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1. INTRODUCTION

The exterior scattering problem is a common problem in electromagnetics and
acoustics and consists in finding the field generated by a body on which a wave is
impinging. If the occuring wave is assumed to have harmonic time dependence and
constant propagation speed, the field is given by the solution of the Helmholtz or
reduced wave equation

-Au — k%u = f,

where the wave number k is a real constant. If we denote the (assumed smooth)
boundary of the scattering body by v and the region exterior to it by D, the problem
to be solved is

1) -Au — k2u = f in D,

(2) U=gon¥y
. a-1 . _

(3) rll.ngcr (ur — iku) = 0.

Here, d is the dimension of the underlying space, f and g are given functions
and (3) is the Sommerfeld radiation condition. The latter can be interpreted as a
boundary condition imposed at infinity; it serves to specify a unique solution, in
this case consisting of only outgoing waves. Rather than the Dirichlet boundary
condition (2), Neumann, impedance or mixed linear boundary conditions could also
be considered.

In this paper, we introduce a very efficient method for solving this problem
numerically. It employs a finite difference discretization using a regular grid on a
bounded computational domain 2 C D. The resulting linear system of equations is
solved by a fast Poisson solver. The incorporation of the radiation condition results
in the addition of only very few steps of an iterative method for solving linear
systems to the overall solution algorithmif a cyclic reduction based fast solver is
used, and no iteration at al is necessary for a fast solver based on Fourier techniques.
Finally, the inclusion of the possibly irregularly shaped boundary + of the scatterer
into the regular grid necessary for the fast solver is accomplished with an imbedding
technique known as the capacitance matrix method.

This work was supported by the National Science Foundation under Grant NSF CCR-8821078.
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2 OLIVER ERNST

When attempting to solve this problem with discretization methods, the infinite
domain must be truncated to a so-called computational domain, which we shall de-
note by €2, on which an approximate solution is sought. This introduces an artificial
boundary, denoted by B, so that Q2 = v U B. In reformulating the problem on the
domain €, the question arises as to how to translate the Sommerfeld condition to
a boundary condition on B to yield a well-posed problem. Ideally, the boundary
condition should result in a problem the solution of which is the restriction to Q
of the solution of (1)-(3). Boundary conditions having this property are known as
eract boundary conditions. A great advantage of exact boundary conditions is that
they allow the artificial boundary to be placed very close to the scatterer, thus
reducing the computational effort. This contrasts with a class of approximations
to (3) which are vaid in an asymptotic sense, i.e. yield better approximations the
further away the artificial boundary is placed from the body, cf. [1]. Finaly, the
boundary condition on B should be easily incorporated into the numerical method
being used to solve the problem on €2.

We have chosen to use the boundary condition devised by Keler and Givali in
[9], which is applicable if the artificial boundary B is a circle or a sphere. It is an
exact boundary condition which specifies the normal derivative u,, of the solution
u on B as an expression involving a surface integral of u over B. The mapping thus
defined is cdled the Dirichlet to Neumann (DtN) map, since it relates Dirichlet
data to Neumann data on the artificial boundary. Even though this is not a local
boundary condition in the sense that the prescribed values of u, depend on the
vadues of u on al of B, it can be very efficiently integrated into the finite difference
scheme, as will be shown below.

The paper is organized as follows. In section 2, we describe the finite difference
discretization of the Helmholtz equation on an annulus and the resulting linear
system of equations as well as the two orderings of the unknowns which permit two
classical fast solvers to be used for its solution. Section 3 gives a derivation of the
DtN mapping used to specify the exact radiation boundary condition and shows
how it is incorporated into the discrete problem. The imbedding of the scatterer
into the problem on the regular grid is described in section 4 and numerical results
are collected in section 5.

1.1. Acknowledgment. The author would like to thank his advisor G.H. Golub
for continuing support and guidance as well as JB. Keller for introducing him to
the DtN boundary condition.

2. FAST SOLVERS

Since al but the most crude approximations of the Sommerfeld condition at
infinity include expressions involving the distance to some origin, the problem is
most naturally formulated in polar coordinates (z, y) = (r cos#, rsin ). In this
coordinate system, the Helmholtz operator as well as most local approximations
to the Sommerfeld condition still allow for the separation of variables, so that
classical fast solvers can be used to solve the discrete problem. One such agorithm
is described in [13] and the derivation in this section largely follows that there.
Since the fast solver will be used in conjunction with an imbedding method which
centers the scatterer at the origin, it suffices to provide a fast solver on an annulus
A(po, p1) = {(z, y) € IR*|pZ < 2® + y? < p?} with a Dirichlet boundary condition
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imposed on the inner boundary r = pp and a Neumann boundary condition on
the outer boundary = = p;. The inner radius py will then be chosen small enough
for the corresponding circle to lie completely within the imbedded body. This also
avoids the coordinate singularity at the origin/

In polar coordinates, the Helmholtz equation takes on the form

1 1 2, —
(4) -;_-(ru,-),. = Tguee k*u=f.

