Exploiting content, structure, and communities in recommender systems

Julian McAuley, Stanford University

(with Jure Leskovec, Dan Jurafsky, and Hima Lakkaraju)

# Overview

| What are the aspects that contribute to users' ratings? | ICDM 2012<br>(w/ Leskovec &<br>Jurafsky) |
|---------------------------------------------------------|------------------------------------------|
| Can we discover these aspects automatically?            | RecSys 2013<br>(w/ Leskovec)             |
| How do users, ratings, and reviews evolve over time?    | WWW 2013<br>(w/ Leskovec)                |

# Overview...time permitting

| Can we apply these ideas to | ICWSM 2013      |
|-----------------------------|-----------------|
| social media submissions    | (w/ Lakkaraju & |
| (e.g. on reddit.com)?       | Leskovec)       |
|                             |                 |
|                             |                 |

Can we recommend communities to users (e.g. circles on Google+)? TKDD 2013 & NIPS 2012 (w/ Leskovec)

### Item recommendation: recap



Goal: infer missing ratings, and use them to make predictions/recommendations

#### Item recommendation: recap



Goal: infer missing ratings, and use them to make predictions/recommendations

#### Low-dimensional representations

Our goal in all of these settings is to identify lowdimensional representations of items, users, articles, communities, etc.

We do this to model the output variables, e.g.

rating(julian, Harry Potter)  $\simeq [0.1, 0.3, 0.8] \cdot [0.2, 0.5, 0.7]$ 

My interest in special effects

Quality of HP's special effects

#### Low-dimensional representations

Our goal in all of these settings is to identify lowdimensional representations of items, users, articles, communities, etc.

We do this to model the output variables, e.g.

rating(julian, Harry Potter)  $\simeq [0.1, 0.3, 0.8] \cdot [0.2, 0.5, 0.7]$ 

My interest in special effects

Quality of HP's special effects

But we also want our models to be interpretable, by using textual, temporal, and social information What are the aspects that contribute to users' ratings?

Learning attitudes and attributes from multi-aspect reviews McAuley, Jurafsky & Leskovec, ICDM 2012



## "Aspects" on wikipedia

#### Jay-Z

From Wikipedia, the free encyclopedia

Shawn Corey Carter (born December 4, 1969),<sup>[1]</sup> better known by his stage name Jay-Z, is an American rapper, record producer, entrepreneur, and occasional actor. He is one of the most financially successful hip hop artists and entrepreneurs in America. In 2012, *Forbes* estimated Carter's net worth at nearly \$500 million.<sup>[2][3]</sup> He has sold approximately 50 million albums worldwide, while receiving fourteen Grammy Awards for his musical work, and numerous additional nominations.<sup>[4][5]</sup> He is consistently ranked as one of the greatest rappers of all-time. He was ranked #1 by MTV in their list of *The Greatest MCs of All-Time* in 2006.<sup>[6]</sup> Two of his albums, *Reasonable Doubt* (1996) and *The Blueprint* (2001) are considered landmarks in the genre with both of them being ranked in *Rolling Stone* magazine's list of the 500 greatest albums of all time.<sup>[7][8]</sup> *Blender* included the former on their 500 CDs You Must Own Before You Die.<sup>[9]</sup>



| Rate this page<br>What's this? |                           |              | View page ratings -In       |
|--------------------------------|---------------------------|--------------|-----------------------------|
| ⑦ Trustworthy                  | ⑦ Objective               | ⑦ Complete   | ? Well-written<br>★ ★ ★ ★ ★ |
| I am highly knowl              | edgeable about this topic | c (optional) | Submit ratings              |

# "Aspects" on wikipedia

#### Jay-Z

From Wikipedia, the free encyclopedia

Shawn Corey Carter (born December 4, 1969),<sup>[1]</sup> better known by his stage name Jay-Z, is an American rapper, record producer, entrepreneur, and occasional actor. He is one of the most financially successful hip hop artists and entrepreneurs in America. In 2012, *Forbes* estimated Carter's net worth at nearly \$500 million.<sup>[2][3]</sup> He has sold approximately 50 million albums worldwide, while receiving fourteen Grammy Awards for his musical work, and numerous additional nominations.<sup>[4][5]</sup> He is consistently ranked as one of the greatest rappers of all-time. He was ranked #1 by MTV in their list of *The Greatest MCs of All-Time* in 2006.<sup>[6]</sup> Two of his albums, *Reasonable Doubt* (1996) and *The Blueprint* (2001) are considered landmarks in the genre with both of them being ranked in *Rolling Stone* magazine's list of the 500 greatest albums of all time.<sup>[7][8]</sup> *Blender* included the former on their 500 CDs You Must Own Before You Die.<sup>[9]</sup>





