
Root Cause Detection in a Service-Oriented Architecture

Myunghwan Kim
∗

Stanford University
Stanford, CA, USA

mykim@stanford.edu

Roshan Sumbaly
LinkedIn Corporation

Mountain View, CA, USA
rsumbaly@linkedin.com

Sam Shah
LinkedIn Corporation

Mountain View, CA, USA
samshah@linkedin.com

ABSTRACT

Large-scale websites are predominantly built as a service-oriented
architecture. Here, services are specialized for a certain task, run
on multiple machines, and communicate with each other to serve a
user’s request. An anomalous change in a metric of one service can
propagate to other services during this communication, resulting
in overall degradation of the request. As any such degradation is
revenue impacting, maintaining correct functionality is of paramount
concern: it is important to find the root cause of any anomaly as
quickly as possible. This is challenging because there are numerous
metrics or sensors for a given service, and a modern website is
usually composed of hundreds of services running on thousands of
machines in multiple data centers.

This paper introduces MonitorRank, an algorithm that can reduce
the time, domain knowledge, and human effort required to find
the root causes of anomalies in such service-oriented architectures.
In the event of an anomaly, MonitorRank provides a ranked order
list of possible root causes for monitoring teams to investigate.
MonitorRank uses the historical and current time-series metrics of
each sensor as its input, along with the call graph generated between
sensors to build an unsupervised model for ranking. Experiments
on real production outage data from LinkedIn, one of the largest
online social networks, shows a 26% to 51% improvement in mean
average precision in finding root causes compared to baseline and
current state-of-the-art methods.

Categories and Subject Descriptors: C.4 [Performance of Sys-
tems]: Modeling Techniques; I.2.6 [Artificial Intelligence]:
Learning; D.2.8 [Software Engineering]: Metrics

General Terms: call graph, monitoring, service-oriented architec-
ture, anomaly correlation

1. INTRODUCTION
The modern web architecture consists of a collection of services,

which are a set of software components spread across multiple
machines that respond to requests and map to a specific task [25].
That is, a user request is load balanced to a front end service, which
fans out requests to other services to collect and process the data to

∗Work was performed while the author was interning at LinkedIn.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’13, June 17–21, 2013, Pittsburgh, PA, USA.
Copyright 2013 ACM 978-1-4503-1900-3/13/06 ...$15.00.

finally respond to the incoming request. The callee services of this
request can also call other services, creating a call graph of requests.

For example, LinkedIn, one of the largest online social networks,
has a recommendation feature called “People You May Know” that
attempts to find other members to connect with on the site [20].
To show this module, several services are called: a web server
wrapped as a service to receive and parse the member’s request, a
recommendation service that receives the member id from the web
server and retrieves recommendations, and finally a profile service
to collect metadata about the recommended members for decorating
the web page shown to users.

In this web architecture, a service is the atomic unit of function-
ality. Such an architecture allows easy abstraction and modularity
for implementation and reuse, as well as independent scaling of
components. Modern websites consist of dozens and often hundreds
of services to encompass a breadth of functionality. For example,
to serve its site, LinkedIn runs over 400 services on thousands of
machines in multiple data centers around the world.

Naturally, for business reasons, it is important to keep the services
running continuously and reliably, and to quickly diagnose and fix
anomalies. As site availability is of paramount concern due to its
revenue-impacting nature, web properties have dedicated monitoring
teams to inspect the overall health of these services and immediately
respond to any issue [8]. To that end, these services are heavily
instrumented and alert thresholds are set and aggressively monitored.

However, if an alert is triggered or an anomalous behavior is
detected, it is difficult and time-consuming to find the actual root
cause. First, considerable user functionality and the various types of
services make the request dependencies between services complex.
That is, these dependencies follow the transitive closure of the
call chain, where services reside on multiple machines, can be
stateless or stateful, and could call other services serially or in
parallel. Due to this complexity in dependencies, a monitoring team
has to maintain deep domain knowledge of almost every service and
its semantics. However, it is very hard for the team to keep updating
such knowledge, particularly when the site evolves quickly through
rapid deployment of new features. Second, the total number of
services is large and each service can generate hundreds of metrics.
This means that mining and understanding the metrics for diagnosis
is time-consuming. Last, even though heuristics and past knowledge
are applied by the monitoring teams to narrow the search space in
the event of an anomaly, evaluation can only be done in human
time—which is, at a minimum, in the tens of seconds per possible
root cause. For these reasons, automated tools to help narrow down
the root cause in the event of an anomaly can substantially reduce
the time to recovery.

This paper introduces MonitorRank, a novel unsupervised algo-
rithm that predicts root causes of anomalies in a service-oriented

architecture. It combines historical and latest service metric data to
rank, in real time, potential root causes. This ranked list decreases
the overall search space for the monitoring team. MonitorRank is
unsupervised, eliding the need for time-consuming and cumbersome
training required for learning the system.

As part of our evaluation, we analyzed anomalies such as latency
increases, throughput drops, and error increases in services over
the course of 3 months at LinkedIn. MonitorRank consistently out-
performed the basic heuristics that were employed by LinkedIn’s
monitoring team and current state-of-the-art anomaly correlation
algorithms [23]. In terms of mean average precision, which quanti-
fies the goodness of root cause ranking, MonitorRank yields 26% to
51% more predictive power than any other technique we tried.

The rest of the paper is organized as follows. Section 2 pro-
vides background on service-oriented architectures and Section 3
showcases related work. In Section 4, we discuss the challenges
of detecting root causes in a service-oriented architecture. We then
present our approach, MonitorRank, in Section 5. Section 6 eval-
uates our algorithm against the current state-of-the-art techniques
using labeled data from previous anomalies at LinkedIn. We close
with future work in Section 7.

2. BACKGROUND
At a very high level, a website architecture consists of 3 tiers of

services: the frontend, middle tier and data tier. Services act as the
building blocks of the site and expose various APIs (Application
programming interface) for communication. Figure 1 presents the
high-level architecture of LinkedIn.

The frontend tier, also called the presentation tier, consists of
services responsible for receiving requests from members and trans-
lating the requests to calls to other downstream services. In practice,
most user-facing features map to only one of these frontend ser-
vices. The middle tier, or the application tier, is responsible for
processing the requests, making further calls to the data tier, then
joining and decorating the results. The services at this tier may also
communicate among themselves. For example, a service handling
the social network updates for users injects suggestions from the
service in charge of recommendations. Based on the APIs called,
the recommendation service may provide member, jobs, or group
recommendations. Finally, the data tier has services that maintain
a thin decoration wrapper around the underlying data store, while
also performing other storage strategies such as caching and repli-
cation. Other nomenclature commonly used is backend tier, which
encompasses both the middle and data tier.

LinkedIn runs approximately 400 services, deployed on thou-
sands of machines in multiple data centers. These services are
continuously developed and deployed by many engineers. As the
number of features on the site grows, the number of services also
increases. Furthermore, because each service maintains various
APIs, the overall number of sensors, meaning <service, API> tuples,
is very high.

Hence, the problem of detecting the root cause of an anomaly
among many sensors demands considerable human effort. The root
cause finding problem requires manual scanning of sensor logs
and following all possible downstream trajectories of sensors. Do-
main knowledge might be used for making the diagnosis faster by
restricting the candidate trajectories to a small subset of sensors.
However, it is difficult to keep up-to-date with information about
all of these sensors if the site is rapidly evolving. In the worst case,
all teams involved in developing the downstream sensors need to
be involved in finding the root cause, which hurts overall productiv-
ity.