To discretize the radia and angular coordinates, we now choose two positive integers
m and n and define the grid spacings to be Ar = (p; — po)/m and A = 27 /n.
The grid then consists of the points (r;, 6;) where

ri=po+iAr :=0,1,...,m
6; = jJAB i=1...,n

To find approximations u;; to the values u(r;, ;) of the solution at the grid
points, we perform the usua Taylor series expansion of u about a grid point to arrive
at the following finite difference formula with a truncation error of O(Ar? + A#?):

1
rAr? [rip1j2(ivr; — wij) — ric1y2(ui; — viz1,j))
(%) n

2= fis
—ags Wi = 2ui ¥ o] = Kouig = fi
1

To apply the Dirichlet boundary condition a r = po, We replace ug; with g(;) in
the equations corresponding to the grid points (r1, ;). The Neumann condition

ur(p1, 0) - h(8)

is approximated by

Um+41,; = Um-1,j - .
2AT - h(0])7

where the fictitious values um,m41; ae eliminated by inserting
Umt1,j = Um-1,; + 2Ar h(0;)
into the equation (5) corresponding to the grid points (rm, 6;).
2.1. An ordering permitting cyclic reduction. We order the unknowns by

grouping together those on the same ray, moving outward on each ray. This results
in a linear system of equations

Bu=f ,
the matrix of which has the block structure

A+2D -D -D
-D A+2D -D

o
1l

-D A+2D -D
-D -D  A+2D



4 OLIVER ERNST

the m x m matrices A and D being given by
1 .. 1 1
D= —mdlag(r—f,... ,;—g:)
and

(a1 + bl) -b;
—ay (a2 +b2) —b

—am-1 (@m-1+ bm-1) —bm-
—(am + bm) (am +bm)

with a; = 7‘,-_1/2/(1‘,‘A7‘2) and b;‘ = r.~+1/2/(r,~Ar2).
The solution vector u and right hand side are given by

u) fl
U2 f2
(6) u=| . | andf=
u, f,
where
Uyj fl,j + 019(9.1‘)
Uz, ; f2,.1’
(7) uj = | | and fj = | |
Um—1,j fm-1
Umj 1 Jm,j + 28rbnh(6;)

If we scde the system by the diagona matrix
S=blockdiag(D™!,..., D™1),

the coefficient matrix becomes

D 'A+21 - -
- D-lA+2I - |

-l D 1A +21 -l
- - D 1A+21

which in Kronecker sum notation takes on the nice compact form
Ber = In @ (DA + T ® .

The matrix T is the circulant
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Systems with this structure can be solved using the well-known cyclic reduction
dgorithm in O(mn log n) arithmetic operations, cf. {3] or [14].

2.2. An ordering suitable for Fourier techniques. Ordering instead along
the concentric circles of grid lines, the scaled coefficient matrix is given by the
Kronecker sum

Br =In®T+(D'A)® I

The block diagonal matrix I, ® T is diagonalized by a fast Fourier transform with
known eigenvalues. This leaves m uncoupled tridiagonal systems to be solved,
which leads to an O(mn log n) agorithm. Details can be found in [3]. As we shall
see below, the discrete DtN boundary condition is easily incorporated into this
algorithm.

3. THE DTN BOUNDARY CONDITION

3. 1. The DtN mapping. We introduce the finite computational domain Q to be
the region bounded by the circle B of radius p; about the origin and the curve .
The radius p; is chosen large enough for y to lie completely in the circle's interior.
In addition, we assume that the support of the source function f in (1) is contained
in this circle as well. To find an appropriate boundary condition on B, we solve the
exterior problem

(8) Au + k*u=0 inext(B)
9) u= u(p1,0) on B
(10) rl_l_.ngorT(u,— iku) = 0.
The solution can be found by separation of variables to be cf. [9]
0
1 HO(kr) [
11 u(r, 8)= = —/ u(r,8") cos v(6 — ¢') de’
(1) (0= 23 S | o Hr s 0= 9)

where H.(,l) is the Hankel function of the first kind of order v and the primed
summation symbol indicates that the first term in the series is multiplied by %
Since the series converges uniformly, we can differentiate it with respect to » term
by term. Evaluating this for r = p; gives

B H(l)'(kpl) 27
(12) ur(p1,0) = = D —5 —
v=0 4iv (kp1) 00

Equation (12) expresses the Neumann data u.(p1, 8) in terms of the Dirichlet
data #(p1, ) on B, hence the mapping M is called the Dirichlet to Neumann map.
It provides the proper boundary condition on B. The continuous problem on the
computational domain thus becomes

u(r,0') cos v(6 — 0') d€' =: (Mu)(p1,6).

