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Abstract sufficient precision usually can be computed from a small fraction
of the input streams. In our approach, users submit quantitative

We consider an environment where distributed data precision constraintglong with continuous queries to the stream
sources continuously stream updates to a centralized  processor, and the stream processor insfétiéss at the remote
processor that monitors continuous queries over the dis-  data sources. The filters adapt to changing conditions to mini-
tributed data. Significant communication overhead is mize communication cost while guaranteeing that all continuous
incurred in the presence of rapid update streams, and  queries still receive the updates necessary to provide answers of
we propose a new technique for reducing the over- adequate precision at all times. In this way, users are offered fine-
head. Users register continuous queries with precision grained control over the tradeoff between query answer precision
requirements at the central stream processor, which in-  and communication cost. Imprecision of query results is bounded
stalls filters at remote data sources. The filters adapt = numerically so applications need not deal with any uncertainty.
to changing conditions to minimize stream rates while Many stream-oriented applications do not need exact answers,
guaranteeing that all continuous queries still receive the  yet require quantitative guarantees regarding the precision of ap-
updates necessary to provide answers of adequate pre- proximate answers [36]. For example, consider wireless sensor
cision at all times. Our approach enables applications networks,e.qg, [8, 12, 17, 28], which enable continuous monitor-

to trade precision for communication overhead at a fine ing of environmental conditions such as light, temperature, sound,
granularity by individually adjusting the precision con- vibration, structural strain, etc. [18]. Since the battery life of
straints of continuous queries over streams in a multi- miniature sensors is severely limited, and radio usage is the domi-
query workload. Through experiments performed on nant factor determining battery life [20, 28], it is crucial to reduce
synthetic data simulations and a real network monitor- the amount of data transmitted, even if a small increase in local
ing implementation, we demonstrate the effectiveness  processing by the sensor is required [17]. Many applications that
of our approach in achieving low communication over- rely on sensor data can tolerate approximate answers having a
head compared with alternate approaches. controlled degree of imprecision [20], making our approach ideal
for reducing data transmission. Other examples with continuous
1 Introduction queries over distributed data that can tolerate a bounded amount

of imprecision include industrial process monitoring, stock quote
Query processing ovaontinuous data streanfgs received con-  services, online auctions, wide-area resource accounting, and load
siderable attention recentlg.g, [5, 17, 22]. We consider dis- balancing for replicated servers [29, 36].
tributed environments in which remote data sources continu- Next we focus on one particular application, network moni-

ously push updates to a centsiteam processomwhose job is  toring, and give examples of continuous queries that arise in the
to evaluate multiplecontinuous queriesver the streamed data context of that application to motivate our work. Then in the re-
[2, 6, 16, 18]. In these environments, significant communicationmainder of Section 1 we provide an overview of our approach.
overhead is incurred in the presence of rapid update streams. We

offer an effective method for reducing communication cost, tak- T oo
ing advantage of the fact that many applications do not requirel'l Example Application: Network Monitoring

exact precision for their continuous queries—examples are disyanaging complex computer networks requires tools that, among
cussed shortly. When applications do not require exact precisioginer things, continually report the status of network elements in
and data values do not fluctuate wildly, approximate answers ofeg) time, for applications such as traffic engineering, reliability,
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now give two concrete examples of continuous query workloadsand out of the organization using que®s, to help plan infras-

for network monitoring applications. tructure upgrades or track the cost of network usage billed by a
service provider.
Example 1: Network path latencies are of interest for infras-  If traffic monitoring is not performed carefully, many of these

tructure applications such as manual or automated traffic engiqueries may be disruptive to the communication infrastructure
neering,e.g, [33], or quality of service (QoS) monitoring. Path of the organization [10]. Fortunately, these applications also do
latencies are computed by monitoring the queuing latency of eachot require exact precision in query answers as long as the pre-
router along the path, and summing the current queue latencies téision is bounded by a prespecified amount. Note that precision
gether with known, static transmission latencies. Since the queutequirements may change over time. For example, during periods
latency at each router generally changes every time a packet e@f heightened suspicion about DoS attacks, the organization may
ters or leaves the router, a naive approach could generate momish to obtain higher precision for queri€s andQs even at the
itoring traffic whose volume far exceeds the volume of normal cost of increased communication overhead.
traffic, a situation that is clearly unacceptable. Fortunately, path
latency applications can generally tolerate approximate answer$.2 Overview of Approach
with bounded absolute numerical error (such as latency within . . .
ms of accuracy), so using our approach obtrusive exact monitor\-Ne focus on continuous queries su_ch as the network monitoring
ing is avoided. examples above. All of these queries compute a_tggregate_ values
over streams of updates to numeric (real) data objects, which may
originate from many remote data sources. The conventional an-
swer to an aggregation query is a single real value. We define a
Younded approximate answgrereaftebounded answeito be a
pair of real valued and H that define an intervall, H] in which
the precise answer is guaranteed to lie. Precision is quantified as
the width of the rangé H — L), with 0 corresponding to exact
precision ancbo representing unbounded imprecision. pfeci-

sion constrainfor a continuous query is a user-specified constant

que_ries that can be performed_ in this manner, z_and then motivatg > 0 denoting a maximum acceptable interval width for the an-
their usefulness. These queries form the basis of performancgw—eri e 0<IH—L < & at all imes

experiments on a real network monitoring system we have imple- Our goal is to provide guaranteed bourids H] as answers

mented; see Section 5. to continuous queries at all times, while filtering update streams

Q1 Monitor the volume of remote login (telnet, ssh, ftp, etc.) at the sources as much as possible. For each remote data object

requests received by hosts within the organization that orig-O whose updates are sent to the central stream processor for con-
inate from external hosts. tinuous query evaluation,siream filteris installed aD’s source.

