
NEEDLETAIL: A System for Browsing Queries

Albert Kim
MIT

alkim@csail.mit.edu

Samuel Madden
MIT

madden@csail.mit.edu

Aditya Parameswaran
U. Illinois and MIT

adityagp@illinois.edu

ABSTRACT
Analysts performing data exploration often browse; i.e., pose a
query and then examine the details of a small number of the re-
sulting records (independent of the size of the query result). In a
typical session, analysts will start with one browsing query, exam-
ine a few of the resulting records, and then repeatedly issue new
browsing queries by adding or removing predicates from their pre-
vious queries until they eventually gain a better understanding of
the dataset. Unfortunately, traditional database systems are not en-
gineered towards browsing: instead, these systems operate in an
all-or-nothing manner, taking as long as it takes to return the entire
set of results, however large it may be.

To this end, we demonstrate NEEDLETAIL, a database system
tailored towards an alternative database query interaction paradigm:
browsing. NEEDLETAIL makes efficient use of memory to store
special bitmap indexes (called “swift indexes”) that enable rapid
retrieval of a small number of query result records. A key op-
timization challenge is ensuring that these indexes respect mem-
ory constraints while imposing as little additional retrieval over-
head as possible. As part of this demonstration, we will show-
case NEEDLETAIL’s “swift index optimizer”, allowing conference
attendees to view the impact of NEEDLETAIL bitmap optimiza-
tions. We will also demonstrate the use of NEEDLETAIL versus
traditional database systems in a browsing setting on a variety of
real-world datasets.

1. INTRODUCTION
Data analysts exploring large volumes of data often pose queries

to a database and then examine a few records from the query result.
They then repeat this process by modifying or reformulating the
queries, until they are satisfied with the insights gathered. We call
such workloads browsing workloads. For instance, data analysts
working in an internet advertising firm may browse the profiles of
a few individuals who live in Boston and clicked on a specific ad
campaign. Based on what they observe, they may then examine
profiles of a few individuals who live in Cambridge and clicked on
the same ad, or those who clicked on alternate ads, to get a better
understanding of their target audience.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact copy-
right holder by emailing info@vldb.org. Articles from this volume were
invited to present their results at the 40th International Conference on Very
Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 4
Copyright 2013 VLDB Endowment 2150-8097/13/12.

Unfortunately, on large datasets, this process can be slow or un-
wieldy, since traditional database systems are not engineered for
interactive exploration. Instead, given a query, traditional systems
often operate in an all-or-nothing manner, taking a long time to re-
turn all the records in the query result, no matter how large it may
be. Analysts have to wait until the entire query result is generated
before they can examine them or formulate alternate queries.

While traditional databases do provide some limited support for
“early return” of query results, they are not applicable to browsing.
For example, top-k query processing systems [11] are optimized to
return k result records: however, since the goal is to return the top-
k records, the index structures and algorithms are very different and
are not be applicable in an interactive browsing scenario. Addition-
ally, although many databases support a LIMIT clause, allowing the
user to indicate that only a few result records are desired, the index
and data storage structures to efficiently execute queries with such
a clause have not been well explored.

To this end, we present our system, titled NEEDLETAIL1, tai-
lored towards this new, browsing-based database interaction paradigm.
A browsing query returns a small, predetermined number of records
that satisfy the query conditions as quickly as possible, independent
of the total number of records in the query result. This way, ana-
lysts can issue a browsing query, instantly examine a “screenful”
of records, before refactoring or modifying the query and repeating
this process until they are satisfied.

There are two challenges in building NEEDLETAIL to support
browsing queries: First, given a query, NEEDLETAIL must return
the desired number of records as quickly as possible. Performance
is even more crucial in such an interactive exploration scenario.
Second, since the queries issued by analysts are ad-hoc, we cannot
pre-compute and store the query results for all queries in advance,
nor can we use traditional indexing structures like B-trees, since
combining B-trees for unpredictable queries can incur high com-
putation overhead.