Internet

Front-end tier

Recommendation

service

Network update

service

Profile front-end

service

Search front-end

service

Middle tier

People

recommendations

Data tier

Member metadata

Figure 1: A generic web site architecture consisting of multiple

tiers of services

3. RELATED WORK
Finding the root causes of anomalies has been extensively stud-

ied in various areas including chemical engineering [37, 38] and
computer networks [27]. In computer networks, effort has been
made on handling both real-time metrics/events and link informa-
tion [4, 6, 16, 36]. However, the links in the computer network
structure represent a reliable dependency. For instance, if a router
has an anomaly, then all traffic flowing through it is affected. On the
other hand, in the context of web sites, a sensor generating a lot of
exceptions may not necessarily propagate this behavior to its callers.
Due to this lossy nature in our use case, strong assumptions with
respect to links do not hold.

In terms of large-scale system troubleshooting, many attempts
have been made to develop middleware that efficiently finds the
root causes of anomalies. In particular, VScope [32] and Mona-
lytics [31] allow monitoring teams to consider the relationships
between sensors for root cause finding. However, such middleware
rely on manual rule-based configuration thereby requiring deep do-
main knowledge. In contrast, our algorithm aims to reduce human
effort in troubleshooting without domain knowledge.

There has also been a great deal of focus on using machine learn-
ing techniques for finding root causes in systems. One methodology
is to learn from historical data and find anomalies in the current
data [1, 7, 18]. These methods employ supervised algorithms, in
contrast to the unsupervised method we adopted. Another direction
of work has focused on anomaly correlation with graph structure
features [2, 11, 15, 23]. These algorithms make an assumption that a
link between two nodes represents a strong dependency, which is not
true in practice for sensor call graphs. Other techniques attempt to
capture dependencies between nodes by using correlation [13]. This
assumption too does not hold as there have been cases in various
production logs at LinkedIn where correlation in normal state is not
the same as in an anomalous state. MonitorRank finds dependencies
between sensors based on pseudo-anomalies and uses the call graph
in a randomized way.

Anomaly detection algorithms is also related to this work, as
used by a clustering algorithm inside MonitorRank. Our proposed
algorithm implements a heuristic method, but can easily be extended
to more sophisticated algorithms, including subspace methods [17,
22, 35], matrix factorization [34], or streaming methods [9, 21, 28].

4. ROOT CAUSE FINDING PROBLEM
This section formally describes in detail the problem of finding

the root cause sensor and its challenges.

4.1 Problem definition
Before defining the problem, we summarize the data available for

diagnosis. Individual sensors emit metrics data (for example, latency,
error count, and throughput) with a unique universal identifier. This
identifier is generated in the first frontend service receiving the
user request and then propagated down to the downstream callee
services. This metrics data is collected and stored in a consolidated
location so as to create the complete call graph by joining on the
universal identifier. A call graph is a directed graph where each node
represents a sensor, and an edge from node vi to node vj indicates
that sensor vi called sensor vj . For simplicity, this paper assumes a
single unweighted edge between two nodes even though there can be
multiple calls between two sensors during a request. Also, though
this paper presents results at a sensor level, that is, service and API
combination, it can be extended to work at a coarser (for example,
just a service) or finer (for example, a combination of <service, API,
server> tuple) granularity.

Based on the described data, the formal description of the root
cause finding problem is as follows. Suppose that an anomaly is
observed in metric m of a frontend sensor vfe at time t. Then,
given the metric m of other sensors and the call graph, our goal is
to identify sensors that caused the anomaly. To help with diagnosis,
MonitorRank provides an ordered list of sensors to examine. In the
best case, the first sensor presented in the ranked output of Monitor-
Rank is the exact root cause of the anomaly after investigation. In
other words, our objective is to rank sensors directly relevant to the
root cause higher compared to those unrelated to it.

We restrict our focus to diagnosis after an anomaly has been re-
ported, thereby distinguishing our work from the anomaly detection
literature [3, 5, 26]. The detection of the anomaly happens through
either a user report or a threshold-based alert. In both cases, Moni-
torRank is provided with a metric corresponding to the anomalous
sensor and the approximate time range of the anomalous behavior.

4.2 Challenges
MonitorRank uses two primary pieces of data: the metric data

of each sensor and the call graph between sensors. However, using
just the bare-bones call graph is more challenging compared to
the metric data. First, the call graph might not represent the true
dependency between sensors in production. It does not account for
various external factors that can influence the behavior of a service.
For example, malicious bot behavior on the site can increase latency
or a human error during maintenance can decrease throughput. Also,
if colocated on the same hardware, two sensors may face the same
problem, such as high CPU utilization, even though these sensors
do not have a direct call edge between them. These examples
demonstrate that similar anomalous behaviors between sensors may
be independent of their relationship in the call graph.

Second, the calls between sensors are not homogeneous. A sensor
can call multiple sensors in series or in parallel. Serial and parallel
calls would result in different dependency type even though the
schematic of the sensor calls is the same. For example, call latency
for a service would be greater than the sum of its downstream calling
service’s latency for serial calls, but be maximum in case of parallel
calls. Even the same pair of sensors can have different dependencies
among the sensors. For example, the same operation of displaying
recent network updates on a social network web site can generate a
different call graph dependency for a user with 1000 connections
than a user with just 10. The user with 1000 connections may have

Figure 2: Sub-components required by MonitorRank. The

dashed lines signify only periodic updates

a bottleneck on the update generation sensor, while for a user with
just 10 connections all updates might be cached and the bottleneck
would instead be the profile information fetching sensor.

Third, the dependencies between sensors are dynamic with rela-
tionships changing over time. For example, if a new algorithm is
deployed to improve the running time of some API call, then the
dependency between sensors, with respect to latency metric, would
be different before and after a new deployment.

Due to these reasons, the call graph may not reliably represent
dependencies between sensors. Therefore, the final algorithm of
finding the root cause has to consider each edge of the call graph as
one of the possible routes of anomaly propagation.

Our algorithm attempts to find the root cause of an anomaly as
an unsupervised problem because in many cases labelled data for
training may not be available. Even if the labelled data exists, we
cannot guarantee the correctness of the data at any given time due
to the rapidly changing underlying system.

Finally, the algorithm should display the results quickly. Because
the user is provided a degraded experience during the period of
diagnosis, the recovery time is of utmost importance. Hence, the
algorithm is required to have subquadratic runtime, with any call
graph computation being faster than O(N2), where N , the number
of sensors, is typically large.

5. OUR APPROACH
To rank the sensors that are potentially contributing to the given

anomaly, MonitorRank assigns a root cause score for each sensor.
To give the score, our framework, illustrated in Figure 2, uses three
sub-components: metrics collection system, a batch-mode engine,
and a real-time engine. We briefly introduce each sub-component
here and later explain them in detail in the following subsections.

First, the metrics collection system receives and aggregates
metrics from all the sensors, and finally stores them into a time-
partitioned database.

The batch-mode engine executes periodically on a snapshot of
metric data to generate the call graph and extract the external fac-
tors. The output of this is stored back into another database. The
external factors are extracted by a pseudo-anomaly clustering algo-
rithm, described further in Section 5.2. Generation of the call graph
periodically makes MonitorRank robust to rapid service evolution.

Last, when an anomaly occurs, the monitoring team interacts with
the real-time engine via a user interface. The inputs provided are the

frontend sensor, approximate time period of anomaly, and the metric
under consideration. The first sensor causing an anomaly is easy to
find in the context of web sites because of their one-to-one mapping
to a user-facing feature. For example, an error reading a LinkedIn
message would point to the getMessageForMember() API
call in the inbox frontend service. The real-time engine then loads
necessary data from the two databases and provides the ranked list
of root-cause sensors. With this data, the real-time engine performs
a random walk algorithm, as described in Section 5.3.