Q> Monitor the volume of incoming traffic received by all hosts Each filter maintains a numeric bouiflo, Ho| of width Wo
within the organization. centered around the most recent numeric updaigvhereV is

e W,
Qs Monitor the volume of incoming SYN packets received by the new value fo0) that passed the filtere., Lo =V —=> and

Example 2: Network traffic volumes are of interest to organi-
zations such as internet service providers (ISP’s), corporation
or universities, for a number of applications including security,
billing, and infrastructure planning. Since it is often inconvenient
or infeasible for individual organizations to configure routers to
perform monitoring, a simple alternative is to instead monitor end
hosts within the organization. We list several traffic monitoring

all hosts within the organization. Ho =V + %2 Thefilter eliminates from the stream all updates
Q4 Monitor the volume of outgoing DNS lookup requests orig- V' that lie insideO’s bound,i.e., that satisfyLo < V' < Ho.

inating from within the organization. Each time an updat® passes the filter and is transmitted to the
Qs Monitor the volume of traffic between hosts within the or- central processo;vthe filter recenters tvge bound ardury set-

ganization and external hosts. ting Lo := V — =2 andHo := V + =2. The central stream

processor knows each obje&ets bound widthiWo, and uses it to

Queries®: throughQ4 are motivated by security considera- maintain a cached copy of its boufillo, Ho|] based on filtered
tions. One concern is illegitimate remote login attempts, whichupdates received fro®’s source. The stream processor can be
often occur in bursts that can be detected using qagry An- assured that the source (master) valugofemains within the
other concern is denial-of-service (DoS) attacks. To detect thdound until the next update @# is received. (Message latency is
early onset of one form of incoming DoS attacks, organizationsaddressed in Section 4.)
can monitor the total volume of incoming traffic received by all ~ Continuous queries are registered at the stream processor and
hosts using querg).. Another form of DoS attack is character- whenever a relevant update is received on an input stream query
ized by a large volume of incoming “SYN” packets that can con- results are updated accordingly. Each continuous query (ZQ)
sume local resources on hosts within the organization, which cahas an associated precision constraisnt We assume any number
be monitored using querys. Organizations also may wish to de- of arbitrary CQ’s with arbitrary individual precision constraints.
tect suspicious behavior originating from inside the organization,The challenge is to ensure that at all times the bounded answer to
such as users launching DoS attacks, which may entail sending avery continuous quer§ is of adequate precisione., has width
unusually large number of DNS lookup requests detectable usingt mostdg, while filtering streams as much as possible to mini-
queryQs. In all of these examples, current results of the contin-mize total communication cost. As a simple example, consider a
uous query can be compared against data previously monitored aingle CQ requesting the current average.afata values whose
similar times of day or calendar periods that represents “typical’update streams are transmitted from different sources, with a pre-
behavior, and the detection of atypical or unexpected behavior canision constraint. We can show arithmetically that the width of
be followed by more detailed and costly investigation of the datathe answer bound is the average of the widths ofitedividual
Finally, organizations can monitor the overall traffic volume in bounds. Thus, one obvious way to guarantee the precision con-
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Figure 1: Our approach to stream filtering for continuous queries.

straint is to use filters with a bound of widéhfor each of then in which bound widths are adjusted continually to match current
objects. Although this simple policy, which we calhiform al- conditions.

location, is correct (the answer bound is guaranteed to satisfy the Determining the best bound width allocation at each point
precision constraint at all times), it is not generally the best pol-in time without incurring excessive communication overhead is
icy. To see why, it is important to understand the effects of updatechallenging, since it would seem to require a single site to have

filter bound width [24]. continual knowledge of data update rates and magnitudes across
potentially hundreds of distributed sources. Moreover, the prob-
1.2.1 Effects of Eilter Bound Width lemis complicated by Reason 1 above: we may have many contin-

] ) ) ] uous queries with different precision constraints involving over-
A filter bound that is narrow,e., H — L is small, enables con-  |apping sets of data objects. In Example 1 from Section 1.1,
tinuous queries to maintain more precise answers, but will failyy|tiple paths whose latencies are monitored will not generally
to filter out a significant portion of the update stream, leading tope gisjoint,i.e., they may share routers, and precision constraints
high communication cost. Conversely, a bound that is wie,  may differ due to differences in path lengths (number of routers)

H — Lis large, can reduce the stream rate substantially due t0 gs \ell as discrepancies in user precision requirements for differ-
more restrictive filter, but consequently results in more impreci-gnt paths.

sion in query answers. Uniform allocation can perform poorly for
the following two reasons: 1.2.2 Adaptive Bound Width Adjustment

1. If multiple continuous queries are issued on overlappingwe have developed a low-overhead algorithm for setting bound
sets of objects, different bound widths may be assigned tquidths for stream filters adaptively to reduce communication costs
the same object. While we could simply choose to use theyhile always guaranteeing to meet the precision constraints of
smallest bound width for the filter, the higher update streaman arhitrary set of registered CQ’s. The basic idea is as follows.
rate may be wasted on all but a few queries. Each source filter for an object’s update stream shrinks the bound

2. Uniform bound allocation does not account for data val-Width periodically, at a predefined rate. Assuming the bounds
ues that change at different rates due to different rates anf€gin in a state where all CQ precision constraints are satisfied
magnitudes of updates. In this case, we prefer to allocatéwe Will guarantee this to be the case), shrinking bounds only
wider bounds to data values that change rapidly, and nariMproves precision, so no precision constraint can become vio-
rower bounds to the rest. lated due to shrinking. The central stream processor maintains a

mirrored copy of the periodically shrinking bound width of each
Our performance experiments (Section 5) that compare unifornpbject. Each time the bound width of each object shrinks, the
against nonuniform bound allocation policies provide strong em-stream processor reallocates the “leftover” width to the objects at

pirical confirmation of these observations. the central processor it benefits the most, ensuring all precision
Reason 2 above indicates that a good nonuniform bound widtlgonstraints will remain satisfied.

allocation policy depends heavily on the data update rates and

magnitudes, which are likely to vary over time, especially during1,2.3 Overall Approach

the long lifespan of continuous queries [18]. In Example 1 from o .

Section 1.1, a router may alternate between periods of rapidif°Ur approach is illustrated in Figure 1:

fluctuating queue sizes (and therefore queue latencies) and steadye Data sourceson the right, each store master values for one
state behavior, depending on packet arrival characteristics. There-  or more objects, and they generate streams of updates to
fore, in addition to nonuniformity, we propose adaptivepolicy, those values.



o Filters intercept update streams from sources and main-approximations to minimize the overall communication cost un-
tain periodically-shrinking bounds for the objects. Each fil- der a workload of one-time queries like those in [25]. The pre-
ter forwards updates that fall outside its bound to the cen-cision level of each data object is adjusted in isolation, indepen-
tral stream processor, shown on the left, and recenters thatent of the precision levels of other objects. Both [24, 25] exploit

bound. the property that for many one-time queries, answer precision can
e A stream coordinatorin the central stream processor re- be improved to acceptable levels by accessing remote sources at
ceives all streamed updates from the filters. query-time. In contrast, we focus on applications that require con-

tinuous answers to queries. For these applications, an answer of

e A precision manageinside the stream coordinator main- > . 1SWE
tains a copy of the periodically shrinking bound width for adequate precision for each contlnuou_s query must be maintained
by the central stream processor at all times.

