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Abstract

It is increasingly common for an application’s data to reside at multiple disparate locations, while the applica-
tion requires centralized access to its data. A simple solution is to replicate all relevant data at a central point,
forwarding updates from master copies to replicas without any special processing or filtering along the way. This
scheme maintains up-to-date centralized data, but incurs signficant communication overhead when the data is
highly dynamic, because the volume of updates is large. If communication resources are precious, communication
can be reduced by prioritizing and filtering updates inside the network, at or near the data sources. When updates
are dropped, the replicas become approximate rather than exact. Fortunately, many real-world applications in-
volving distributed, dynamic data can tolerate approximate data values to some extent, so approximate replication
is an important technique for balancing replica precision against the communication resources to achieve it.

This paper studies the problem of making efficient use of communication resources in approximate replication
environments. After motivating and formalizing the problem, high-level descriptions of several complementary
solutions are provided. The details of these solutions are found in previous papers by the authors, which are
referenced here. This paper is intended to serve primarily as an introduction to and roadmap for the authors’
prior work on approximate replication, as well as providing a significant bibliography of related work.

1 Introduction

In distributed environments that collect or monitor data, useful data may be spread across multiple distributed
nodes, but users or applications may wish to access that data from a single location. One of the most common
ways to facilitate centralized access to distributed data is to maintain copies of data objects of interest at central
locations using replication. In a typical replication environment, illustrated abstractly in Figure 1, a central data
repository maintains copies, or replicas of data objects whose master copies are spread across multiple remote
and distributed data sources. (In general there may be multiple data repositories, but to simplify exposition we
focus on a single repository.) Replicas are kept synchronized to some degree with remote master copies using
communication links between the central repository and each source. In this way, querying and monitoring of
distributed data can be performed indirectly by accessing replicas in the central repository.

While querying and monitoring procedures tend to become simpler and more efficient when reduced to cen-
tralized data access tasks, a significant challenge remains: that of performing data replication efficiently and
effectively. Ideally, replicas of data objects at the central repository are kept exactly consistent, or synchronized,
with the remote master copies at all times (modulo unavoidable communication latencies, of course). However,
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Figure 1: Abstract replication architecture.

propagating all master copy updates to remote replicas may be infeasible or prohibitively expensive: data col-
lections may be large or frequently updated, and network or computational resources may be limited or only
usable at a premium.

Situations where exact replica consistency is infeasible or only feasible at excessive expense can be found in
many contexts. As one example, in video conferencing applications (e.g., [6]), the viewer screen frame-buffer
can be thought of as containing replicas of video data generated by remote cameras. Since streaming video data
can be very large, it often becomes necessary to allow some staleness on parts of the screen. As another example,
consider the important problem of monitoring computer networks in real-time to support traffic engineering,
online billing, detection of malicious activity, etc. Effective monitoring often requires replicating at a central
location a large number of measurements captured at remote and disparate points in the network. Attempting to
maintain exact consistency can easily result in excessive burden being placed on the network infrastructure, thus
defeating the purpose of monitoring [7], but fortunately network monitoring applications do not usually require
exact consistency [17]. As a final example, consider the problem of indexing the World-Wide Web. Keeping an
up-to-date Web index requires maintaining information about the latest version of every document. Currently,
Web indexers are unable to maintain anything close to exact consistency due to an astronomical number of data
sources and data that is constantly changing.

The infeasibility of exact replication in these environments and others is due in large part to the potentially
high communication costs incurred. Communication cost tends to be of significant concern in many distributed
environments, either because the bandwidth available on the network links is limited (relative to the size and up-
date rate of the data collection), or because network resources can only be used at some premium. This premium
for network usage may stem from the fact that increased congestion may cause service quality degradation for
all applications that use the network. Alternatively, the premium may be manifest as a monetary cost, either
in terms of direct payment to a service provider or as a loss of revenue due to an inability to sell consumed
resources to others. As a result of communication resources being a valuable commodity, we have seen that
in the applications described above (video conferencing, network monitoring, and Web indexing), maintaining
replicas exactly synchronized with master copies cannot be achieved when data volumes or change rates are
high relative to the cost or availability of bandwidth capacity.

