Auditing a Batch of SQL Queries

Rajeev Motwani, Shubha U. Nabar, Dilys Thomas

Department of Computer Science, Stanford University

Abstract. In this paper, we study the problem of auditing a batch of SQL
queries: given a set of SQL queries that have been posed over a database,
determine whether some subset of these queries have revealed private in-
formation about an individual or group of individuals. In [2], the authors
studied the problem of determining whether any single SQL query in isola-
tion revealed information forbidden by the database system’s data disclosure
policies. In this paper, we extend this work to the problem of auditing a
batch of SQL queries. We define two different notions of auditing - seman-
tic auditing and syntactic auditing - and show that while syntactic auditing
seems more desirable, it is in fact NP-hard to achieve. The problem of se-
mantic auditing of a batch of SQL queries is, however, tractable and we give
a polynomial time algorithm for this purpose.

1 Introduction

Auditing is the process of going over past actions to determine whether they were
in conformance with official policies. In the context of database systems with data
disclosure policies, auditing queries is the process of going over past queries that
have been answered and determining whether these answers could have been pieced
together by a user to infer forbidden information.

The need for some sort of an audit mechanism in database management systems is
clear. For instance, on receiving targeted advertisements, an individual might suspect
his health-care provider of having leaked private information from his medical records
to interested parties. If the provider’s privacy policy stipulates that it does not release
patient data to external parties, it would be in the best interests of the provider to
be able to demonstrate compliance with this policy.

It is in this context that the authors of [2] introduced an auditing framework for
checking whether any one query that had been posed in the past accessed/revealed
some specified data. In their approach, users formulate audit expressions to specify
parts of the data that they would like to ensure was not wrongfully disclosed. The
audit component then returns all “suspicious” queries that accessed this data during
their execution.

In general, however, it need not be any single query on its own that is the cause
of a disclosure. Instead, the results of a few different queries in conjunction might
enable a user to infer private data and therefore we study the problem of checking
whether a batch of queries in conjunction could have caused an information leak.
We restrict ourselves to the class of select-project-join (SPJ) queries and discover
that an extension of the approach used in [2] would suffice for this class of queries.
We call this approach semantic auditing. A problem with semantic auditing is that
it requires that candidate queries actually be run against a backlog database which
corresponds to the state of the database that existed at the time that the query was
executed. A natural question to ask is whether this could be avoided. We formulate
the nﬁtion of syntactic auditing for this purpose, but show that it is in fact NP-hard
to achieve.

2 Related Work

Auditing aggregate queries: The problem of auditing queries has been extensively
studied in the context of statistical databases [4, 10, 3,6, 5,9%. Statistical databases
allow users to retrieve only aggregate statistics over subsets of its data. In this paper



we consider only SPJ queries and our work is orthogonal to the body of work on
statistical databases.

Perfect privacy: In [8,7] the authors consider the problem of ensuring “perfect
privacy”: as a database system releases various views of its data, does it disclose
any information at all about a view that must be kept confidential. This is exactly
the problem that we consider in this paper as well — the audit expression in our
scenario specifies the view that must be kept confidential and the queries answered
correspond to views of the data that were released. The notion of information dis-
closure that the authors use in [8, 7], however, is very strict in comparison, marking
as suspicious many seemingly innocuous views. For example, consider a database
containing the names and phone numbers of patients in a hospital and imagine that
we wish to keep secret all the phone numbers listed in this database. A query asking
for the names of all the patients in the hospital would be considered suspicious with
respect to the secret view under the “perfect privacy” notion of security even though
not a single phone number would have been reveealed by this query. This is simply
because by revealing information about the size of the database, it has revealed some
small amount of information about the phone numbers column.