each object. It reallocates width as described earlier and no*
tifies the corresponding sources via growth messages. In quasi copieq1], centrally maintained approximations are

e A bound cachdnside the stream coordinator receives all Permitted to deviate from exact source values by constrained
bound width changes (growth and shrinks) from the preci-amounts, thereby providing precision guarantees. Recent work
sion manager, along with all value updates streamed fron{29] extends the ideas of [1], proposing an architecture in which
the data sources via the filters. The bound cache maintain@ nNetwork of repositories cooperate to deliver data with precision
a copy of the bound for each object. guarantees to a large population of remote users. In an environ-

« A CQ evaluatoiin the central stream processor receives up-MeNt With multiple cooperating repositories, data may be prop-

dates to bounds from the bound cache and provides update%pated th.rou_gh several nodes before_ulti_mately reaching the end-
continuous query answer bounds to the user. user application, so latency can be a significant concern. The work

in [29] focuses on selecting topologies and policies for cooperat-

Two aspects of our approach are key to achieving low commuing repositories to minimize the degree to which latency causes
nication cost. First, width shrinking is performed simultaneously precision guarantees to be violated. However, the work in [1] and
at both the stream processor and the sources without explicit cd29] does not address queries over multiple data values, whose
ordination. Second, the precision manager uses selective grow#mnswer precision is a function of the precision of the input val-
to tune the width allocation adaptively. Informally, we minimize ues, so they do not need to deal with the optimization problem we
the overall cost to guarantee individual precision constraints oveaddress for minimizing communication.

arbitrary overlapping CQ’s by assigning the widest bounds to the  Recent work on reactive network monitoring [7] addresses
data values that currently are updated most rapidly and are inscenarios where users wish to be notified whenever the sum of
volved in the fewest queries with the largest precision constraintsy get of values from distributed sources exceeds a prespecified
In addition to the overall approach, specific contributions of critical value. In their solution each source notifies a central pro-
this paper are as follows: cessor whenever its value exceeds a certain threshold, which can
« In Section 3 we specify the core of our approach: a low- b_e either a fixed constant or a value that increases_ linearly over
overhead, adaptive algorithm for assigning filters to datalime- '_I'_he I_ocal thresholds are set to guarantee that in the absence
sources to reduce update stream rates. To guarantee aG%f_notlflcatlons_, the central processor knows that the sum c_Jf the
quate precision for multiple overlapping CQ's while min- source values is less than the crltlcal value_. The threshold_s in [7],
imizing communication, the precision manager (Figure 1)WhICh are related to th_e k_)oundfs in ouralg_orlthm, are set uniformly
uses an optimization technique based on systems of “neaeflcross_all sources. Similarly, in [36.]’ Wh'.Ch f_ocuses on bounded
equations. apprommate_values under symmetrlc replication, error bounds are
. . . . allocated uniformly across all sites that can perform updates. In
¢ In_Sectlon 4 we descrlb_e mechf':mlsms n the bound_ CaCh%ontras.t to these approaches, we propose a technique in which
(Figure 1) t_o_handle replica consistency ISSues that arise duBound widths are allocated nonuniformly and adjusted adaptively
to nonnegligible stream message latencies.

) ) i i based on stream transmission costs and data change rates.
e In Section 5 we describe our implementation of a real net-

work affic monitoring system based on Example 2in Sec-,\ I S010 TIEIE PO 20 SEREIE IR A T
tion 1.1. We provide experimental evidence that our ap- ?d' tributed traint 9 Most K % tributed trai ty
proach significantly reduces overall communication costoh 'sk.” ute c;n; rflln SII 0s \_/\(/jor on distn ued(zjor:s rain
compared to a uniform allocation policy for a workload of ;: eckinge.g, | ’d' ] or:jy consll erswsertlons an fehetlons
multiple continuous queries with precision constraints. rom se_ts, nqt updates to data va ues. We are aware o three pro-
posals in which sources communicate among themselves to ver-
ify numerical consistency constraints across sources containing
2 Related Work changing valuesdata-value partitionians_l], the demarcation
protocol [3], and recent work by Yamashita [35]. The approach
The idea of using numeric bounds and queries with precisiorof these proposals could in principle be applied to our setting:
constraints to offer a smooth tradeoff between precision and persources could renegotiate bound widths in a peer-to-peer man-
formance in distributed data processing environments was introner with the goal of reducing stream rates. However, in many
duced originally in [24, 25]. However, that work address@@-  scenarios it may be impractical for sources to keep track of the
time rather than continuous queries, resulting in a very differentother sources involved in a continuous query (or many continuous
approach. Specifically, [25] developed algorithms for optimally queries) and communicate with them directly, and even if practi-
combining approximate cached data with exact source data toal it may be necessary to contact multiple peers before finding
meet the precision requirement for a single query at a single timeone with adequate “spare” bound width to share. It seems unlikely
Follow-on work [24] proposed a technique for adjusting cachedthat the overhead of inter-source communication is warranted to



potentially save a single stream message. Furthermore, the aIgb-SymboI | Meaning
rithms in [3, 31, 35] are not designed for the purpose of minimiz-

ing communication cost, and they do not accommodate multiple— number of data objects across all sources
queries with overlapping query sets. Oi data object{=1...n)
Some work on real-time databasesg, [15], focuses on Vi exact source value of obje€y;

scheduling multiple complex, time-consuming computation tasks [7,, H,] | bound for objec;
that yield imprecise results that improve over time. In contrast, W width of bound for objecO; (W; = H; — L)
our work does not focus on how best to schedule computations, L Ject’s S
but rather on how to filter data update streams in a distributed er|- i update/growth msg. communication cost @r
C
A
m

vironment while bounding the resulting imprecision. overall communication cost

Finally, [26] addresses the problem of maximizing data preci-
sion subject to constraints on the availability of communication
resources. That work considers the inverse of the problem we ad

stream message latency tolerance
number of registered continuous queries

dress in this paper of minimizing communication while meeting| @ registered queryj(=1...m)

constraints on data precision. The choice of which of these com- S set of objects queried b@;

plementary approac_hgs is more appropriate in a given scenario de- 5; precision constraint of querg;

pends on characteristics of the environment and application. AR P diust period (alaorith :

interesting topic for future work is to consider policies for au- a jys ment period (a gorf m parameter)

tomatically choosing or switching between the two approaches, S shrink percentage (algorithm parameter)

possibly at a per-source granularity. P streamed update period 6 (last7 time units)
B; burden score of; (computed everg time units)

