000

E +

4 T T T T T

3.5; -

3 -

2.5: -

2 -
sources. We also varied the amount of cache-side and source-sides

!}

ctual to ideal a’lvergence

of

bandwidth available, where both bandwidth constraints were ei- Lo
ther held constantX,,, B = 0) or allowed to fluctuate over time at
a variety of rates. We measured average divergence over a period
of 5000 seconds, after an initial warm-up period.

Although our algorithm is not overly sensitive to the param-
etersf andw, it is important to set them carefully. Setting
too large may cause refresh messages to be sent too aggressivel
thereby increasing the latency for refreshes and raising the over-
all divergence. However, having a small value formay lead
to underutilization of bandwidth, which also leads to increased
divergence. Setting too large causes sources to back off on re-

1 1 1 1 + +
2ooo 4000 6000 8000 10000 12000 14000 16000
theoretically achievable divergence

1

ratio

staleness metric
T T T T

vergence
IS

35

3

25

freshes too quickly, resulting in many positive feedback messages 2 f"jg; -

that reduce the bandwidth available for refreshes. On the other 15 ﬁ* _
: o . : Hf

hand, setting too low sacrifices adaptiveness. . Fo o w omes

ratio of actual to ideal di

Overall, under all three divergence metrics, we found that the 4 p 5 o o
lowest average divergence resulted with threshold increase factor theoretlcally achievable divergence
6 = 1.1 and threshold decrease factor= 10. With these set-
tings, whenever a source refreshes an object, it increases its local Figure 4: Comparison against the idealized scenario.
threshold byl 0% (or more ifa. > 1 because it detects that the net-
work seems to be flooded). Further, whenever a source receiv
positive feedback from the cache and it is not sending at maxi
mum source-side capacity, it reduces its local threshol®%6 of
its.value. The differenc_e in the order of magnitude betw&and side bandwidth was varied between runsBs € {10,100}

w is due to the fact that increases (due to refreshes)_are mu_ch MOLE | the average cache-side bandwidth was varied®in ¢
common than decreases (due to feedback). We did not f'”d_th?o, 100, 1000, 10000, 100000}. Finally, the bandwidth change
our algorithm was overly sensm_ve_ to the exact parameter setting ate was varied between runsin, B € {0,0.005,0.05,0.25}.
(€.9,9 = 1.2 andw = 20 gave similar results). We measured the average divergence over a periédaf sec-
onds, after an initial warm-up period.

Figure 4 shows the results of our experiments using the value
Having determined good settings for the algorithm parametersdeviation, lag, and staleness divergence metrics. One data point is
we ran a series of simulations comparing the divergence resuliplotted for every combination of the parameters described above.
ing from our algorithm with the divergence resulting from the The y-axis shows the ratio of the average divergence resulting
global policy attainable only in the idealized and unrealistic sce-from our pragmatic algorithm to the average divergence theoreti-
nario discussed in Section 3. Our comparison was performedally attainable in the idealized scenario. Data points are arranged
using synthetic random-walk data where each objects ran- along the x-axis according to the theoretically attainable average
domly assigned a Poisson update rate parametetVe simu- divergence. The actual divergence values along the x-axis reflect
latedm € {1, 10,100, 1000} sources, and varied the number the weighting scheme and vary depending on the bandwidth avail-

Gt objects per sourcer € {1,10,100}, giving up to100, 000
objects total. Objects were assigned weights randomly and
weights were allowed to fluctuate over time. The average source-

6.2 Algorithm Effectiveness

fixed bandwidth following a sine wave pattern with a peak relative change rate of