Auditing SQL queries: The work most closely related to ours, and that we build
on is [2]. Recall the goal here is to identify every SQL query in the query log that
accessed sensitive information. Here the data being subject to a disclosure review is
specified very simply through an audit expression that very closely resembles a SQL

query:

AUDIT audit list
FROM table 1list
WHERE condition list

The audit expression can be viewed as an SPJ query, specifying a certain view of
the database that it wishes to ascertain was not disclosed. It essentially identifies the
tuples of interest from the cross-product of tables in the FROM clause via predicates
in the WHERE clause. The audit expression thus asks for all queries that accessed all
the audit list columns for any of these tuples. We illustrate this approach with
some examples from [2]. Consider the audit expression:

AUDIT disease
FROM Patients p
WHERE p.zipcode = 94305

This expression asks for all queries that accessed the disease column of any
patient living in the zipcode 94305. All such queries will be considered suspicious.
Now consider the SQL query:

SELECT zipcode
FROM Patients p
WHERE p.disease = ‘diabetes’

If any patient who has diabetes lives in zipcode 94305, this SQL query will be
considered suspicious with respect to the above audit expression. This is because,
in answering the query, the disease column of a patient living in zipcode 94305 was
accessed. On the other hand, this SQL query would not be suspicious with respect
to the audit expression given below:

AUDIT zipcode
FROM Patients p
WHERE p.disease = ‘high blood pressure’

This is because this audit expression is only interested in checking if the zipcode
of any patient with high blood pressure was revealed. But what if a patient has both
diabetes and high blood pressure? Although this patient’s address would be revealed
by the SQL query, the fact that he had high blood pressure was not relevant to the



query and so it is reasonable to deem the SQL query unsuspicious. Note that in
doing so, we take queries at their face value, assuming away background knowledge.
For instance, a user might know that most patients with diabetes also have high
blood pressure and thus his query ought to be considered suspicious. But in this
paper we assume that users do not use external information to formulate queries so
as to deduce information without detection.

We now formalize what it means for a query to be suspicious with respect to an
audit expression. Consider an SPJ query of the form Q = 7¢,, (op, (7)) and an audit

expression of the form A = 7c, (op,(T)). Here Cg(resp. 4y are the columns that are
projected out in @ (resp. A) and Pg(resp. 4) are the predicates of @ (resp. 4). We
also use Cé to denote all the column names that appear anywhere in the query Q.

Definition 1 (Candidate Query). A query Q is a candidate query with respect
to an audit expression A, if QQ accesses all the columns that A specifies in its audit
list, i.e. Cé D Cy.

Note that we require the query to access all the columns of the audit expression
to be called a candidate. Previous work [2] as well as other independent notions of
privacy [1] require this constraint. The much stronger notion of perfect privacy [8,
7], which does not require this would mark as candidates many innocuous views as
explained in Section 2.

Definition 2 (Indispensable Tuple). A tuple t € T is indispensable to a query Q
if the presence or absence of t makes a difference to the result of Q, i.e. nc, (opy (T)) #

oo (opy (T — {t}))

Definition 3 (Suspicious Query). A candidate query Q is suspicious with respect
to an audit expression A, if they share an indispensable tuple.

The idea is that an indispensable tuple for the audit expression would be one of
the tuples being subjected to a disclosure review. So if any one of these tuples is
also an indispensable tuple for a candidate query in the query log, then that query
would have accessed all the columns of the audit list for that tuple and should
therefore be considered suspicious. Note that the notion of indispensability here is
identical to the notion of criticality in [8, 7].

For the class of SPJ queries, this condition of sharing an indispensable tuple
translates to the following: a candidate query @ is suspicious with respect to an
audit expression A if and only if op,(0p,(T)) # 0. So now the audit process is
simple, for every candidate query, (), in the query log if the result of the running
the query op, (0p, (1)) is non-empty, then @ is marked as suspicious.

3 Auditing a batch of SQL queries

In general, no single query in isolation may access all the columns of the audit list,
instead a few queries together may cause sensitive information to be disclosed. For
example, the audit expression might be

AUDIT name, disease
FROM Patients p
WHERE p.zipcode = 94305

Here the data that needs to be kept secret is the association between names and
diseases of patients living in the zipcode 94305. Now consider the SQL queries:

SELECT zipcode
FROM Patients p
WHERE p.disease = ‘diabetes’



SELECT p.name
FROM Patients p
WHERE p.zipcode = 94305

Note that neither of these queries on their own reveal the association between
name and disease of any individual living in zipcode 94305, however the combination
of the queries does reveal something. For instance, if there is only one patient in
zipcode 94305 and this patient has diabetes, then these two queries have revealed
the name, disease association for that individual. In general, there are subtle ways in
which the results of queries could be combined to reveal information. One simplifying
assumption that we make here is that the adversary is very powerful and knows
exactly which tuples in the results of two queries join together, i.e. we assume that
in each query he implicitly also selects the key column. In this way our auditing
scheme is conservative - it may at times detect suspicious batches of queries even
if the results of these queries in reality could not have been easily joined. We now
extend the definition of suspiciousness to batches of SQL queries. We call this notion
semantic suspiciousness and will shortly contrast it with the notion of syntactic
suspiciousness that we define later.