3 Algorithm Description T; burden target of); (computed everg time units)
D; deviation ofO; (determines growth priority)

In this section we provide more details of our approach, then we
describe our algorithm for adjusting stream filter bound widths
adaptively,i.e., we focus on theprecision managein Figure 1
which is the core of our approach. Recall that our goal is to
minimize communication cost while satisfying the precision con-as queries over the most recent data values only. For the aggrega-
straints of all queries at all times. We consider continuous queriesion functions we consider, if an aggregate value is continuously
that operate over any fixed subset of the remote data values. (Webmputed to meet a certain precision constraint, then the result
do not consider selection predicates over remote values [25], andf further aggregating over time using any type of window also
we assume that all insertions and deletions of new objects into theeets that same precision constraint. However, our algorithm
data set are propagated immediately to the central stream procegees not necessarily minimize cost for sliding window queries,
sor via special streams.) because sliding windows offer some leniency in the way precision
Queries can perform any of the five standard relational aggrebounds are set: bounds wider thaare acceptable as long as they
gation functions: COUNT, MIN, MAX, SUM, and AVG. Of are compensated for by bounds narrower thavithin the same
these, COUNT can always be computed exactly in ottirgg  time-averaged window. Our algorithm would need to be modified
SUM can be computed from AVG and COUNT, and MIN and to take advantage of this additional leniency in precision, which
MAX are symmetric. It also turns out, as we show in the ex- is a topic of future work.
tended version of this paper [23], that for the purposes of bound et us assume that all messages (including update streams)
width setting MIN queries can be treated as a collection of AVG are transmitted instantaneously and all computation is instanta-
queries. Therefore, from this point forward we discuss primarilyneous, for now. In Section 4 we discuss how we handle realis-
the AVG function. Note that queries can request the value of anic, non-negligible latencies. When the precision manager sends
individual data object by posing an AVG query over a single ob-a bound growth message for obje®t to its source, or an up-
ject. For flexibility we also allow objects to be weighted in SUM date is transmitted along the data stream from the source to the
and AVG queries, formalized in [23]. stream processor (recall Figure 1), we model the cost as a known
Each registered continuous qué&py specifies ajuery setS; numerical constant’;. (Considering the possibility of batching
of objects and arecision constraint;. (Users may later alter stream updates from the same source is a topic of future work.)
the precision constraid; of any currently registered continuous For convenience, the symbols we have introduced and others we
query Q;; see Section 3.4.) The query st is a subset of a  will introduce later in this section are summarized in Table 1.
set ofn data object®D1, Oz, ..., O,. Each data objeaD; has Before presenting our general adaptive algorithm for adjusting
an exact valug/; stored at a remote source that streams updategound widths, we describe two simple cases in which the bound
after filtering to the central stream processor. Say thererare \yigth of certain objects should remain fixed. First, consider an
registered continuous AVG queriéh, Qz; ..., Qm, With qUery  ghjectO that is involved only in queries that request a bound on
setsS1, Sz, .. ., Sm, respectively. Then the exact answer to AVG the value ofO alone (AVG queries over one value). Then it suf-
queryQ; is ‘5_1“ : Zlgign,oiesj Vi. Our goal is to be able to  fices to fix the bound width af to be the smallest of the precision
compute an approximate answer continuously that is wihjis constraintsiWo = min(d;) for queries; with S; = {O}. Sec-
precision constraind;, using cached bounds maintained by the ond, for objects that are not included in any currently registered
central stream processor. query, the bound width should be fixedaat so that all updates
Note that this goal handlesdiding windowqueries [22] as well  are filtered from its update stream and none are transmitted to the

Table 1: Model and algorithm symbols.



central stream processor. The remainder of the objects, namelgfer to those data updates that pass their filter and are sent to the

those that are involved in at least one query over multiple objectsstream processor.) The burden score is computds}; as C -
pose our real challenge. where recall that; is the cost to send a streamed update of ob-
To guarantee that all precision constraints are met, the followject O;, andW; is the current bound width?; is O;’s estimated
ing constraint must hold for each quepy;: streamed update pericsince the previous width adjustment ac-
tion, computed a®; = Nl whereN; is the number of updates of
Z Wi < 65|55 O; received by the stream coordinator in the Astime units. (If
1<i<n,0,€S8; N; = 0thenP; = oo soB; = 0.) The burden formula is fairly

| h ds. th f bound widths f h intuitive sincee.g, a wide bound or long streamed update period

n other words, the sum of boun wi ths for each query mUSIreducesBi. The exact mathematical derivation is given in [23].

not excee_d the progiuct of Fhe precision constraint and th_e NUM-" once each object’s streamed update period and burden score
ber of objects queried. _In_ltlally, the l_:)ounds can be set in aMYhave been computed, the second step is to assign a¥aloalled

way that meets the precision constraint of every query, by theburden targetto each AVG query ;. Conceptually, the bur-

p_erformlng gnlform aIIoc_atlon for gach query, and for objects 8Sgen target of a query represents the lowest overall burden required
signed multiple bound widths, taking the minimum. Then, as dIS-O the objects in the query in order to meet the precision con-

CL_Jssed in St_ection 1.2.3, ourgen_eral strategy is_to r_eallocate boungaint at all times. Since understanding the way we compute
width adaptively among the objects participating in each UeYhurden targets is rather involved, we present our method later
Reallocation is accomplished with low communication overheadin Section 3.2.1, and summarize the process here. For queries
by having bounds shrink periodically over time and having theover objects involved in no other queries, the burden target is set

stream processor's precision manager perio_qically select_one qual to the average of the burden scores of objects participat-
more bognds to grow base_d on _current conditions. In _Sectlon 3. g in that query. For queries that overlap it turns out that as-
we describe the_exact wayin which bour_1ds are shrunk in our algoéigning burden targets requires solving a systermaogquations
rithm, and then in Section 3.2 we describe when and how bound ith T\ T» T,, asm unknown quantities. Because solving
are grown. In Section 3.3 we provide empirical validation that our, . sys7terr71 of 7equations exactly at run-time is likely to be ex-

algorithm converges on good bounds. pensive, we find an approximate solution by running an iterative
oo linear equation solver until it converges within a small eror
3.1 Bound Shrinking (Performance is evaluated in Section 3.2.2.)