## "Aspects" on wikipedia

#### Jay-Z

From Wikipedia, the free encyclopedia

Shawn Corey Carter (born December 4, 1969),<sup>[1]</sup> better known by his stage name Jay-Z, is an American rapper, record producer, entrepreneur, and occasional actor. He is one of the most financially successful hip hop artists and entrepreneurs in America. In 2012, *Forbes* estimated Carter's net worth at nearly \$500 million.<sup>[2][3]</sup> He has sold approximately 50 million albums worldwide, while receiving fourteen Grammy Awards for his musical work, and numerous additional nominations.<sup>[4][5]</sup> He is consistently ranked as one of the greatest rappers of all-time. He was ranked #1 by MTV in their list of *The Greatest MCs of All-Time* in 2006.<sup>[6]</sup> Two of his albums, *Reasonable Doubt* (1996) and *The Blueprint* (2001) are considered landmarks in the genre with both of them being ranked in *Rolling Stone* magazine's list of the 500 greatest albums of all time.<sup>[7][8]</sup> *Blender* included the former on their 500 CDs You Must Own Before You Die.<sup>[9]</sup>





# Aspects in online reviews

'Partridge in a Pear Tree', brewed by 'The Bruery'

Dark brown with a light tan head, minimal lace and low retention. Excellent aroma of dark fruit, plum, raisin and red grape with light vanilla, oak, caramel and toffee. Medium thick body with low carbonation. Flavor has strong brown sugar and molasses from the start over bready yeast and a dark fruit and plum finish. Minimal alcohol presence. Actually, this is a nice quad.

Feel: 4.5 Look: 4 Smell: 4.5 Taste: 4 Overall: 4

# Aspects in online reviews

'Partridge in a Pear Tree', brewed by 'The Bruery'

Dark brown with a light tan head, minimal lace and low retention. Excellent aroma of dark fruit, plum, raisin and red grape with light vanilla, oak, caramel and toffee. Medium thick body with low carbonation. Flavor has strong brown sugar and molasses from the start over bready yeast and a dark fruit and plum finish. Minimal alcohol presence. Actually, this is a nice quad.

#### Feel: 4.5 Look: 4 Smell: 4.5 Taste: 4 Overall: 4

| Dataset               | Aspects                                        | #Reviews |
|-----------------------|------------------------------------------------|----------|
| beer (beeradvocate)   | feel, look, smell, taste, overall              | 1.6M     |
| beer (ratebeer)       | feel, look, smell, taste, overall              | 2.9M     |
| pubs (beeradvocate)   | food, price, quality, selection, service, vibe | 18K      |
| toys & games (amazon) | durability, educational, fun, overall          | 374K     |
| audio books (audible) | author, narrator, overall                      | 10K      |

## Segmenting reviews into aspects

'Partridge in a Pear Tree', brewed by 'The Bruery'

Dark brown with a light tan head, minimal lace and low retention. Excellent aroma of dark fruit, plum, raisin and red grape with light vanilla, oak, caramel and toffee. Medium thick body with low carbonation. Flavor has strong brown sugar and molasses from the start over bready yeast and a dark fruit and plum finish. Minimal alcohol presence. Actually, this is a nice quad.

Feel: 4.5 Look: 4 Smell: 4.5 Taste: 4 Overall: 4

Goal: to segment reviews using rating data, and use the segmented text to better summarize reviews and recommend products

# Probabilistic model of aspects in reviews



The model separates the probability into:

- 1. Words that depend on the aspect, but **not** the sentiment
- 2. Words that depend on the aspect **and** the sentiment

# Model fitting

#### Repeat steps (1) and (2) until convergence:



# Results

- Sentence labels predicted by the algorithm have accuracy close to human performance (80% vs. 93% on beer data)
- 2. Summarization (choosing representative sentences for each aspect) is even more accurate (85% on beer data)
- 3. Rating completion (inferring aspect ratings from overall ratings+reviews) beats fully-supervised alternatives



Can we discover these aspects automatically?

