
Adaptive Filters for Continuous Queries
over Distributed Data Streams∗

Chris Olston, Jing Jiang, and Jennifer Widom
Stanford University

{olston, jjiang, widom}@cs.stanford.edu

Abstract

We consider an environment where distributed data
sources continuously stream updates to a centralized
processor that monitors continuous queries over the dis-
tributed data. Significant communication overhead is
incurred in the presence of rapid update streams, and
we propose a new technique for reducing the over-
head. Users register continuous queries with precision
requirements at the central stream processor, which in-
stalls filters at remote data sources. The filters adapt
to changing conditions to minimize stream rates while
guaranteeing that all continuous queries still receive the
updates necessary to provide answers of adequate pre-
cision at all times. Our approach enables applications
to trade precision for communication overhead at a fine
granularity by individually adjusting the precision con-
straints of continuous queries over streams in a multi-
query workload. Through experiments performed on
synthetic data simulations and a real network monitor-
ing implementation, we demonstrate the effectiveness
of our approach in achieving low communication over-
head compared with alternate approaches.

1 Introduction
Query processing overcontinuous data streamshas received con-
siderable attention recently,e.g., [5, 17, 22]. We consider dis-
tributed environments in which remote data sources continu-
ously push updates to a centralstream processor, whose job is
to evaluate multiplecontinuous queriesover the streamed data
[2, 6, 16, 18]. In these environments, significant communication
overhead is incurred in the presence of rapid update streams. We
offer an effective method for reducing communication cost, tak-
ing advantage of the fact that many applications do not require
exact precision for their continuous queries—examples are dis-
cussed shortly. When applications do not require exact precision
and data values do not fluctuate wildly, approximate answers of

∗This work was supported by the National Science Foundation under
grants IIS-0118173 and IIS-9817799 and by a National Science Founda-
tion graduate research fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00

sufficient precision usually can be computed from a small fraction
of the input streams. In our approach, users submit quantitative
precision constraintsalong with continuous queries to the stream
processor, and the stream processor installsfilters at the remote
data sources. The filters adapt to changing conditions to mini-
mize communication cost while guaranteeing that all continuous
queries still receive the updates necessary to provide answers of
adequate precision at all times. In this way, users are offered fine-
grained control over the tradeoff between query answer precision
and communication cost. Imprecision of query results is bounded
numerically so applications need not deal with any uncertainty.

Many stream-oriented applications do not need exact answers,
yet require quantitative guarantees regarding the precision of ap-
proximate answers [36]. For example, consider wireless sensor
networks,e.g., [8, 12, 17, 28], which enable continuous monitor-
ing of environmental conditions such as light, temperature, sound,
vibration, structural strain, etc. [18]. Since the battery life of
miniature sensors is severely limited, and radio usage is the domi-
nant factor determining battery life [20, 28], it is crucial to reduce
the amount of data transmitted, even if a small increase in local
processing by the sensor is required [17]. Many applications that
rely on sensor data can tolerate approximate answers having a
controlled degree of imprecision [20], making our approach ideal
for reducing data transmission. Other examples with continuous
queries over distributed data that can tolerate a bounded amount
of imprecision include industrial process monitoring, stock quote
services, online auctions, wide-area resource accounting, and load
balancing for replicated servers [29, 36].

Next we focus on one particular application, network moni-
toring, and give examples of continuous queries that arise in the
context of that application to motivate our work. Then in the re-
mainder of Section 1 we provide an overview of our approach.

1.1 Example Application: Network Monitoring

Managing complex computer networks requires tools that, among
other things, continually report the status of network elements in
real time, for applications such as traffic engineering, reliability,
billing, and security,e.g., [7, 32]. Network monitoring applica-
tions do not typically require absolute precision [32]. Thus, our
approach can be used to reduce monitoring communication over-
head between distributed network elements and a central monitor-
ing station, while still providing quantitative precision guarantees
for the approximate answers reported.

Real-time network monitoring workloads often consist of a
set of queries that perform aggregation across distributed net-
work elements [7, 32]. The data to be aggregated is most com-
monly selected or grouped by identifiers such assource-address
anddestination-address, or by attributes such as packet type. We

1

now give two concrete examples of continuous query workloads
for network monitoring applications.

Example 1: Network path latencies are of interest for infras-
tructure applications such as manual or automated traffic engi-
neering,e.g., [33], or quality of service (QoS) monitoring. Path
latencies are computed by monitoring the queuing latency of each
router along the path, and summing the current queue latencies to-
gether with known, static transmission latencies. Since the queue
latency at each router generally changes every time a packet en-
ters or leaves the router, a naive approach could generate mon-
itoring traffic whose volume far exceeds the volume of normal
traffic, a situation that is clearly unacceptable. Fortunately, path
latency applications can generally tolerate approximate answers
with bounded absolute numerical error (such as latency within5
ms of accuracy), so using our approach obtrusive exact monitor-
ing is avoided.

Example 2: Network traffic volumes are of interest to organi-
zations such as internet service providers (ISP’s), corporations,
or universities, for a number of applications including security,
billing, and infrastructure planning. Since it is often inconvenient
or infeasible for individual organizations to configure routers to
perform monitoring, a simple alternative is to instead monitor end
hosts within the organization. We list several traffic monitoring
queries that can be performed in this manner, and then motivate
their usefulness. These queries form the basis of performance
experiments on a real network monitoring system we have imple-
mented; see Section 5.

Q1 Monitor the volume of remote login (telnet, ssh, ftp, etc.)
requests received by hosts within the organization that orig-
inate from external hosts.

Q2 Monitor the volume of incoming traffic received by all hosts
within the organization.

Q3 Monitor the volume of incoming SYN packets received by
all hosts within the organization.

Q4 Monitor the volume of outgoing DNS lookup requests orig-
inating from within the organization.

Q5 Monitor the volume of traffic between hosts within the or-
ganization and external hosts.

QueriesQ1 throughQ4 are motivated by security considera-
tions. One concern is illegitimate remote login attempts, which
often occur in bursts that can be detected using queryQ1. An-
other concern is denial-of-service (DoS) attacks. To detect the
early onset of one form of incoming DoS attacks, organizations
can monitor the total volume of incoming traffic received by all
hosts using queryQ2. Another form of DoS attack is character-
ized by a large volume of incoming “SYN” packets that can con-
sume local resources on hosts within the organization, which can
be monitored using queryQ3. Organizations also may wish to de-
tect suspicious behavior originating from inside the organization,
such as users launching DoS attacks, which may entail sending an
unusually large number of DNS lookup requests detectable using
queryQ4. In all of these examples, current results of the contin-
uous query can be compared against data previously monitored at
similar times of day or calendar periods that represents “typical”
behavior, and the detection of atypical or unexpected behavior can
be followed by more detailed and costly investigation of the data.
Finally, organizations can monitor the overall traffic volume in

and out of the organization using queryQ5, to help plan infras-
tructure upgrades or track the cost of network usage billed by a
service provider.

If traffic monitoring is not performed carefully, many of these
queries may be disruptive to the communication infrastructure
of the organization [10]. Fortunately, these applications also do
not require exact precision in query answers as long as the pre-
cision is bounded by a prespecified amount. Note that precision
requirements may change over time. For example, during periods
of heightened suspicion about DoS attacks, the organization may
wish to obtain higher precision for queriesQ2 andQ3 even at the
cost of increased communication overhead.