Every objectO; has a corresponding bound widt; that is Once a burden target has been assigned to each query, the third

maintained simultaneously at both the central stream coordinaStep is to compute for each obje@t its deviationD;:

tor and at the source filter. Periodically, evéfytime units (sec-

onds, for example)Oi'_s bound width is decreased_ symmetrically D; = max{ B; — Z T, 0

at both the source filter and the stream coordinator by setting

W; == W; - (1 — S). The constantT is a global parameter

called theadjustment periodand S is a global parameter called Deviation indicates the degree to which an object is “overbur-

the shrink percentageThe effect is to decrease the bound width dened” with respect to the burden targets of the queries that access

by the fractionS every time unit, rendering the update stream fil- it. To achieve low overall stream rates, it is desirable to equally

ter lessrestrictiveover time. (A filter is more restrictive when it  distribute the burden across all objects involved in a given query.

blocks more updates from being streamed.) All adjustments td/Ve justify this claim mathematically in [23], and we verify it em-

the bound width—decreases as well as increases—occur at inteirically in Sections 3.3 and 5.

vals of 7 time units. Note that updates may be streamed to the To see how we can even out burden, recall that the burden

central stream processor at any time but they simply repositiorscore of object; is B; = pf{'% , so if the boundL;, H;] were

bounds without altering the width. We will discuss good settingsto increase in sizeB; would decreasé. Therefore, the burden

for algorithm parameterg” and.S in Section 5. score of an overburdened object can be reduced by growing its
To ensure correctness, each time the bound width for objecbound. Growth is allocated to bounds using the following greedy

O; shrinks, changing the filter condition, the source must re-applystrategy. Queried objects are considered in decreasing order of de-

the filter to the current data valué. If V; passes the new filter viation, so that the most overburdened objects are considered first.

and has not already been streamed as an update, the source msis important that ties be resolved randomly to prevent objects

1<j<m,0; €S,

generaté/; on the update stream. having the same deviation—maost notably-from repeatedly be-
ing considered in the same order.) When ob{ects considered,
3.2 Bound Growing the maximum possible amount by which the bound can be grown
without violating the precision constraint of any query is com-

Every 7 time units, when all the bound widths shrink automati- i

- : . . . uted as:
cally as described in the previous section, the precision managepr
selects certain bound widths to grow instead, making the corre-
sponding stream filters more restrictive. Selecting bounds to in- AW, =  min 35 - 1S;| — Z Wi
crease (and how much) is one of the most intricate parts of our 155<m,0:€5; 1<k<n,0,L€S;
approach.

The first step is to assign a numeritairden scoreB; to each
queried objecD;. Conceptually, the burden score embodies the
degree to which an object is contributing to the overall communi-  1This reasoning relies of; not decreasing wheW; increases, a fact
cation cost due to streamed updates. (Westigamed update® that holds intuitively and is discussed further in [23].

If AW; = 0, then no action is taken. For each nonzero growth
value, the precision manager increases the width of the bound for




0.02 :

O symmetrically by setting; := L; — 234 andH; := H; + |
0,
. After all growth has been aIIocated the precision manager = 550 of data per query-&

@ 25% of data per query-a--
sends amessage to each source having objects whose bound widt! 0.015 ]
was selected for growth.

In summary, the procedure for determining bound width
growth is as follows:

ime

1. Each object is assignedbarden scorédased on its stream
transmission cost, estimated streamed update period, and-
current bound width.

0.005 e -

fraction of processi

2. Each query is assignedbarden targetby either averag- o™ s 100 150 200
ing burden scores or invoking an iterative linear solver (de- number of queries:

scribed next in Section 3.2.1).

3. Each object is assigneddaviationvalue based on the dif- Figure 2: Scalability of linear system solver.

ference between its burden score and the burden targets ?Jfaer 1Q;

we can expres8; ; in terms of B;, which is known,
the queries that access it.

and the# values for the other queries ovél;, which are un-

4. The objects are considered in order of decreasing deviatiorknown: 0; ; = Bi =3 < <., x2j 0,cs, Pi.k- If we replace each
and each objed; is assigned the maximum possible bound occurrence of); ; by T}, for ali k # j (because we want eaéh
growth AW; when itis considered. to converge td}), we haved; ; = Bi =Y, ... k5,08, Lk-

Substituting this expression in our formula for guessing ‘at burden

nd scalability of this approach are discussed in
Complexity & y P targets based ofivalues, we arrive at the following expression:

Section 3.2.2.
3.2.1 Burden Target Computation T, = ﬁ . B — 3 T
We now describe how to compute the burden taijefor each 7l 1gisnoses; Isksm k75,0, €S

query@;, given the burden scorB; of each objecO; (Step 2

This result is a system af. equations withly,Ts, ..., T, as
above). Recall that conceptually the burden target for a query
m unknown quantities, which can be solved using a Ilnear solver
represents the lowest overall burden required of the objects Ir[])ackage

the query in order to meet the precision constraint at all times!
For motivation consider first the special case involving a sin-
gle AVG query@y over every objecD;,...,O,. In this sce-
nario, the goal for adjusting the burden scores simplifies to that et us consider the complexity of our overall bound growth al-
of equalizing them (as shown mathematically in [23]) so thatgorithm, which is executed once evefy time units. Most of
Bi = By = .-+ = B, = Ti. Therefore, given a set of bur- the steps involve a simple computation per object, and the objects
den scores that may not be equal, a simple way to guess at afust be sorted once. In the last step, to compi¥; efficiently,
appropriate burden targé‘tc is to take the average of the current the precision manager can continually track the difference (“left-
burden scores,e., T} = ‘5 T Yi<i<n,0,es, Bi- Inthisway,  over width”) between each query’s precision constraint and the
objects having higher than average burden scores will be givegurrent answer's bound width. Then for each object we use the
high priority for growth to lower their burden scores, and those precomputed leftover width value for each query over that ob-
having lower than average burden scores will shrink by defaU'tjec’[. When queries are over overlapping sets of objects, an it-
thereby raising their burden scores. On subsequent iterations, theative linear solver is required to compute the burden targets,
burden targef’;, will be adjusted to be the new average burdenwhich we expect to dominate the computation. The solver rep-
score. This overall process results in convergence of the burdefesents the system of equations havingy, Ts, ..., Tm asm
scores. unknown quantities as am by (m + 1) matrix, where entries
We now generalize to the case of multiple queries over differ-correspond to pairs of queries. Fortunately, the matrix tends to be
ent sets of objects. Itis useful to think of the burden score of eaclyuite sparse: whenever the query sgtsandS, of two queries
object involved in multiple queries as divided into components(), and@, are disjoint, the corresponding matrix entryisFor
corresponding to each query over the object. &gt represent  this reason, along with the fact that we can tune the number of
the portion of objecD;’s burden score corresponding to quély  iterations, burden target computation using an iterative linear sys-
sothatd ;<. 0,es, 0i.s = Bi- The goal for adjusting burden  tem solver should scale well. We use a publicly-available iterative
scores in the presence of overlapping queries is to have the burdesolver package calledASPacl{30], although many alternatives
scoreB; of each objecO; equal the sum of the burden targets of exist. Convergence was generally achieved in very few iterations,
the queries ove®; (as shown in [23]). This goal is achieved if for and the average running time on a modest workstation was only
each queryy); overO;, 6; ; = T;. Therefore, our overall goal can 2.73 milliseconds in our traffic monitoring implementation using
be restated in terms @&f values as requiring that for every query multiple overlapping queries (Section 5).
Qj, 01 =025 =--- = 0, ; =T; (thed; ; values for objects To test the scalability of our algorithm to a larger number of
0; ¢ S; areirrelevant). Therefore, given a setofalues, a sim-  queries and data objects than we used in our implementation,
ple way to guess at an appropriate burden telfgdor each query  we generated two sets of synthetic workloads consisting of AVG
Q; is by taking the average of thfevalues of objects involved in  queries over a real-worleD0-host network traffic data set (details
Qj.ie,T; = S— 1<i<n,0;€8, 0;,;. For each object/query on this data set are provided in Section 5). We treated each host as