1.1 Approximate Replication

In many applications such as the ones described above, exact consistency is not a requirement, and replicas that
are not precisely synchronized with their master copies are still useful. For example, approximate readings from
meteorological sensors often suffice when performing predictive modeling of weather conditions. In network
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security applications, “ball-park” estimates of current traffic levels can be used to detect potential denial-of-
service attacks. Since exact data is often not a requirement in applications that rely on replication, it is common
practice to use inexact replica consistency techniques such as periodic refreshing to conserve communication
cost. We use the term approximate replication to refer collectively to all replication techniques that do not
ensure exact consistency. Most existing approximate replication techniques for single-master environments can
be classified into one of two broad categories based on the way they synchronize replicas1:

Periodic pushing: Sources propagate changes in master copies to the central data repository periodically, some-
times in large batches.

Periodic pulling: The central data repository accesses remote sources periodically to read master copies of data
objects and update local replicas as necessary.

One motivation for performing periodic pushing is that one-way messages can be used in place of more
expensive, round-trip ones. Also, sources can control the amount of their local resources devoted to replica
synchronization. Periodic pulling, on the other hand, has the advantage that sources are not required to be active
participants in the replica synchronization protocol. Instead, they need only respond to data read requests from
the central repository, a standard operation in most environments. A principal feature shared by both these
approaches is that the cost incurred for consumption of communication resources is bounded and controllable,
which is not in general the case with exact synchronization methods. However, periodic pushing or pulling does
not necessarily make good use of communication resources for the following two reasons:

1. Communication resources may be used wastefully while refreshing replicas of data objects whose master
copy has undergone little or no change.

2. When the master copy of a data object undergoes a major change that could be propagated to the remote
replica relatively cheaply, there may be a significant delay before the remote replica is refreshed to reflect
the change.

1.2 Precision-Performance Tradeoff

We study the problem of making better use of communication resources in approximate replication environments
than approaches based on periodic pulling or pushing. Our work begins with the observation that a fundamental
tradeoff exists between the communication cost incurred while keeping data replicas synchronized and the de-
gree of synchronization achieved. We refer to this characteristic property as the precision-performance tradeoff,
illustrated in Figure 2, where precision is a measure of the degree of synchronization between a data object’s
master copy and a remote replica, and performance refers to how sparingly communication resources are used
(i.e., the inverse of communication cost). When data changes rapidly, good performance can only be achieved
by sacrificing replica precision and, conversely, obtaining high precision tends to degrade performance.

Since there appears to be no way to circumvent the fundamental precision-performance tradeoff, we propose
the following two tactics for designing synchronization algorithms for replication systems:

(a) Push the precision-performance curve as far away from the origin as possible for a given environment.
(b) Offer convenient mechanisms for controlling the point of system operation on the tradeoff curve.

Tactic (a) leads us to focus primarily on push-based approaches to replica synchronization, because they offer
the opportunity for the best precision-performance curves, i.e., more efficient use of communication resources,

1Depending on the environment, it may not be practical or possible for sources to communicate with each other, so we assume that
such communication is not allowed and synchronization of replicas is performed directly between each source and the central repository.
We do not study environments amenable to efficient intersource communication in this paper.
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Figure 2: Precision-performance tradeoff.
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Figure 3: Strategies for managing the precision-performance tradeoff.

compared with pull-based approaches. (We verify this claim empirically in [14].) The reason for this advantage
is that sources are better equipped than the central repository to make decisions about synchronization actions
since they have access to the data itself and can obtain accurate precision measurements. Furthermore, our
work uses metrics of replica precision that are based on content rather than solely on metadata. Metadata-based
metrics have been used to drive synchronization policies in approximate replication environments (see Section 4
covering related work), and are usually intended to emulate an underlying metric based on content. For example,
metadata metrics based on temporal staleness or number of unreported updates reflect an attempt to capture some
notion of the degree of change to the content. If an appropriate content-based metric is used instead, precision
can be measured directly, potentially leading to higher quality synchronization and precision-performance curves
farther from the origin, as desired.