5.1 Metrics Collection
As the number of sensors grows, it becomes important to standard-

ize on the metrics naming and collection so as to help the monitoring
team analyze and remediate user-facing issues quickly. All APIs
in LinkedIn implement a generic interface that provide standard
metrics, such as latency, throughput, and error count. Introduction
of new sensors results in automatic generation of new metric data.
The metrics from these sensors are passed to an agent: a simple
program located on all machines, which periodically pushes the
metrics to a centralized broker via a publish/subscribe system called
Kafka [19]. The data in Kafka is then continuously consumed by our
metrics collection application, buffered and aggregated to a coarser
time granularity and then stored into a time-partitioned database.
This centralized metrics database serves various applications such
as a real-time monitoring visualization dashboard; a simple thresh-
old alerting system; or the focus of this paper, that is, a root cause
finding dashboard.

5.2 Batch-mode Engine
The metrics data from Kafka is also consumed by Hadoop, a

batch processing system, and stored on Hadoop’s distributed file
system (HDFS). A regularly scheduled Hadoop job takes as its input
a snapshot of the metrics data and outputs the call graph and external
factors.

Call graph Generation

Every individual metric data point stored on Hadoop contains the
unique universal identifier introduced by a frontend sensor and then
passed down along the call chain. The metric data point also contains
the caller and callee sensor name. A Hadoop job joins the snapshot
metrics data on the universal id and then combines the individual
sensor names to generate the call graph.

Pseudo-anomaly Clustering

However, the call graph does not reliably represent dependencies
between sensors due to external factors as described in Section 4.
When a certain external factor causes an anomaly, sensors affected
by the external factor show highly correlated metric pattern in the
anomaly time window.

For instance, if two sensors do not call the same API but are
colocated, one sensor would be affected whenever the other shows
anomalous behavior due to hardware problems. Moreover, as the
location of the sensors would not rapidly change over time, this
colocation effect can be captured from the historical metric data.
Figure 3(a) shows an instance of the call graph from LinkedIn
where sensors v1 and v2 were colocated. Figure 3(b) shows the
correlation between v1 and v2 versus the correlation between v1 and
v3, plotted for the error count metric. If v1 and v2 were correlated
only through a common neighbor sensor v3, without any external
factors, most data points would have clustered into the ellipsoid area
only. However, we also notice a different cluster, highlighted as a
rectangle in Figure 3(b), where the correlation between v1 and v2 is
highly independent of that between v1 and v3. This rectangular area

(a)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

C
o

rr
e

la
ti
o

n
 b

e
tw

e
e

n
 v

1
 a

n
d

 v
3

Correlation between v1 and v2

(b)

Figure 3: Effect of external factor. Even though a sensor v3 is

called by both v1 and v2 in (a), the correlation between v1 and

v2 can be high even when the correlation between v1 and v3 is

low in the rectangle area of (b). The rectangle area is caused by

the colocation of v1 and v2.

is caused by the external factor, in this case due to their colocation.
Using the above ideas, we propose a pseudo-anomaly clustering

algorithm that groups sensors together based on historical metrics
correlation, thereby capturing cases like the rectangle area.

Since the prerequisite to clustering is to detect anomalies, we
use one of the various detection algorithms in literature on the
historical metric data. The output of the detection algorithm is an
anomalous frontend sensor, the corresponding metric and time range
(moment). Because these detected anomalies may not necessarily
capture only true reported anomalies, we refer to them as pseudo-

anomalies. Then for every pseudo-anomaly we need to compute the
similarity of the corresponding metric data against those of all the
other sensors.

The measurement of relevance between the frontend sensor and
the others, is defined by the pattern similarity between their corre-
sponding metric values. If some external factor caused an anomaly
in the same set of sensors, including the given seed frontend sensor,
the metric patterns of those sensors should be similar with respect to
the pseudo-anomaly event. Conversely, if we investigate the metric
pattern similarity among sensors at pseudo-anomaly moments and
find a group of sensors that usually show high pattern similarity in
common, then we can assume the influence of some external factor.

Conditional clustering. To consider external factors in our algo-
rithm for each frontend sensor, we need to find a group of sensors
that are commonly related during our detected pseudo-anomalies.
This problem is slightly different from a conventional clustering
problem for the following reasons. First, the algorithm needs to
solve a separate clustering problem for each frontend sensor be-
cause the detected pseudo-anomaly time ranges vary depending on
the seed sensor. Second, only groups that consist of sensors with
high pattern similarity need to be considered. Since we can discard
time ranges where the metric values for the seed sensor do not look
similar to those of the other sensors, the false positive rate of the
underlying detection algorithm becomes less critical. Hence, the

clustering problem is conditioned on pseudo-anomaly moments of
the seed sensor, as well as the pattern similarity scores of the other
sensors with respect to the seed sensor.

Based on the above requirements, the clustering problem is for-
mulated as follows. Let pseudo-anomaly time ranges (moments) be
t1, t2, · · · , tM for a given frontend sensor vfe. For each moment
tk, we denote the pattern similarity between the frontend sensor

vfe and all the other sensors by S(tk) = [S
(tk)
1 , S

(tk)
2 , · · · , S

(tk)

|V |]

such that each |S(tk)
i | ≤ 1. Without loss of generality, we set

v1 = vfe. The objective is then to find clusters from S(tk), where
the number of cluster is not specified. We aim to create a sparse set
of sensors per cluster, such that the pattern similarity scores within
the group is very high. Also, even though we learn the clusters
from the historical data, matching of a given current metric data
to a cluster should be possible in real-time. Finally, assuming that
external factors consistently influence the same set of sensors for
a reasonable time, we only consider clusters supported by large
number of samples.

Suppose that the seed frontend sensor and other sensors
n1, · · · , nc are affected by the same external factor. Then, at pseudo-
anomaly moment t when this external factor causes an anomaly,

S
(t)
i ∼



µ(t) + ǫ(t) for i = n1, n2, · · ·nc

N (0, δ2) otherwise
(1)

for a shared variance δ2, the average relevance µ(t) with respect to
each pseudo-anomaly moment t, and a small error ǫ(t). We also
assume that δ < µ(t) to make external factors distinguishable from
random effects. In other words, if sensors are affected by the same
external factor, their pattern similarity scores with regard to the seed
sensor will be close and high; otherwise, sensors that do not belong
to a given cluster show low pattern similarity scores.

These assumptions simplify the real-world, but make sense when
we revisit Figure 3(b). We ignore the cluster in the center because
it represents low similarity between each sensor and the frontend
one sensor (that is, mixed with random effects). The remaining
two areas (rectangle and ellipsoid) agree with our assumption since
sensors unrelated to a given pseudo-anomaly represent small pattern
similarity scores. Also the related sensors in these areas show high
similar scores between each other. In practice, this phenomenon was
also observed for other combinations of sensors, thereby validating
our assumption.

Algorithmic detail. Now we describe the pseudo-anomaly cluster-
ing algorithm in detail. The inputs to the clustering algorithm are (a)
a seed frontend sensor vfe (that is, v1), (b) various pseudo-anomaly
moments from historical data (t1, · · · , tk), and (c) pattern similarity
scores of the sensors (S(t1), · · · , S(tk)). The historical data is lim-
ited to recent few weeks thereby restricting the amount of data to
handle. The pseudo-anomaly moments where the pattern similarity
scores of all services represent low values are filtered out. This way
false positive moments produced by the detection algorithm can be
removed.

We then capture the sensors of high pattern similarity scores with
respect to each of the cleaned pseudo-anomaly moments. Using the
assumption in (1), we categorize sensors (except for the frontend
sensor) into two groups based on the pattern-similarity scores of
the sensors. While one group consists of sensors representing low
pattern similarity scores (near zero), the other group contains the
sensors showing high pattern similarity scores (near µ(t) in (1)). We
refer to the latter group as the cluster for the given pseudo-anomaly
moment. Finally, we make this cluster sparse to maintain only key
sensors with regard to a certain external factor.