1.2 Overview of Approach

We focus on continuous queries such as the network monitoring
examples above. All of these queries compute aggregate values
over streams of updates to numeric (real) data objects, which may
originate from many remote data sources. The conventional an-
swer to an aggregation query is a single real value. We define a
bounded approximate answer(hereafterbounded answer) to be a
pair of real valuesL andH that define an interval[L, H] in which
the precise answer is guaranteed to lie. Precision is quantified as
the width of the range(H − L), with 0 corresponding to exact
precision and∞ representing unbounded imprecision. Apreci-
sion constraintfor a continuous query is a user-specified constant
δ ≥ 0 denoting a maximum acceptable interval width for the an-
swer,i.e., 0 ≤ H − L ≤ δ at all times.

Our goal is to provide guaranteed bounds[L, H] as answers
to continuous queries at all times, while filtering update streams
at the sources as much as possible. For each remote data object
O whose updates are sent to the central stream processor for con-
tinuous query evaluation, astream filteris installed atO’s source.
Each filter maintains a numeric bound[LO , HO] of width WO

centered around the most recent numeric updateV (whereV is
the new value forO) that passed the filter,i.e., LO = V −WO

2
and

HO = V + WO
2

. The filter eliminates from the stream all updates
V that lie insideO’s bound, i.e., that satisfyLO ≤ V ≤ HO.
Each time an updateV passes the filter and is transmitted to the
central processor the filter recenters the bound aroundV by set-
ting LO := V − WO

2
andHO := V + WO

2
. The central stream

processor knows each objectO’s bound widthWO, and uses it to
maintain a cached copy of its bound[LO , HO] based on filtered
updates received fromO’s source. The stream processor can be
assured that the source (master) value ofO remains within the
bound until the next update ofO is received. (Message latency is
addressed in Section 4.)

Continuous queries are registered at the stream processor and
whenever a relevant update is received on an input stream query
results are updated accordingly. Each continuous query (CQ)Q
has an associated precision constraintδQ. We assume any number
of arbitrary CQ’s with arbitrary individual precision constraints.
The challenge is to ensure that at all times the bounded answer to
every continuous queryQ is of adequate precision,i.e., has width
at mostδQ, while filtering streams as much as possible to mini-
mize total communication cost. As a simple example, consider a
single CQ requesting the current average ofn data values whose
update streams are transmitted from different sources, with a pre-
cision constraintδ. We can show arithmetically that the width of
the answer bound is the average of the widths of then individual
bounds. Thus, one obvious way to guarantee the precision con-

2

evaluator
CQ

answers
bounded

H1L 1 periodic
shrinking
periodic
shrinking

periodic
shrinking
periodic
shrinking

1V

periodic
shrinkingshrinking
periodic

growth
messages

filtered
update

precision
constraints W W W1 2 n

. . .
growing
selectiveperiodic

shrinking

W updatesi

filtered
update
stream

[L , H]1 1 [L , H]2 2

[L , H]n n

[L , H]ii

stream coordinator

stream processor

queries

L n Hn

updates

updates
nV

sources
datafilters

updates

V n−1

L 2 H2

streams

queries +

register
precision manager

bound cache

recenter

V updates

adjust width

. . .

updates

Figure 1: Our approach to stream filtering for continuous queries.

straint is to use filters with a bound of widthδ for each of then
objects. Although this simple policy, which we calluniform al-
location, is correct (the answer bound is guaranteed to satisfy the
precision constraint at all times), it is not generally the best pol-
icy. To see why, it is important to understand the effects of update
filter bound width [24].

1.2.1 Effects of Filter Bound Width

A filter bound that is narrow,i.e., H − L is small, enables con-
tinuous queries to maintain more precise answers, but will fail
to filter out a significant portion of the update stream, leading to
high communication cost. Conversely, a bound that is wide,i.e.,
H − L is large, can reduce the stream rate substantially due to a
more restrictive filter, but consequently results in more impreci-
sion in query answers. Uniform allocation can perform poorly for
the following two reasons:

1. If multiple continuous queries are issued on overlapping
sets of objects, different bound widths may be assigned to
the same object. While we could simply choose to use the
smallest bound width for the filter, the higher update stream
rate may be wasted on all but a few queries.

2. Uniform bound allocation does not account for data val-
ues that change at different rates due to different rates and
magnitudes of updates. In this case, we prefer to allocate
wider bounds to data values that change rapidly, and nar-
rower bounds to the rest.

Our performance experiments (Section 5) that compare uniform
against nonuniform bound allocation policies provide strong em-
pirical confirmation of these observations.

Reason 2 above indicates that a good nonuniform bound width
allocation policy depends heavily on the data update rates and
magnitudes, which are likely to vary over time, especially during
the long lifespan of continuous queries [18]. In Example 1 from
Section 1.1, a router may alternate between periods of rapidly
fluctuating queue sizes (and therefore queue latencies) and steady
state behavior, depending on packet arrival characteristics. There-
fore, in addition to nonuniformity, we propose anadaptivepolicy,

in which bound widths are adjusted continually to match current
conditions.

Determining the best bound width allocation at each point
in time without incurring excessive communication overhead is
challenging, since it would seem to require a single site to have
continual knowledge of data update rates and magnitudes across
potentially hundreds of distributed sources. Moreover, the prob-
lem is complicated by Reason 1 above: we may have many contin-
uous queries with different precision constraints involving over-
lapping sets of data objects. In Example 1 from Section 1.1,
multiple paths whose latencies are monitored will not generally
be disjoint,i.e., they may share routers, and precision constraints
may differ due to differences in path lengths (number of routers)
as well as discrepancies in user precision requirements for differ-
ent paths.

1.2.2 Adaptive Bound Width Adjustment

We have developed a low-overhead algorithm for setting bound
widths for stream filters adaptively to reduce communication costs
while always guaranteeing to meet the precision constraints of
an arbitrary set of registered CQ’s. The basic idea is as follows.
Each source filter for an object’s update stream shrinks the bound
width periodically, at a predefined rate. Assuming the bounds
begin in a state where all CQ precision constraints are satisfied
(we will guarantee this to be the case), shrinking bounds only
improves precision, so no precision constraint can become vio-
lated due to shrinking. The central stream processor maintains a
mirrored copy of the periodically shrinking bound width of each
object. Each time the bound width of each object shrinks, the
stream processor reallocates the “leftover” width to the objects at
the central processor it benefits the most, ensuring all precision
constraints will remain satisfied.

1.2.3 Overall Approach

Our approach is illustrated in Figure 1:

• Data sources, on the right, each store master values for one
or more objects, and they generate streams of updates to
those values.

3

• Filters intercept update streams from sources and main-
tain periodically-shrinking bounds for the objects. Each fil-
ter forwards updates that fall outside its bound to the cen-
tral stream processor, shown on the left, and recenters that
bound.

• A stream coordinatorin the central stream processor re-
ceives all streamed updates from the filters.

• A precision managerinside the stream coordinator main-
tains a copy of the periodically shrinking bound width for
each object. It reallocates width as described earlier and no-
tifies the corresponding sources via growth messages.

• A bound cacheinside the stream coordinator receives all
bound width changes (growth and shrinks) from the preci-
sion manager, along with all value updates streamed from
the data sources via the filters. The bound cache maintains
a copy of the bound for each object.

• A CQ evaluatorin the central stream processor receives up-
dates to bounds from the bound cache and provides updated
continuous query answer bounds to the user.

Two aspects of our approach are key to achieving low commu-
nication cost. First, width shrinking is performed simultaneously
at both the stream processor and the sources without explicit co-
ordination. Second, the precision manager uses selective growth
to tune the width allocation adaptively. Informally, we minimize
the overall cost to guarantee individual precision constraints over
arbitrary overlapping CQ’s by assigning the widest bounds to the
data values that currently are updated most rapidly and are in-
volved in the fewest queries with the largest precision constraints.