Hidden factors as hidden topics: understanding rating dimensions with review text

McAuley & Leskovec, RecSys 2013



# Online reviews

We have models for reviews with multiple ratings, but most online reviews aren't like that

What can with only a single rating?

| Dataset                 | #Reviews |
|-------------------------|----------|
| citysearch              | 53K      |
| Yelp                    | 230K     |
| wine                    | 1.57M    |
| movies (amazon)         | 8.56M    |
| books (amazon)          | 12.89M   |
| all categories (amazon) | 35.28M   |

# Online reviews

We have models for reviews with multiple ratings, but most online reviews aren't like that

What can with only a single rating?

| Dataset                 | #Reviews |
|-------------------------|----------|
| citysearch              | 53K      |
| Yelp                    | 230K     |
| wine                    | 1.57M    |
| movies (amazon)         | 8.56M    |
| books (amazon)          | 12.89M   |
| all categories (amazon) | 35.28M   |

Can we discover the aspects (in reviews) that most influence user's ratings?

# Model fitting

A 'standard' recommender system decomposes recommendations into user and item latent factors

$$rec(u,i) = \alpha + \beta_u + \beta_i + \gamma_u \cdot \gamma_i$$

which are fit so as to minimize the mean-squared error

$$\arg\min_{\alpha,\beta,\gamma} \frac{1}{|\mathcal{T}|} \sum_{r_{u,i}\in\mathcal{T}} (rec(u,i) - r_{u,i})^2 + \lambda \|\gamma\|_2^2$$

where  $r_{u,i} \in \mathcal{T}$  is a training corpus of ratings

# Model fitting

We replace this objective with one that uses the review text as a regularizer:



Here the terms  $\phi$  and z are word distributions and topic assignments, as with LDA



Item parameters ostensibly represent the extent to which items exhibit certain properties

Topic distributions (e.g. in LDA) represent the extent to which certain sets of words are used in a document



$$\theta_i \in \Delta^K \text{ (i.e., } \sum_k \theta_{i,k} = 1)$$



We need to identify a transform between item parameters (real vectors) and topics (stochastic vectors)



# Model fitting

#### Repeat steps (1) and (2) until convergence:

$$\arg \min_{\Theta} \frac{1}{|\mathcal{T}|} \sum_{r_{u,i} \in \mathcal{T}} \underbrace{(rec(u,i) - r_{u,i})^2}_{\text{rating error}} - \mu \underbrace{l(\mathcal{T}|\Theta, \phi, z)}_{\text{corpus likelihood}}$$
(solved via gradient ascent using L-BFGS)
$$\begin{aligned} \text{Step 1:} \\ \text{MSE using} \\ \text{gradient} \\ \text{descent} \end{aligned}$$

#### Step 2: sample topic assignments for each word

sample  $z_{d,j}$  with probability  $p(z_{d,j} = k) = \phi_{k,w_{d,j}}$ 

(solved via gibbs sampling)

# Results (selection)

#### Mean Squared Error on all datasets:

| Dataset    | offset | Latent<br>factors | HFT<br>(ours) | Improvement |
|------------|--------|-------------------|---------------|-------------|
| Amazon     | 1.774  | 1.423             | 1.325         | 6.89%       |
| Beer       | 0.521  | 0.371             | 0.366         | 1.50%       |
| Wine       | 0.043  | 0.029             | 0.027         | 4.84%       |
| Citysearch | 2.022  | 1.873             | 1.731         | 7.56%       |
| Yelp       | 1.488  | 1.272             | 1.224         | 3.78%       |

(link to complete results)

# Topics - beer

| pale ales  | lambics     | dark beers | spices   | wheat beers |
|------------|-------------|------------|----------|-------------|
| іра        | funk        | chocolate  | pumpkin  | wheat       |
| pine       | brett       | coffee     | nutmeg   | yellow      |
| grapefruit | saison      | black      | corn     | straw       |
| citrus     | vinegar     | dark       | cinnamon | pilsner     |
| ipas       | raspberry   | roasted    | pie      | summer      |
| piney      | lambic      | stout      | cheap    | pale        |
| citrusy    | barnyard    | bourbon    | bud      | lager       |
| floral     | funky       | tan        | water    | banana      |
| hoppy      | tart        | porter     | macro    | coriander   |
| dipa       | raspberries | vanilla    | adjunct  | pils        |

