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ABSTRACT

Asthe number of sdenti c publicati ons soars, eventhe most
enthusiastic reader can have trouble staying on top of the
ewolving literature. It is easy to focus on a narrow asped
of one's eld and losetrack of the big picture. Information
overload is indeed a major challenge for sdentists today,
and is epedally daunting for new invedigators att empting
to master a discipline and scierntists who seekto cross disci-
plinary borders. In this paper, we propose metrics of in u -
ence, coverage, and connedivity for scienti c literature. We
usethese metricsto create structured summariesof informa-
tion, which we call metro maps. Most importantly, metro
maps explicitly show the relations between papersin a way
which captures developmentsin the eld. Pilot use studies
demonstrate that our method can help researchers acquire
new knowledge e c iently: map users achieved better preci-
sion and recall soores and found more seminal papers while
performing fewer seaches

Categoriesand Subject Descriptors

H.3.1 [Informat ion Storage and Retri eval]: Content
Analysis and Indexing; H.3.3 [In format ion Storage and
Retri eval]: Information Search and Retrieval; H.5 [
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1. INTRODUCTION

\ Distringit librorum multitudo" (the abundance of books
is a distraction), said Lucius Annaeus Seneca; he lived in
the rst century.

A lot has changed sincethe rst century, but Lucius' prob-
lem has only become worse. The surge of the Web brought
down the barriers of distribution, and the sdenti ¢ commu-
nity nd s itsdf overwhelmed by the increasing numbers of
publications; relevant data is often buried in an avalanche
of publications, and locating it is di c ult.
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Search engines have been relied upon in recent years for
accessng thescienti cliterature, and investments have even
been made to create special academic search and retrieval
tools. However, the seach and browsing experience might
be best characterized as providing keyhole views onto the
literature: while search engines are highly e edive in re-
trieving scienti c publications, the task of tting thosepub-
lications into a coherent picture remains di ¢ ult.

In contrast, we are intereged in methods that explicitly
show the relationships among publications in a way that
captures the main developments in the discipline. We be-
lieve that such methods can allow a userto explore a new,
complex topic and discover hidden connedions e ectively.
We consider as a sample motivation the creation of valuable
literature exploration toals that could help people entering a
new eld, such as new graduate students or experts reaching
beyond their traditional disciplinary borders.

Several tools already exist for summarizing and visualizing
sderti c literature (see [Borner, 201 for a compendium).
However, the output of these systemsis often not suitable for
a starting researcher. Some systems level of granularity is
too coarse: Boyack et al. [2009] provide a graph-summary of
chemistry research, where each node corresponds to a clus-
ter of disciplines ('Biology-Zoology-Ecology') . Bassemulard
and Zzitt [1999] produce a hierarchical graph, where nodes
correspond to clusters of journals.

We believe that in order to allow researchers to under-
stand how a €ld is organized, a n er level of granularity
is needed For this reason, we chose papers as our unit of
analysis. Most current toolsthat work at t his level of granu-
larity provide visualizati ons of citation (or co-citation) net-
works, where papers are nodes [Chen, 2004 Dunne et al.,
2010. Importantly, edges between papers are based on lo-
cal computation: the edges are selkeded because they pass
some threshold, or belong to a spanning tree. In such meth-
ods, there is no notion of coherent lines of resarch. We
believe that the notion of story lines is essertial, and facili-
tates users knowledge acquisition and comprehension of the
frontier and evolutionary history of ideasin a disdpline.

Several systems have att empted to create story lines, es-
pedally in the news domain [Swan and Jensen, 2000; Yan
et al., 2011; Allan et al., 2001]. However, this style of sum-
marizati on only works for simple stories, which are linear in
nature. In contrast, reseach eldsdisplay a very non-linear
behaviour: linesof reseach branch like a tangle of spaghetti
with side stories, dead ends, and intertwining narratives. In
order to explore these stories, one needs a map as a guide
through unfamiliar territory.

The metro map metaphor has been used before to dis-
play abstract knowledge. For example, Nesbitt's map shows



interconneding ideas running through his PhD thesis [Nes
bitt, 2004]. However, these maps were all manually con-
structed. In this paper, we adapt the techniques of [Shahaf
et al., 2017 (previously applied to news articles) to con-
struct metro maps of sderti c literature automatically. Our
main contri butio ns are as foll ows:
Formalizing metrics characterizing good metro maps, tak-
ing advantage of the additional structure encoded in the
sdenti ¢ domain:
Characterizing the probability that ideas in two papers
stem from a common source, then using this notion to
de ne coherence of reseach lines
Quantifying the impact of one paper on the corpus.
Proposing a notion of connedivity that captures how
di erent lines of research can still interact with each
other, despite not interseding.
Providing e ¢ ient methods with theoretical guarantees
to compute thesemetrics and nd a diverse set of high-
impact, coherent research linesand their interactions.
Integrating user preferences into our framework by pro-
viding an appropriate userdinteraction model.
Performing validatio n studieswit h usersthat highlightt he
promise of the methodology. Our method outp erforms
popular competit ors.

2. OBJECTIVE

We rst review the dedred properties of a metro map,
following the crit eria outlined in [Shahaf et al., 2012. We
shall brie y present t hese crit eria, motivate and formalize
them. Later, we present a principled approach to construct-
ing maps that optimizestradeos among thesecrit eria. Be-
fore we begn, we formally de ne metro maps.

Denition 2.1 (Metro Map [Shahaf et al., 2017)). A metro
map M is a pair (G; ), where G = (V;E) is a directed
graph and is a set of paths in G. We refer to paths as
metro lines. Each e 2 E must belong to at least one line.