To deal with both of these challenges, NEEDLETAIL instead lever-
ages a specially optimized in-memory bitmap index structure, called
the swift index. Traditional in-memory bitmap indexes allow rapid
retrieval of records matching ad-hoc predicates specified on the fly
by a user. However, while compression schemes for bitmap indexes
have been well-studied [13, 18, 19], the size of compressed bitmap
indexes can still be large, especially if the original dataset is itself
enormous—a common scenario in the era of “big data”.

The key idea in NEEDLETAIL is that we can store partial bitmaps,
i.e., bitmap indexes where only the first x% (say 10%) of the records
are indexed. These partial bitmaps allow us to retrieve a small num-
ber of the matching records needed to allow a user to browse results
for any query. Specifically, the number of records that need to be

1NEEDLETAIL is named after the fastest bird species in existence (a type of swift) [4].



indexed for browsing in NEEDLETAIL is proportional to the num-
ber of records the analyst wishes to view at one time rather than
the size of the original dataset. This means we can always be sure
that the size of the index will remain relatively small. We can also
apply standard bitmap compression schemes developed for regular
bitmap indexes to ensure that our partial bitmap structure can fit in
memory. In addition, we introduce three novel bitmap compression
schemes that are also employed by the swift index-optimizer.

Since record retrieval speed remains the top priority for brows-
ing, NEEDLETAIL’s swift index-optimizer selects the optimal com-
bination of compressed and partial bitmap structures while respect-
ing the memory budget specified by the user. In fact, a guarantee
our optimized index structures provide is that NEEDLETAIL will
not do more than a small constant multiple of the amount of work
it would have done if it knew exactly where to find the desired
output records. Our techniques are of independent interest for opti-
mizing performance given constraints on memory, wherever bitmap
indexes are used.

As part of this demonstration, we will showcase NEEDLETAIL’s
swift index optimizer, which will allow the conference attendees
to view the impact of NEEDLETAIL bitmap optimizations, given
constraints on memory and other system parameters. We will also
demonstrate the use of NEEDLETAIL versus traditional database
systems for browsing queries on a variety of real-world datasets.

2. PROBLEM AND SOLUTION OUTLINE
Setting: Our goal is to build a database system that accepts as input
a regular SQL query Q operating on a database D, and returns as
output k (a predetermined, fixed, small number, typically in the
few tens or hundreds) records from Q(D), as long as the number
of records in the result for the original query Q(D) is greater than
or equal to k. If the number of records in the query result Q(D)
is less than k, then the entire query result Q(D) is displayed. Any
such database system is called a k-browsing database system.

We focus our discussion in this section on simple selection queries
on a star schema; this includes the example query discussed in
the introduction on providing records corresponding to individu-
als who lived in Boston and clicked on a specific ad. However, our
query processing techniques and indexing structures are not limited
to this subset of queries.

The kind of query we focus on for this discussion is a selection
query, abstractly expressed using the following DNF (Disjunctive
Normal Form):

Q = (Ai11 = ai11 ∧ Ai12 = ai12 ∧ . . . ∧ Ai1r1
= ai1r1

)

. . .

∨ (Ail1
= ail1

∧ Ail2
= ail2

∧ . . . ∧ Ailrl
= ailrl

)

For clarity, we focus on simple equality-based predicates instead of
range predicates, even though our queries can involve range predi-
cates, and our index structures can handle range predicates as well.
Query Processing Alternatives: We next consider various options
for processing queries like Q above. Naturally, coupled with query
processing strategies, we do need to decide up-front on the indexing
strategies, without which such a system will simply not be able to
answer queries at interactive browsing speeds.

Since the queriesQ that can be applied to a k−browsing database
system can be arbitrary, ad-hoc, and complex, this rules out several
candidate methods for processing such queries:
• Sequentially scanning the entire relation until we find k records
∈ Q(D) can be incredibly slow, especially when Q is complex.

