TENSOR BASED TEXT REPRESENTATION: A NEW DIMENSION IN IR

Ioannis Antonellis and Efstratios Gallopoulos

Department of Computer Engineering & Informatics, University of Patras, Greece

{antonell, stratis}@ceid.upatras.gr

(MSMs) [1]	Tensor based
structure: Sentences, Paragraphs,	 Approach: Exploit many levels of docum Observation: Every document is
earing at one, selected level of the	 sum of vectors resulting from document document's hierarchical structure these vectors can be further decomposed
with the "all 1's" vector e	next level of hierarchy's analysis – recursively we can apply this decompos – resulting objects are $(n + 1)$ -way tensor
Document's matrix	e.g. (sections × sentences × terms)
/ Local / global weighting schema	IR technique based on TSMs:
bocument Matrix model Document Document's matrix Best(k) proximation of ument's matrix Approximated document	Algorithm: Construct pseudo-tdm based Input: Document collection $\{D_1,, D_m\}$ Output: Pseudo-tdm A I. For each document D_j : 1. Prepare tensor \mathcal{T} 2. Select $k' \leq \min_n-\mathrm{rank}(\mathcal{T})$ 3. $a_j = \mathrm{unfold}(\mathrm{DENOISE}_{k'}(\mathcal{T}))e^{(t)}$ II. Assemble pseudo-tdm $A := [a_1,, a_m]$ • As function $\mathrm{DENOISE}_{k'}$ we experiment v (HOSVD) [3], High Order Orthogonal I Least Squares with Initialization and Regu
ent	 best precision/recall obtained using HOOI HOOI results on document vectors with clutering [4] for topic identification using the
k-plane clustering keywords from Cluster 1: president, visit, unannounced keywords from Cluster 2: palestinian, beach, gaza keywords from Cluster 3: wedding, party, sed on MSMs n_1 and $A_2 \in \mathbb{R}^{m \times n_2}$. Then for any k_1 , k_2 ,	Experimental evalu• MEDLINE dataset, artificial datasets to test the documents (MED_1, MED_2,, MED_10), Docu• Tensors and tdm's constructed using add-ons to the Matlab tensor toolbox [2]. \boxed{MED} \boxed{VSM} \boxed{MED} \boxed{VSM} $\boxed{1}$ $2(7\%)$ 2 $3(10\%)$ 3 $4(13\%)$ 3 $4(13\%)$ 4 $4(13\%)$ 72 5 5 $4(13\%)$ $6(2)$ 6 6 $3(10\%)$ 7 $4(13\%)$ 8 $3(10\%)$ $5(1)$ 9 $2(67\%)$ $7(2)$ 10 $6(20\%)$ $9(20\%)$ $9(3)$ Number of queries that each method answers with gr
$n_2)$]) (1)	Ref
(n_2)])	 I. Antonellis and E. Gallopoulos, Exploring terr In Proc. Text Mining Workshop, SIAM Data mini Brett W. Bader and Tamara G. Kolda, MATLA Tran. Math. Software, to appear. I. De Lathauwer, J. Vandewalle Dimensionality (R₁, R₂,, R_N) Reduction in Multilinear Algebr P. S. Bradley, O. L. Mangasarian, k-Plane Cluste C. Boutsidis, E. Gallopoulos, P. Zhang, R. Plen Factorization, MMDS 2006, poster D. Zeimpekis, E. Gallopoulos, TMG Software, ht