The vertices V correspond to scienti ¢ papers, and are de-
noted by docs(M ). Thelines of correspond to aspects of
the eld. A key requirement is that each line is coherent:
following th e papers along a line should give the user a clear
understanding of the evoluti on of a story.

Coherence is crucial for good maps, but is it suc ient
as well? In order to put t his matter to ated, we computed
maximally coherent linesfor the se of papersreturned in re-
sponse to the query “support vedor machines' (using meth-
ods detailed below). The results were discouraging. While
the lines were indeed coherent, they were not important.
Many of the lines revolved around narrow topics; many fo-
cused on a single reseach group, never expanding beyond
it.

The example suggeg sthat maximizing coherence does not
guarantee good maps. Instead, the key challenge is balanc-
ing coherence and coverag e: in addition to being coherert,
lines should cover topics that are important t o the user.

Finally, a map is more than just a set of lines there is
information in its structure aswell. Publicationsoer arich
palett e of interaction possibilities: assumption, a rmation,
contrast, methodology, related work, and more. Therefore,
our last property is connectivity. The map's connectiv -
ity should convey the underlyi ng structure of the eld, and
how di ere nt lines of research interact with each other.

In Sedions 3-5, we formalize coherence, coverag e and
connectivity. In Sedion 6, we explore tradeo s among
them and combine them into a single objective function to
guide the constru ction of maps.

Europ e weights posshilit y
of debt default in Greece
Why Republicansdon't fear
a debt default

Italy ; The Pope's leaning
toward Republi can ideas
Italia n-A merican groups
protest "‘Sopranos'

Greek workers protest
austerity plan

Chain A

Europ e weights possibilit y
of debt default in Greece
Europ e commits to action
on Greek debt

Europ e union moves
towards a bailout of Greece
Greeceset to release
austerity plan

Greek workers protest
austerity plan

Chain B

3. COHERENCE

How should we measure coherence for a chain of papers?
We rely on the notion of coherence developed in Conned-
the-Dots (CT D) [Shahaf and Guestrin, 2010. In the follow-
ing, we brie y review this approach.

In order to de ne coherence, a natural rst stepisto mea-
sure similarity between each two consecutive papers along
the chain. Asa single bad transition can destroy the coher-
ence of an entire chain, we measure the strength of the chain
by the strength of its weakeg link.

However, this simple approach can produce poor chains.
Consider, for example, Chain A above. The transitions of
Chain A are all reasonable when examined out of context.
The rsttwo articlesare about debt default; the second and
third mention Republicans. Despite theselocal connections,
the overall eect is asciati ve and incoherert.

Now, consider Chain B. This chain has the same end-
points, but it is signi cantly more coherent. Let us take a
closer look at these two chains. Figure 1 shows word ap-
pearance along both chains. For example, the word "Greece
appeared throughout Chain B. It is easy to spot the asso
ciative ow of Chain A in Figure 1. Words appear for short
stretches; some words appear, then disappear and reappear.
Contrast this with Chain B, where stretchesare longer and
transiti ons between documents are smocther. This obserna-
tion motivatesour den ition of coherence.

ooy ooy

Figure 1: word patter ns in Chain A (left) and Chain B
(right). Bars corresp ond to the app earance of a word in
th e arti cles depicted above them.

We represent documents as vedors of concepts (for the
sake of presertation, assume concepts C are words). Given
a chain of papers (p1;:::;pn), We rst soore each transition
pi ! pi+1 by the number of concepts both arti cles share:

1(c2 pi\ pi+1)

c2C

Coherence(ps;::i; pn) = izln_j_inn .

However, word appearance is too noisy. Articles must use
the exact same words; synonyms are treated as unrelated.
Also, all words are treated equally: the word "Greece' is as
important as the word “today'.

Therefore, we replaced the indicator function 1() with a
notion of in u ence of concept c in atransition. Intuitively,
Inu ence(pi; pj j ©) is high if (1) both documents are highly
conneded, and (2) cisimportant for the connecdivity. Note
that c doesnot have to appear in either of the documents.



After the introduction of in u ence, the objective becomes
X

Inu ence(cj pi;pi+1)
Cc

Coherence(ps;:::;pn) = . min
i=1l:n 1

This objective guaranteesgood transitions, but associative
chains like Chain A can still score well. However, these
chains need to use many words in order to achieve high
soores, as many of their transiti ons usea unique se of words.
On the other hand, coherert chains (like Chain B) can often
be characterized by a small se of words, which are impor-
tant t hroughout many of the transitions.

Therefore, instead of summing Inu ence(cj pi;pi+1 ) over
all concepts, the problem is transformed into an optimiza-
tion problem, where the god is to choose a small set of
concepts (called “active'), and score the chain based only on
theseconcepts. Constraints on possble activati ons enforce
a small number of words and smooth transitions, imitating
the behaviour of Figure 1 (right). Formally,

Coherence(ps;:;pn) = max  min

X activ ationsi=1:n 1
Inu ence(cj pi;pi+1 )1(c activein pi; pi+1) (3.1)

C

Finally, the coherence of a map is de ned as the minimal
coherence acrossitslines .