• Conventional indexes, such as B-tree indexes, are also problem-
atic. Since queries Q are ad-hoc and unpredictable, we must

either index all attributes and intersect the B-trees at query time
or create joint B-tree indexes across multiple attributes. The first
scheme leads to high memory consumption and high computa-
tion overhead, while the second scheme leads to exponentially
many indexes (every subset of attributes must be indexed).

• Approaches based on sampling or precomputation are not feasi-
ble either because we need to account for every possible ad-hoc
query Q (where the number of attributes can be in the hundreds,
and the number of values per attribute in the thousands), and
generate appropriate samples beforehand — the set of samples
is likely to take up too much space.

Figure 1: Bitmap Indexes
Instead, NEEDLETAIL employs a bitmap-based index. We first de-
scribe traditional bitmap-based indexes before we describe NEEDLE-
TAIL’s index structure. In traditional bitmap-based indexes (also
displayed in Figure 1), we store a bitmap array V j

i for each value
aji taken by each attributeAi, i ∈ {1 . . . C}. The rth entry of these
arrays record whether the rth record in the relation has value aji for
attribute Ai (1 if yes, 0 if no). Thus, in order to evaluate a query
like Q above, assuming these bitmaps for all Ai fit in memory, one
simply needs to “AND” all the bitmap arrays for all the conditions
joined together by conjunctions and “OR” all the conditions joined
together by disjunctions. In fact, we do not need to perform this
operation for the entire bitmap array; we can stop once we have
isolated k records satisfying the query. At that point, these records
can be retrieved from disk and returned to the analyst.

As illustrated above, bitmap-based indexes can result in efficient
retrieval for arbitrary, complex selection queries. However, for very
large datasets, vanilla bitmap-based indexes do not suffice, since
they take up too much memory. Therefore, our focus is on design-
ing index structures to support browsing, ensuring that the space
utilization is within the memory available, such that the time taken
to retrieve k records ∈ Q(D) is minimized.
Formal Question: Thus, the formal problem we aim to solve is the
following: Given constraints on memory, database size, cardinali-
ties of attributes, build in-memory indexes so that the time taken to
retrieve k records is minimized under three settings:
• for all selection queries in the worst case
• for all selection queries on average
• for queries on average given a workload
We next describe the index structure we use to address the problem.
Swift Indexes: NEEDLETAIL uses a specially optimized bitmap
index structure called the swift index. Swift indexes benefit from
two kinds of optimization strategies that enable it to take up signif-
icantly less memory than bitmap indexes.
• Partial Bitmaps: Since k-browsing database systems only need

to return k results per query, we can get away with storing less
information in memory. For each array V j

i , we store only a part
of it, i.e., we can retain only the first x% of the records (where x
depends on both j and i).

• Compressed Bitmaps: Since bitmaps save a lot of redundant in-
formation, we can reduce the amount of information necessary



by using various compression schemes. We consider six com-
pression schemes in NEEDLETAIL: the first three compression
schemes have been used for bitmaps in the past, while the re-
maining are novel schemes that we introduce. We discuss com-
pression schemes next.

Compression Schemes: Compression schemes for bitmaps allow
us to store more information in a compact form. However, for many
compression schemes, this leads to loss of information; that is, we
may end up having to retrieve more records than we would if we
didn’t perform compression. (All the schemes we study produce
only false positives, no false negatives; thus, at most, we will re-
trieve more records from disk than necessary.) One of our key con-
tributions is to be able to reason about how we can leverage the
benefits of all the optimization strategies—compression schemes
and partial bitmaps—while not inducing too many false positive
retrievals. We consider the following compression schemes.
• Base-Encoding [13]: This scheme maps multiple bitmap arrays

into a smaller number of arrays by encoding them using a small
number as a base. This scheme produces no false-positives.

• Data Compression [18]: This scheme involves the use of a loss-
less data compression technique, such as Run Length Encoding,
or Word-Aligned Hybrid (WAH) code [17] to compress each
bitmap array into a smaller number of bits. This scheme pro-
duces no false-positives.