3.2.2 Algorithm Complexity and Scalability
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Figure 3: Ideal adaptive algorithm vs. optimized static al-Figure 4: Ideal adaptive algorithm vs. optimized static al-
location, random walk data. location, multiple queries.

a simulated data source with one traffic level object. In one set ofising a continuous AVG query over ten data sources under uni-
workloads, each query is over a randomly-sele&t8d(10) ofthe  form costs. The x-axis shows the precision constréjrand the
data sources. In the second set of workloads, each query is ovgraxis shows the overall cost per time unit. In a second experiment
25% (50) of the data sources, resulting in a much higher degreave used a workload of five AVG queries whose query sets were
of overlap among queries. (The degree of overlap determines thehosen randomly from the) objects. Figure 4 shows the result of
density of the linear equation matrix, which is a major factor in this experiment, for which the size of the query sets was assigned
the solver running time.) Varying the number of querieswe randomly betweer2 and5, and the precision constraint of each
measured the average running time on a Linux workstation withquery was randomly assigned a value betw@&endd,..., plotted
a 933 MHz Pentium Il processor. We set the error tolerance for on the x-axis. (For both workloads we also simulated nonuniform
the LASPack iterative solver small enough that no change in theosts, and since the results were similar in both cases we omit
effectiveness of our overall algorithm could be detected. Figure 2Zhem.) These results demonstrate that our adaptive bound width
shows the fraction of available processing time used by the lineasetting algorithm converges on bounds that are on par with those
solver when it is invoked once evety seconds (when time units selected by an optimizer based on knowledge of the random walk
are in seconds artfl = 10, which turns out to be a good setting as step sizes.
we explain later in Section 5). Allocating bound growth to handle
200 queries ove_Qs% of 200 data sources requires only around 3.4 Handling Precision Constraint Adjustments
1% of the CPU time at the stream processor.
Users may at any time choose to alter the precision constiadrft
any currently running continuous quefy;. If the user increases
d; (weaker precision), then additional bound width is allocated
We performed an initial validation of our bound width allocation automatically by the bound growth algorithm at the central pre-
strategy based on periodic shrinking and selective growing using aision manager at the end of the current adjustment period. If
discrete event simulator with synthetic data. The goal of our simthe user decreaseés (stronger precision), bound growth is sup-
ulation experiments is to show that our algorithm converges on the@ressed, and the automatic bound shrinking process will reduce
best possible bound widths, given a steady-state data set. For thise overall answer bound width over time until the requested pre-
purpose, we generated data for one object per simulated souragsion level is reached. If an immediate improvement in answer
following a random walk pattern, each with a randomly-assignedprecision is required, the central precision manager must proac-
step size, and compared two unrealistic algorithms. In the “idealtively send messages to sources requesting explicitly that bounds
ized” version of our algorithm, messages sent by the stream cobe shrunk.
ordinator to sources instructing them to grow their bounds incur
no communication cost. Instead, only stream transmission cost : :
were measured, to focus on the bound width choices only. Wea Coplng with Latency
compared the overall stream transmission cost against the strea a real implementation of our approach we must cope with mes-
transmission cost when bound widths are set statically using agage and computation latency. Suppose that each message, in-
optimization problem solver, described next. cluding streamed update messages and bound growth messages,
The nature of random walk data makes it possible to simplifyhas an associated transmission latency as well as a processing de-
the problem of setting bound widths statically to a nonlinear op-lay by both the sender and receiver. We first note that due to
timization problem, described in [23]. While nonlinear optimiza- such latencies, bound growth will be applied at sources after it
tion problems with inequality constraints are difficult to solve ex- is applied at the central stream coordinator, and in the interim
actly, an approximate solution can be obtained with methods thaperiod the source filter is less restrictive than it could be. This
use iterative refinement. We used a package called FSQP [14phenomenon leads to a chance that some unnecessary updates are
iterating1000 times with tight convergence requirements to find transmitted to the stream processor, but correctness is not jeop-
static bound width settings as close as possible to optimal. ardized. To reduce the delay for growth messages and lessen
Figure 3 shows the results of comparing the idealized versiorthe chance of unnecessary streamed updates, the stream coordi-
of our adaptive algorithm against the optimized static allocation,nator can begin the growth allocation process prior to the end of

3.3 Validation Against Optimized Strategy
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queues are positioned between the value and width update streams
and the join. The effect of each serializing queue is to order up-
dates by timestamp, and release each uptats soon as the
current timet,.,, reachestyy + A, wherety is U’s timestamp
and\ is thelatency tolerancean upper bound on the latency for
any streamed update message that holds with high probability and
is determined empirically based on the networking environment.
As long as all update messages obey this latency tolerance and
appropriate queue scheduling is used, we can be assured that the
serializing queues together output to the join a monotonic stream
of updates ordered by timestamp. Of course in practice occasional

Figure 5: Bound cache for consistent and ordered bounghessages may be delayed by more tharesulting in temporary

updates.

violations of precision guarantees, an unavoidable effect in any
distributed environment with unbounded delays. Larger values of

each adjustment period, and base the computations on preliminary féduce the likelihood that update messages arrive late, but also
streamed update rate estimates.