To fulfill the above objective, we formulate the optimization
problem with respect to each pseudo-anomaly moment tk. Let xi

be the variable indicating whether the sensor vi belongs to a cluster
of the moment tk for i = 2, · · · , |V |. That is, xi is either 0 or 1,
where xi = 1 means that the sensor vi belongs to the cluster. We do
not consider x1 because we set v1 as a given frontend seed sensor.
From (1), we then minimize not only the errors ǫ(t) of sensors in the
cluster but also the variance of the other sensors. Further, to make a
sparse cluster, we also minimize the cardinality of x as follows:

min
µ(t),x

1

2
||S(tk) − µ(t)x||22 +

δ2

2
card(x) (2)

subject to x ∈ {0, 1}|V |−1

µ(t) ≥ δ

where card(x) means the cardinality of a vector x and µ(t) indicates
the average relevance of sensors in the cluster.

To reformulate this problem by L1-regularization and convex
relaxation, we obtain the following convex optimization problem:

min
µ(t),x

1

2
||S(tk) − x||22 +

δ2

2
|x|1 (3)

subject to 0 ≤ xi ≤ µ(t) i = 2, · · · , |V |
µ(t) ≥ δ .

Note that the minimum of the objective function value does not
increase as µ(t) increases. Hence, without influence on the solution
of x, the variable µ(t) can be dropped from the problem. This
helps in simplifying the problem and the allow us to find x by
Lasso [10, 29].

Once a solution (x∗) is obtained, the set of sensors {vi|x
∗
i > 0}

are referred to as an active set Ak with respect to pseudo-anomaly
moment tk. The active set is generated for each moment and then
is run through two filtering steps. First, if the seed frontend sensor
ends up with one leaf node, then we remove the corresponding active
set since the high anomaly correlation in this set can be explained
by propagation from the leaf-node sensor. Second, to make the
number of clusters small, we filter out active sets using a support
threshold value θ. The remaining active sets are then regarded as the
final pseudo-anomaly clusters and are stored into the same database
storing the call graph. This data is eventually used by the real-time
engine while running MonitorRank.

This pseudo-anomaly clustering algorithm need not to be per-
formed in real-time since the amount of historical data is massive.
The algorithm translates into a couple of Hadoop job that are run
periodically and update all the clusters in the database at once. The
implementation is also inherently parallel as we can run the above
jobs for each frontend sensor concurrently.

5.3 Real-time Engine
While the metrics collection pipeline and the batch-mode engine

run continuously in the background, the real-time engine is respon-
sible for serving the queries from the monitoring team. A simple
user interface allows them to enter a frontend sensor, a metric, and a
time period corresponding to the observed anomaly. The result is an
ordered list of root-cause sensors. The interactive nature of the user
interface allows the team to change their inputs continuously while
getting back diagnosis guidelines in near real-time.

Pattern Similarity

One way of finding the root cause sensor in real-time is to search
for sensors showing similar “patterns” in a metric to the frontend

sensor where the anomaly is observed. For instance, suppose that
many errors suddenly occurred in a data tier sensor due to a time-
out. These errors propagate up the sensor-call path, resulting in a
similar increasing pattern throughout. Generalizing this idea, if two
services have similar abnormal patterns in a certain metric, we can
imagine that the patterns may be caused by the same root cause. In
particular, the metric data of two sensors can look similar when the
same anomaly causes a change, regardless of whether the data looks
similar in the normal situation.

Therefore, we use the similarity of the metric between the anoma-
lous sensor and its corresponding downstream sensors as the key
feature of MonitorRank. For each sensor vi, computation of the
metric pattern similarity score Si, with respect to the anomalous
sensor vfe, is as follows:

Si = Sim (mi, mfe) (4)

Sim(·, ·) is a fixed similarity function between two time series
data (for example, correlation) and mi ∈ RT represents the time
series metric data of sensor vi during a time period of length T ,
which is provided as an input. This similarity score Si signifies the
relevance of the service vi to the given anomaly.

Random Walk Algorithm

Although the metric pattern similarity score is useful for detecting
the relevance of sensors to the given anomaly, using just this score
can result in false positive root causes. This is because sensors with
no relation to the anomaly may still have a very high similarity
score with the anomalous sensor. For example, seasonal effects can
result in nearly all sensors having a similar increase in throughput,
thereby resulting in a high similarity score. As correlation does not
necessarily imply causality, the similar anomalous metric pattern
between two sensors cannot be the only factor to determine whether
one sensor is causing an anomaly in the other. Instead, these pairs
are taken as candidates and further addition of the call graph is
required to rank the candidate sets better.

The call graph is incorporated using a randomized algorithm,
keeping in mind that it does not reliably represent the dependen-
cies between sensors. The basic idea of our approach is to do a
random walk over the call graph depending on the similarity score.
More specifically, sensors are selected in sequence by randomly
picking up the next sensor among the neighbors in the call graph.
The pickup probability of each neighbor is proportional to its rele-
vance to a given anomaly, which is captured by the pattern similarity
score. We then assume that more visits on a certain sensor by
our random walk implies that the anomaly on that sensor can best
explain the anomalies of all the other sensors. Under this assump-
tion, the probability of visiting each sensor is regarded as the root
cause score of the sensor in our algorithm. This allows us to blend
the relevance of each sensor, for a given anomaly, into the call
graph.

Our procedure is analogous to the Weighted PageRank algo-
rithm [24, 33]. However, we do not consider sensors that look
uncorrelated with a given anomaly. Therefore, MonitorRank uses
the Personalized PageRank algorithm [14], by taking teleportation
probability (preference vector) as determined by the given anomaly.
The nature of the this PageRank algorithm allows teleportation to
any sensor uniformly at random.

Basic setup. The random walk algorithm is defined as follows. Let
the call graph be G =< V, E >, where each node indicates a sensor
and each edge eij ∈ E is set to 1 when sensor vi calls sensor vj .
We assume that there is no self edge, that is, eii /∈ E.

The other inputs to the algorithm include an anomalous frontend
sensor node vfe and the pattern similarity score Si of each sensor

Figure 4: Natural trapping in the call graph. Due to the nature

of downward sensor calls (from frontend to backend tier), when

the random walker falls into the branch of v3, the random walk

cannot visit v2 until the next teleportation even if there is no

sensor related to the given anomaly in v4 ∼ v7.

vi ∈ V . Again, without loss of generality, let v1 be vfe. For
convenience, the similarity score vector of all the sensors is denoted
by S = [S1, · · · , S|V |] ∈ (0, 1]|V |. For the random walker to
visit each node vi proportionally to its pattern similarity score Si,
the strength of each edge eij is assigned as Sj . The transition
probability matrix Q of this movement is represented by:

Qij =
AijSj

P

j AijSj
(5)

for i, j = 1, 2, · · · , |V | for the binary-valued adjacency matrix A
of the call graph G.

Self-edges. By definition, the random walker is enforced to move
to another node even if the current node shows a higher pattern
similarity score and all the neighboring nodes do not. This type of
movement increases the stationary probabilities of nodes unrelated
to the given anomaly.

To avoid forcibly moving to another node, a self-edge is added to
every node. The random walker then stays longer on the same node
if there is no neighboring node of high similarity score. A strength
value of the self edge is determined by the pattern similarity score
of the target node and its neighboring nodes. Specifically, for each
node vi, the strength of the corresponding self edge eii is equal to
the similarity score Si subtracted by the maximum similarity score
of child nodes (maxj:eij∈E Sj). This way the random walker is
encouraged to move into the nodes of high similarity scores, but is
prevented from falling into the nodes irrelevant to the given anomaly.
As an exception we do not add a self-edge to the frontend node, that
is, e11 = 0, as the random walker does not need to stay at v1.