• Range-Binning [13]: This scheme maps bitmap arrays for a con-
secutive range of values of an attribute ({V j

i . . . V
j+k
i } in our

notation) into one bitmap array. The value at index r for the re-
sulting array is set to 1 if the rth record has the given attribute
equal to any value in the range.

• Value-Binning: This scheme is a generalization of range binning,
in which we allow bitmap arrays for any arbitrary set of values
for a given attribute to be mapped into a single bitmap array.

• Attribute-Binning: This scheme maps bitmap arrays for different
values of different attributes into a single bitmap array.

• Tuple-Binning: In this scheme, a specific index in the bitmap
array refers to a collection of records instead of a single record.
For instance, the value at index r for a bitmap array is set to 1 if
any of the [αr, α(r + 1)], α>1, records has that specific value.

Optimization: Given these optimization strategies (compression
and partial bitmap schemes), the time taken to retrieve k records
depends on two quantities:
• The time taken to retrieve records from disk. Often, the total

number of records retrieved in order to give us k records is larger
than k (due to the false positives induced by the compression
schemes).

• The time taken to lookup bitmap arrays in memory and the time
taken to perform AND and OR operations on bitmap arrays in
memory until we find k records that satisfyQ(D); often, if there
are false positives, we may need to do a lot more operations on
bitmap arrays to find the desired k records.

In practice, the first quantity dominates the second, so we only op-
timize the first quantity.

As it turns out, designing optimized swift indexes (by identifying
the best combination of compression and partial bitmap schemes)
given constraints is NP-Hard; however, we can use an ILP solver
to identify the best combination of optimization strategies the swift
indexes should employ to minimize retrieval time while adhering
to the memory budget.

3. SYSTEM DESCRIPTION
When preprocessing a dataset, NEEDLETAIL allows the database

administrator to specify a memory budget. NEEDLETAIL then runs

the swift index optimizer to design the swift indexes to minimize
retrieval time while adhering to the provided budget. In addition to
building the index structures during preprocessing, NEEDLETAIL
also stores the original dataset on disk in column-oriented fashion
so that at query time, matching records can be verified quickly (in
case of false positives) before being returned to the user.

The current implementation of NEEDLETAIL is written in C++
and uses the Boost library [1] for its bitmap implementation. Par-
allelization is currently employed in NEEDLETAIL, but it is only
used for concurrent reading and preprocessing of the original data.
However, we plan to have support for parallel query processing
in the future; because we assume a read-only workload2, we can
safely have multiple threads operating on the index structure con-
currently. As of the moment, NEEDLETAIL is constrained to run-
ning on a single machine, but we plan to extend NEEDLETAIL to
operate in a distributed environment. This allows NEEDLETAIL to
spread its index structure across multiple machines if the memory
space on a single machine is not sufficient. Once again, assuming
a read-only workload makes this distribution trivial. By choosing
to distribute NEEDLETAIL across multiple machines, we may also
gain load balancing benefits for free.

4. RELATED WORK
The work related to NEEDLETAIL can be placed in three categories:
Approximate Query Processing: Over the past two decades, there
has been a lot of work on approximate query processing, as exam-
ples, see [7,9,10,12]. Garofalakis et al. [8] provides a good survey
of the area. There are multiple systems that support approximate
query processing, including BlinkDB [6] and Aqua [5]. All of these
systems focus on approximating aggregate queries, focusing on op-
erators such as SUM, AVG, VAR. Our work is complementary to the
work on approximating aggregation queries, since we focus primar-
ily on selection queries, returning a subset of the query result.
Bitmap Optimization: There has been a lot of work on designing
efficient bitmap schemes [13,14,15,18,19]. However, none of these
papers consider partial bitmaps, which are relevant primarily in the
browsing context. Furthermore, none of these papers consider the
variety of other optimizations that we consider for swift indexes.
Limit Clause, Rate-Based Optimization, and Top-K: A number
of database systems support a LIMIT clause: the way queries with
such a clause are handled traditionally is by selecting a pipelined
execution plan with no blocking operators (e.g., opting for nested-
loops join instead of sort-merge join). Another related area of re-
search is selecting query plans that maximize the output rate (i.e.,
the rate at which records are generated) [16]. However, there has
been no work designing index structures to enable performant exe-
cution of ad-hoc browsing queries.

