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Complete results for the ImageCLEF, PASCAL, MIR, and NUS datasets
are shown in Figures 1–4. Weight vectors for the social network features on the
ImageCLEF dataset (which were summarized in the main text) are shown in
Figure 5. Complete results for tag and group prediction on the MIR dataset are
shown in Figures 6 and 7 (respectively).

AP 1−∆

cat
AP 1−∆

dog
AP 1−∆

insect
AP 1−∆

train
AP 1−∆

food
AP 1−∆

flowers
AP 1−∆

winter
AP 1−∆

sunset/sunrise
AP 1−∆

animals
AP 1−∆

snow
AP 1−∆

baby
AP 1−∆

lake
AP 1−∆

outdoor

.63

.89
.69

.62

.64 .70
.55

.65 .72
.55

.69

.29

.83
.98 .96 .88

.86
.85 .83 .83 .81 .80 .80 .80 .76 .75

AP 1−∆

bird
AP 1−∆

beach
holidays

AP 1−∆

toy
AP 1−∆

desert
AP 1−∆

spring
AP 1−∆

bicycle
AP 1−∆

clouds
AP 1−∆

sky
AP 1−∆

water
AP 1−∆

no persons
AP 1−∆

child
AP 1−∆

vehicle
AP 1−∆

landscape
nature

.61

.21
.41

.09

.16

.40

.64 .69
.50

.88

.47 .45
.59

.75 .74 .74 .74 .73 .73 .73 .73 .72 .72 .72 .72 .70

AP 1−∆

partylife
AP 1−∆

mountains
AP 1−∆

male
AP 1−∆

horse
AP 1−∆

day
AP 1−∆

sea
AP 1−∆

single person
AP 1−∆

night
AP 1−∆

macro
AP 1−∆

street
AP 1−∆

park garden
AP 1−∆

plants
AP 1−∆

car

.23
.35

.60
.44

.78

.28
.50 .42

.33 .29
.46

.62
.43

.70 .70 .70
.69

.69 .68 .68 .68 .68 .67 .67 .67 .67

AP 1−∆

calm
AP 1−∆

musical
instrument

AP 1−∆

building sights
AP 1−∆

no blur
AP 1−∆

adult
AP 1−∆

bodypart
AP 1−∆

citylife
AP 1−∆

partly
blurred

AP 1−∆

indoor
AP 1−∆

trees
AP 1−∆

sports
AP 1−∆

portrait
AP 1−∆

ship

.52

.15

.48

.80

.43
.27

.39
.60

.41 .40
.19

.43

.20

.67 .66 .66 .65 .64 .64 .64 .64 .64 .63 .63 .63 .63

AP 1−∆

old person
AP 1−∆

female
AP 1−∆

bridge
AP 1−∆

funny
AP 1−∆

big group
AP 1−∆

summer
AP 1−∆

painting
AP 1−∆

happy
AP 1−∆

river
AP 1−∆

teenager
AP 1−∆

still life
AP 1−∆

natural
AP 1−∆

inactive

.18

.40
.30 .39

.07
.21

.11

.35

.08 .15
.36

.71

.39

.62 .62 .61 .61 .61 .60 .60 .60 .60 .59 .59 .59 .59

AP 1−∆

overall quality
AP 1−∆

cute
AP 1−∆

family friends
AP 1−∆

architecture
AP 1−∆

technical
AP 1−∆

active
AP 1−∆

out of focus
AP 1−∆

small group
AP 1−∆

aesthetic
impression

AP 1−∆

autumn
AP 1−∆

fancy
AP 1−∆

travel
AP 1−∆

sunny

.40

.63

.34 .36
.17

.31

.05
.23 .31

.20 .23 .21 .26

.58 .58 .58 .58 .58 .58 .58 .57 .57 .57 .57 .56 .55

AP 1−∆

birthday
AP 1−∆

scary
AP 1−∆

melancholic
AP 1−∆

neutral
illumination

AP 1−∆

work
AP 1−∆

artificial
AP 1−∆

visual arts
AP 1−∆

motion blur
AP 1−∆

euphoric
AP 1−∆

boring
AP 1−∆

underexposed
AP 1−∆

graffiti
AP 1−∆

unpleasant

.03
.17 .25

.97

.06
.20

.45

.15 .08 .07 .12

.42

.15

.55 .55 .55 .53 .53 .53 .52 .51 .51 .51 .50 .50 .50

AP 1−∆

church
AP 1−∆

fish
AP 1−∆

abstract
AP 1−∆

airplane
AP 1−∆

rain
AP 1−∆

shadow
AP 1−∆

overexposed
AP 1−∆

mean

.02 .00
.06 .02 .02 .05 .01

.37
.49 .49 .49

.48
.48 .48 .47

.64
best text-only methods
best visual-only method
1000 most popular tags
first-order model
graphical model w/ social metadata

Fig. 1. Predicting labels on the ImageCLEF dataset [4].
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Fig. 2. Predicting labels on the PASCAL dataset [2].
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Fig. 3. Predicting labels on the MIR dataset [3].
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Fig. 4. Predicting labels on the NUS dataset [1]. The proposed method yields
poor performance on this dataset, possibly due to our using only a subset of
the edges, so as to fit the dataset in memory. The ‘flat’ model did not fit in
memory, though with some effort this could presumably be addressed using a
sparse implementation.
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Fig. 5. Weight vectors for pairwise features across all classes in ImageCLEF.
Each vector is normalized to sum to one, as the model is scale invariant. Cate-
gories are grouped according to which feature is the most prominent.
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Fig. 6. Tag prediction on the MIR dataset.
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Fig. 7. Group prediction on the MIR dataset. Group names have been sanitized.