Backward-edges. When the random walker falls into nodes that
look less relevant to the given anomaly, there is no way to escape
out until the next teleportation. As the direction of an edge in the
call graph tends to be from the frontend to the backend, the random
walker is likely to be naturally trapped inside branches of the call
graph. In Figure 4, suppose that an anomaly is observed at the
frontend sensor v1 and node v2 is the only sensor relevant to the
given anomaly. The resulting pattern similarity score of node v2

with regard to the given anomaly is even higher than those for the
other nodes v3 ∼ v7. If the pattern similarity scores of nodes
v3 ∼ v7 are not negligible, the random walker can fall into the
right part of descendants in Figure 4 (nodes v3 ∼ v7). In this case,
the random walker would stay on the nodes v3 ∼ v7 until the next
random teleportation occurs, no matter how irrelevant the nodes are
with respect to the given anomaly.

To resolve this issue, backward edges are added so that the ran-
dom walker flexibly explores nodes of high pattern similarity score.
While random teleportation in the Personalized PageRank algorithm
makes a random walker explore globally, the backward edges allow
the random walker to explore locally. By adding these backward
edges, we achieve the restriction imposed by the call graph, but with
the added flexibility to explore. However, because we add backward
edges by means of local teleportation, less strength is set on each
backward edge than the strength of true edges ending up to the same
node. For every pair of nodes vi and vj , such that eij ∈ E and
eji /∈ E, while the strength of eij is equal to Sj , the strength of
eji is set as ρSi for some constant ρ ∈ [0, 1). If the value of ρ is
high, the random walker is more restricted to the paths of the call
graph, that is, from upstream to downstream. Alternately, when
the value of ρ is low, the random walker explores the nodes with
more flexibility. If the call graph represents a true dependency graph
between sensors, we would set ρ higher, and vice versa.

To incorporate both backward and self edges, we define a new real
value adjacency matrix A′ with the call graph G and the similarity
score S as follows:

A′
ij =

8

<

:

Sj if eij ∈ E
ρSi if eji ∈ E, eij /∈ E

max(0, Si − maxk:ejk∈E) j = i > 1

(6)

Using A′, the new transition probability matrix P is defined as:

Pij =
A′

ij
P

j A′
ij

(7)

for i, j = 1, 2, · · · , |V |.
Given an anomaly and related frontend sensor v1, the Person-

alized PageRank vector (PPV) πPPV ∈ (0, 1]1×|V | serves as the
root cause score for each node. For a preference vector u of the
random walk (personalized teleportation probability vector), the
pattern-similarity score S is used for v2, · · · , v|V |. That is, ui = Si

for i = 2, 3, · · · , |V |. In this way, a random walker jumps more to
anomaly-related sensors whenever the random teleportation occurs.
Also because staying at the frontend sensor v1 is out of focus for
the random walk, the value in the preference vector corresponding
to the frontend sensor v1 is assigned as zero (u1 = 0). Even though
we do not make a random teleportation to the v1, we still require this
frontend sensor v1 as a connecting node between the neighboring
nodes of the v1.

Once we determine the transition probability P and the preference
vector u, PPV is obtained as follows:

πPPV = απPPV P + (1 − α)u . (8)

where α is a random teleportation probability in [0, 1]. Similarly
for the backward edge probability constant ρ, we set the α higher
when the call graph is thought of as a true dependency graph. In the
extreme case that α = 0, this random walk model is equivalent to
using only the metric pattern similarity.

Why the random walk algorithm?. MonitorRank is inspired by
the idea that biological organisms efficiently search for their tar-
get (for example, the source of scent) by performing a random
walk, even though the sensory data from the organisms is not reli-
able [12, 30]. Furthermore, a random walk algorithm is also analo-
gous to human behavior during diagnosis. When an engineer from
the monitoring team has no knowledge about the system, except for
the call graph, one of natural diagnosis methods is to randomly tra-
verse sensors by following the call graph with preferentially looking
at misbehaving nodes. Hence, the stationary probability by random

(a) Common child example (b) Chain example

Figure 5: Graph examples that benefit from the random walk

model

walk represents the behavior of multiple non-expert engineers moni-
toring each sensor node. A high stationary probability for a certain
node implies that this node is “democratically” the most important
to investigate without prior knowledge.

The PageRank algorithm tends to rank the nodes with more edges
higher, as such nodes have more incoming paths. However, our
approach naturally mitigates the effect of this advantage to some
extend. Because we allow a self-edge for every node except for
a given frontend node, a node having low connections, but show-
ing similar anomaly patterns to the frontend sensor, can also high
stationary probability by acting like a dead end.

The random walk algorithm can provide a higher score to a com-
mon child sensor node of some frontend sensors (that is, a common
backend sensor called by the frontend sensors) if all of the frontend
sensors have the same anomalies. For example, think of sensor vc

called by three sensors v1, v2, and v3 in Figure 5(a). Then sup-
pose that vc causes an anomaly to propagate to all the other sensors
v1 ∼ v3 and the anomaly is observed on the sensor v1. Because
all the sensors show anomalies caused by the same root cause, the
pattern similarity scores of the sensors with respect to the anomaly-
observed sensor v1 are similarly high, that is, S2 ≈ S3 ≈ Sc. The
random walk algorithm lifts up the rank of the common sensor vc,
the actual root cause of the given anomaly.

Also, if the similarity function is correct in extracting only sensors
relevant to a given anomaly and there exists an explicit anomaly
causal path chain as visualized in Figure 5(b), we can prove that our
random walk algorithm can successfully find the exact root cause.

THEOREM 1. Suppose that a set of nodes V ′ ⊂ V consists of

a chain graph such that v′
1 → v′

2 · · · → v′
m for m = |V ′| ≥ 1. If

Sv′ = p ≤ 1 for v′ ∈ V ′ and Sv = 0 for v /∈ V ′, then πv′

m
> πv′

i

for i = 1, 2, · · · , m − 1.

PROOF. See Appendix.

Finally, by overlaying multiple transition probability matrices
and preference vectors the random walk approach can handle the
situation where-in anomalies are seen on multiple frontends simul-
taneously. We do not implement and test this scenario in this paper
due to its rare occurrence in production.

External Factors

The random walk algorithm that we described so far incorporates
the call graph generated by the batch-mode engine with the current
metric data. On the other hand, the batch-mode engine also learns
external factors not captured by the call graph. MonitorRank blends
the pseudo-anomaly clusters with the random walk algorithm by
finding the best-match cluster with the current metric data and giving
more scores to sensors in the selected cluster.

The selection of cluster, for a given anomaly and frontend sensor,
is based on Gaussian assumption, as described in (1). That is, if the
current similarity score is S = {S1, · · · , S|V |} and the root cause of
the current anomaly is the common external factor of some pseudo-
anomaly cluster C, then the pattern similarity scores of sensors in C

would be higher than any sensor not in C. MonitorRank selects the
best-fit cluster C∗ by comparing the minimum score among sensors
in each cluster to the maximum score of the others as follows:

C∗ = arg max
C

minc∈C Sc

maxc′ /∈C Sc′
. (9)

Once the best-fit cluster C∗ is selected, it is combined with the
random walk algorithm. If the pattern similarity score ratio de-
scribed in (9) is less than 1 or the average of pattern similarity scores
of sensors in C∗ is less than δ, we discard the selected cluster C∗

and run the random walk algorithm as if C∗ were not chosen. Other-
wise, by regarding the average pattern similarity score of sensors in
C∗ as the pattern similarity score of the external factor correspond-
ing to C∗, we add this average score to Sc for every sensor c ∈ C∗.
In this way, we leverage the fact that engineers in the monitoring
team examine the sensors related to the external factor first. After
adding the average score, we run the same random walk algorithm
to finally obtain the rank of sensors to examine.