Also related is the work on top-k queries, which return the top
k records of dataset ordered by a specified attribute. Although the
work done in this field is extensive as demonstrated by Ilyas et al.’s
survey [11], the browsing paradigm is markedly different from the
top-k paradigm because we do not need to consider the ordering of
the resulting records. Instead, NEEDLETAIL focuses on building
index structures which return any k records as fast as possible.

5. DEMONSTRATION DESCRIPTION
We will demonstrate two aspects of NEEDLETAIL: First, through

simulation, we demonstrate how NEEDLETAIL’s swift index opti-
mizer takes into account the available memory, as well as other

2Although we assume a read-only workload to support parallel query processing with-
out locks, all the techniques discussed thus far can handle mutations in the dataset.



database parameters, to build optimized swift indexes that retrieve
as few additional (false positive) records as possible to return k re-
sult records for any query, while respecting memory constraints.
Second, we demonstrate on three real datasets, how NEEDLETAIL
returns results orders of magnitude faster than existing database
systems for browsing. We describe both these aspects in detail next.

5.1 Index Optimization Comparison
In our first demonstration, our goal is to illustrate to conference

attendees how NEEDLETAIL’s index optimization algorithms take
as input, system and dataset parameters, and output a set of swift
indexes, optimized for the scenario at hand.

Attribute Values

+ add another

Memory

No. of Tuples

Compare 
Optimizations

Range-Bin
vs.

Arbitrary-Bin

Compress

Base-Encode

Tuple-Bin

Compare

%

Value-Bin

Partial Bitmap

First Scheme

Range-Bin

Arbitrary-Bin

Compress

Base-Encode

Tuple-Bin

%

Value-Bin

Partial Bitmap

Second Scheme

Figure 2: Swift Index Optimizer Input Parameters
We will provide to conference attendees an interface like Fig-

ure 2, where they can specify input parameters, including:
• the number of distinct values for each attribute in the dataset
• the amount of memory available
• the number of records in the dataset
For the given set of input parameters, the attendees may also choose
to compare two sets of optimizations: NEEDLETAIL’s swift in-
dexes, by default, use all these optimizations. Once the attendees
have chosen two sets of optimizations to compare, and have clicked
on the compare button, a results pane like Figure 3 (one for each of
the sets of optimizations) is displayed. The results pane provides

96%Memory Usage

False Positives 5:1

Retrieval Time 8 ms

Memory Breakdown

First Scheme

92%Memory Usage

False Positives 7.5:1

Retrieval Time 12 ms

Memory Breakdown

Second Scheme

47

2825

56

24
20

Figure 3: Index Result Display
the following information:
• the percentage of memory used for indexes
• the worst-case false positive rate, i.e., the ratio of the number of

records that can be retrieved using the indexes, to the number of
records that actually satisfy the query (Note that NEEDLETAIL
can also optimize for the expected false positive rate, or the false
positive rate given a workload, but we do not display that here.).

• the time taken to retrieve k records, assuming default system
parameters

• the breakdown of how memory is used across different attributes
By comparing the results pane for two sets of optimizations, at-
tendees can gain intuition for which swift index optimizations are

most crucial and which ones only provide marginal improvement.

5.2 Performance Experiments
In this demonstration, we will allow conference attendees to ac-

tually see NEEDLETAIL in action on two separate datasets:
• Flight Quest Data [2]: This dataset is 50GB and contains various

features (e.g., airport, delay time, aircraft type) about flights that
occurred over the span of 12 weeks in 2013.