3.1 Coherencefor Scienti ¢ Papers

The coherence notio n of [Shahaf and Guedri n, 2010 (Def-
inition 3.1) was developed for the news domain, and relied
exclusively on arti cle content. It was designed to use very
basic features, namely words. However, the simplicity of the
representati on can sometimes result in incoherent chains. To
illustrate the problem, consider the following three papers:

pl: Multiagent planning with factored MDPs /
Guestrin et al / NIPS'01

p2: Timing and power issues in wireless sensor
network s/ Aakvaag et al / ICPP '05

p3: Social network analysis for routi ng in
disconnected delay-tolerant manets/ Daly et al /
MobiHoc '07

Thesepapers share many words, such as ‘network', “prob-
ability' and “cost', and thus can achieve a goad coherence
soore. However, they clearly do not follow a coherent re-
sarch line. The problem may be alleviated by higher-level
features (eg., distinguishing between di e rent uses of “net-
work") ; in this sdion, we chooseinstead to take advantage
of the side information provided by the citation graph, and
de ne a coherence noti on more suited for scienti ¢ papers.

Upon close examination, our original coherence notion
(De nition 3.1) is composed of two main ideas: comput-
ing the inu ence of concepts on transitions, and choosing
a small set of active concepts that captures the story well.
While the latt er idea seems domain-independent, comput-
ing inu ence may bene t from the additional structure of
the citation graph.

The citation graph explicitly capturesthe way papersin-
u ence each other: the content of a publication is often af-
fected by cited work, the authors' prior work and novel in-
sights. The in u ence notion proposed in BKS [EI-Arini and
Guestrin, 2011] capturesexactly thisbehaviour. In BKS, the
authors de ne a directed, acyclic graph G for every concept
c in the corpus. Nodesrepresert papers that contain ¢ and
the edgesrepresent citations and common auth orship.

To capture the degree of in u ence, BKS den esa weight
I,y for each edgeu! vin Gg, representing the probability
of direct in u ence from paper u to paper v with resped to
concept c. Some probability is assignedto ‘novelty', the case
that concept c in paper v was novel.

Given a concept-sped c weight for each edge in G¢, BKS
de nes a probabilistic, concept-sped c notion of in u ence
between any two papersin the document collection:

De nition 3.1 (Direct In u ence[El-Ari ni and Guedtri n, 2011]).
Let G be arandom subgraph of G., where every edgeu ! v
is included in G; with probability ! .., . The inu ence be-
tweenpapersp; and p; w.r.t. cisthe probability there exists
a directed path in G{ between p; and p;.

The BKS notion of in u ence has many attractive proper-
ties it is simple, and it appears to capture the way ideas
travel along the citation graph. However, using it for co-
herence severely limits the chains we can hope to identify.
According to de nition 3.1, the only pairs of papersthat can
have in u ence between them are ancestor-descendant pairs
in Gc.. Therefare, chains with high inu ence are likely to
contain only papers that directly build on top of one an-
other, espedally papers by the same authors.

Consider papers p2 and p3 from above. Their notion of
‘network’ is similar, but t here is no direct path from p2 to
p3in the corresponding graph. To mitigatethis problem, we
introduce a di ere nt notion of in u ence. Rather than requir-
ing that p; inu ence p;j, we are only interested in whether
concept ¢ in p; and concept cin p; refer to the same idea.
To capture this property, we modify the notion of in u ence:

De nition 3.2 (Ancedral Inu ence). Thein u ence between
papersp; and p; with resped to concept c is the probability
pi and p; have a common ancedgor in G¢.

SeeFigure 2 for an illustrati on of
the di eren ce betweendirect in u -
ence (left) and ancedral in u ence Qq Q
(right). In order for p; to have di- QZ') 6 i')
rect in u enceon p;, therehasto be
apath from p; top; . In order for p;
to have ancestral in u enceon p; , it
is auc ient that they have a com- cestra| in uence
mon ancestor in thegraph. Thean- (right).
cestor can also be p; itself.

As for p2 and p3: with no direct path among them, their
direct in u ence is zero. However, as both cite Perkins 1999
networks paper, their ancedral in u ence is non-zero.

Figure 2: Di-
rect (left) vs. an-

4. COVERAGE

In addition to coherence, we needto ensure that the map
has high coverage. Before de ning coverage of a map, we
needto understand which elements we wish to cover.

4.1 What to cover?

In [Shahaf et al., 2012, we only had the articles' content
to rely upon, and thus the covered elements were concepts.
We denoted the amount an arti cle p covered a concept ¢ by
coverp(c), and looked for a set of articlesthat, when com-
bined, achieved high coverage for many important concepts.

However, when we applied the same technique to sden-
ti c papers, we encountered a problem: paperswith similar
content may appea exchangeable w.r.t. their coverage, but
they will not necessarily be equivalent in the user's eyes. For
example, the user may notice that t he papers aim at di er-
ent communities, or that one paper is more seminal than the
other. Consider the following two papers:
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Figure 3: Tag clouds for pl and p2. Th e size of a word is
prop ortional to its frequency. (a-b) pl and p2's content,
respectively . (c-d) Venues and aut hors of papers a ected
by pland p2, respectively. Note that (a) and (b) are very
similar, but (c) and (d) are not.

pl: SVM in Oracle databa se 10g: Removing the
barri ers to widespre ad adoption of support vector
machines / Milenova et al
VLDB '05 Procedlings of the 31st International Conference
on Very Large Data Bases

p2: Supp ort Vector Mac hines in Relational
D atab ases / Reping
SVM '02 Procedalings of the First International Workshop
on Pattern Reaognition with Support Vector Machines

The content of p1 and p2 is similar. Figures 3(a)-(b) dis-
play the papers as tag clouds: both papers share many of
their important words (‘data’, ‘database, ‘svm', “implemen
tation'). Numerous other words have a closdy related match
(performance'/ “e ciency', "Oracle'/ ‘relational databas€).