Tactic (b) leads us to study two ways to offer users or applications control over the position of system
operation on the precision-performance tradeoff curve:

1. Users specify a minimum acceptable performance level (i.e., fix a y-axis position in Figure 2), and the
replication system attempts to maximize replica precision automatically while achieving the specified
level of performance.

2. Users specify a minimum allowable precision level (i.e., fix an x-axis position in Figure 2), and the repli-
cation system attempts to maximize performance while meeting the precision requirement provided.

In each of these complementary strategies, the user (or application) fixes the position of system operation along
one dimension (precision or performance), and the system is expected to maximize the position along the other
dimension. These converse strategies for establishing a point of system operation on the precision-performance
curve are illustrated abstractly in Figure 3.

In our prior work [11, 12, 13, 14] we have studied the two strategies introduced above for controlling the
operating point of a replication system in terms of precision and performance. In particular, we have proposed
methods by which users or applications may constrain one dimension of the precision-performance space, and
studied algorithms for maximizing the position along the other dimension. Our work forms the basis for offering
a resource-efficient, user-controllable tradeoff between precision and performance while monitoring and query-
ing distributed, dynamic data. In this paper we provide a high-level overview of this work (Sections 2 and 3),
along with a summary of related work by others (Section 4).

2 Model, Assumptions, and Objectives

Recall that master copies of data objects are maintained at one or more distributed data sources (Figure 1).
Consider a data object whose master source copy O undergoes updates over time. Let R(O) represent the
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(possibly imprecise) replica of O at the central repository. Let V (O, t) represent the value of O at time t. The
value of O remains constant between updates. Let V (R(O), t) represent the value of R(O) at time t. Object O
can be refreshed at time tr, in which case a message is sent to the repository, and the replicated value is set to
equal the current source value: V (R(O), tr) = V (O, tr).

For simplicity, we assume that the communication latency between sources and the central repository is
small enough to be neglected. However, the techniques we have developed can tolerate nonnegligible latencies,
as discussed in [10]. We do assume there is adequate space at the central repository to store all replicas of
interest. We also suppose that nodes are at all times connected to the network, and that the infrastructure is
robust, i.e., that node failures, network partitions, etc. are infrequent. Coping with failures or disconnections in
the context of this work is not addressed in our work.

We now define the dual objectives of maximizing precision or performance in more detail.

2.1 Maximizing Precision

For strategy (1) in Section 1.2, the goal is to maximize replica precision. Precision is quantified using a simple
and general metric called divergence: The divergence between a source object O and its replicated copy R(O) at
time t is given by a numerical function D(O, t). When a refresh occurs at time tr, the divergence value is zero:
D(O, tr) = 0. Between refreshes, the divergence value may become greater than zero, and the exact divergence
value depends on how the master source copy relates to the replica. There are many different ways to measure
divergence that are appropriate in different settings; see [14] for more discussion.

For the purpose of measuring overall divergence in the central repository, we associate with each data object
O a numeric weight WO that can be determined using a variety of criteria such as importance or frequency of
access. The objective of strategy (1) is to minimize the weighted sum of the time-averaged divergence of each
object,

∑
O [WO · ∫t D(O, t) dt], under constraints on communication resources.

Communication resources may be limited at a number of points. First, the capacity of the link connecting the
central data repository to the rest of the network, the repository-side bandwidth, may be constrained. Second,
the capacity of the link connecting each source to the rest of the network, the source-side bandwidth, may also be
constrained and may vary among sources. Moreover, all bandwidth capacities may fluctuate over time if resource
limitations are related to traffic generated by other applications. We assume a standard underlying network model
where any messages for which there is not enough capacity become enqueued for later transmission.

2.2 Maximizing Performance

The objective of strategy (2) in Section 1.2 is to maximize performance by minimizing the total communication
cost incurred during a period of time in which replica precision is constrained. Each message sent between
object O’s source and the central repository (such as a refresh message) incurs a numeric cost CO ≥ 0, and costs
are additive.