(13) -AU — kPu=f inQ
(14) u=g ony
(15) u, = Mu on B.
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3.2. The discrete radiation condition. For the rest of this section, we assume
that the inner boundary curve y is a circle about the origin with radius pg < p1
so that the computational domain is the annulus Q@ = A(po, p1). Once we have
determined how to discretize the DtN boundary condition, we can incorporate it
into the fast solvers for the annulus described in section 2 and solve the problem,

(16) Au—-ku=f inQ
(17) u(po, 0) = g(0)
(18) u.= Mu onB.

The resulting fast solvers for (16)-(18) will then be combined with an inbedding
technique in section 4 to accomodate more irregular boundary curves y.

To discretize (12), the integral is approximated with the trapezoidal rule, which
has the same order of accuracy as the finite difference method defined by (5). If
we aso truncate the infinite series after the first N + 1 terms, the discretized DtN
boundary condition becomes

(1)
Umtrp = Um-1p _ K ¢~ Hu ' (kp1) (V 2 AO)
2Ar T or VZ:O H,Sl)(kp ) Z 2 COs (P q) n

= C[um,lum,Z <. “m,n]T:

where p=1,..., n and the matrix C is given by the sum of matrices
N
C= Z e, Cy
r=0

with coefficients

kH(l)l( kpllAg
"H(l)(kpl)
and matrices C, given by

27
(Cy)pq = cos v(g — p)—n— = €(g—p)mod n-

Thus, each of the matrices C, is circulant. We also note here that the matrix C is
symmetric but not Hermitian, due to the complex values of the Hankel functions.
Matrices with this property are known as ‘complex-symmetric’ matrices.

The question of how many terms to retain in the series is answered in [9] by
choosing N such that the error incurred by the truncation of the series is on the
same order as the error of the discretization method being used. They give the
heuristic formula

logh
(19) Nopt:mal plog p1
where p is the order of the discretization error and h is a measure of the mesh

spacing.

The matrices C,, v =0, ..N are al circulant matrices with discrete cosines
as entries. We now show that the matrix C describing the discrete DtN boundary
condition has only very few distinct eigenvalues.
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Proposition 3.1. The non-zero eigenvalues A" j=0,1,...n—10f the matrices
C,, v=0,...,Naregivenhby

=l 3 fr v=03
v n for v#0,%
and
n
32, =
proof. AN arbitrary circulant matrix
co €1 -+ Cp-1
C Ch-1 €0 ‘' Cpn-2
1 Co . . . co
has the orthogonal system of eigenvectors z;, | =0, ..,Nn— 1given by
(zj)s = ei%js-
The corresponding eigenvalues are given by
n-1 o
Q:Zc,e"‘:", j=0,...n-1
s=0

Inserting the entries of C, determines the eigenvaues ,\5") to be

() = (v), i2=js =~ 2 7 S Y
Y =§c, e =§cos Us- |cos —js + isin —js| .

Applying the orthogonality relations among discrete sines and cosines yields the
desired result. O

Since they al have a common system of linearly independent eigenvectors, the
eigenvalues of C can be determined by summing those of the C, with the same
index. Under the additional assumption that the number of terms in the discrete
DtN boundary condition is chosen so that N < n/2, we have 0 < v < n/2 for al

v=0,..., N and the N + 1 distinct non-zero eigenvalues of C are
Ao = neéo
Al = Ao = %61
AN = An-N = %CN.

The assumption concerning N is not restrictive, as the optimal values for N sug-
gested by (19) are much less than n/2.
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3.3. Combination with fast solvers. The discrete formulation of (16)-(18) in
the first ordering described in section 2 is given by

(20) Ber — 2Arb, SCu = S,
with u, S and f as in (6) and (7) with h = 0. The matrix Cis given by

s _ J(Ces ifpg=0modm
(Chpa = {0 otherwise.