Because the procedure described in (9) scans Si once for each
cluster C, it requires O(NC |V |) time for the number of clusters
NC . As NC ≪ |V | in general, it takes time even less than O(|V |2).
Furthermore, the random walk algorithm takes O(|E|) time, which
is also much faster than O(|V |2) (particularly in a sparse call graph).
Therefore, overall, MonitorRank requires only O(NC |V | + |E|)
time, which is feasible in real time.

6. EXPERIMENTS
In this section, we evaluate MonitorRank by using real-world

metrics and anomalies at LinkedIn. Moreover, we decompose our
algorithm into three subcomponents – pattern similarity, pseudo-
anomaly clustering, and random walk on the call graph, and investi-
gate the effect of each subcomponent.

6.1 Experimental Setup

Datasets and Implementation

In LinkedIn, there is a dedicated team monitoring site behavior and
detecting any anomalies. When an anomaly occurs, the monitoring
team first tries to resolve it by manually going through the list of
sensors, and in the worst case, fall back to alerting the engineering
team responsible for the anomalous sensor. Over time this team has
stored these anomalies and corresponding list of ranked root causes
in a central site-issue management system. This dataset is used for
evaluation of MonitorRank. The following three primary metrics
were used for our evaluation:

• Latency: Average of latency of the sensor call over a minute
(25 examples)

• Error-count: The number of exceptions returned by the sensor
call in a minute (71 examples)

• Throughput: The number of sensor requests in a minute (35
examples)

The metric data is aggregated up to a fixed coarser time granularity
(1 minute) thereby providing predictable runtime for our analysis.
This granularity also helps in reliably catching the change of metrics,
making it resilient to issues such as out-of-sync clock times.

Note that the directions of anomaly propagation in the call graph
are different depending on the metrics. An anomaly in throughput
may propagate from the frontend sensor to the backend sensor,
whereas an anomaly in error count or latency is likely to propagate in
the opposite direction, from the backend to the frontend. Therefore,
when applying our algorithm on the test sets, we use the original
directed call graph (frontend → backend) for throughput, while we

use the reverse direction of call graph (backend → frontend) for
latency and error-count.

For our pattern similarity function, we use the sliding-window
correlation. In particular, we compute the correlation of two given
metrics on a time window of fixed length. By moving this window
over the anomaly time range, we average the correlation values
computed by each time window slot. For our experiments, we
used 60 minute time window after manually trying out various
candidates between 10 ∼ 120 minutes. The 60 minute time window
is long enough to distinguish a sudden change in the metric from the
normal variance of the metric. But the 60 minute period is also short
enough to highlight the local change caused by anomalies rather
than compare the long-term trend in the metric of normal state.

MonitorRank requires both historical and current metrics of sen-
sors. For experiments, we use the time period of anomaly marked
by the monitoring team. However, we found the time period of
an anomaly ranging between 10 minutes and 3 hours (for exam-
ple, a data center outage) in our experimental data. If the specified
anomaly time period is less than the 60 minutes, we extend the
anomaly time period to 60 minutes by inserting the data before the
time period as much as required. For historical data, we group each
metric week by week and use the data two weeks prior to the given
anomaly.

Finally, with regard to an anomaly detection algorithm (for
pseudo-anomalies), we apply a heuristic method that determines
anomalies based on the ratio of current metric value and the maxi-
mum value in the previous time window, that is, previous 60 minutes
in our case. For instance, if we set a threshold as 1.2, when the
maximum value of a give metric in previous 60 minutes is 100, we
label the current time period as an anomaly if the current metric
value is over 120. This way can capture abrupt increases in metric
values. Similarly, we can define the anomalies that show sudden
decrease in metric values.

Note that we may not require the best quality of anomaly detection
algorithms. Most of the detection algorithms aim to reduce the false
positives as much as possible, but we are tolerant of these false
positives because our objective is to cluster sensors. Furthermore,
as our clustering algorithm relies on the metric pattern similarity
between frontend and backend sensors, the false positive anomaly
moments which are not correlated with other sensors would be
naturally filtered out.

Baseline Methods

For the purpose of comparison, we introduce some baseline methods,
which includes three heuristic algorithms and one algorithm using
the call graph as a dependency graph. We describe each algorithm
as follows:

• Random Selection (RS): A human without any domain knowl-
edge will examine sensors in random order. We mimic this
behavior by issuing random permutations.

• Node Error Propensity (NEP): Under the assumption that an
anomaly on a certain sensor would produce errors on the same
sensor, one can view the error count on a time window as a
measure of anomaly.

• Sudden Change (SC): A natural way for a human to find root
causes is to compare the metrics in the current and previous
time windows and check any sudden change between the
two time windows. For example, if there is a sudden latency
increase at a certain time, then the average latency after this
time should be notably higher than before. We therefore
define the ratio of average metrics on both the time periods
and refer to this ratio as the root cause score of each sensor.

RS NEP SC TBAC MonitorRank
Improvement
compared to

(RS, NEP, SC)

Improvement
compared to

TBAC
Latency

PR@1 0.120 0.160 0.560 0.840 1.000 78.6% 19.0%

PR@3 0.120 0.093 0.613 0.787 0.920 50.1% 16.9%

PR@5 0.144 0.112 0.650 0.756 0.852 31.1% 12.7%

MAP 0.143 0.206 0.559 0.497 0.754 34.9% 51.8%

Error Count

PR@1 0.042 0.133 0.577 0.746 0.901 56.2% 20.8%

PR@3 0.049 0.493 0.653 0.552 0.850 30.2% 54.0%

PR@5 0.084 0.616 0.743 0.482 0.813 9.4% 68.7%

MAP 0.091 0.465 0.659 0.442 0.818 24.1% 85.0%

Throughput

PR@1 0.229 0.000 0.086 0.971 1.000 336% 3.0%

PR@3 0.200 0.667 0.133 0.962 0.990 34.9% 2.9%

PR@5 0.183 0.800 0.149 0.897 0.971 21.4% 8.2%

MAP 0.210 0.634 0.210 0.714 0.779 22.9% 9.1%

Table 1: Performance of each algorithm on each test set: MonitorRank outperforms the baseline methods in every case.

• Timing Behavior Anomaly Correlation (TBAC): For a non-
heuristic baseline method, we use the method of anomaly
correlation using a dependency graph [23]. Because this
algorithm works with metric correlations between sensors and
the call graph, it is comparable to our experimental setting.
The difference compared to our approach is that this algorithm
regards the call graph as a reliable directed acyclic dependency
graph (DAG).

Evaluation Metric

To compare MonitorRank to the baseline methods, we require ap-
propriate evaluation metrics. All the algorithms provide a rank of
sensors with respect to each anomaly case. We refer to the rank of
each sensor vi with respect to an anomaly a as ra(i) and define the
indicator variable Ra(i) to represent whether sensor i is the root
cause of an anomaly a or not (that is, either 0 or 1). To quantify the
performance of each algorithm on a set of anomalies A, we use the
following metrics:

• Precision at top K (PR@K) indicates the probability that
top K sensors given by each algorithm actually are the root
causes of each anomaly case. It is important that the algorithm
captures the final root cause at a small value of K, thereby
resulting in lesser number of sensors to investigate. Here we
use K = 1, 3, 5. More formally, it is defined as

PR@K =
1

|A|

X

a∈A

P

i:ra(i)≤K Ra(i)

min
`

K,
P

i Ra (i)
´ . (10)

• Mean Average Precision (MAP) quantifies the goodness of
a give rank result by putting more weight on the higher rank
result (where high rank sensor, which has lower ra(i), means
that this sensor is more likely to be a root cause). It can be
formulated as follows:

MAP =
1

|A|

X

a∈A

X

1≤r≤N

PR@r (11)

for the number of sensors N .