Communication and computation latency for update streams i

increase the delay before results are released to the user. In Sec-
gion 5.3 we show that using a reasonable choica,déte update

of more concern because, if handled naively, continuous querie@essages are very rare.
may not access consistent data across all sources, leading to in- . .
correct answers. To ensure continuous query answers based gnt  EXploiting Constrained Change Rates

consistent data, source filters timestamp all updates transmitn some app“ca’[ionsl certain data Objec’[s may have known max-
ted to the stream processor. (We assume closely synchronizgghum change rates, or at least bounds on change rate that hold
clocks, as in [13, 19].) Similarly, the precision manager times-yjith very high probability. If each data obje€; participating
tamps all bound width updateS with an adjustment periOd bOUndi'n a continuous quer@ has maximum Change ra&‘ then an
ary. Value and width updates are converted into bound updategpproximate answer 10 that bounds the answer at timig,., — e
via the bound cache (recall Figure 1). Bound updates also havgor some local processing delayat the central stream proces-
associated timestamps (we will discuss how they are assignespr), rather than time,.., — A — ¢, can be provided by hav-
shortly), and our CQ evaluator (Figure 1) treats bound updatgng the stream coordinator “pad” the bounds to account for re-
timestamps as logical update times for the purposes of query precent changes rather than using serializing queues with a built-
cessing. Correctness can only be guaranteed if the CQ evalug delay as discussed above. Padding is performed by adding
tor receives bound updates monotonically in timestamp order, iy, = 2. R, - A symmetrically to the width of each updated bound
which case it produces a new output value for every unique timesrLi’ H;) after it is produced by the join. If this technique is em-
tamp it receives as part of any update. When multiple updateployed, a reduced precision constrai < do should be used
have the same timestamp, the query evaluator treats them as a sfar the purposes of bound width allocation and adjustment to en-
gle atomic transaction and only produces a new output value fosyre that padded answer bounds meet the original precision con-
the last update with the same timestamp.
To ensure that the CQ evaluator receives bound updates thaind the type of query. For example, for AVG queries, we can set
represent a consistent state and arrive in timestamp order, th&, = éq — \s;@\ 'Zl<i<n,OiESQ bi.
bound cache in the central stream coordinator is implemented us-

ing a combination of twaserializing queuegdescribed shortly)
and asymmetric hash joif34] (or other non-blocking join op-
erator), as illustrated in Figure 5. The join operator combines

straintdg. The value ofs;, depends on the amount of padding

5 Implementation and Experimental
Validation

value updates with width updates to produce bound updates thate evaluated the performance of our technique and its practical
mirror the bounds maintained by source filters, using object idengpplicability by building a real network traffic monitoring system.
tifier equality as the join condition. Each hash table stores onlyrhe system currently runs continuous queries agemosts in our
the most recent value or width update for each object, based ofesearch group’s network, following Example 2 from Section 1.1.
timestamp, and each join result is assigned a timestamp equal {1 our implementation, a special monitoring program executes on
the timestamp of the input that generated the result.
Join inputs must arrive in timestamp order to ensure correcutility and computes packet rate measurements as needed by the
behavior. One way to guarantee global timestamp ordering acrosgueries in the workload, representing them as time-varying nu-
all vV andWW update streams is to delay processing of each updatenerical data objects. We use time units of one second, which
received on a particular stream until at least one update with anatches the granularity at which our TCPdump monitor is able to
greater timestamp has been received on each of the other streawspture data. Each host acts as a data source, and in all cases ob-
[13]. This approach is impractical in our setting, however, be-jects and their updates correspond to a one-minute moving win-
cause it can result in unbounded delays unless additional condow over packet rate measurements. We use quéries Qs
munication is performed, and delays tend to be longer when thé&om Example 2 of Section 1.1, so different experiments use dif-
number of update streams is large. Instead, we take an approabrent objects. For example, quefys uses one object for each of
similar to one taken in the field of streaming media to handle unthe10 sources (hosts) for the overall windowed traffic volume be-

ordered packets with variable latency (se@, [21]), which relies

each host. It captures network traffic activity using T@Pdump

tween that host and external hosts. Each data object is assigned a

on a reasonable latency upper bound. In our approach, serializingound width for update filtering at the source. Bounds are cached
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Figure 6: Adaptive algorithm vs. uniform static bound set-Figure 8: Adaptive algorithm vs. uniform static bound set-
ting, query@s using network monitoring implementation. ting, queries); — Q5 using network monitoring implemen-

tation.
10 T T T T . . . . . .
R O R e il in Section 3.3 relies on knowing the random walk step size, it is
\><\ adaptive—— - not applicable to real-world data so cannot be used for compari-
uniform allocation-—>=-- - son. Assuming data update patterns are not known in advance, the
AR no filtering--s-- | only obvious method of static allocation is to set all bound widths

uniformly. Thus, we compare our algorithm against this setting.
Figure 6 compares the overall communication cost incurred
in our real-world implementation by our adaptive algorithm com-
pared to uniform static allocation, measuring costfbhours af-
ter an initial warm-up period. The continuous query monitors the
average traffic level with precision constrantanging fromo to
10 packets per second. Our algorithm offers a mild improvement
over uniform bound allocation for a single query, bearing in mind
Figure 7: Adaptive algorithm vs. uniform static bound set-that the experiment was over small-scale network monitoring data
ting, single query over large-scale network data using simavailable for monitoring on a few hosts within our organization.
ulator. To test our algorithm on large-scale network data with many
hosts, we ran a simulation on publicly available traces of network
at a central monitoring station, which updates the aggregated anraffic levels between hosts distributed over a wide area during a
swers to continuous queries as bound widths shrink and grow antivo hour period [27]. For each host, average packet rates ranged
as data updates stream in. The communication cost (streamed ufpem 0 to about150 packets per second, and we randomly se-
date or growth message) for each object is modeled as a uniforrected200 hosts as our simulated data sources. Figure 7 shows the
unit cost. results using our simulator over this large-scale data set, account-
The first step in our experimentation was to determine goodng for all communication costs. With this data set our algorithm
settings for the two algorithm parametéfs(adjustment period)  significantly outperforms uniform static allocation for queries that
and S (shrink percentage). We experimented with a real-worldcan tolerate a moderate level of imprecision (small to medium pre-
network traffic data set in our simulator, with both uniform and cision constraints). For queries with very weak precision require-
nonuniform costs, and also with live data in our network monitor- ments (large precision constraints), even naive allocation schemes
ing implementation, and found that the following settings workedachieve low cost, and the slight additional overhead of our algo-
well in general:7 = 10 time units to achieve low growth mes- rithm causes it to perform about on par with uniform static allo-
sage overhead relative to the timescale at which the data changestion.
andS = 0.05 (5%) to allow adaptivity while avoiding erratic
bound width_ adjustments that Fend _to degrgde performance. Wg o Multiple Queries
also determined that our algorithm is not highly sensitive to the
exact parameter settings. Setting or adjusting these parametevde now describe our experiments with multiple continuous

cost per second
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automatically is a topic of future work. queries having overlapping query sets. We used a workload of the
five continuous AVG querie§): — Qs from Example 2 in Sec-
5.1 Single Query tion 1.1.2% — 1 “measurement groups” are defined at each source

based on which subsets of the five query predicates a packet sat-
We now present our first experimental results showing the effecisfies. Each measurement group is aggregated and acts as a data
tiveness of our algorithm. We begin by considering a simple cas@bject whose updates are filtered with a bound and streamed to the
involving a single continuous AVG query. We used quély central monitoring station. (It may seem more natural for sources
from Example 2 of Section 1.1 applied over th& sources.Qs to further aggregate data objects into one object per query; we
monitors the average rate of traffic to and from our organizationdiscuss this option shortly in Section 5.2.1.)
which ranged from abouit00 to 800 packets per second. Figure 8 shows the results of our experiments measuring cost