069 T T T T T T T A,, B = 0.25. The wind velocity values monitored were gener-
3) ideal scenario—+— | ally in the range of-10, with typical values of around, s00.5
s °° our algorithm--e-- on the v-axis f le indicat i : .
o y-axis for example indicates roughl§% divergence. Fig
§ 7 ure 5 shows that the divergence achieved by our threshold-setting
© _ algorithm closely follows the divergence theoretically achievable
% in the idealized scenario.
E i
© T 6.3 Comparison Against Cache-Based Scheduling
———— - _ &
0 10 20 3 40 50 60 70 80 Finally, to quantify the benefits of source cooperation in syn-
available bandwidth chronization scheduling, we compared our cooperative approach
against a recent fully cache-driven approach by Cho and Garcia-
fluctuating bandwidth Molina [7]. In their approach, which we will refer to as “CGM,”
0.9 T T T T T T 5 the cache schedules all refreshes and polls sources for values. The
237 ggf;%%‘mﬁmt: refresh frequency for each obje@; is set independently based

on an estimate of its average update rateThe goal is to mini-
mize the staleness metric (without weights) and the overall band-
width utilization is controlled by a numeric paramejerwhich
was shown not to be solvable mathematically [7]. The CGM
policy was shown to be the optimal cache-based synchronization
scheduling policy, given the correct setting fo7]. In our ex-
periments, we used repeated runs to experimentally determine the
0 10 20 3 40 5 60 70 80 correct setting for their parameter
average available bandwidth Our comparison was performed over synthetic random-walk

. . . data where each obje€; is randomly assigned a Poisson update

Figure 5: Average divergence over wind buoy data. ate parametek,. Since the polling model used in the CGM ap-

. . . proach assumes no limitations on source-side bandwidth, we only
ability relative to the data update rates, so they are not partlcularl)élaced a limitation on cache-side bandwidth. which we varied be-

melz:nlngf'lzj_l. 4 that as th th ticall ttween runs. We simulatech € {10, 100, 1000} sources, with
rom Figure 2, we can see that as the average theoretically & _ objects per source (results fler= 100 objects per source

tainable divergence increases (due to low bandwidth and/or many . e similar). We varied the bandwidth capacity betweef,
rapidly diverging objects), our algorithm attains divergence nearlyandgo% of the total number of objects.é., betweer0.1 - m - n

as good as the ideal case. On the other hand, when dlvergencee;!ﬁdo.g.m‘n) between runs. Since the CGM approach assumes a

small, the a_bsolute difference b_etwe_en the dlvgrgence achiev xed amount of available bandwidth, this quantity was held con-
by our algorithm and that of the idealized case is small. Overall,

- S . Ustant during each run.€., A,, B = 0). We measured the average
oulrl algor_lthml rgsul;s n dl\l/_ergence that is _close o that theore.t"unweighted staleness over a periods00 seconds, after an ini-
?szart%earttea\l;irliaeage":()t Si'deat'fﬁ_d C?S.e' Sections 6.2.1 and 6.3 IVl warm-up period. (We used a shorter measurement period in
pportthis claim. this experiment than in previous ones since the bandwidth doesn’t

fluctuate over time.)

Figure 6 shows the results of our comparison fer= 10,
To further verify the effectiveness of our algorithm, we performed 100, and 1000 sources. In each graph, the x-axis is bandwidth
some experiments on a real-world data set gathered from weatheapacity as a fraction of the total number of objeeis n. The
buoys in January 2000 by the Pacific Marine Environmental Laboy-axis shows average divergence (staleness, in this case), and the
ratory [17]. We simulated monitoring wind vectors from= 40 five data lines correspond to five different theoretical or practical
buoys spread out in the ocean, which perform measurements egynchronization techniques. “Ideal cooperative” is the idealized
ery 10 minutes. Each wind vector is made up of two numeric algorithm discussed throughout this paper, “our algorithm” is self-
components, giving = 2 data values per data source (buoy). All explanatory, and “ideal cache-based” corresponds to CGM under
data values were equally weighted. two theoretical assumptions: that the cache can request refreshes