One way to distinguish between the aforementioned pa-
pers is to examine their impact. Figures 3(c)-(d) show tag
clouds of authors and venues for papers citing pl and p2.
Figure 3(c) has more words than 3(d), implying that pl has
a e cted more unique authors and venuesthan p2. Intereg-
ingly, despte the similar content of the papers, there is al-
most no intersection betweenthe papers citing them; only a
single paper cites both (Mona Habib from Microsadft Cairo).

Based on this intuition, we propose to use the papers
themselves as elements of coverage. A paper p should cover
itself and the papers it has had impact on. By this de ni-
tion, a high-coverage se of papers consists of papers that,
when combined, had impact on alarge portion of the corpus.

The idea that a paper covers its descendants (and not
its ancedors) may seemcounterintuitive at rst. After all,
how can a paper cover future contributions? Neverth eless,
we believe that examining a paper's ancegors merely helps
understanding the context in which the paper was written,
while it s descendants truly revead the gist of it s contributi on.

4.2 Coverageof a singlepaper

4.2.1 Desidenta

We would like papersto cover their desendants. Instead
of a hard, binary notion of coverage, we prefer a softer no-
tion, allowing us to express that desendants are covered to
various degrees (depicted as a gradient in Figure 4a).

(b) ()

Figure 4: A simple citation graph. Edges traverse in
th e direc tion of imp act, from cited to citing paper. (a)
Coverage of document A. Gradient indicates di er ent
degrees of coverage. (b-c) The e ect of adding papers B
and C (respectively) to paper A. Since B's descend ants
are already covered to some extent by A, we prefer C.

Let us concentrate on the degree to which paper p covers
its descendant g, cover,(q). In order to evaluate the impact
that p had on g, we examine the way q is conneded to p
in the citation graph. Intuitively, if q can be reached from
p by many paths, p had a high impact on g. Since impact
is diluted with each step, shorter paths are more import ant
than longer ones

Before we devise a coverage formulation based on paths
between p and g, we consider another point: impact is not
necessaily transitive. Consider, for example, Figure 5. The

gure outlines a (small) fraction of the descendants of Ni-
colo Cesa-Bianchi's paper, 'How to Use Expert Advice'. As
before, edgesindicate citation. A snippet from the citation
text appears by each edge.

" #$%

Figure 5: Tw o branches in the citatio n graph. The left
bran ch is coherent; th e right one is not.

Theleft branch of Figure 5 revolvesaround Online Learn-
ing Theory. Thepapersin this branch (#2 and # 3) build on
top of each other. Intuitively, the root paper had impact on
both of them. In contrast, the right branch is more di cult
to follow. Both desendants ded with extending the battery
life of devices but while paper #4 is a direct application of
the root paper, paper #5 is not. In fact, when #5 cites
# 4, the citation reads "Note that our protocol is di e rent
from previous work'. In other words, paper # 5 is no longer
relevant t o the root node, and should not be covered by it.

Thedi erence between the two branchescan be captured
by the coherencenoti on of Sedion 3: Theleft branch is much
more coherert t han the right one. Based on that intuition,
we only want a paper to cover the desendants that can be
reached by a coherent path. Unlike Sedion 3, we are only in-
tereded in direct-in u ence coherert chains (De nition 3.1),
as they model the true impact of a paper.



Figure 6: Coherence grap h.
Nodes represent papers (names
appear inside). Path s represent
coherent chains. Each paper may
have multiple corr esponding ver-
ti ces: the highlighted vertic es are
all copies of paper p.

4.2.2 Formulation

In the previous sdio n, we provided desiderata for coverp(0):

coverage is high if there are many short and coherert paths
between p and g. In order to formalize this idea, we employ
the technique of random walks.

Let g be a paper. Consider a walk from g to its ances-
tors, taking only coherent pathsinto account. At each step,
the walker either terminates (with probability ), or chooses
an ancestor uniformly at random among the coherernt paths
that extend the current walk. If there are many short, co-
herent paths between p and g, there is a high probability
that t he walk reachesp before termination. We denote this
probability by covery(q).

Let usformalizethis intuition now. Sincewe only consider
coherent paths, it is more convenient t o formulate coverage
in terms of walks performed directly on a coherence graph
G. A coherence graph is a graph represerting all coherent
chains in the domain (See Figure 6 for an example. In Sec
tion 7.1 we explain how to encode the graph compactly).
Each vertex v of G corresponds to a single paper, which
we denote paper(v); each paper p may have multiple corre-
sponding verticesin G, which we denote copies(p). In Figure
6, copies(p) are highlighted.

Let G be a coherence graph. For each paper g, we con-
struct t he graph G4 by reversing the direction of all edges
in G and adding an additional vertex, vq. Vq is the starting
vertex of our walk. We conned vq to each vertex of G which
corresponds to paper g, copies(g). Thisway, a walk from vq
will always proceedto a copy of g, and then to its ancestors
in the coherence graph G. Since the graph is a DAG, the
probability that a walk reachesvertex v is easy to compute.
We rst compute a topological ordering on Gq, and compute
the probabilitiesin this order:

P(vg! v) v 2 copies(q)

cover =
V(A L ) ( yu vPU! V) covery(q); o/w
where P(u ! v) is the probability the walker chose to go

from vertex u to vertex v. We want the walker to choose
uniformly among the coherent pathsthat extend the current
walk; in other words, we want to bias the walker towards
ancestors that participate in many coherent paths. There-
fore, we compute for each vertex v the number of coherent
pathsthat end in v, #P ath(v). For example, the number of
paths that end in the vertex marked "n' in Figure 6 is two
(o,s,n and p,n). Since G4 is a DAG, computing the number
of paths takes polynomial time. The probability that the
walker chooses to go from vertex v to vertex u is propor-
tional to #P ath:

# Path(v)

Pt V)= P path(w)

w:u!