Constraints on precision arise with respect to queries, which are submitted by users or applications in order
to access data. We consider situations in which aggregation queries over numeric data objects are submitted to
the central repository. The repository is to provide answers to queries in the form of numeric intervals [L,H] that
are guaranteed to contain the precise answer V that could be obtained by accessing current master source copies,
i.e., L ≤ V ≤ H . As discussed later, guaranteed answer intervals can be produced by establishing bounds on
replica divergence. Each query submitted at the central repository specifies a precision constraint that specifies
the maximum acceptable width (H − L) for the answer interval. Two modes of querying are considered in our
work. One-time queries request the answer a single time, and do not persist once the (approximate) answer has
been produced. By contrast, continuous queries are ongoing requests for continually updated answers that meet
the specified precision constraint at all times.
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3 Overview of Our Work on Approximate Replication

Maximizing Precision. In [14] we tackle the problem of maximizing replica precision when communication
performance is limited due to constraints placed by users, applications, or the network infrastructure. The first
step is to provide a general definition of precision, based on replica divergence, that can be specialized to a
variety of data domains. We then present a replica synchronization technique whereby sources prioritize data
objects that need to be synchronized based on precision considerations, and push synchronization messages
to the central repository in priority order. The rate at which each source sends synchronization messages is
regulated adaptively to ensure that the overall message rate conforms to the performance constraints. We evaluate
our technique empirically and compare its effectiveness with that of a prior pull-based approach.

Maximizing Performance. In [11] we tackle the inverse problem: maximizing communication performance
while maintaining acceptable levels of data precision as specified by users or applications at the granularity
of queries over groups of objects. We focus on continuous queries, or CQ’s for short, and propose a tech-
nique for performing push-based replication that meets the precision constraints of all continuous queries at all
times. Without violating any query-level precision constraints, our technique continually adjusts the precision
of individual replicas to maximize the overall communication performance. Results are provided from several
experiments evaluating the performance of our technique in a simulated environment. In addition, we describe
a testbed network traffic monitoring system we built to track usage patterns and flag potential security haz-
ards using continuous queries with precision constraints. Experiments in this real-world application verify the
effectiveness of our CQ-based approximate replication technique in achieving low communication cost while
guaranteeing precision for a workload of multiple continuous queries.

Answering Unexpected Queries. Providing guaranteed precision for a workload of continuous queries does
not handle an important class of queries that arises frequently in practice: one-time, unanticipated queries.
Users or applications interacting with the data repository may at any time desire to obtain a one-time result of a
certain query, which includes a precision constraint and may be different from the continuous queries currently
being evaluated, or the same as a current CQ but with a more stringent precision constraint. Due to the ad-
hoc nature of one-time queries, when one is issued the data replicas in the repository may not be of sufficient
precision to meet the query’s precision constraint. To obtain a query answer of adequate precision it may be
necessary to access master copies of a subset of the queried data objects by contacting remote sources, incurring
additional performance penalties. In [13] we study the problem of maximizing performance in the presence of
unanticipated one-time queries, and devise efficient algorithms for minimizing accesses to remote master copies.

Managing Precision for One-Time Queries. A significant factor determining the cost to evaluate one-time
queries with precision constraints at a central data repository is the precision of data replicas maintained in
the repository. In [12] we study the problem of deciding what precision levels to use when replicating data
objects not involved in continuous queries but subject to intermittent accesses by one-time queries. Interestingly,
this problem generalizes a previously studied problem of deciding whether or not to perform exact replication
of individual data objects. We propose an adaptive algorithm for setting replica precision with the goal of
maximizing overall communication performance given a workload of one-time queries. In an empirical study
we compare our algorithm with a prior algorithm that addresses the less general exact replication problem, and
we show that our algorithm subsumes it in performance.

4 Overview of Related Work

We now cover previous work by others that is broadly related to our own. Other work not covered here is related
to fairly specific aspects of our work; see [10] for additional coverage.
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A number of replication strategies have been proposed based on abandoning strict transactional replication
protocols that guarantee one-copy serializability, and performing asynchronous propagation of all database up-
dates in a nontransactional fashion [5, 15], in order to reduce response time and improve availability. These
approaches alleviate many of the problems associated with transactional protocols, but they do not focus on
reducing communication cost except for some batching effects since all updates are propagated eventually.