In addition to the overall approach, specific contributions of
this paper are as follows:

• In Section 3 we specify the core of our approach: a low-
overhead, adaptive algorithm for assigning filters to data
sources to reduce update stream rates. To guarantee ade-
quate precision for multiple overlapping CQ’s while min-
imizing communication, the precision manager (Figure 1)
uses an optimization technique based on systems of linear
equations.

• In Section 4 we describe mechanisms in the bound cache
(Figure 1) to handle replica consistency issues that arise due
to nonnegligible stream message latencies.

• In Section 5 we describe our implementation of a real net-
work traffic monitoring system based on Example 2 in Sec-
tion 1.1. We provide experimental evidence that our ap-
proach significantly reduces overall communication cost
compared to a uniform allocation policy for a workload of
multiple continuous queries with precision constraints.

2 Related Work
The idea of using numeric bounds and queries with precision
constraints to offer a smooth tradeoff between precision and per-
formance in distributed data processing environments was intro-
duced originally in [24, 25]. However, that work addressedone-
time rather than continuous queries, resulting in a very different
approach. Specifically, [25] developed algorithms for optimally
combining approximate cached data with exact source data to
meet the precision requirement for a single query at a single time.
Follow-on work [24] proposed a technique for adjusting cached

approximations to minimize the overall communication cost un-
der a workload of one-time queries like those in [25]. The pre-
cision level of each data object is adjusted in isolation, indepen-
dent of the precision levels of other objects. Both [24, 25] exploit
the property that for many one-time queries, answer precision can
be improved to acceptable levels by accessing remote sources at
query-time. In contrast, we focus on applications that require con-
tinuous answers to queries. For these applications, an answer of
adequate precision for each continuous query must be maintained
by the central stream processor at all times.

In quasi copies[1], centrally maintained approximations are
permitted to deviate from exact source values by constrained
amounts, thereby providing precision guarantees. Recent work
[29] extends the ideas of [1], proposing an architecture in which
a network of repositories cooperate to deliver data with precision
guarantees to a large population of remote users. In an environ-
ment with multiple cooperating repositories, data may be prop-
agated through several nodes before ultimately reaching the end-
user application, so latency can be a significant concern. The work
in [29] focuses on selecting topologies and policies for cooperat-
ing repositories to minimize the degree to which latency causes
precision guarantees to be violated. However, the work in [1] and
[29] does not address queries over multiple data values, whose
answer precision is a function of the precision of the input val-
ues, so they do not need to deal with the optimization problem we
address for minimizing communication.

Recent work on reactive network monitoring [7] addresses
scenarios where users wish to be notified whenever the sum of
a set of values from distributed sources exceeds a prespecified
critical value. In their solution each source notifies a central pro-
cessor whenever its value exceeds a certain threshold, which can
be either a fixed constant or a value that increases linearly over
time. The local thresholds are set to guarantee that in the absence
of notifications, the central processor knows that the sum of the
source values is less than the critical value. The thresholds in [7],
which are related to the bounds in our algorithm, are set uniformly
across all sources. Similarly, in [36], which focuses on bounded
approximate values under symmetric replication, error bounds are
allocated uniformly across all sites that can perform updates. In
contrast to these approaches, we propose a technique in which
bound widths are allocated nonuniformly and adjusted adaptively
based on stream transmission costs and data change rates.

Maintaining numeric bounds on aggregated values from mul-
tiple sources can be thought of as ensuring the continual validity
of distributed constraints. Most work on distributed constraint
checking,e.g., [4, 9, 11] only considers insertions and deletions
from sets, not updates to data values. We are aware of three pro-
posals in which sources communicate among themselves to ver-
ify numerical consistency constraints across sources containing
changing values:data-value partitioning[31], the demarcation
protocol [3], and recent work by Yamashita [35]. The approach
of these proposals could in principle be applied to our setting:
sources could renegotiate bound widths in a peer-to-peer man-
ner with the goal of reducing stream rates. However, in many
scenarios it may be impractical for sources to keep track of the
other sources involved in a continuous query (or many continuous
queries) and communicate with them directly, and even if practi-
cal it may be necessary to contact multiple peers before finding
one with adequate “spare” bound width to share. It seems unlikely
that the overhead of inter-source communication is warranted to

4

potentially save a single stream message. Furthermore, the algo-
rithms in [3, 31, 35] are not designed for the purpose of minimiz-
ing communication cost, and they do not accommodate multiple
queries with overlapping query sets.

Some work on real-time databases,e.g., [15], focuses on
scheduling multiple complex, time-consuming computation tasks
that yield imprecise results that improve over time. In contrast,
our work does not focus on how best to schedule computations,
but rather on how to filter data update streams in a distributed en-
vironment while bounding the resulting imprecision.

Finally, [26] addresses the problem of maximizing data preci-
sion subject to constraints on the availability of communication
resources. That work considers the inverse of the problem we ad-
dress in this paper of minimizing communication while meeting
constraints on data precision. The choice of which of these com-
plementary approaches is more appropriate in a given scenario de-
pends on characteristics of the environment and application. An
interesting topic for future work is to consider policies for au-
tomatically choosing or switching between the two approaches,
possibly at a per-source granularity.

3 Algorithm Description

In this section we provide more details of our approach, then we
describe our algorithm for adjusting stream filter bound widths
adaptively,i.e., we focus on theprecision managerin Figure 1
which is the core of our approach. Recall that our goal is to
minimize communication cost while satisfying the precision con-
straints of all queries at all times. We consider continuous queries
that operate over any fixed subset of the remote data values. (We
do not consider selection predicates over remote values [25], and
we assume that all insertions and deletions of new objects into the
data set are propagated immediately to the central stream proces-
sor via special streams.)

Queries can perform any of the five standard relational aggre-
gation functions: COUNT, MIN, MAX, SUM, and AVG. Of
these, COUNT can always be computed exactly in our setting,
SUM can be computed from AVG and COUNT, and MIN and
MAX are symmetric. It also turns out, as we show in the ex-
tended version of this paper [23], that for the purposes of bound
width setting MIN queries can be treated as a collection of AVG
queries. Therefore, from this point forward we discuss primarily
the AVG function. Note that queries can request the value of an
individual data object by posing an AVG query over a single ob-
ject. For flexibility we also allow objects to be weighted in SUM
and AVG queries, formalized in [23].

Each registered continuous queryQj specifies aquery setSj

of objects and aprecision constraintδj . (Users may later alter
the precision constraintδj of any currently registered continuous
query Qj ; see Section 3.4.) The query setSj is a subset of a
set ofn data objectsO1, O2, . . . , On. Each data objectOi has
an exact valueVi stored at a remote source that streams updates
after filtering to the central stream processor. Say there arem
registered continuous AVG queriesQ1, Q2, . . . , Qm, with query
setsS1,S2, . . . ,Sm, respectively. Then the exact answer to AVG
queryQj is 1

|Sj |
·
P

1≤i≤n,Oi∈Sj
Vi. Our goal is to be able to

compute an approximate answer continuously that is withinQj ’s
precision constraintδj , using cached bounds maintained by the
central stream processor.

Note that this goal handlessliding windowqueries [22] as well

Symbol Meaning

n number of data objects across all sources

Oi data object (i = 1 . . . n)

Vi exact source value of objectOi

[Li, Hi] bound for objectOi

Wi width of bound for objectOi (Wi = Hi − Li)

Ci update/growth msg. communication cost forOi

C overall communication cost

λ stream message latency tolerance

m number of registered continuous queries

Qj registered query (j = 1 . . . m)

Sj set of objects queried byQj

δj precision constraint of queryQj

T adjustment period (algorithm parameter)

S shrink percentage (algorithm parameter)

Pi streamed update period ofOi (lastT time units)

Bi burden score ofOi (computed everyT time units)

Tj burden target ofQj (computed everyT time units)

Di deviation ofOi (determines growth priority)

Table 1: Model and algorithm symbols.

as queries over the most recent data values only. For the aggrega-
tion functions we consider, if an aggregate value is continuously
computed to meet a certain precision constraint, then the result
of further aggregating over time using any type of window also
meets that same precision constraint. However, our algorithm
does not necessarily minimize cost for sliding window queries,
because sliding windows offer some leniency in the way precision
bounds are set: bounds wider thanδ are acceptable as long as they
are compensated for by bounds narrower thanδ within the same
time-averaged window. Our algorithm would need to be modified
to take advantage of this additional leniency in precision, which
is a topic of future work.