# Topics – musical instruments

| drums     | strings | wind       | mics        | software  |
|-----------|---------|------------|-------------|-----------|
| cartridge | guitar  | reeds      | mic         | software  |
| sticks    | violin  | harmonica  | microphone  | interface |
| strings   | strap   | cream      | stand       | midi      |
| snare     | neck    | reed       | mics        | windows   |
| stylus    | саро    | harp       | wireless    | drivers   |
| cymbals   | tune    | fog        | microphones | inputs    |
| mute      | guitars | mouthpiece | condenser   | usb       |
| heads     | picks   | bruce      | battery     | computer  |
| these     | bridge  | harmonicas | filter      | mp3       |
| daddario  | tuner   | harps      | stands      | program   |

# Topics – video games

| fantasy    | nintendo  | windows   | ea/sports  | accessories |
|------------|-----------|-----------|------------|-------------|
| fantasy    | mario     | sims      | drm        | cable       |
| rpg        | ds        | flight    | еа         | controller  |
| battle     | nintendo  | windows   | spore      | cables      |
| tomb       | psp       | хр        | creature   | ps3         |
| raider     | wii       | install   | nba        | batteries   |
| final      | gamecube  | expansion | football   | sonic       |
| battles    | memory    | program   | nhl        | headset     |
| starcraft  | wrestling | software  | basketball | wireless    |
| characters | metroid   | mac       | madden     | controllers |
| ff         | smackdown | sim       | hockey     | component   |

# Product category discovery

Let each product's 'category' be  $c_i = \arg \max \gamma_{i,k}$ 

We report the F1 score between the predicted categories and the ground-truth

| #topics | lat.<br>factor<br>model | LDA   | HFT<br>(ours) | improv.<br>vs lat.<br>factors | improv.<br>vs LDA |
|---------|-------------------------|-------|---------------|-------------------------------|-------------------|
| 5       | 0.166                   | 0.205 | 0.412         | 148%                          | 100%              |
| 10      | 0.097                   | 0.169 | 0.256         | 163%                          | 51%               |
| 20      | 0.066                   | 0.091 | 0.165         | 151%                          | 81%               |
| 50      | 0.042                   | 0.047 | 0.199         | 369%                          | 317%              |

(yelp businesses)

#### New reviewers, and good reviewers



How do users, ratings, and reviews evolve over time?

From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews McAuley & Leskovec, WWW 2013

(skip section) (link)

## Users and products evolve over time

Special effects that were good in 2003 may not be good in 2013

A child who likes Harry Potter in 2003 may have outgrown it by 2013

Even though *today's* children like Harry Potter, the children of 2023 may not
#### Users and products evolve over time

Special effects that were good in 2003 may not be good in 2013

Age of the product

A child who likes Harry Potter in 2003 may have outgrown it by 2013

Age (development) of the user

Even though *today's* children like Harry Potter, the children of 2023 may not

Age (zeitgest) of the community

### Models of user and community evolution

Replace the 'standard' latent factor model

$$rec(u,i) = \alpha + \beta_u + \beta_i + \gamma_u \cdot \gamma_i$$

With one whose parameters depend upon the user's experience level (e):

 $rec_e(u,i) = \alpha(e) + \beta_u(e) + \beta_i(e) + \gamma_u(e) \cdot \gamma_i(e)$ 

We must now fit users' experience levels, along with model parameters for each level

# Models of user and community evolution



### Models of user and community evolution



Since users gain experience monotonically, we can fit experience using Dynamic Programming

# Model fitting

#### Repeat steps (1) and (2) until convergence:

$$\arg\min_{\Theta} \frac{1}{|\mathcal{T}|} \sum_{r_{u,i} \in \mathcal{T}} (rec_e(u,i) - r_{u,i})^2 + \Omega(\Theta)$$

(solved via gradient ascent using L-BFGS)

**Step 1:** minimize the MSE using gradient descent

$$\arg\min_{\mathcal{E}} \frac{1}{|\mathcal{T}|} \sum_{r_{u,i} \in \mathcal{T}} (rec_e(u,i) - r_{u,i})^2$$

(solved using a DP)

Step 2:

fit experience levels so as to minimize the MSE

# Results – rating prediction

We substantially outperform non-temporal models, and alternatives that model temporal information at the level of products or communities

| Dataset         | Latent<br>factors | community<br>evolution | user<br>evolution | Improvement<br>(over cmty.<br>evolution) |
|-----------------|-------------------|------------------------|-------------------|------------------------------------------|
| Beer            | 0.452             | 0.427                  | 0.400             | 6.48%                                    |
| Wine            | 0.055             | 0.051                  | 0.045             | 13.20%                                   |
| Movies (amazon) | 1.379             | 1.371                  | 1.051             | 23.34%                                   |
| Gourmet food    | 1.582             | 1.529                  | 1.475             | 3.53%                                    |

(users with 50 or more reviews)

# How do beginners differ from experts?

Experts rate the top products more generously, and the bottom products more harshly

This phenomenon is highly correlated with product categories



### Are we really studying 'expertise'?

Experts are more predictable than beginners. They are also more inclined to agree with each other (right).