We now have a coverage notion for vertices of G. However,
we are interested in a coverage notion for papers. In order
to compute the coverage of paper p, we needto sum up the

soores of all vertices in copies(p):

coverp(Q) = covery (Q)

v 2 copie s(p)

Thissoore correspondsto th e probability of reaching p before
termination. In particular, since p can never appear more
than once along a path in G, this score always lessthan 1.

4.3 Map Coverage

Now that we have de ned coverage of a single documernt,
let us de ne coverage of a map. In order to encourage di-
versity, we view se coverage as a sampling procedure: each
paper pi in the map triesto cover document g with prob-
ability coverp, (g). The coverage of q is the probability at
least one of the documents su\?ceeded

covery () = 1 (1
pi 2 docs(M )

coverp, ()

Thus, if the map already includespapers which cover g well,
covery () is closeto 1, and adding another paper which
covers q well providesvery little extra coverage of g. This
encourages us to pick papers which cover new areas of the
graph, promoting diversity.

Figures4b and 4c illustrate this idea Supposewe already
have paper A in our map, and we need to choose between
papers B and C, whose content is similar. Figures 4b and
4c show the e ect of choosng B and C, respedively. Since
B's des@ndants have already been covered by A, we would
prefer to choose C. (Note that since our coverage is sdft,
choosing B will still provide gains in coverage.)

We now have a way to measure how well a map covers
a single paper. Finally, we want to measure how well a
map covers the entire corpus. Remenber, our god is to
ensure that the map touches upon imp ortan t aspects of
the corpus. Therefore, we rst assign weights ¢ to each
paper g, signifying the importance of the paper. We model
the amount M coversthe corpus as the weighted sum of the
amount it covers each paper:

Cover(M ) =
q

qcovery ()

The weights cause Cover to prefer maps which cover im-
portant papers. They o e r a natural mechanism for persan-
alization: With no prior knowledge about t he user's prefer-
ences we set all of the weights to 1. This is equivalent to
asking for a map which covers as much of the corpus as pos-
sible. In Sedion 10 we disauss learning weights from user
feedback, resulting in a personalized notion of coverage.

5. CONNECTIVITY

A map ismore than just a setof lines;there is informati on
initsstructure aswell. Themap'sconne ctivity should con-
vey the underlying stru cture of the story, and how di e rent
aspects of the story interact with each other.

In [Shahaf et al., 2012 we simply den e connedivity as
the number of lines of th)a(lt intersed:

Conn(M) = 1(i\ ;6;)

i<j
Unfortu nately, this simple objective does not suc e in
the scienti ¢ domain. Consider the two chains in Figure 7:
the top chain desaibesthe progress of margin classi ers {
from perceptrons, through linear SVM s, to kernel machines
The bottom chain desaib es the progressof face-recogniti on
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Figure 7: Tw o coherent chains (th eory of SVMs, app li-
cation of SVM to vision). Th e chains do not intersect,
yet are relat ed: th e applicatio n chain usestools from the
th eory chain. Dashed gray lin es indicate imp act.

challenge problems in vision: from facial feature location,
through face detection, to face recognition. Both chains are
clearly related; the vision papers use techniques from the
theory chain. However, there is no way to nd an article
that would belong to both chains, unlesswe sacri ce co-
herence considerably. As a result, maps that optimize the
aforementi oned connedivity notion are often disconneded.
Finding papers that would belong to both chains may be
di cult, but we can easily nd theoy papersthat have had
a big impact on vision papers. For example, same of the
vision papersin Figure 7 directly cite papersfrom thetheary
chain. These citations are depicted as dashed lines
Figure 7 motivates us to prefer a sdfter notion of inter-
section. Rather than requesting that t he lines intersed, we
also accept lineswhich are related to each other:
X
Conn(M) = 1( 5\

i6;) + cover( i; j)

i<j

where cover( i; ;) isthe maximal covery(q) for p2 ;02
i, or vice versa We choose to use the maximum (instead
of sum) in order to encourage connedions between as many
pairs of linesaspossble. Scoring all th e connedionsbetween
i and ; may lead to maps where only a few lines are
very well-conneded, and the rest are disoonneded. The
parameter is chosenempirically.

This softer notion of intersedion is espedally suited to
sdenti cliterature. Publicationso erarich palette of inter-
acti on possibilities, such as arm ation, criticism, contrast,
meth odology, and related work. Exposing the relationships
between two lines of research can prove extremely valuable
to reseachers.

6. JOINT OBJECTIVE FUNCTION

Now that we have formally den ed our three properties,
we can combine them into one objecti ve function. We need
to consider tradeo s among theseproperti es for example,
maximizing coherence often resultsin repetitive, low-coverage
chains. Maximizing connectivity encourages choosing sim-
ilar chains, resulting in low coverage as well. Maximizing
coverage leads to low conneadivity, since there is no reason
to re-use an article for more than one line.

The objective of [Shahaf et al., 2012] appliesto the sci-
enti ¢ domain as well. We include it here for completeness.
For a full discussion, pleaserefer to the paper.