Let us assume that all messages (including update streams)
are transmitted instantaneously and all computation is instanta-
neous, for now. In Section 4 we discuss how we handle realis-
tic, non-negligible latencies. When the precision manager sends
a bound growth message for objectOi to its source, or an up-
date is transmitted along the data stream from the source to the
stream processor (recall Figure 1), we model the cost as a known
numerical constantCi. (Considering the possibility of batching
stream updates from the same source is a topic of future work.)
For convenience, the symbols we have introduced and others we
will introduce later in this section are summarized in Table 1.

Before presenting our general adaptive algorithm for adjusting
bound widths, we describe two simple cases in which the bound
width of certain objects should remain fixed. First, consider an
objectO that is involved only in queries that request a bound on
the value ofO alone (AVG queries over one value). Then it suf-
fices to fix the bound width ofO to be the smallest of the precision
constraints:WO = min(δj) for queriesQj with Sj = {O}. Sec-
ond, for objects that are not included in any currently registered
query, the bound width should be fixed at∞ so that all updates
are filtered from its update stream and none are transmitted to the

5

central stream processor. The remainder of the objects, namely
those that are involved in at least one query over multiple objects,
pose our real challenge.

To guarantee that all precision constraints are met, the follow-
ing constraint must hold for each queryQj :

X
1≤i≤n,Oi∈Sj

Wi ≤ δj · |Sj |

In other words, the sum of bound widths for each query must
not exceed the product of the precision constraint and the num-
ber of objects queried. Initially, the bounds can be set in any
way that meets the precision constraint of every query,e.g., by
performing uniform allocation for each query, and for objects as-
signed multiple bound widths, taking the minimum. Then, as dis-
cussed in Section 1.2.3, our general strategy is to reallocate bound
width adaptively among the objects participating in each query.
Reallocation is accomplished with low communication overhead
by having bounds shrink periodically over time and having the
stream processor’s precision manager periodically select one or
more bounds to grow based on current conditions. In Section 3.1
we describe the exact way in which bounds are shrunk in our algo-
rithm, and then in Section 3.2 we describe when and how bounds
are grown. In Section 3.3 we provide empirical validation that our
algorithm converges on good bounds.

3.1 Bound Shrinking

Every objectOi has a corresponding bound widthWi that is
maintained simultaneously at both the central stream coordina-
tor and at the source filter. Periodically, everyT time units (sec-
onds, for example),Oi’s bound width is decreased symmetrically
at both the source filter and the stream coordinator by setting
Wi := Wi · (1 − S). The constantT is a global parameter
called theadjustment period, andS is a global parameter called
theshrink percentage. The effect is to decrease the bound width
by the fractionS every time unit, rendering the update stream fil-
ter lessrestrictiveover time. (A filter is more restrictive when it
blocks more updates from being streamed.) All adjustments to
the bound width—decreases as well as increases—occur at inter-
vals ofT time units. Note that updates may be streamed to the
central stream processor at any time but they simply reposition
bounds without altering the width. We will discuss good settings
for algorithm parametersT andS in Section 5.

To ensure correctness, each time the bound width for object
Oi shrinks, changing the filter condition, the source must re-apply
the filter to the current data valueVi. If Vi passes the new filter
and has not already been streamed as an update, the source must
generateVi on the update stream.

3.2 Bound Growing

EveryT time units, when all the bound widths shrink automati-
cally as described in the previous section, the precision manager
selects certain bound widths to grow instead, making the corre-
sponding stream filters more restrictive. Selecting bounds to in-
crease (and how much) is one of the most intricate parts of our
approach.

The first step is to assign a numericalburden scoreBi to each
queried objectOi. Conceptually, the burden score embodies the
degree to which an object is contributing to the overall communi-
cation cost due to streamed updates. (We usestreamed updatesto

refer to those data updates that pass their filter and are sent to the
stream processor.) The burden score is computed asBi = Ci

Pi·Wi

where recall thatCi is the cost to send a streamed update of ob-
ject Oi, andWi is the current bound width.Pi is Oi’s estimated
streamed update periodsince the previous width adjustment ac-
tion, computed asPi = T

Ni
whereNi is the number of updates of

Oi received by the stream coordinator in the lastT time units. (If
Ni = 0 thenPi = ∞ soBi = 0.) The burden formula is fairly
intuitive since,e.g., a wide bound or long streamed update period
reducesBi. The exact mathematical derivation is given in [23].

Once each object’s streamed update period and burden score
have been computed, the second step is to assign a valueTj , called
theburden target, to each AVG queryQj . Conceptually, the bur-
den target of a query represents the lowest overall burden required
of the objects in the query in order to meet the precision con-
straint at all times. Since understanding the way we compute
burden targets is rather involved, we present our method later
in Section 3.2.1, and summarize the process here. For queries
over objects involved in no other queries, the burden target is set
equal to the average of the burden scores of objects participat-
ing in that query. For queries that overlap it turns out that as-
signing burden targets requires solving a system ofm equations
with T1, T2, . . . , Tm asm unknown quantities. Because solving
this system of equations exactly at run-time is likely to be ex-
pensive, we find an approximate solution by running an iterative
linear equation solver until it converges within a small errorε.
(Performance is evaluated in Section 3.2.2.)

Once a burden target has been assigned to each query, the third
step is to compute for each objectOi its deviationDi:

Di = max

8<
:Bi −

X
1≤j≤m,Oi∈Sj

Tj , 0

9=
;

Deviation indicates the degree to which an object is “overbur-
dened” with respect to the burden targets of the queries that access
it. To achieve low overall stream rates, it is desirable to equally
distribute the burden across all objects involved in a given query.
We justify this claim mathematically in [23], and we verify it em-
pirically in Sections 3.3 and 5.

To see how we can even out burden, recall that the burden
score of objectOi is Bi = Ci

Pi·Wi
, so if the bound[Li, Hi] were

to increase in size,Bi would decrease.1 Therefore, the burden
score of an overburdened object can be reduced by growing its
bound. Growth is allocated to bounds using the following greedy
strategy. Queried objects are considered in decreasing order of de-
viation, so that the most overburdened objects are considered first.
(It is important that ties be resolved randomly to prevent objects
having the same deviation—most notably0—from repeatedly be-
ing considered in the same order.) When objectOi is considered,
the maximum possible amount by which the bound can be grown
without violating the precision constraint of any query is com-
puted as:

∆Wi = min
1≤j≤m,Oi∈Sj

0
@δj · |Sj | −

X
1≤k≤n,Ok∈Sj

Wk

1
A

If ∆Wi = 0, then no action is taken. For each nonzero growth
value, the precision manager increases the width of the bound for

1This reasoning relies onPi not decreasing whenWi increases, a fact
that holds intuitively and is discussed further in [23].

6

Oi symmetrically by settingLi := Li − ∆Wi
2

andHi := Hi +
∆Wi

2
. After all growth has been allocated the precision manager

sends a message to each source having objects whose bound width
was selected for growth.

In summary, the procedure for determining bound width
growth is as follows:

1. Each object is assigned aburden scorebased on its stream
transmission cost, estimated streamed update period, and
current bound width.