• Sloan Digital Sky Survey [3]: This dataset is tens of TBs and
contains a wide variety of scientific measurements made using
optical and infrared spectroscopy. The dataset covers close to a
million galaxies.

These datasets represent both a variety of scenarios where NEEDLE-
TAIL could be used (data journalism vs. scientific data analysis),
and also represent datasets of varying sizes, showing that NEEDLE-
TAIL gives us significant speedups even on very large datasets.

For any of these datasets, the users will be able to input a SQL
query of their choice, or choose one of our preselected queries from
a drop-down menu. The users can also select the number of desired
records k they want to look at.

We will run the query side-by-side on NEEDLETAIL and on Post-
gresSQL, allowing the users to compare how quickly results are
generated. This comparison will illustrate to the attendees how tra-
ditional databases are unsuited for browsing, and how systems like
NEEDLETAIL can provide immense benefits on practical datasets.

6. REFERENCES
[1] Boost libraries. http://www.boost.org/.
[2] Flight quest data. www.gequest.com/c/flight2-main/data.
[3] Sloan digital sky survey. www.sdss.org.
[4] Swift. https://en.wikipedia.org/wiki/Needletail.
[5] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The aqua

approximate query answering system. In Proceedings of the 1999 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’99,
pages 574–576, New York, NY, USA, 1999. ACM.

[6] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
Blinkdb: queries with bounded errors and bounded response times on very large
data. In EuroSys, pages 29–42, 2013.

[7] K. Chakrabarti et al. Approximate query processing using wavelets. In VLDB,
pages 111–122, 2000.

[8] M. N. Garofalakis and P. B. Gibbon. Approximate query processing: Taming
the terabytes. In Proceedings of the 27th International Conference on Very
Large Data Bases, VLDB ’01, pages 725–, San Francisco, CA, USA, 2001.
Morgan Kaufmann Publishers Inc.

[9] P. B. Gibbons. Distinct sampling for highly-accurate answers to distinct values
queries and event reports. In VLDB, pages 541–550, 2001.

[10] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In
J. Peckham, editor, SIGMOD 1997, pages 171–182. ACM Press, 1997.

[11] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Computing Surveys (CSUR),
40(4):11, 2008.

[12] C. Jermaine et al. Scalable approximate query processing with the dbo engine.
ACM Trans. Database Syst., 33(4), 2008.

[13] N. Koudas. Space efficient bitmap indexing. In CIKM, pages 194–201, 2000.
[14] D. Rotem, K. Stockinger, and K. Wu. Minimizing i/o costs of

multi-dimensional queries with bitmap indices. In SSDBM, pages 33–44, 2006.
[15] R. R. Sinha, M. Winslett, K. Wu, K. Stockinger, and A. Shoshani. Adaptive

bitmap indexes for space-constrained systems. In ICDE, pages 1418–1420,
2008.

[16] S. D. Viglas and J. F. Naughton. Rate-based query optimization for streaming
information sources. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’02, pages 37–48, New York,
NY, USA, 2002. ACM.

[17] K. Wu, E. J. Otoo, and A. Shoshani. A performance comparison of bitmap
indexes. In Proceedings of the tenth international conference on Information
and knowledge management, pages 559–561. ACM, 2001.

[18] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap indices with efficient
compression. ACM Trans. Database Syst., 31(1):1–38, 2006.

[19] K. Wu, A. Shoshani, and K. Stockinger. Analyses of multi-level and
multi-component compressed bitmap indexes. ACM Trans. Database Syst.,
35(1), 2010.

http://www.boost.org/
www.gequest.com/c/flight2-main/data
www.sdss.org
https://en.wikipedia.org/wiki/Needletail

	Introduction
	Problem and Solution Outline
	System Description
	Related Work
	Demonstration Description
	Index Optimization Comparison
	Performance Experiments

	References