Problem 6.1. Given a set of candidate documents D, nd
amap M = (G;) over D which maximizes Conn(M ) s.t.
Coherence(M ) and Cover(M) (1 ) , where is
the maximal coverage across maps with coherence and
is given.
There are several ways to restrict t he size of M ; we chose
to restrict M to K linesof length at most |. Alternatively,

since some stories are more complex than others, one may
prefer to add linesuntil coverage gainsfall below a threshold.

7. ALGORITHM

In this sedion, we outline our approach for solving Prob-
lem 6.1. We adapt t he algorit hm of [Shahaf et al., 2012 to
sdvethe problem. In the following we review the algorit hm,
highlighting the main di e rences.

We start by addressing the coherence constraint: In Sec
tion 7.1 we represent all coherent chains as a graph. In Sec
tion 7.2 we use this graph to nd a set of K chains that
maximize coverage, in Sedion 7.3, we increase connedivity
without sacri cing coverage.

7.1 Representingall coherent chains

In order to pick good chains, we rst wish to list all pos-
sible candidates. However, represerting all chains whose
coherence is at least is a non-trivial task. The number
of posdble chains may be exponential, and therefare it is
infeasible to enumerate them all, let alone evaluate them.

The algorithm of [Shahaf et al., 2012 employs a divide-
and-conquer approach to the problem, constructing long
chains from shorter ones. This allows us to compactly en-
code many candidate chains in a graph structure which we
call a coherence gaph. G is a compact representation of the
graph displayed in Figure 6. Vertices of G correspond to
short coherent chains, and there is a directed edge between
each pair of vertices which can be conjoined and maintain
coherence. Importantly, this property is transitive: every
path in G, no matter how long, represents a coherert chain.

The only change in the algorithm lies in the computa-
tion of in u ence. Direct in u ence and ancestor in u ence are
instances of the k-terminal reliability problem [Ball, 1986],
which is # P-complete, sowe cannot hope for a polynomial-
time sdution. Instead, we apply approximations.

In BKS, the authors preserted a deterministic, linear-time
dynamic programming heuristi ¢ for calculating direct inu -
ence. This heuristic is based on the assumption that t he
paths betweentwo nodes are indeperdent of each other. Un-
fort unately, this assunption is too strong for ancestor inu -
ence. The paths between pl; p2, and possible ancedors are
often deperdent, and treating them as indeperdent results
in signi cant errors. Instead, we employ a simple Monte
Carlo sampling method with th eoretical guarantees (BKS
also proposed a similar sampling approach).

In order to calculate m values with (; )-approximation
guarantees (where and denote the upper bound of rel-
ative error and failure probability), we need O(% log(™))
samples. m isthe number of document-pairs wit h a common
ancestor in the graph. In the worst case m is quadratic in
the number of papers (in practice, it is often much smaller).
Therefore, the number of samples needed is logarit hmic in
the number of papers. Also note that in u encescan be pre-
computed once and stored for future use.

7.2 Finding a high-coveragemap

After representing all coherent chains as a graph G, we
wishto nd asetof chainswhich maximize coverage, subject
to map size constraints.

Problem 7.1. Given acoherencegraph G, ndp a§hs 1500 K
in G, jdocs( i)j | that maximize Cover(docs( ; i)).

We use the coverage-maximization algorit hm of [Shahaf
et al., 2012] to nd a high-coverage map. The proof relies
on formulating the problem in terms of orienteering. Ori-
enteering problems are moti vated by maximizing a function



Figure 8: Part of the map computed for the query 'Reinforcement Learning’. The map depicts multip le lin es of
research (see legend at t he botto m). Intera ctions between the lin es are depicted as dashed gray lin es, and relevant

citation text appears near them.
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Figure 9: A segment of a map computed for the query
SVM/ Supp ort vector machine, showing the intersectio n
of two lines: multi-class SV Ms and larg e-scale SV M. In
th e interest of space, we condensed the tim eline.

of nodesvisited during a tour, subject to a budget on tour
length. The [Shahaf et al., 2012 coverage notion is submod-
ular, sowe applied the Submodular orienteering algorithms
of [Chekuri and Pal, 2005 to the problem.

In order to adapt t he algorithm to the sdenti ¢ domain,
we changed only the way coverage is computed (seeSedion
4). Note that the new coverage notion is submodular. Fig-
ure 4 providesthe intuition for that: adding a paper to a
smaller set of papers helps more than adding it to a larger
sé (diminishing returns). Therefore, we can use the same
submodular orienteering algorithm with the new coverage
notion, and achieve the same guarantees

7.3 Increasingconnectvity

We now know how to nd a high-coverage, coherent map.
Our n al stepis to increase connedivity without sacri cing
(more than an -fraction of) coverage.

In order to increase connedivity, we apply a local-seach
tedchnique. It starts from map M o, and takes steps in the
seaarch space by applying local moves. Each local move re-

places a single line in At iteration i, we consider each
pathp2 i 1. We hold the rest of the map xed, and try
to replace p by p° that increases connectivity (Sedion 5) and
doesnot decrease coverage. At the end of the iteration, we
pick the best move and apply it, resulting in M ;. The full
details of the algorithm are in [Shahaf et al., 2012].

8. EXAMPLE MAPS

Figure 8 shows a part of a map computed for the query
‘Reinforcement Learning’. As can be seen the map de-
picts multiple linesof reseach: MDPs, roboticsand control,
multi-agent cooperation, bounds and analysis, and exploration-
exploitation tradeo s. The map shows how the MDP line af-
fecsthe multi-agent and roboti cslines and how the exploration-
exploitation line interacts with the analysis line. Those rela-
tions are depicted as gray dashed paths. Note that t he map
does not capture all the interactions; for example, connec
tions betweenMDPs and the analysis line are not captured.