2. Each query is assigned aburden targetby either averag-
ing burden scores or invoking an iterative linear solver (de-
scribed next in Section 3.2.1).

3. Each object is assigned adeviationvalue based on the dif-
ference between its burden score and the burden targets of
the queries that access it.

4. The objects are considered in order of decreasing deviation,
and each objectOi is assigned the maximum possible bound
growth∆Wi when it is considered.

Complexity and scalability of this approach are discussed in
Section 3.2.2.

3.2.1 Burden Target Computation

We now describe how to compute the burden targetTj for each
queryQj , given the burden scoreBi of each objectOi (Step 2
above). Recall that conceptually the burden target for a query
represents the lowest overall burden required of the objects in
the query in order to meet the precision constraint at all times.
For motivation consider first the special case involving a sin-
gle AVG queryQk over every objectO1, . . . , On. In this sce-
nario, the goal for adjusting the burden scores simplifies to that
of equalizing them (as shown mathematically in [23]) so that
B1 = B2 = · · · = Bn = Tk. Therefore, given a set of bur-
den scores that may not be equal, a simple way to guess at an
appropriate burden targetTk is to take the average of the current
burden scores,i.e., Tk = 1

|Sk|
·
P

1≤i≤n,Oi∈Sk
Bi. In this way,

objects having higher than average burden scores will be given
high priority for growth to lower their burden scores, and those
having lower than average burden scores will shrink by default,
thereby raising their burden scores. On subsequent iterations, the
burden targetTk will be adjusted to be the new average burden
score. This overall process results in convergence of the burden
scores.

We now generalize to the case of multiple queries over differ-
ent sets of objects. It is useful to think of the burden score of each
object involved in multiple queries as divided into components
corresponding to each query over the object. Letθi,j represent
the portion of objectOi’s burden score corresponding to queryQj

so that
P

1≤j≤m,Oi∈Sj
θi,j = Bi. The goal for adjusting burden

scores in the presence of overlapping queries is to have the burden
scoreBi of each objectOi equal the sum of the burden targets of
the queries overOi (as shown in [23]). This goal is achieved if for
each queryQj overOi, θi,j = Tj . Therefore, our overall goal can
be restated in terms ofθ values as requiring that for every query
Qj , θ1,j = θ2,j = · · · = θn,j = Tj (theθi,j values for objects
Oi /∈ Sj are irrelevant). Therefore, given a set ofθ values, a sim-
ple way to guess at an appropriate burden targetTj for each query
Qj is by taking the average of theθ values of objects involved in
Qj , i.e., Tj = 1

|Sj |
·
P

1≤i≤n,Oi∈Sj
θi,j . For each object/query

25% of data per query
5% of data per query

number of queriesm

fr
ac

tio
n

o
fp

ro
ce

ss
in

g
tim

e

200150100500

0.02

0.015

0.01

0.005

0

Figure 2: Scalability of linear system solver.

pair Oi/Qj , we can expressθi,j in terms ofBi, which is known,
and theθ values for the other queries overOi, which are un-
known:θi,j = Bi−

P
1≤k≤m,k 6=j,Oi∈Sk

θi,k. If we replace each
occurrence ofθi,k byTk for all k 6= j (because we want eachθ∗,k

to converge toTk), we haveθi,j = Bi−
P

1≤k≤m,k 6=j,Oi∈Sk
Tk.

Substituting this expression in our formula for guessing at burden
targets based onθ values, we arrive at the following expression:

Tj =
1

|Sj |
·

X
1≤i≤n,Oi∈Sj

0
@Bi −

X
1≤k≤m,k 6=j,Oi∈Sk

Tk

1
A

This result is a system ofm equations withT1, T2, . . . , Tm as
m unknown quantities, which can be solved using a linear solver
package.

3.2.2 Algorithm Complexity and Scalability

Let us consider the complexity of our overall bound growth al-
gorithm, which is executed once everyT time units. Most of
the steps involve a simple computation per object, and the objects
must be sorted once. In the last step, to compute∆Wi efficiently,
the precision manager can continually track the difference (“left-
over width”) between each query’s precision constraint and the
current answer’s bound width. Then for each object we use the
precomputed leftover width value for each query over that ob-
ject. When queries are over overlapping sets of objects, an it-
erative linear solver is required to compute the burden targets,
which we expect to dominate the computation. The solver rep-
resents the system ofm equations havingT1, T2, . . . , Tm asm
unknown quantities as anm by (m + 1) matrix, where entries
correspond to pairs of queries. Fortunately, the matrix tends to be
quite sparse: whenever the query setsSx andSy of two queries
Qx andQy are disjoint, the corresponding matrix entry is0. For
this reason, along with the fact that we can tune the number of
iterations, burden target computation using an iterative linear sys-
tem solver should scale well. We use a publicly-available iterative
solver package calledLASPack[30], although many alternatives
exist. Convergence was generally achieved in very few iterations,
and the average running time on a modest workstation was only
2.73 milliseconds in our traffic monitoring implementation using
multiple overlapping queries (Section 5).

To test the scalability of our algorithm to a larger number of
queries and data objects than we used in our implementation,
we generated two sets of synthetic workloads consisting of AVG
queries over a real-world200-host network traffic data set (details
on this data set are provided in Section 5). We treated each host as

7

no filtering
optimized static allocation

ideal adaptive

answer precision (precision constraintδ)

co
st

pe
r

se
co

nd

0.50.450.40.350.30.250.20.150.10.050

10

8

6

4

2

0

Figure 3: Ideal adaptive algorithm vs. optimized static al-
location, random walk data.

a simulated data source with one traffic level object. In one set of
workloads, each query is over a randomly-selected5% (10) of the
data sources. In the second set of workloads, each query is over
25% (50) of the data sources, resulting in a much higher degree
of overlap among queries. (The degree of overlap determines the
density of the linear equation matrix, which is a major factor in
the solver running time.) Varying the number of queriesm, we
measured the average running time on a Linux workstation with
a 933 MHz Pentium III processor. We set the error tolerance for
the LASPack iterative solver small enough that no change in the
effectiveness of our overall algorithm could be detected. Figure 2
shows the fraction of available processing time used by the linear
solver when it is invoked once every10 seconds (when time units
are in seconds andT = 10, which turns out to be a good setting as
we explain later in Section 5). Allocating bound growth to handle
200 queries over25% of 200 data sources requires only around
1% of the CPU time at the stream processor.

3.3 Validation Against Optimized Strategy

We performed an initial validation of our bound width allocation
strategy based on periodic shrinking and selective growing using a
discrete event simulator with synthetic data. The goal of our sim-
ulation experiments is to show that our algorithm converges on the
best possible bound widths, given a steady-state data set. For this
purpose, we generated data for one object per simulated source
following a random walk pattern, each with a randomly-assigned
step size, and compared two unrealistic algorithms. In the “ideal-
ized” version of our algorithm, messages sent by the stream co-
ordinator to sources instructing them to grow their bounds incur
no communication cost. Instead, only stream transmission costs
were measured, to focus on the bound width choices only. We
compared the overall stream transmission cost against the stream
transmission cost when bound widths are set statically using an
optimization problem solver, described next.

The nature of random walk data makes it possible to simplify
the problem of setting bound widths statically to a nonlinear op-
timization problem, described in [23]. While nonlinear optimiza-
tion problems with inequality constraints are difficult to solve ex-
actly, an approximate solution can be obtained with methods that
use iterative refinement. We used a package called FSQP [14],
iterating1000 times with tight convergence requirements to find
static bound width settings as close as possible to optimal.