Note that PR@K is a measurement on each anomaly case. Hence,
we compute the average of PR@K per test set (latency, error count,
and throughput) to represent the overall performance of an algorithm.
On the other hand, MAP quantifies the overall performance of an
algorithm per test set by itself.

6.2 Performance Evaluation
First, we evaluate MonitorRank and all the baseline methods on

each test set, corresponding to latency, error count, and throughput

metrics. For every anomaly case in the test sets, each algorithm
gives the root cause rank of sensors. We can evaluate the given
rank in terms of the evaluation metrics PR@1, PR@3, PR@5, and
MAP.

Table 1 compares the performance of algorithms for each test
set. In every test set and evaluation metric, MonitorRank outper-
forms the baseline methods by a large factor. When we consider
the average MAP metric on all the test sets, the improvement over
the non-heuristic baseline method (TBAC) is approximately 51.4%.
If we compare to the best heuristic method (RS, NEP, and SC)
on each test set, MonitorRank increases performance by 25.7%
on average. Also in terms of PR@K, MonitorRank consistently
represents better predictive power compared to the other methods.
More specifically, MonitorRank improves 49.7% and 24.5% predic-
tion accuracy (PR@K) on average, in comparison to the heuristic
method and TBAC, respectively.

However, while TBAC method shows an unbalanced performance
depending on rank (better performance at top-K than overall), Mon-
itorRank shows the consistent performance regardless of the rank.
Moreover, even at the top-K root cause results, MonitorRank out-
performs TBAC, although both methods incorporate the call graph
based on the metric correlation.

Finally, in terms of PR@K, the performance decreases in some
cases as K increases (for example, in the case of MonitorRank in
every test set). This drop might seem counter-intuitive because if we
cover more services by increasing K then the probability that the
root cause sensor is chosen among the K should increase as well.
However, in some cases of our test set, multiple sensors are labeled
as root causes for a given anomaly. When such multiple root cause
sensors exist, the decreasing trend of PR@K makes sense as more
selection can cause more false-positives.

6.3 Analysis of Our Approach
In this section we provide a detailed analysis of the subcom-

ponents of the MonitorRank algorithm. Recall that our algorithm
consists of three main parts: pattern similarity, a random walk on the
call graph, and pseudo-anomaly clustering. We perform the same
experiment as the previous section, but use the following algorithms:

• Pattern-Similarity-Only (PS) uses only the pattern similarity
score without the call graph or the pseudo-anomaly clustering

• With-Random-Walk (PS+RW) runs the random walk algo-
rithm on the call graph without pseudo-anomaly clustering

• With-Pseudo-Anomaly-Clustering (PS+PAC) uses the pseudo-
anomaly clustering without using the random walk algorithm

• With-All (ALL) represents the full version of MonitorRank

 0

 0.2

 0.4

 0.6

 0.8

 1

PS PS+PAC PS+RW ALL

P
re

c
is

io
n

 PR1
 PR3
 PR5

Figure 6: Effect of each subcomponent. Both the pseudo-

anomaly clustering and the random walk algorithm are useful

for the improvement of performance, while the effect of using

the call graph is larger than the pseudo-anomaly clustering.

By running these subcomponents incrementally, we can compare
the effect that each subcomponent has on the final results.

Figure 6 illustrates the effects of subcomponents by showing
PR@K for K = 1, 3, 5 on each algorithm. For the purpose of
visualization, we show the average of PR@K from all three test
sets. We note that the pattern similarity plays an important role in
the performance of MonitorRank, but using the call graph (random
walk) lifts the performance by a significant factor. In particular,
the With-Random-Walk (PS+RW) makes 14.2% improvement over
the Pattern-Similarity-Only (PS) in terms of PR@1. This improve-
ment is achieved because the inclusion of the call graph limits
candidate root cause sensors. If some sensor represents a high
pattern-similarity score but its neighboring sensors do not, the ran-
dom walk algorithm naturally adjusts the final root cause score to
the lower value. In contrast, if sensors connected in the call graph
show high pattern-similarity scores together, the root cause scores
of the sensors would be properly leveraged by the random walk
algorithm.

On the other hand, the pseudo-anomaly clustering seems helpful
in finding the root causes of anomalies, but its effect is not as much
as the random walk algorithm. When comparing the performance of
With-All (ALL) and With-Random-Walk (PS+RW) in Figure 6, both
algorithms (ALL and PS+RW) show similar performance in PR@1
and PR@5. However, we observe about 5% improvement (ALL
over PS+RW) for PR@3 due to external factors being included.
When an anomaly is caused by an external factor, using the call
graph has no effect on finding all the sensors related to the external
factor. In this case the With-Random-Walk (PS+RW) algorithm
results in some false positives because of missing external factors.
In contrast, the pseudo-anomaly clustering algorithm captures all
the sensors relevant to the external factor and produce higher root
cause scores. Thus, using With-All (ALL) ranks sensors relevant to
the external factor are higher than the sensors that are regarded as
false positives in With-Random-Walk (PS+RW).

Finally, we also investigate the contribution of the random walk
algorithm on the call graph to capture non-explicit dependencies
between sensors as described in Section 4. For this investiga-
tion, we compare the following algorithms: Pattern-Similarity-
Only (PS), With-Random-Walk (PS+RW), and Timing-Behavior-
Anomaly-Correlation (TBAC). TBAC assumes that the call graph is
a strong dependency graph. Figure 7 compares the performance of
each algorithm in terms of MAP@5, which is the average value of
PR@1 ∼ 5. The randomized algorithm (PS+RW) takes advantage of
the call graph to find root causes better than the Pattern-Similarity-
Only (PS). However, TBAC, which regards the call graph as a
dependency graph, shows poorer performance, even compared to

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

PS TBAC PS+RW

M
A

P
@

5

Figure 7: Effect of graph algorithm. Randomized use of the call

graph improves performance, but the deterministic algorithm

may degrade performance.

the Pattern-Similarity-Only (PS). This result is particularly inter-
esting because an invalid assumption on the dependency between
sensors can make the performance worse. In conclusion, when the
call graph does not reliably represent a dependency graph, the ran-
domized algorithm (PS+RW) on the call graph is helpful in finding
root causes and we observe that treating the call graph as a strong
dependency graph can be harmful in this context.

7. CONCLUSION
In this paper, we addressed the problem of finding the root causes

for a given anomaly in a service-oriented web architecture. More
specifically, when an anomaly is detected on a website’s frontend
sensor (that is, a service and API combination), our goal is to offer
a ranked list of sensors to examine, with the higher ranked sensors
more likely to be the root cause. This problem is challenging because
the call graph, composed of API calls, does not reliably depict a
dependency graph due to missing external factors.

To use call graph to increase the rank quality, we propose a
random walk algorithm with preference given to similar looking
sensors. Furthermore, to capture external factors not obtained by
the call graph, we introduce a pseudo-anomaly clustering algorithm
on historical data. We combine the two features by running the com-
putationally intensive clustering algorithm offline and the random
walk algorithm online, and provide quick results in the event of a
user-facing outage. We evaluate our algorithm on production labeled
anomaly dataset from LinkedIn and show significant improvement
over baseline models.

We also found that even though the call graph does not represent
a true dependency graph of sensors, it can be used to extract useful
information during ranking. This extraction method is fairly generic
and can be leveraged by other applications, such as data center
optimization.

References

[1] T. Ahmed, B. Oreshkin, and M. Coates. Machine Learning
Approaches to Network Anomaly Detection. In SysML, 2007.

[2] A. Arefin, K. Nahrstedt, R. Rivas, J. Han, and Z. Huang.
DIAMOND: Correlation-Based Anomaly Monitoring
Daemon for DIME. In ISM, 2010.