Predictability and agreement are arguably necessary conditions to define them as experts



### How do beginners differ from experts?



Users who never eventually become experts progress more quickly



Users who gain expertise slowly are more likely to quit the community Can we apply these ideas to social media submissions?

Understanding the interplay between titles, content, and communities in social media Lakkaraju, McAuley & Leskovec, ICWSM 2013

(skip section) (link)

When social media content is posted, can we determine

VS.

How much of the success was due to the **content itself**  How much of the success was due to how the content was marketed

When social media content is posted, can we determine

VS.

How much of the success was due to the **content itself**  How much of the success was due to how the content was marketed

#### Why? Changing how content is **presented** is easier than changing the content itself!

- I'm not sure I quite understand this piece
- 62 Submitted 2 years ago to pics by xxx
  - 24 comments
  - How wars are won
- 20 Submitted 18 months ago to WTF by xxx
- I comment

#### Murica!

- 774 Submitted 1 year ago to funny by xxx59 comments
- Bring it on England, Bring it on !!
  Submitted 10 months ago to pics by xxx 4 comments
- I believe this is quite relevant currently 226 Submitted 7 months ago to funny by xxx 15 comments

God bless whoever makes these
794 Submitted 1 month ago to funny by xxx
34 comments







#### Temporal effects on reddit



Resubmissions are less popular (left), but can still be popular if we wait long enough (right)

#### Inter-community temporal effects



Submissions won't be successful in the same community twice (main diagonal)

Submissions won't be successful if they already succeeded in a big community (low-rank structure)

# Model (non-title effects)



The model is designed to account for five factors:

- 1. The inherent popularity of the content (i.e., factors other than the title)
- 2. The decay in popularity due to resubmitting the content
- 3. This decay should be discounted for old enough submissions
- 4. A penalty due to resubmitting to another community
- 5. A penalty due to resubmitting to the same community twice

(we also account for other factors, such as the time of day etc.)

# Model (title effects)



not be too similar



Titles should differ from those previously used for the same content

# Regression, and *in situ* evaluation

#### Performance on held-out test data:

| Model                | R <sup>2</sup> |
|----------------------|----------------|
| Community model only | 0.528          |
| Language model only  | 0.081          |
| Community + language | 0.618          |

# Regression, and in situ evaluation

#### Performance on held-out test data:

| Model                | R <sup>2</sup> |
|----------------------|----------------|
| Community model only | 0.528          |
| Language model only  | 0.081          |
| Community + language | 0.618          |

We generated pairs of titles for 85 submissions, which we submitted simultaneously to two different communities

- The 'good' titles garnered three times as many upvotes as the 'bad' ones (10,959 vs. 3,438)
- Five good titles reached the front page of their community, and two reached the front page of r/all

Can we recommend communities to users?

Learning to discover social circles in ego-networks McAuley & Leskovec, TKDD 2013 McAuley & Leskovec, NIPS 2012

(skip section) (link)



Goal: to recommend circles to users of social networks



Goal: to recommend circles to users of social networks



Goal: to recommend circles to users of social networks

Input:

- A graph (directed or undirected)
- Features for each node

Output

- Circles (subsets of the nodes)
- Interpretations of each circle
- Number of circles

| dataset  | #ego-nets | #circles | #nodes  | #edges     |
|----------|-----------|----------|---------|------------|
| Facebook | 10        | 193      | 4,039   | 88,234     |
| Google+  | 133       | 479      | 107,614 | 13,673,453 |
| Twitter  | 1,000     | 4,869    | 81,306  | 1,768,149  |

# Statistics of social circles



#### Of 193 Facebook circles

- Around 25% share no members with any other circle
- 25% are entirely contained within another circle
- The remaining 50% overlap partially