Figure 3 shows the results of comparing the idealized version
of our adaptive algorithm against the optimized static allocation,

no filtering
optimized static allocation

ideal adaptive

answer precision (average precision constraintδmax)

co
st

pe
r

se
co

nd

21.510.50

10

8

6

4

2

0

Figure 4: Ideal adaptive algorithm vs. optimized static al-
location, multiple queries.

using a continuous AVG query over ten data sources under uni-
form costs. The x-axis shows the precision constraintδ, and the
y-axis shows the overall cost per time unit. In a second experiment
we used a workload of five AVG queries whose query sets were
chosen randomly from the10 objects. Figure 4 shows the result of
this experiment, for which the size of the query sets was assigned
randomly between2 and5, and the precision constraint of each
query was randomly assigned a value between0 andδmax , plotted
on the x-axis. (For both workloads we also simulated nonuniform
costs, and since the results were similar in both cases we omit
them.) These results demonstrate that our adaptive bound width
setting algorithm converges on bounds that are on par with those
selected by an optimizer based on knowledge of the random walk
step sizes.

3.4 Handling Precision Constraint Adjustments

Users may at any time choose to alter the precision constraintδj of
any currently running continuous queryQj . If the user increases
δj (weaker precision), then additional bound width is allocated
automatically by the bound growth algorithm at the central pre-
cision manager at the end of the current adjustment period. If
the user decreasesδj (stronger precision), bound growth is sup-
pressed, and the automatic bound shrinking process will reduce
the overall answer bound width over time until the requested pre-
cision level is reached. If an immediate improvement in answer
precision is required, the central precision manager must proac-
tively send messages to sources requesting explicitly that bounds
be shrunk.

4 Coping with Latency
In a real implementation of our approach we must cope with mes-
sage and computation latency. Suppose that each message, in-
cluding streamed update messages and bound growth messages,
has an associated transmission latency as well as a processing de-
lay by both the sender and receiver. We first note that due to
such latencies, bound growth will be applied at sources after it
is applied at the central stream coordinator, and in the interim
period the source filter is less restrictive than it could be. This
phenomenon leads to a chance that some unnecessary updates are
transmitted to the stream processor, but correctness is not jeop-
ardized. To reduce the delay for growth messages and lessen
the chance of unnecessary streamed updates, the stream coordi-
nator can begin the growth allocation process prior to the end of

8

bound cache

queues
serializing

V table

W table

timestamped
V updates

W updates

timestamped

timestamped
[L, H] updates

Figure 5: Bound cache for consistent and ordered bound
updates.

each adjustment period, and base the computations on preliminary
streamed update rate estimates.

Communication and computation latency for update streams is
of more concern because, if handled naively, continuous queries
may not access consistent data across all sources, leading to in-
correct answers. To ensure continuous query answers based on
consistent data, source filters timestamp all updates transmit-
ted to the stream processor. (We assume closely synchronized
clocks, as in [13, 19].) Similarly, the precision manager times-
tamps all bound width updates with an adjustment period bound-
ary. Value and width updates are converted into bound updates
via the bound cache (recall Figure 1). Bound updates also have
associated timestamps (we will discuss how they are assigned
shortly), and our CQ evaluator (Figure 1) treats bound update
timestamps as logical update times for the purposes of query pro-
cessing. Correctness can only be guaranteed if the CQ evalua-
tor receives bound updates monotonically in timestamp order, in
which case it produces a new output value for every unique times-
tamp it receives as part of any update. When multiple updates
have the same timestamp, the query evaluator treats them as a sin-
gle atomic transaction and only produces a new output value for
the last update with the same timestamp.

To ensure that the CQ evaluator receives bound updates that
represent a consistent state and arrive in timestamp order, the
bound cache in the central stream coordinator is implemented us-
ing a combination of twoserializing queues(described shortly)
and asymmetric hash join[34] (or other non-blocking join op-
erator), as illustrated in Figure 5. The join operator combines
value updates with width updates to produce bound updates that
mirror the bounds maintained by source filters, using object iden-
tifier equality as the join condition. Each hash table stores only
the most recent value or width update for each object, based on
timestamp, and each join result is assigned a timestamp equal to
the timestamp of the input that generated the result.

Join inputs must arrive in timestamp order to ensure correct
behavior. One way to guarantee global timestamp ordering across
all V andW update streams is to delay processing of each update
received on a particular stream until at least one update with a
greater timestamp has been received on each of the other streams
[13]. This approach is impractical in our setting, however, be-
cause it can result in unbounded delays unless additional com-
munication is performed, and delays tend to be longer when the
number of update streams is large. Instead, we take an approach
similar to one taken in the field of streaming media to handle un-
ordered packets with variable latency (see,e.g., [21]), which relies
on a reasonable latency upper bound. In our approach, serializing

queues are positioned between the value and width update streams
and the join. The effect of each serializing queue is to order up-
dates by timestamp, and release each updateU as soon as the
current timetnow reachestU + λ, wheretU is U ’s timestamp
andλ is thelatency tolerance: an upper bound on the latency for
any streamed update message that holds with high probability and
is determined empirically based on the networking environment.
As long as all update messages obey this latency tolerance and
appropriate queue scheduling is used, we can be assured that the
serializing queues together output to the join a monotonic stream
of updates ordered by timestamp. Of course in practice occasional
messages may be delayed by more thanλ, resulting in temporary
violations of precision guarantees, an unavoidable effect in any
distributed environment with unbounded delays. Larger values of
λ reduce the likelihood that update messages arrive late, but also
increase the delay before results are released to the user. In Sec-
tion 5.3 we show that using a reasonable choice ofλ, late update
messages are very rare.

4.1 Exploiting Constrained Change Rates

In some applications, certain data objects may have known max-
imum change rates, or at least bounds on change rate that hold
with very high probability. If each data objectOi participating
in a continuous queryQ has maximum change rateRi, then an
approximate answer toQ that bounds the answer at timetnow − ε
(for some local processing delayε at the central stream proces-
sor), rather than timetnow − λ − ε, can be provided by hav-
ing the stream coordinator “pad” the bounds to account for re-
cent changes rather than using serializing queues with a built-
in delay as discussed above. Padding is performed by adding
φi = 2 ·Ri · λ symmetrically to the width of each updated bound
[Li, Hi] after it is produced by the join. If this technique is em-
ployed, a reduced precision constraintδ′Q ≤ δQ should be used
for the purposes of bound width allocation and adjustment to en-
sure that padded answer bounds meet the original precision con-
straintδQ. The value ofδ′Q depends on the amount of padding
and the type of query. For example, for AVG queries, we can set
δ′Q = δQ − 1

|SQ| ·
P

1≤i≤n,Oi∈SQ
φi.

5 Implementation and Experimental
Validation

We evaluated the performance of our technique and its practical
applicability by building a real network traffic monitoring system.
The system currently runs continuous queries over10 hosts in our
research group’s network, following Example 2 from Section 1.1.
In our implementation, a special monitoring program executes on
each host. It captures network traffic activity using theTCPdump
utility and computes packet rate measurements as needed by the
queries in the workload, representing them as time-varying nu-
merical data objects. We use time units of one second, which
matches the granularity at which our TCPdump monitor is able to
capture data. Each host acts as a data source, and in all cases ob-
jects and their updates correspond to a one-minute moving win-
dow over packet rate measurements. We use queriesQ1 − Q5

from Example 2 of Section 1.1, so different experiments use dif-
ferent objects. For example, queryQ5 uses one object for each of
the10 sources (hosts) for the overall windowed traffic volume be-
tween that host and external hosts. Each data object is assigned a
bound width for update filtering at the source. Bounds are cached

9

no filtering
uniform allocation

adaptive

answer precision (precision constraintδ)

co
st

pe
r

se
co

nd

1086420

2.5

2

1.5

1

0.5

0

Figure 6: Adaptive algorithm vs. uniform static bound set-
ting, queryQ5 using network monitoring implementation.

no filtering
uniform allocation

adaptive

answer precision (precision constraintδ)

co
st

pe
r

se
co

nd

10.80.60.40.20

10

9

8

7

6

5

4

3

2

1

0

Figure 7: Adaptive algorithm vs. uniform static bound set-
ting, single query over large-scale network data using sim-
ulator.

at a central monitoring station, which updates the aggregated an-
swers to continuous queries as bound widths shrink and grow and
as data updates stream in. The communication cost (streamed up-
date or growth message) for each object is modeled as a uniform
unit cost.