The focus of our work is on conserving communication cost in nontransactional environments by performing
approximate replication. The need for approximate replication is perhaps most obvious in the distributed World
Wide Web environment. Partly this need arises because exact consistency is virtually impossible in the presence
of the high degree of autonomy featured on the Web, but also because the volume of data is vast and aggregate
data change rates are astronomical. On the Web, two forms of approximate replication are currently in heavy
use: Web crawling and Web caching. Mechanisms for synchronizing document replicas in Web repositories
via incremental Web crawling, e.g., [18], are typically designed to work within a fixed communication budget,
and generally aim to minimize some variant of the temporal staleness metric: the average amount of time
during which Web document replicas in the repository differ in some way from the remote master copy. In
Web caching environments, synchronization of a set of documents selected for caching is typically driven by
constraints on the temporal staleness of cached replicas (the constraints are commonly referred to as time-to-live
(TTL) restrictions), and the goal is to minimize communication, e.g., [3].

Incremental Web crawling can be thought of as an instance of the Performance Fixed/Maximize Precision
scenario, while Web caching represents an instance of the inverse Precision Fixed/Maximize Performance sce-
nario. Due to the high degree of autonomy present in the Web environment, solutions to these problems almost
always employ pull-oriented techniques for replica synchronization. In addition, owing to the wide variety of
content found on the Web, synchronization techniques usually optimize for temporal staleness, a simple preci-
sion metric based solely on metadata. (Other metadata-based precision metrics have also been proposed, such
as the number of updates not reflected in the remote replica, e.g., [8].)

For replication environments in which greater cooperation among nodes is possible and more is known
about the nature of the data and needs of the users, push-oriented synchronization based on richer content-
based precision metrics tends to lead to more desirable results, i.e., higher quality synchronization at lower cost,
as discussed in Section 1.2. The CU-SeeMe video conferencing project [6] represents an interesting instance
of a push-oriented synchronization approach using direct, content-based precision metrics, which focuses on
the Performance Fixed/Maximize Precision scenario. In CU-SeeMe, refreshes to different regions of remotely
replicated images are delayed and reordered at sources based on application-specific precision metrics that take
into account pixel color differences. Another domain-specific approach has been proposed for moving object
tracking [19], which focuses on the Precision Fixed/Maximize Performance scenario, or alternatively aims at
maximizing an overall “information cost” metric that combines precision and performance.

Our goal is to establish generic push-oriented approximate replication strategies that exploit and expose
the fundamental precision-performance tradeoff common to all environments, in a manner suitable to a wide
variety of applications that rely on replication. Some initial steps toward this goal have been made by others in
previous work. To our knowledge, the first proposal on this topic was by Alonso et al. [1], and recently others
have extended that work, e.g., [9, 16, 20, 21] ([21] studies pull-oriented techniques). All of this work falls into
the Precision Fixed/Maximize Performance category, with precision constraints specified at the granularity of
individual objects. One portion of our work [14] focuses on the inverse problem of Performance Fixed/Maximize
Precision, which to our knowledge has not been studied in a general, application-independent setting with
flexible precision metrics.

The portion of our work that addresses the Precision Fixed/Maximize Performance problem departs signif-
icantly from previous work by considering precision constraints at the granularity of entire queries rather than
at the granularity of individual replicated objects. The rationale for this choice is twofold. First, we sought to
align the granularity of precision constraint specification with the granularity of data access. (Since queries may
be posed over individual data objects, our mechanism generalizes the previous approach.) Second, precision
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constraints at the per-query granularity leave open the possibility for optimizing performance by adjusting the
allocation of precision requirements across individual objects involved in large queries. Indeed, much of our
work [11, 12] focuses on realizing such optimizations using adaptive precision-setting techniques, which we
show to enable significant improvements in synchronization efficiency. (The application of adaptive precision-
setting techniques to hierarchical replication topologies has recently been studied in [4], with a particular focus
on sensor network environments.)

Our work is also unique in focusing on user control over query answer precision, which may lead to un-
predictable precision requirements. Specifically, to our knowledge it is the first to consider the problem of
efficiently evaluating one-time queries with user-specified precision constraints that may exceed the precision of
current replicas, thereby requiring access to some exact source copies [13]. (A version of this problem using a
probabilistic model of precision was studied subsequently in [2].)
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