# A (too) simple model

$$p((x,y) \in E) \propto \exp\left\{ \underbrace{\sum_{C_k \supseteq \{x,y\}} 1}_{\text{circles containing both nodes}} - \underbrace{\sum_{C_k \not\supseteq \{x,y\}} 1}_{\text{all other circles}} \right\}$$

- Edges are likely between nodes that share many circles
- Edges are unlikely between nodes that share few

# A (too) simple model



### A better model

$$p((x,y) \in E) \propto \exp\left\{\underbrace{\sum_{C_k \supseteq \{x,y\}} \langle \phi(x,y), \theta_k \rangle}_{\text{circles containing both nodes}} - \underbrace{\sum_{C_k \supsetneq \{x,y\}} \alpha_k \langle \phi(x,y), \theta_k \rangle}_{\text{all other circles}}\right\}$$

- Reward edges that belong to circles according to  $\langle \phi(x,y), \theta_k \rangle$
- Penalize edges that don't belong to circles according to  $\langle \phi(x,y), \theta_k \rangle$

# Model fitting

#### Repeat steps (1) and (2) until convergence:

$$\arg\max_{\mathcal{C}} \prod_{x,y \in E} p((x,y) \in E) \prod_{x,y \notin E} (1 - p((x,y) \in E))$$

(solved via gradient ascent using L-BFGS)

**Step 1:** Find circles from circle parameters

$$\arg\max_{\Theta} \prod_{x,y \in E} p((x,y) \in E) \prod_{x,y \notin E} (1 - p((x,y) \in E))$$

**Step 2:** Find circle parameters from circles

(solved via pseudo-boolean optimization)

# Results



Blue = true positive; grey = true negative; red = false positive; yellow = false negative

We automatically detect

- 1. Hierarchically nested circles (e.g. a and b)
- 2. Disjoint circles (e.g. b and c)
- 3. Overlapping circles (e.g. a and c)

# Results

#### We also generate automatic 'explanations' for detected circle



We outperform state-of-the-art baselines on all three networks (Facebook, Google+, and Twitter)

- Performance is best on Facebook
- No baseline works well on Twitter or Google+
- Adapting these models to directed networks is the subject of ongoing work

# Related work

Aspects: <u>Blair-Goldensohn et al. (2008)</u>, <u>Ganu et al.</u> (2009), <u>Titov & McDonald (2008)</u>, <u>Lerman et al. (2009)</u>, <u>Wang et al. (2010)</u> Automatic aspect discovery: <u>Zhao et</u> <u>al. (2010)</u>, <u>Moghaddam & Ester (2011)</u> Latent factor models & LDA: <u>Blei & McAuliffe (2007)</u>, <u>Lin</u> <u>& He (2009)</u>, <u>Koren and Bell (2011)</u>

Identifying successful content: <u>Szabo & Huberman</u> (2010), <u>Artzi et al. (2012)</u>, <u>Brank & Leskovec (2003)</u> Phrasing vs. success: <u>Danescu-Nicelescu-Mizil et al.</u> (2012), Social dynamics: <u>Hogg & Lerman (2010)</u>, <u>Suh et</u> <u>al. (2011)</u>, <u>Lerman & Galstyan (2008)</u>, <u>Romero et al.</u> (2013)

social media recommendation

Clustering social networks: <u>Handcock & Raftery (2007)</u>, Overlapping clusters: <u>Yang & Leskovec (2012)</u>, <u>Airoldi et</u> <u>al. (2008)</u>, <u>Ahn et. al (2010)</u>, <u>Palla et al. (2005)</u> Egonetworks: <u>Coscia et al. (2012)</u> Evaluation: <u>Lancichinetti &</u> <u>Fortunato (2009)</u>, <u>Yang & Leskovec (2012)</u> Edges & attributes: <u>Chang & Blei (2009)</u>, <u>Chang et al. (2009)</u>

community detection

# Conclusion

We studied models of users, products, and communities, in order to

- Make better recommendations to users
- Understand the aspects of users' opinions
- Identify useful reviews and expert reviewers

And, we applied these ideas in other applications, to

• Understand the dimensions that determine whether content will be well-received by a given community

# Conclusion

We studied models of users, products, and communities, in order to

- Make b
- Underst

# Thanks!

 Identify and thanks to my co-authors, Jure, Dan, and Hima

And, we applied these ideas in other applications, to

• Understand the dimensions that determine whether content will be well-received by a given community