The first step in our experimentation was to determine good
settings for the two algorithm parametersT (adjustment period)
andS (shrink percentage). We experimented with a real-world
network traffic data set in our simulator, with both uniform and
nonuniform costs, and also with live data in our network monitor-
ing implementation, and found that the following settings worked
well in general:T = 10 time units to achieve low growth mes-
sage overhead relative to the timescale at which the data changes,
and S = 0.05 (5%) to allow adaptivity while avoiding erratic
bound width adjustments that tend to degrade performance. We
also determined that our algorithm is not highly sensitive to the
exact parameter settings. Setting or adjusting these parameters
automatically is a topic of future work.

5.1 Single Query

We now present our first experimental results showing the effec-
tiveness of our algorithm. We begin by considering a simple case
involving a single continuous AVG query. We used queryQ5

from Example 2 of Section 1.1 applied over the10 sources.Q5

monitors the average rate of traffic to and from our organization,
which ranged from about100 to 800 packets per second.

Since the optimized static bound width allocation described

no filtering
uniform allocation

adaptive

answer precision (δ) for queriesQ2 andQ5

co
st

pe
r

se
co

nd

20151050

14

12

10

8

6

4

2

0

Figure 8: Adaptive algorithm vs. uniform static bound set-
ting, queriesQ1−Q5 using network monitoring implemen-
tation.

in Section 3.3 relies on knowing the random walk step size, it is
not applicable to real-world data so cannot be used for compari-
son. Assuming data update patterns are not known in advance, the
only obvious method of static allocation is to set all bound widths
uniformly. Thus, we compare our algorithm against this setting.

Figure 6 compares the overall communication cost incurred
in our real-world implementation by our adaptive algorithm com-
pared to uniform static allocation, measuring cost for21 hours af-
ter an initial warm-up period. The continuous query monitors the
average traffic level with precision constraintδ ranging from0 to
10 packets per second. Our algorithm offers a mild improvement
over uniform bound allocation for a single query, bearing in mind
that the experiment was over small-scale network monitoring data
available for monitoring on a few hosts within our organization.

To test our algorithm on large-scale network data with many
hosts, we ran a simulation on publicly available traces of network
traffic levels between hosts distributed over a wide area during a
two hour period [27]. For each host, average packet rates ranged
from 0 to about150 packets per second, and we randomly se-
lected200 hosts as our simulated data sources. Figure 7 shows the
results using our simulator over this large-scale data set, account-
ing for all communication costs. With this data set our algorithm
significantly outperforms uniform static allocation for queries that
can tolerate a moderate level of imprecision (small to medium pre-
cision constraints). For queries with very weak precision require-
ments (large precision constraints), even naive allocation schemes
achieve low cost, and the slight additional overhead of our algo-
rithm causes it to perform about on par with uniform static allo-
cation.

5.2 Multiple Queries

We now describe our experiments with multiple continuous
queries having overlapping query sets. We used a workload of the
five continuous AVG queriesQ1 − Q5 from Example 2 in Sec-
tion 1.1.25− 1 “measurement groups” are defined at each source
based on which subsets of the five query predicates a packet sat-
isfies. Each measurement group is aggregated and acts as a data
object whose updates are filtered with a bound and streamed to the
central monitoring station. (It may seem more natural for sources
to further aggregate data objects into one object per query; we
discuss this option shortly in Section 5.2.1.)

Figure 8 shows the results of our experiments measuring cost
for 23 hours after an initial warm-up period. The x-axis shows

10

the precision constraints used for queriesQ2 andQ5. The other
queries monitored a much lower volume of data (by a factor of
roughly100) so for each run we set their precision constraints to
1/100th that shown on the x-axis. As discussed in Section 1.2.1,
uniform static bound width allocation can be performed for mul-
tiple overlapping queries if for each data object involved in more
than one query we maintain the narrowest bound assigned. Our
algorithm significantly outperforms uniform static allocation for
queries that can tolerate a moderate level of imprecision (small
to medium precision constraints). For example, using reason-
able precision constraints ofδ = 4 for queriesQ2 andQ5 and
δ = 0.04 for queriesQ1, Q3, andQ4, our algorithm achieves a
cost of only1.6 messages per second, compared with a cost of5.4
with uniform static bound width allocation. Furthermore, as with
all previous results reported, the overall cost decreases rapidly as
the precision constraint is relaxed, offering significant reductions
in communication cost compared with not filtering.

5.2.1 Source Aggregation

In the multiple-query workload it may appear advantageous for
sources to further aggregate data objects to form one object per
query whose updates are streamed to the monitoring station, in-
stead of one per query subset. Interestingly, doing so (a process
we callsource aggregation) does not always result in lower over-
all cost, and whether it is cheaper to perform source aggregation
depends on the data, query workload, and user-specified precision
constraints. In [23] we show mathematically that there are rea-
sonable conditions under which source aggregation is expected to
achieve lower cost, and other reasonable conditions under which
cost is lower without source aggregation. Note that the choice
of whether to perform source aggregation can be made indepen-
dently for each source and for each independent set of overlap-
ping queries, and the best overall configuration may be to perform
source aggregation selectively.

In general, if there is a large disparity between the precision
constraints of overlapping queries, source aggregation achieves
lower overall communication cost for update stream transmission
because queries with large precision constraints can use separate
wide bounds not constrained by other queries with small precision
constraints. On the other hand, if most updates are to objects in-
volved in multiple queries, it is preferable in terms of overall com-
munication cost not to apply source aggregation, to avoid redun-
dantly applying those updates to one object per relevant query. As
an extreme case, consider Example 1 from Section 1.1 in which
each source (router) maintains a single queue latency value ac-
cessed by multiple path latency queries, and all updates at each
source apply to objects involved multiple queries. Source aggre-
gation would have each router maintain one copy of its queue size
measurement for each path latency query, each with a bound hav-
ing a potentially different width. Updates would fall outside the
bounds at different times causing unnecessary updates to be trans-
mitted to the central stream processor.

As future work we plan to design and experiment with an al-
gorithm that monitors the expected cost of using versus not using
source aggregation and switches adaptively between them.

5.3 Impact of Message Latency

Our last experiment measures update message latency. In Fig-
ure 9 we vary the maximum latency toleranceλ (recall Section 4)

latency toleranceλ (seconds)

fr
ac

tio
n

o
fu

pd
at

es

10.90.80.70.60.50.40.30.20.10

1

0.8

0.6

0.4

0.2

0

Figure 9: Fraction of updates arriving after the maximum
latency toleranceλ for queryQ5.

and measure the fraction of updates arriving withinλ for query
Q5 during a21-hour period. In our implementation filtered up-
date streams are transmitted over a local area network. A value
of λ = 0.4 seconds, which is reasonable since data changes are
meaningful on a scale of about1 second in our case, ensures that
99.8% of updates are received on time. When a moderate preci-
sion constraint for this query ofδ = 5 is used, updates exceeding
the latency allowance occur only about once every65.7 minutes.
When an update does arrive late, the resulting inconsistency in
the output is brief, and based on our measurements plotted in Fig-
ure 9 the overall fraction of time the answer is consistent (fidelity
in the terminology of [29]) is at least99.997%. By adjustingλ,
higher fidelity can be achieved at the expensive of delayed output,
or vice-versa. ([21] proposes an algorithm for adjusting the la-
tency tolerance adaptively in a similar context based on observed
latency distributions.)