Since the optimized static bound width allocation describedfor 23 hours after an initial warm-up period. The x-axis shows

10



the precision constraints used for querigs andQs. The other
queries monitored a much lower volume of data (by a factor 01‘(,J
roughly 100) so for each run we set their precision constraints taQ
1/100th that shown on the x-axis. As discussed in Section 1.2.
uniform static bound width allocation can be performed for mul-=
tiple overlapping queries if for each data object involved in more2
than one query we maintain the narrowest bound assigned. O&
algorithm significantly outperforms uniform static allocation for §
queries that can tolerate a moderate level of imprecision (smalif
to medium precision constraints). For example, using reason-

able precision constraints ¢f = 4 for queriesQ» and s and °5 0'.1 o'_z o"3 o|.4 0'.5 0'.6 0'.7 O'.s 0'.9 1

0 = 0.04 for queriesQ1, @3, andQq4, our algorithm achieves a latency tolerancé (seconds)

cost of only1.6 messages per second, compared with a castof . . . .

with uniform static bound width allocation. Furthermore, as with Figure 9: Fraction of updates arriving after the maximum
all previous results reported, the overall cost decreases rapidly dat€ncy toleranca for queryQs.

the precision constraint is relaxed, offering significant reductions

in communication cost compared with not filtering. and measure the fraction of updates arriving withifor query
Qs during a21-hour period. In our implementation filtered up-

date streams are transmitted over a local area network. A value
of A = 0.4 seconds, which is reasonable since data changes are
In the multiple-query workload it may appear advantageous formeaningful on a scale of abolitsecond in our case, ensures that
sources to further aggregate data objects to form one object pé9.8% of updates are received on time. When a moderate preci-
query whose updates are streamed to the monitoring station, irsion constraint for this query @f = 5 is used, updates exceeding
stead of one per query subset. Interestingly, doing so (a procedbe latency allowance occur only about once ev& iy minutes.

we callsource aggregationdoes not always result in lower over- When an update does arrive late, the resulting inconsistency in
all cost, and whether it is cheaper to perform source aggregatiothe output is brief, and based on our measurements plotted in Fig-
depends on the data, query workload, and user-specified precisiaiie 9 the overall fraction of time the answer is consistédelity
constraints. In [23] we show mathematically that there are reain the terminology of [29]) is at lea19.997%. By adjusting),
sonable conditions under which source aggregation is expected tigher fidelity can be achieved at the expensive of delayed output,
achieve lower cost, and other reasonable conditions under whicfr vice-versa. ([21] proposes an algorithm for adjusting the la-
cost is lower without source aggregation. Note that the choicgency tolerance adaptively in a similar context based on observed
of whether to perform source aggregation can be made indepenatency distributions.)

dently for each source and for each independent set of overlap-

ping queries, anc_i the best _overall configuration may be to perforr’rB Summary and Future Work

source aggregation selectively.

In general, if there is a large disparity between the precisionWe specified a new approach for reducing communication cost in
constraints of overlapping queries, source aggregation achievean environment of centralized continuous query processing over
lower overall communication cost for update stream transmissiorlistributed data streams. Our approach hinges on specifying pre-
because queries with large precision constraints can use separasion constraints for continuous queries, which are used to gener-
wide bounds not constrained by other queries with small precisiorate adaptive filters at remote data sources that significantly reduce
constraints. On the other hand, if most updates are to objects inspdate stream rates while still guaranteeing sufficient precision
volved in multiple queries, it is preferable in terms of overall com- of query results at all times. Our approach enables users or ap-
munication cost not to apply source aggregation, to avoid redunplications to trade precision for lower communication cost at a
dantly applying those updates to one object per relevant query. Ane granularity by individually adjusting precision constraints of
an extreme case, consider Example 1 from Section 1.1 in whicleontinuous queries. Imprecision of query results is bounded nu-
each source (router) maintains a single queue latency value acrerically so applications need not deal with any uncertainty.
cessed by multiple path latency queries, and all updates at each To validate our approach we performed a number of exper-
source apply to objects involved multiple queries. Source aggreiments using simulations and a real network monitoring imple-
gation would have each router maintain one copy of its queue sizenentation. Our experiments demonstrated:
measurement for each path latency query, each with a bound hav- ) )
ing a potentially different width. Updates would fall outside the  ® For a st_eady-state scenario our a!gorlthm converges on
bounds at different times causing unnecessary updates to be trans- bound widths that perform on par with those selected stat-

5.2.1 Source Aggregation

mitted to the central stream processor. ically using an optimization problem solver with complete
As future work we plan to design and experiment with an al- knowledge of data update behavior.

gorithm that monitors the expected cost of using versus not using ® In the case of a single continuous query, our algorithm sig-

source aggregation and switches adaptively between them. nificantly outperforms uniform bound width allocation in

some cases, and in other cases our algorithm is only some-
what better than uniform allocation. As future work we plan
to characterize those cases for which our algorithm achieves
Our last experiment measures update message latency. In Fig- a significant improvement over uniform static allocation,
ure 9 we vary the maximum latency tolerancéecall Section 4) and those cases for which uniform allocation suffices.

5.3 Impact of Message Latency
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e In the case of multiple overlapping continuous queries, our[16]
algorithm significantly outperforms uniform bound width
allocation.

. o . - 17
While our optimization techniques are specialized to aggrega[ ]

tion queries over numeric values, general continuous query pro-,

. ) é18]
cessing can in theory be performed over bounded values to pro-
duce bounded answers with precision guarantees. Further work
in this area includes understanding how imprecision propagate
through more complex query plans, and developing appropriate
optimization techniques for adapting remote filter predicates i
these more complex environments.
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