As mentioned in Sedion 5, intersection is rare for broad
queries. Figure 9 shows one such intersedion between two
linesin the SYM map. One line is about large-scale SVMs,
the other is about multi-class SVYMs. The linesintersed at
Keerthi's paper about large scale multi-classlinear SVMs.

9. USER STUDY

In our user study, we evaluated the eectiveness of metro
maps in aiding usas navigate, consume, and integate dif-
ferent aspeds of a sped c, multi-faceted information need

Evaluating metro mapsin thesdenti ¢ domain posessome
signi cant challenges. Sincethe metro-map outp ut isunique,
we cannot conduct a double-blind comparison study, as sub-
jects inevitably di erentiate betweenthe di erent sysems.
Therefore, we cannot have a wit hin-subject study, but are
instead forced to choose a between-subject design. This de-
sign, in itseff, causesa new problem: since we needa di e r-
ent group of participants for each condition tested (metro-
map or competitor), we cannot tailor the query to users



Rather, we haveto nd a single domain such that all of our
participantswill (1) be ableto read sdenti c publicationsin
that domain and (2) not know the domain well in advance.

We recruited 30 participants from our university. All par-
ticipants were graduate students with background in Ma-
chine Learning or related elds. The domain we chose was
Reinforcement Learning. T he machine learning background
of the participants was enough to make them comfort able
with the subject, but none of them had conducted research
in the eld or studied it extensively.

We asked parti cipants to imagine themselvesas rst-year
graduate students embarking on a reseach project in Rein-
forcement Learning. The parti cipants were asked to conduct
a quick literature survey. In particular, they were asked to
update a survey paper from 1996 identify up to ve re-
search directions that should be included in the updated
survey, and list a few relevant papers for each direction. We
recorded participants' browsing histories, and took a snap-
shot of their progress every minute. We limited their time
to 40 minutesto simulate a quick rst pass on papers.

We usead the ACM datasetto compute a map for the query
"Reinforcement learning'. The dataset contains more than
35,000 papers from ACM conferences and journals. Asthe
number of papers is relatively small, scalability was not an
issue. We extracted features as desaibed in [El-Arini and
Guestrin, 2011]. We had two conditions, GSand MP+GSn
GS participants were allowed to use Googe Scholar !, a
search enginethat indexes scholarly literature. In the second
condition (MP+GSparticipants were given th e pre-computed
metro map, and asked to pretend that t hey stumbled upon
it; they were not instructed how to usethe map. In addition
to the map, the participants could accessGoogle Scholar.

We alsoincluded two simulated conditionsin th e study, MP
and WKIn MP we pretended our map was the user's output,
and listed all of its papers. In WKwe used references from
the Wikipedia article about reinforcement learning.

We dedded to compare against Wikipedia and Google
Scholar since they represert t wo of the most popular starting
points for reseach queriestoday. Other sysems we consid-
ered including in the comparative analysis were either un-
available for download, or very restricted in the span of the
sdenti ¢ domain represented.

Before grading, we discarded data from four participants.
One did not understand the task, and wrote a (nice) esay
about reinforcement learning. The others, desite visiting
many web pages listed lessthan 5 papers when time ran
out.

We had an expert judge evaluate the results of the rest of
the participants. We combined all of the papers that use's
had entered into one list. Each entry includesthe paper's
information and URL. In addition, we listed the labels that
the users supplied for each paper. The judge did not know
the method usedto nd the papers.

Our expert judge scored the paperson a 3-point scale:

0 { Irrelevant, 1 { 1: Relevant, 2 { Seminal. Each label was
given a 0-1 soore, based on whether it was a good match to
the paper. The results are summarized below.

9.1 Resultsand Discussion

9.1.1 Informationcollectionpatterns

Avg: Pagesvisited | Papers listed | Visited/L isted
GS 46 12.2 4.51
MRGS 36.3 9.75 3.79

Yhttp:// scholar.google.com

The table shows the average number of web pages visited
throughout the sesson, the average number of papers listed
by the user, and the average ratio of pagesvisited to papers
listed. GSuses visited more pagesand listed more paperson
average. However, when looking at the average ratio, only
one out of 4:5 pages visited by GSuseas was added to their
list, while MP+G@&dded one out of 3:8. In other words, the
map users were more focused: they may have visited less
pages, but they found thesepages satisfactory.

9.1.2 Precision

Users satisfaction level is important, but the real test
is the expert's opinion. The next table shows the average
normalized scores given by the judge: For each user, we
calculate the average paper score and average label soore.
Then, we average over the usersin each conditi on:

Normalized Label Score

71.6%
80.2%

Avg: Normalized Score

GS 74.2%
MRGS 84.5%

Both the paper and label scores of MP+G8se's are higher
than the soores of GSuse's (t he median soores exhibit simi-
lar behaviour). In addition, the average number of senminal
papers discovered by GSusas was 1.2 , while MP+G&isas
have discovered on average 1.62 seminal papers.

The simulated Wik ipedia user WKdid not do well: out
of 15 references only four quali ed for the study (papers
published after 1996), and only two were deemed relevant.
In Wikipedia's defense,the oth er referencesincluded seninal
books, which could have been useful for our hypothetical

rst-year student.