Using the value deviation divergence metric witiiVi, V%) = without performing any communication to sources, and that the
|[Vi — V|, we simulated seven days worth of wind data, usingcache is aware of the exact update ratesdlues) of all of the
the first day as a warm-up period. The maximum total numbembjects. “CGM1” and “CGM2” are practical implementations of
of messages transmitted per minute over the satellite link (cachehe CGM techniques. First, since refreshes require polling, each
side bandwidth) was constrained. In the graphs in Figure 5, theefresh incurs a round-trip message from the cache to a source.
(average) maximum bandwidth is plotted on the x-axis and theSecond, the cache must estimate the object update Patakies)
resulting average value deviation per data value is shown on thbased on observations taken during prior refreshes. Two methods
y-axis. The first graph shows the results of experiments in whickor estimating an object’s update rate are suggested in [6]. The
the maximum bandwidth was fixed as a constant betwieand first method can be used if the source keeps track of the time at
80. In the second graph, available bandwidth fluctuated with timewhich the most recent update to each object occurred; this ap-

average divergence

6.2.1 Effectiveness on Real-World Data

§ m = 10 sources their criteria for deciding what content to keep up-to-date at a
S 1 T — T— cache. Moreover, a cache’s objectives of what to store and main-
g Ideﬁhi%?pc?rri?r?r\;e:” tain up-to-date may not coincide with the goals of the sources.
b 08 ideal cacr?e-basedA—— 7 More concretely, the cache may request that sources implement a
S ek B CGM 1--0- certain priority policy, determined by a divergence function and
qé T 5. CGM 2 -3 weights, but a given source may prefer a different priority policy
L oaf x g - derived from its own divergence function and weights. The re-
g . A Ty sult is that there may be two conflicting refresh priorities for each
o> oz b object.
§ 0 | L x:'f_’,jj]; - i BN As an example, consider a Web indexer, whose objective might
© 0 0.2 04 0.6 08 1 be to focus resources on maintaining high-importance or high-
bandwidth fraction popularity Web pages up-to-date in the index. Content providers’
- criteria for prioritizing pages for synchronization may differ from
2 m = 100 sources that of the indexer, and each content provider might have differ-
& 1 T T T ent criteria. For example, a retailer might wish to notify the Web
2 sl 'deﬁtfg?ggrri?ﬁr\:ﬁ:_ indexer whenever a special offer is added to their Web site, for
>) ideal cache-based-- advertising purposes. In general, if the cache and a source dis-
% 06l B CGM 1--0-4 agree on the best refresh priority policy, how can a compromise
o e g CGM 2 & be made?
% 041 R B TRl 7 Under conflicting priorities, we can partition resources among
o NN g satisfying source priorities and satisfying the cache priority. Let
g °r T e e,] ¥ represent the fraction of the cache-side bandwidth dedicated to
% o ! Lo iy g satisfying source priorities, sd — V) is the fraction dedicated
0 02 04 06 08 1 to cache priority. The paramet@r might be set by the cache ad-
bandwidth fraction ministrator. In loosely coupled environments, a relatively labge
@ value can serve as an incentive for data sources to affiliate with
@ m = 1000 sources the cooperative environment because they will be given an oppor-
% 1 T ideal cooper'ative—A—— tunity to keep content they valu_e up-to-date at the cache, even if
B osl our algorithm-- e - _ the cache prefers to focus on different content. There are at least
g ideal cache-baseda-- three conceivable ways to divide up tliefraction of the cache-
S 06 B CGM 1--0-4 side bandwidth dedicated to fulfilling the needs of sources:
o - g CGM 2o
% 04 \g: N h e b 1. All sources are given an equal share.
A T~
% 02t A] 2. Sources are given a share proportional to the number of
o . . .t e f e cached objects from the source.
S o 02 04 06 0.8 . 3. Sources are given a share proportional to the degree to which
bandwidth fraction the source contributes to satisfying the objectives of the
cache.