[3] M. Basseville and I. V. Nikiforov. Detection of Abrupt

Changes - Theory and Application. Prentice-Hall, 1993.

[4] A. T. Bouloutas, S. Calo, and A. Finkel. Alarm Correlation
and Fault Identification in Communication Networks. TCOM,
42(2–4):523–533, 1994.

[5] V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection:
A Survey. CSUR, 41(3):15:1–15:58, 2009.

[6] C. S. Chao, D. L. Yang, and A. C. Liu. An Automated Fault
Diagnosis System Using Hierarchical Reasoning and Alarm
Correlation. JNSM, 9(2):183–202, 2001.

[7] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer.
Failure Diagnosis Using Decision Trees. In ICAC, 2004.

[8] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni.
Automated Anomaly Detection and Performance Modeling of
Enterprise Applications. TOCS, 27(3):6:1–6:32, 2009.

[9] P. H. dos Santos Teixeira and R. L. Milidiú. Data stream
anomaly detection through principal subspace tracking. In
SAC, 2010.

[10] B. Efron, I. Johnstone, T. Hastie, and R. Tibshirani. The Least
Angle Regression Algorithm for Solving the Lasso. Annals of

Statistics, 32(2):407–451, 2004.

[11] J. Gao, G. Jiang, H. Chen, and J. Han. Modeling Probabilistic
Measurement Correlations for Problem Determination in
Large-Scale Distributed Systems. In ICDCS, 2009.

[12] A. M. Hein and S. A. Mckinley. Sensing and Decision-making
in Random Search. PNAS, 109(30):12070–12074, 2012.

[13] A. Jalali and S. Sanghavi. Learning the Dependence Graph of
Time Series with Latent Factors. In ICML, 2012.

[14] G. Jeh and J. Widom. Scaling Personalized Web Search. In
WWW, 2003.

[15] M. Jiang, M. A. Munawar, T. Reidemeister, and P. A. S. Ward.
Dependency-aware Fault Diagnosis with Metric-correlation
Models in Enterprise software systems. In CNSM, 2010.

[16] R. Jiang, H. Fei, and J. Huan. Anomaly Localization for
Network Data Streams with Graph Joint Sparse PCA. In
KDD, 2011.

[17] I. T. Jolliffe. Principal Component Analysis. Springer, second
edition, Oct. 2002.

[18] M. Khan, H. K. Le, H. Ahmadi, T. Abdelzaher, and J. Han.
DustMiner: Troubleshooting Interactive Complexity Bugs in
Sensor Networks. In Sensys, 2008.

[19] J. Kreps, N. Narkhede, and J. Rao. Kafka: A Distributed
Messaging System for Log Processing. In NetDB, 2011.

[20] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. In CIKM, pages 556–559, 2003.

[21] Y. Liu, L. Zhang, and Y. Guan. A Distributed Data Streaming
Algorithm for Network-wide Traffic Anomaly Detection. In
SIGMETRICS, 2009.

[22] A. Mahimkar, Z. Ge, J. Wang, J. Yates, Y. Zhang, J. Emmons,
B. Huntley, and M. Stockert. Rapid Detection of Maintenance
Induced Changes in Service Performance. In CoNEXT, 2011.

[23] N. Marwede, M. Rohr, A. V. Hoorn, and W. Hasselbring.
Automatic Failure Diagnosis Support in Distributed
Large-Scale Software Systems Based on Timing Behavior
Anomaly Correlation. In CSMR, 2009.

[24] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the Web.
Technical Report 1999-66, Stanford InfoLab, 1999.

[25] M. P. Papazoglou and W.-J. Heuvel. Service Oriented
Architectures: Approaches, Technologies and Research Issues.
The VLDB Journal, 16(3):389–415, July 2007.

[26] A. B. Sharma, L. Golubchik, and R. Govindan. Sensor Faults:
Detection Methods and Prevalence in Real-World Datasets.
TOSN, 6(3):23:1–23:39, 2010.

[27] M. Steinder and A. S. Sethi. A Survey of Fault Localization
Techniques in Computer Networks. Science of Computer

Programming, 53(2):165–194, 2004.

[28] S. C. Tan, K. M. Ting, and T. F. Liu. Fast Anomaly Detection

for Streaming Data. In IJCAI, 2011.

[29] R. Tibshirani. Regression Shrinkage and Selection via the
Lasso. J. Royal. Stats. Soc B., 58(1):267–288, 1996.

[30] G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. G. E.
da Luz, E. P. Raposo, and H. E. Stanley. Optimizing the
Success of Random Searches. Nature, 401:911–914, 1999.

[31] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, and
M. Wolf. A Flexible Architecture Integrating Monitoring and
Analytics for Managing Large-Scale Data Centers. In ICAC,
2011.

[32] C. Wang, I. A. Rayan, G. Eisenhauer, K. Schwan, V. Talwar,
M. Wolf, and C. Huneycutt. VScope: Middleware for
Troubleshooting Time-Sensitive Data Center Applications. In
Middleware, 2012.

[33] W. Xing and A. Ghorbani. Weighted PageRank Algorithm. In
CNSR, 2004.

[34] L. Xiong, X. Chen, and J. Schneider. Direct Robust Matrix
Factorization for Anomaly Detection. In ICDM, 2011.

[35] H. Xu, C. Caramais, and S. Sanghavi. Robust PCA via Outlier
Pursuit. In NIPS, 2010.

[36] H. Yan, A. Flavel, Z. Ge, A. Gerber, D. Massey,
C. Papadopoulos, H. Shah, and J. Yates. Argus: End-to-end
Service Anomaly Detection and Localization from an ISP’s
Point of View. 2012.

[37] F. Yang and D. Xiao. Progress in Root Cause and Fault
Propagation Analysis of Large-Scale Industrial Processes.
Journal of Control Science and Engineering, 2012:1–10,
2012.

[38] Z.-Q. Zhang, C.-G. Wu, B.-K. Zhang, T. Xia, and A.-F. Li.
SDG Multiple Fault Diagnosis by Real-time Inverse Inference.
87(2):173–189, 2005.

APPENDIX

PROOF OF THEOREM 1. Let m∗ = arg maxi πv′

i
. We will

then show m∗ = m.
We first show that maxi πv′

i
> mini πv′

i
. Suppose that

maxi πv′

i
= mini πv′

i
, which implies that πv′

i
= 1

m
for all

i = 1, 2, · · · , m. To see the stationary state at v′
m, the following

statement should hold:

πv′

m
=

α

1 + ρ
πv′

m−1
+ (1 − α)

1

m
, .

However, it is a contradiction because πv′

m
= πv′

m−1
= 1

m
and

ρ < 1. Hence, maxi πv′

i
> mini πv′

i
.

Now suppose that 2 ≤ m∗ ≤ m− 1. In other words, there exists
l and r such that v′

l → v′
m∗ → v′

r . At vm′ , we state the stationary
probability as follows:

πv′

m
= α

„

1

1 + ρ
πv′

l
+

ρ

1 + ρ
πv′

r

«

+ (1 − α)
1

m
.

However, because maxi πv′

i
> mini πv′

i
, πv′

m
> 1

m
. Also, by

definition πv′

m
≥ πv′

l
or πv′

r
. This means that the left-hand side is

greater than the right-hand side in the above stationary probability
equation, so it is contradiction. Therefore, m∗ is not 2, · · · , m − 1.

If m∗ = 1, to see πv′

1
,

πv′

1
= α

ρ

1 + ρ
πv′

2
+ (1 − α)

1

m
.

Similarly, because πv′

1
≥ πv′

2
and πv′

1
> 1

m
, this is a contradiction.

Therefore, m∗ = m.