Finally, let us examine the map (MP user performance.
Comparing the map directly to user output is challenging as
the map contained 45 papers, many more than the average
use. Out of thesepapers, seven were deenmed seminal, and
21 were deened relevant. Interedingly, many of the papers
that were deema irrelevant were used as brid ges between
relevant (or semnal) papers in the map.

The nd ing that many of the map usersdid not identify
the seminal papersin the map is somewhat concerning. A
posdble explanation may be that t he userswere instructed
to focus on at most ve lines of research, while the seminal
papers were spread among more lines. Note that despte
this fact, the average normalized score of MP+GS8ses is still
higher than the score for the map. In any case, this phe-
nomenon highlights the need for more targeted reseach on
locating and visualizing important nodesin the map.

9.1.3 Recall

In addition to measuring precision (the fraction of re-
trieved papersthat are relevant), we alsoteded user's recll
(the fraction of relevant papers retrieved). It is not enough
for theusersto nd good papers; rather, it isalsoimportant
that t hey do not overlook important research areas.

In order to measure recall, we have composed a list of the
top-10 subareas of reinforcement learning by going over con-
ference and workshop tracks and picking the most frequent
topics. Each user had to list up to ve reseach directions;
for each user, we computed the fraction of thesedirections
that appeared in our top-10 list. GSuseas received an av-
erage score of 46.4%, while MP+G8se's outperformed them
with an average soore of 73.1%.

Finally, furth er analysis of the snapshots taken through-
out t he study provides anecdotal evidence of the utility of
the map. Several MP+G8se's started by composing a short



list of research directi ons; throughout t he sesion, theseusers
have progressvely added papersto each direction. GSuses,

in contrast, did not exhibit this "big picture' behaviour.

9.2 UserComments

After the study, we asked the map uses to tell us about

their experience. Below are some of their commernts:

Positive: \H elpful... gave
me keywords to search for" /
\I noticed directions | didn't
know about... Haven't heard
of predictiv e stat e representa-
tions before" / \U seful way to
get a basic idea of what sci-
ence is up to" /\ That was a
great startin g point" / \Ea sy
to identify research groups...
in this context, this guy is
good" /\ Timeline is very use-
ful"

N egative: \T akes a while
to grasp" / \For a begin-
ner, some papers are too spe-
ci c.. may be more use-
ful after I read some more"
/ \L egerd is confusing if you
do not know the topic in ad-
vance" / \ Didn't necessarily
understand the logic behind
edges... why don't you draw
words on edges?" / \I t is hard
to get an ideafrom paper title
alone"

Most import antly, many parti cipants found the map use-
ful in making sense of the eld. Some of the participants
had trouble interpreting elements of the map, or felt likethe
map was more suited for researcherswit h deeper background
knowledge. We found that many of the negative comments
could be addressed by improvemerts in the design of the
use interface.

10. A NOTE ON PERSONALIZA TION

Whenwede nedour coverage noti on (Sedon 4), the weight
of each paper was se to 1. In other words, the objective was
to cover as much of the corpus as possible. However, some
parts of the corpus may be more important t o the userthan
others. In order to be usefu, the model must be capable of
representing the user's intereds.

In this sedion, we rely on user feedback in order to learn
their preferences and adjust the maps accordingly. We use
theinteraction algorit hm of [Shahaf et al., 2012. T his algo-
rit hm lets the use provide feature-based feedbadk. Feature-
based feedback is a very natural way for spedfying prefer-
ences We show the user a tag cloud desaibing the papers
of the map. Clicking on a word lets the user adjust its im-
portance. For example, importance of 0.9 impliesthat 90%
of the documernts in which the word appears are interesting
to the user. The relative transparency of the model allows
usea's to make serse of feature weights.

Feaure-based feedback is egpedally useful in the reseach
domain, as uses can employ itt oindicate which authors and
venues they trust. In addition, since our coverage notion
is biased against newer papers (new papers did not have
enough time to make a big impact), the userscan indicate
their preferencesfor new, state-of-the-art papers.

When we increase the weight of the years 20052008 in
the reinforcement learning map, the resulting map contains
chains about more recent t opics, such as hierarchical rein-
forcement learning. When biasing for AAMAS (a conference
on autonomous agents and multiagent sysems), the result-
ing map includesa new chain about robot soccer.

In thefuture, it may beinteregingto formulate a notion of
basdine persmalizatio n, where default weights are set based
on authors' reputations: if an author has writ ten many high-
impact papers, his new paper is likely to be important. We
may also explore other notions of personali zed coverage, such
as [El-Arini and Guestrin, 2011; Yue and Guestrin, 2011].

11. CONCLUSIONS AND FUTURE WORK

In this paper, we have devised a method for constructing
metro maps of science. Given a query, our algorit hm gener-
atesa metro map: a concise structured set of reseach lines
which maximizes coverage of saient pieces of information.
Most importantly, metro maps explicitly show the relati ons
between the reseach lines

We conducted promising pilot user studies comparing
our system to two systems that dominate today's research-
related queries. The results indicate that our method can
help usersacquire knowledge e c iently.

In the future, we plan to experiment with richer forms
of input, output, and interaction models. Promising direc-
tionsinclude edge-annotation based on citation function, no-
tions of coverage that combine structure and content, paper-
basad and line-basedfeedback medcanisms, and the integra-
tion of higher-level semantic features. We have also cre-
ated a website that allows interacti ve visualization of metro
maps, which we hope to launch soon. We believe that metro
maps hold the potertial to become e ective toolsto help re-
saarchers cope with information overload.
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