Figure 6: Comparison against cache-based synchronization

policies. In options (1) and (2), all participating sources or objects are
given equal treatment. In option (3), sources are allocated re-
proach is CGM1. The second method for estimating update rategoyrces for their own purposes only if they bring significant value
is used if the cache can only determine whether an object has begf the cache by offering objects that the cache wants to main-
updated since the last refresh, but not when it was updated; thig;j, highly synchronized. In our Web index example, in option
approach is CGM2. (3) Web content providers with many documents that the index
By comparing the “ideal cooperative” and “ideal cache-based"deems to be of high value would be allocated a relatively large
curves in the graphs in Figure 6, we can see that, at least thegmount of synchronization resources to use as they see fit.
retically, cooperative scheduling enables much lower divergence Tq jmplement options (1) or (2), the cache can monitor the
than a cache-based policy. Furthermore, by comparing the Curvg,ta| available cache bandwidth and inform sources with each
for our algorithm against the two pragmatic CGM curves, the at-feedhack message how much bandwidth (in terms of number of
tainable benefit of cooperative scheduling over cache-based techafreshes per second) they have been allocated. Then, sources
niques is demonstrated. can refresh objects based on their own priority scheme at the rate
specified by the cache. The remaining cache bandwidth would
7 Cooperation in Competitive Environments be dedicated to refreshes following th_e cacht_a’s priority,_ using the
threshold-based algorithm proposed in Section 5. To implement
So far we have assumed that there is a single priority function andption (3), sources would be permitted to, on average, piggyback
refresh policy about which all participants (sources and cache)l%q, objects of their own choosing along with every object re-
agree. However, in some environments, sources may differ irireshed based on the cache’s priority using the threshold policy.

8 Priority Monitoring Techniques maximum divergence rates. Lét be an upper bound on the

. total time required to refresh obje@;.* Let R; be the max-
In this section, we discuss some practical considerations in how

sources monitor the refresh priority of their updated objects.Irnum divergence rate of objee?;. The upper bound on di-

S S vergence since the last refresh at timg, ;) is B(Os, tnow) =
Sources need to detect when an object’s priority exceeds the, (tnow — trass(sy) + Ls). In applications requiring divergence

refresh threshold and refresh it, assuming sufficient source-sidsz' . .)
. . T - 2 ounds, it may be appropriate to perform best-effort synchroniza-
bandwidth. If source-side bandwidth is a limiting factor, sources y pprop P Y

can maintain a priority queue so that the highest-priority updatecﬂ?n with the goal of minimizing the upper bounds, instead of
object can be located quickly whenever spare bandwidth becom inimizing actual divergence values. SUbSHUUAGO:, tow)

lable. We first di hat dto do t r D(Os, tnow) in our priority function of Section 3.3, we obtain
avaiiable. WVe Tirst discuss what sources need to do ocomput%e following optimal priority function for minimizing the sum of

the priority of their objects in Section 8.1, and then discuss Wher}he time-averaged divergence bounds, assuming the weights do
sources should measure the priority in Section 8.2. not change drastically between refresh‘eS'

8.1 How to Measure Priority R (t .)2
i " \Unow — Ulast(i)

P(Oi7tnow) = 2

If the lag or staleness metrics are employed and objects are up- - W(Oi, tow)

dated according to a Poisson process, then an object’s priority

depends uniquely on update times and not data. One simple wayhe threshold-based algorithm from Section 5 for coordinating
for the source to track priorities is to monitor when updates occurrefreshes from multiple sources can be used in conjunction with
The number of updates to an object since the last refresh detethis priority policy.

mines its divergence value. The number of updates divided by

the time elapsed since the last refresh gives an estimate for the

Poisson parametex. Alternatively, the parametermay be mon- 10 Summary

itored over a longer period of time. From an estimateXand the

divergence value, the refresh priority can be computed using th&Ve proposed, mathematically justified, and empirically verified
formulae given in Section 3.4. If it is impossible or too invasive to an algorithm for best-effort cache synchronization with source co-
track the exact number of updates, one of the techniques proposegberation. Source cooperation in the synchronization process is
in [6] can be used to estimate If the value deviation metric is advantageous for a number of reasons. First, source cooperation
employed, we need to compare an object’s value with the oldeenables better scheduling policies than would otherwise be possi-
cached value to measure its divergence, which determines the piple, resulting in improved synchronization over cache-centric ap-

ority. proaches. Second, sources can be given a say in the relative prior-
ity of their objects for synchronization. Finally, sources can exer-
8.2 When to Measure Priority cise fine-grained control over the source-side bandwidth used for