Definition 4 (Semantically Suspicious Query Batch). A batch of queries, Q
1s said to be semantically suspicious with respect to an audit expression A if there is
some subset of queries Q" C Q such that (1) a tuple t € T is indispensable to both
A and every query in Q' and (2) the queries in Q' together access all the columns
of the audit list in A.

This definition of suspiciousness is a natural extension of the definition in [2] and
as in that case, lends itself to an auditing approach where a query is executed over
the database for every query in the query batch (we shall describe this approach
in Section 3.2). A natural question to ask therefore is whether the overhead of
executing all these queries can be avoided. To this end, we define another notion
of suspiciousness for a query batch that is independent of the actual data in the
database. We call this syntactic suspiciousness.

Definition 5 (Syntactically Suspicious Query Batch). A query batch is said
to be syntactically suspicious with respect to an audit expression if there is some
possible instantiation of database tables for which it is semantically suspicious.

Since the current database tables form an instantiation, it follows that if a set of
queries is semantically suspicious with respect to an audit expression A, then it is
also syntactically suspicious.

Note that a semantic auditor would test suspiciousness with respect to the un-
derlying database tables while a syntactic auditor would test suspiciousness of a
query batch irrespective of the underlying database tables. Unlike semantic audit-
ing, the hope is that syntactic auditing would require the auditor to only analyze
the structure of queries in the query log, not the answers to the queries on the actual
database tables. If an efficient syntactic auditor could be constructed, it could serve
other purposes as well. For example, it could be used to audit queries in an online
fashion - as queries are posed to the database system, the syntactic auditor could
check to see if a new query in conjunction with already answered queries could cause
a disclosure. If so, the query would be denied. A semantic auditor could not be used
for this purpose, because as shown in [5], denials that are based on the underlying
database instance can themselves leak information. Thus an efficient syntactic audi-
tor would be of great use and we next investigate whether such an auditor can even
be constructed.

3.1 Syntactic Auditing

Our main result here is that syntactic auditing is in fact NP-hard to accomplish.

Theorem 1 Testing whether a batch of queries is syntactically suspicious with
respect to an audit expression A is NP complete.



PRrOOF: We provide a reduction from 3-SAT. Consider a 3-SAT formula (11 V 212 V
213) A (21 V Z22 V Z23) A v (X1 V Zma V Tz ). We now create a set of queries and
an audit expression such that the queries are syntactically suspicious with respect
to the audit expression if and only if the above 3-SAT formula is satisfiable.

Let y1, 91, .- . Yn, Yn be the literals that appear in the clauses of the 3-SAT for-
mula. For each literal y; create a column Y; that can take on two possible values 0
or 1. For the j' clause (1 V xj2 V x;3) create a column X; that can take on only
one value. Let literal y; occur in clauses ji, jo, ... jx. We then create n query pairs
where the ith pair looks like:

QRZE]:MS]%LECT Xy Xins Xjos Vi
WHERE V; =1

and

FQR?O:I\/[SELECT le, ij, X]‘k, Y;
WHERE Y; =0

The audit expression is

AUDIT Xy, Xo, X3, ..., Xn
FROM T

Now if the 3-SAT formula is satisfiable, then this batch of queries is syntactically
suspicious with respect to the audit expression: Consider the queries Q;r for every

y; that is set to true in the satisfying assignment and @Q; for every y; that is set
to false. This subset of queries and the audit expression all share an indispensable
tuple - namely the tuple with Y; = 0 for every y; that is set to false and ¥; = 1
for every y; that is set to true. Moreover, since every clause is satisfied, this subset
of queries together selects all the columns that are in the audit 1list of the audit
expression.