6 Summary and Future Work
We specified a new approach for reducing communication cost in
an environment of centralized continuous query processing over
distributed data streams. Our approach hinges on specifying pre-
cision constraints for continuous queries, which are used to gener-
ate adaptive filters at remote data sources that significantly reduce
update stream rates while still guaranteeing sufficient precision
of query results at all times. Our approach enables users or ap-
plications to trade precision for lower communication cost at a
fine granularity by individually adjusting precision constraints of
continuous queries. Imprecision of query results is bounded nu-
merically so applications need not deal with any uncertainty.

To validate our approach we performed a number of exper-
iments using simulations and a real network monitoring imple-
mentation. Our experiments demonstrated:

• For a steady-state scenario our algorithm converges on
bound widths that perform on par with those selected stat-
ically using an optimization problem solver with complete
knowledge of data update behavior.

• In the case of a single continuous query, our algorithm sig-
nificantly outperforms uniform bound width allocation in
some cases, and in other cases our algorithm is only some-
what better than uniform allocation. As future work we plan
to characterize those cases for which our algorithm achieves
a significant improvement over uniform static allocation,
and those cases for which uniform allocation suffices.

11

• In the case of multiple overlapping continuous queries, our
algorithm significantly outperforms uniform bound width
allocation.

While our optimization techniques are specialized to aggrega-
tion queries over numeric values, general continuous query pro-
cessing can in theory be performed over bounded values to pro-
duce bounded answers with precision guarantees. Further work
in this area includes understanding how imprecision propagates
through more complex query plans, and developing appropriate
optimization techniques for adapting remote filter predicates in
these more complex environments.

Acknowledgments
We thank David Cheriton, Hector Garcia-Molina, Ion Stoica,
Cheng Yang, and Dapeng Zhu for their helpful discussions and
feedback.

References
[1] R. Alonso, D. Barbara, H. Garcia-Molina, and S. Abad. Quasi-

copies: Efficient data sharing for information retrieval systems. In
Proc. EDBT, 1988.

[2] S. Babu and J. Widom. Continuous queries over data streams.ACM
SIGMOD Record, 30(3):109–120, Sept. 2001.

[3] D. Barbara and H. Garcia-Molina. The Demarcation Protocol: A
technique for maintaining linear arithmetic constraints in distributed
database systems. InProc. EDBT, 1992.

[4] P. A. Bernstein, B. T. Blaustein, and E. M. Clarke. Fast maintenance
of semantic integrity assertions using redundant aggregate data. In
Proc. VLDB, 1980.

[5] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Sei-
dman, M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring
streams - a new class of data management applications. InProc.
VLDB, 2002.

[6] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable
continuous query system for internet databases. InProc. SIGMOD,
2000.

[7] M. Dilman and D. Raz. Efficient reactive monitoring. InProc. Info-
Com, 2001.

[8] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the
world with wireless sensor networks. InProc. International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), 2001.

[9] A. Gupta and J. Widom. Local verification of global integrity con-
straints in distributed databases. InProc. SIGMOD, 1993.

[10] A. Householder, A. Manion, L. Pesante, and G. Weaver.
Managing the threat of denial-of-service attacks. Techni-
cal report, CMU Software Engineering Institute CERT Coor-
dination Center, Oct. 2001. http://www.cert.org/archive/pdf/
ManagingDoS.pdf.

[11] N. Huyn. Maintaining global integrity constraints in distributed
databases.Constraints, 2(3/4):377–399, 1997.

[12] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges:
Mobile networking for “smart dust”. InProc. MobiCom, 1999.

[13] L. A. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system.Communications of the ACM, 21(7), 1978.

[14] C. T. Lawrence, J. L. Zhou, and A. L. Tits. User’s guide for CFSQP
version 2.5. Technical report TR-94-16r1, Institute for Systems Re-
search, University of Maryland, 1997.

[15] J. W. S. Liu, K. Lin, W. Shih, and A. C. Yu. Algorithms for schedul-
ing imprecise computations.IEEE Computer, 24(5), 1991.

[16] L. Liu, C. Pu, and W. Tang. Continual queries for internet-scale
event-driven information delivery.IEEE Knowledge and Data En-
gineering, 11(4):610–628, 1999.

[17] S. Madden and M. J. Franklin. Fjording the stream: An architecture
for queries over streaming sensor data. InProc. ICDE, 2002.

[18] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously
adaptive continuous queries over streams. InProc. SIGMOD, 2002.

[19] D. L. Mills. Internet time synchronization: the network time proto-
col. IEEE Transactions on Communications, 39(10), 1991.

[20] R. Min, M. Bhardwaj, S. Cho, A. Sinha, E. Shih, A. Wang, and
A. Chandrakasan. Low-power wireless sensor networks. InProc.
Fourteenth International Conference on VLSI Design, 2001.

[21] S. B. Moon, J. Kurose, and D. Towsley. Packet audio playout delay
adjustment: Performance bounds and algorithms.ACM/Springer
Multimedia Systems, 6:17–28, Jan. 1998.

[22] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,
G. Manku, C. Olston, J. Rosenstein, and R. Varma. Query process-
ing, resource management, and approximation in a data stream man-
agement system. InProc. First Biennial Conference on Innovative
Data Systems Research (CIDR), 2003.

[23] C. Olston, J. Jiang, and J. Widom. Adaptive filters for con-
tinuous queries over distributed data streams. Technical re-
port, Stanford University Computer Science Department, 2002.
http://dbpubs.stanford.edu/pub/2002-55.

[24] C. Olston, B. T. Loo, and J. Widom. Adaptive precision setting for
cached approximate values. InProc. SIGMOD, 2001.

[25] C. Olston and J. Widom. Offering a precision-performance tradeoff
for aggregation queries over replicated data. InProc. VLDB, 2000.

[26] C. Olston and J. Widom. Best-effort cache synchronization with
source cooperation. InProc. SIGMOD, 2002.

[27] V. Paxson and S. Floyd. Wide-area traffic: The failure of Poisson
modeling. IEEE/ACM Transactions on Networking, 3(3):226–244,
1995.

[28] G. Pottie and W. Kaiser. Wireless integrated network sensors.Com-
munications of the ACM, 43(5):551–558, May 2000.

[29] S. Shah, A. Bernard, V. Sharma, K. Ramamritham, and P. Shenoy.
Maintaining temporal coherency of cooperating dynamic data repos-
itories. InProc. VLDB, 2002.

[30] T. Skalicky. Laspack reference manual, 1996. http://www.tu-
dresden.de/mwism/skalicky/laspack/laspack.html.

[31] N. Soparkar and A. Silberschatz. Data-value partitioning and virtual
messages. InProc. PODS, 1990.

[32] R. van Renesse and K. Birman. Astrolabe: A robust and scal-
able technology for distributed system monitoring, management,
and data mining. Technical report, Cornell University, 2001.

[33] S. Vutukury and J. Garcia-Luna-Aceves. A traffic engineering ap-
proach based on minimum-delay routing. InProc. IEEE Inter-
national Conference on Computer Communications and Networks,
2000.

[34] A. N. Wilschut and P. M. G. Apers. Dataflow query execution in a
parallel main-memory environment. InProc. PDIS, 1991.

[35] T. Yamashita. Dynamic replica control based on fairly assigned vari-
ation of data with weak consistency for loosely coupled distributed
systems. InProc. ICDCS, 2002.

[36] H. Yu and A. Vahdat. Efficient numerical error bounding for repli-
cated network services. InProc. VLDB, 2000.

12