cache synchronization so that exactly the right amount of band-

Surprisingly, although the refresh priority depends on time, anwidth can be devoted to servicing user queries.
object’s priority can only change when an update occurs. Equa- e began by defining and justifying a priority policy for re-
tion (3) in Section 4.1 shows the derivative of priority with re- frashing cached objects when bandwidth is limited. We then pro-
spect to time. Note that if divergence remains constaet, posed an algorithm for implementing the policy, while regulating
%_D(Oivt)_ = 0, then the priority also remains constant. Thus, anihe synchronization rate to match the available bandwidth with-
object's priority only changes when its divergence changes, whichyt excessive communication. Our algorithm adjusts local refresh
can only occur as a result of updates to the source object. thresholds adaptively at a large number of data sources as condi-

Therefore, to track the exact priority of an object, sources onlytjons fluctuate. We presented simulation results on both synthetic
need to recompute the priority when an update is made to thajng real-world data sets to demonstrate that our techniques are ef-
object. Since the priority depends on the integral of the diver-fective. We also demonstrated empirically that source cooperation
gence values since the last refresh, the source also needs to majRsynchronization scheduling leads to considerably less cache di-
tain a running total of the past divergence values weighted by thgergence over the more conventional approach in which the cache

amount of time the value was active. The data necessary to cOmynjlaterally schedules refreshes. There are several interesting av-
pute this running total only needs to be modified each time ansnyes for future work, discussed in [20].

update occurs. Detecting updates requires the use of triggers or
a similar mechanism. If triggers are not supported or are deemed
too expensive, object priority can be monitored more loosely usAcknowledgments
ing sampling techniques, discussed in [20].
We thank Mike Franklin, Hector Garcia-Molina, Rajeev Motwani,
9 Divergence Bounding Mema Roussopoulos, and Nick Roussopoulos for their helpful
discussions and feedback. We also thank Junghoo Cho for pro-
Some applications may require guaranteed upper bounds on théding useful information regarding the CGM algorithm.
divergence of objects accessed at the cache. For example, it may
be important to know with certainty that a data value is below & 4pore generally,Z; could represent the end-to-end latency between
strict threshold or critical value. We can easily guarantee diver-he time a real-world event occurs, triggering a change to the source data,
gence bounds at the cache when the source objects have knowind the time an application reading data from the cache sees the change.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

B. Adelberg, H. Garcia-Molina, and B. Kao. Applying up-
date streams in a soft real-time database systemPrdn [
ceedings of the ACM SIGMOD International Conference on
Management of Datgages 245-256, San Jose, California,
May 1995.

B. Adelberg, B. Kao, and H. Garcia-Molina. Database sup-
port for efficiently maintaining derived data. Proceed-
ings of the International Conference on Extending Database
Technologypages 223-240, Avignon, France, Mar. 1996.

S. Brin and L. Page. The anatomy of a large-scale hyper-

15]

[16]

textual Web search engine. Rroceedings of the Seventh [17]

International World Wide Web Conferend@risbane, Aus-
tralia, Apr. 1998.

G. S. Brodal, J. L. Taff, and C. D. Zaroliagis. A paral-
lel priority queue with constant time operatiordurnal of
Parallel and Distributed Computingt9(1):4—21, Feb. 1998.

M. Cherniack, M. J. Franklin, and S. Zdonik. Expressing
user profiles for data rechargindEEE Personal Communi-
cations: Special Issue on Pervasive ComputB(@):32—-38,
Aug. 2001.

J. Cho and H. Garcia-Molina. Estimating frequency of
change. Technical report, Stanford University Computer
Science Department, 2000. http://dbpubs.stanford.edu/pub/
2000-4.

J. Cho and H. Garcia-Molina. Synchronizing a database to
improve freshness. IRroceedings of the ACM SIGMOD
International Conference on Management of Dapages
117-128, Dallas, Texas, May 2000.

E. Cohen and H. Kaplan. Refreshment policies for web con-
tent caches. IfProceedings of the Twentieth Annual Joint
Conference of the IEEE Computer and Communications So*
cieties INFOCOM 2001)Anchorage, Alaska, Apr. 2001.