Similarly, if the batch of queries is syntactically suspicious with respect to the
audit expression, then the 3-SAT formula must be satisfiable: Some subset of the
queries must share an indispensable tuple with the audit expression. It cannot be
the case that both Q:r and @; are included in this subset for no one tuple can be
indispensable to both Q;" and @); as their selection predicates are contradictory. For
each query in the subset of the form Q:r, we set y; to be true and for each query of

the form @; , we set y; to be false. For all the y;s that are not set in the process, we
set them arbitrarily to 0 or 1. Since the select columns of this subset of queries cover
all the columns in the audit 1list, this ensures that every clause is set to true.
Thus we’ve shown that the 3-SAT formula is satisfiable if and only if the above
query batch is suspicious with respect to the audit expression. O
Syntactic auditing of a batch of SQL queries is thus an NP-complete problem.
We therefore continue our search for a semantic auditor.

3.2 Semantic Auditing

Theorem 2 Testing whether a batch of queries is semantically suspicious with re-
spect to an audit expression A is NP complete, when the underlying database table
s giwen an implicit representation.

PRrROOF: Given a 3 — SAT formula, use the set of queries and audit expression from
Theorem 1. and set the table in the input to be {0,1} x{0,1}...x{0,1} x1x...x1,
where {0, 1} is for each of the binary columns and 1 for each of the unary columns.
The set of queries is semantically suspicious with respect to the audit expression
and the given table if and only if the 3 — SAT formula is satisfiable. Note that the



implicit representation of the table is essential for the input to be of polynomial size.

However in database systems, the database table is given explicitly. For this input
representation there are polyomial time algorithms to test semantic suspiciousness.

Theorem 3 There is a polynomial time algorithm to test semantic suspiciousness
of a batch of SQL queries.

PrOOF: We first run the audit expression as a select query on the database table,
modifying it slightly to select all the columns of the database. On the resulting view,
we now run every single query from the query batch. Each time a query accesses a
cell of the view, we mark it as accessed. If at the end of this process, there exists a
row in the view all of whose audit list columns are marked as accessed then the
batch of queries is syntactically suspicious with respect to the audit expression. To
determine exactly which set of queries from the batch were involved in the disclosure,
we can maintain with each marked cell, the set of queries that accessed it. The cross-
product of all the query sets for each cell of each disclosed row gives us all the query
sets that were involved in the disclosure. O

4 Conclusions

In this paper we introduced two broad class of auditors for auditing a batch of
SQL queries — syntactic auditors and semantic auditors. Syntactic auditors have
certain desirable properties — the auditing task is independent of the underlying
database instance and so in addition to the kind of auditing discussed here, such
auditors could alse be used for the task of online auditing. We however show that
syntactically auditing a query batch with respect to an audit expression is NP-hard.
We therefore are forced to use semantic auditors that have to execute the queries in
the query log to determine suspiciousness of a query batch with respect to an audit
expression.

References

1. G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Motwani,
U. Srivastava, D. Thomas, and Y. Xu. Two can keep a secret: A distributed architecture
for secure database services. In Conference on Innovative Data Systems Research, 2005.

2. R. Agrawal, R. Bayardo, C. Faloutsos, J. Kiernan, R. Rantzau, and R. Srikant. Auditing

compliance with a hippocratic database. In Proc. of the Intl. Conf. on Very Large Data

Bases, Sept. 2004.

F. Chin. Security problems on inference control for sum, max, and min queries. J.

ACM, pages 451-464, 1986.

D. Dobkin, A. Jones, and R. Lipton. Secure databases: Protection against user influ-

ence. In ACM TODS, 4(1), 1979.

K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable auditing. In Proc. of the ACM

Symp. on Principles of Database Systems, June 2005.

J. M. Kleinberg, C. H. Papadimitriou, and P. Raghavan. Auditing boolean attributes.

In Symposium on Principles of Database Systems, pages 86—91, 2000.

A. Machanavajjhala and J. Gehrke. On the efficiency of checking perfect privacy. In

PODS, 2006.

G. Miklau and D. Suciu. A formal analysis of information disclosure in data exchange.

In SIGMOD, 2004.

S. U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani. Towards robust-

ness in query auditing. In VLDB, 2006.

10. S. P. Reiss. Security in databases: A combinatorial study. Journal of the ACM,

26(1):45-57, 1979.

e B I O