P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham,

and P. Shenoy. Adaptive push-pull: Disseminating dynamic[23

Web data. IrProceedings of the Tenth International World
Wide Web Conferengélong Kong, China, May 2001.

[18]

[19]

[20]

[21]

[22]

]

L. Do, P. Ram, and P. Drew. The need for distributed asyn-24]

chronous transactions. Rroceedings of the ACM SIGMOD
International Conference on Management of Dapages
534-535, Philadelphia, Pennsylvania, June 1999.

T. Dorcey. CU-SeeMe desktop videoconferencing software.
Connexions9(3), Mar. 1995.

D. Estrin, L. Girod, G. Pottie, and M. Srivastava.

strumenting the world with wireless sensor networks. In

[25]

In- [26]

Proceedings of the International Conference on Acoustics[27]

Speech, and Signal Processing (ICASSP 2083a)t Lake
City, Utah, May 2001.

A. Gal and J. Eckstein. Managing periodically updated data
in relational databases: A stochastic modeling approach.
Journal of the ACM (to appearp002. [

R. A. Golding and D. D. E. Long. Modeling replica diver-
gence in a weak-consistency protocol for global-scale dis-
tributed data bases. Technical report UCSC-CRL-93-09,

28]

Computer and Information Sciences Board, University of
California, Santa Cruz, 1993.

J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next cen-
tury challenges: Mobile networking for “smart dust”. In
Proceedings of the ACM/IEEE International Conference on
Mobile Computing and Network Monitoring (MobiCom 99)
pages 271-278, Seattle, Washington, Aug. 1999.

A. Labrinidis and N. Roussopoulos. Update propagation
strategies for improving the quality of data on the Web.
In Proceedings of the Twenty-Seventh International Con-
ference on Very Large Data Basesmges 391-400, Rome,
Italy, Sept. 2001.

M. J. McPhaden. Tropical Atmosphere Ocean Project,
Pacific Marine Environmental Laboratory, 2001.
http://www.pmel.noaa.gov/tao/.

C. Olston, B. T. Loo, and J. Widom. Adaptive precision set-
ting for cached approximate values. Pmoceedings of the
ACM SIGMOD International Conference on Management
of Data pages 355-366, Santa Barbara, California, May
2001.

C. Olston and J. Widom. Offering a precision-performance
tradeoff for aggregation queries over replicated dat&rtn
ceedings of the Twenty-Sixth International Conference on
Very Large Data Basepages 144-155, Cairo, Egypt, Sept.
2000.

C. Olston and J. Widom. Best-effort cache synchroniza-
tion with source cooperation. Technical report, Stan-
ford University Computer Science Department, 2001.
http://dbpubs.stanford.edu/pub/2001-43.

G. Pottie and W. Kaiser. Wireless integrated network sen-
sors. Communications of the ACMI3(5):551-558, May
2000.

C. Pu and A. Leff. Replica control in distributed sys-
tems: An asynchronous approach. Rroceedings of the
ACM SIGMOD International Conference on Management
of Data, pages 377-386, Denver, Colorado, May 1991.

K. Ramamritham. Real-time databasé#ernational Jour-
nal of Distributed and Parallel Databasgd(2):199-226,
1993.

G. Saltonand C. S. Yang. On the specification of term values
in automatic indexingJournal of Documentatigr29:351—
372,1973.

P. Sanders. Randomized priority queues for fast parallel
access. Journal of Parallel and Distributed Computing
49(1):86-97, Feb. 1998.

J. Stewart. Calculus: Early Transcendentals, Second Edi-
tion. Brooks/Cole, 1991.

B. Urgaonkar, A. G. Ninan, M. S. Raunak, P. Shenoy,
and K. Ramamritham. Maintaining mutual consistency for
cached Web objects. IRroceedings of the Twenty-First In-
ternational Conference on Distributed Computing Systems
Phoenix, Arizona, Apr. 2001.

H. Yu and A. Vahdat. Design and evaluation of a continuous
consistency model for replicated services. Proceedings

of the Fourth Symposium on Operating Systems Design and
ImplementationSan Diego, California, Oct. 2000.