Thus, in the linear system (21), the coefficient matrix is B., perturbed by a matrix
having N + 1 distinct non-zero eigenvaues. This fact makes preconditioned Krylov
subspace methods for non-Hermitian systems attractive for the solution of (21). If
B,, is chosen as the preconditioner, QMR or GMRES will for instance converge in
a most N + 1 iterations (cf. [6]). Since the preconditioning can be accomplished
using the fast solver introduced in section 2, this results in an efficient solution
method.

The discrete DtN condition fits even better into the Fourier technique. Using
the second ordering from section 2, the linear system is

0
2Arb,

i . u= Sf.

(21) Bpinyu := Bp —

Here, u, f and the scaling matrix S are assumed permuted conforming with the
ordering along circular gridlines described in section 2.2. Setting

a; a; + b; — k2 b;
a,‘Z:'d—i, ﬂ;::’T and 7,'2:27,
the coefficient matrix is
T+p1I -l
—agl T+fol -7l
—am-1l T + Bm_1l —Ym-11

—(am + YTm)I T —2ArynC + Bml
The matrices T and C are both circulant and thus diagonalized by the unitary

matrix
{e’—.’.'*w}
p,q=0

the multiplication of which by a vector can be accomplished by the fast Fourier
transform in O( n log n) operations. The eigenvalues of T are given by

1']=451n2'1n j=0,...,n=-1

and those of C hy

\ = neg i=0
J 7 \1n . .
5(ej+en—J) ]:1,...,11—1
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if we assume that no more than n terms are retained in the discrete DtN boundary
condition. If the coefficient matrix is transformed. i.e. multiplied from the left by
In ® V and from the right by I,, ® V¥, it becomes

o .|.

D-lARI,
Dy ( )

Bpiv -
Dr — 2= D
where Dr = diag(rj) and D¢ = diag(};). The transformed matrix Bpn is block

tridiagonal with diagonal blocks and hence can be decoupled into m independent
tridiagonal linear systems

i+bB -m
-0y Ti+P2 -T2
(22) o g o ia=5f
—Qm-1 Ti + Pm-1 —Ym-1
_(am + 7m) T + 2Ar7m + Pm
Here,i=1,...,m and 1 consists of the transformed varibles
u; i;1
u=| : |, u; = : ,
iim '&i,m

the corresponding indexing being used in the transformed right hand side Sf. These
systems are solved in O(m) operations each, after which the solution is obtained
by transforming back:

U=, V)

Thus, the classical Fourier algorithm can be applied to the radiative Helmholtz
problem on the annulus A(pg, p1), leading to an overall complexity of O(mn log n)
operations. If a parallel architecture with m processing elements is available, this
can be reduced to O(n log n) by solving the m independent tridiagona systems (22)
in paralel.

4. IMBEDDING VIA THE CAPACITANCE MATRIX METHOD

4.1. The imbedding. The capacitance matrix method is a computational tech-
nique for solving the linear systems of equations arising from discretized partial
differential equations on irregularly shaped domains. It has been used for solving
Poisson and Helmholtz equations, originally in a finite difference framework {4, 10]
and more recently also in conjunction with the finite element method cf.[11, 5, 2].

The basic idea is to represent the matrix describing the discretization of the
problem on the irregular domain as a low rank modification of the matrix belonging
to the discretization of a problem involving the same differential equation on a
regularly shaped domain, i.e one whose boundary lies along coordinate lines thus
alowing separation of variables. The advantage of this is that fast solvers can be
used on the latter problem. The solution of the original problem is then obtained
by solving a dense linear system of equations of low dimension p, the capacitance
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matrix equation. The number p is on the order of the number of gridpoints or finite
elements necessary to discretize the irregular boundary. In the origina agorithm
of [4], p applications of the fast solver are necessary to generate the capacitance
matrix, resulting in an overall complexity of O(pN? log N) if the original system
has the dimension N2. Later, it was found by Proskurowski and Widlund [10] that
this could be reduced to O(N? log N) by choosing the regular problem such that
the Green's function is trandation invariant, e.g. by prescribing periodic boundary
conditions in the regular problem. This results in the capacitance matrix being
circulant and thus completely determined by only one of its columns.

In our case, we choose pg < p1 such that the annulus A(pg, pi) contains the
boundary v of the scatterer. This is the domain into which the computational do-
main  is imbedded. Next, we select two integers m and n that define an equispaced
grid on A(po, p1)- As in [10], we partition the set of gridpoints

Gmn ={(ri,0;):i=1,..., mj=1,...,n)
into the three sets

Q= {(ri, 0;) : (riz1, 6j21) € Q},
(CDn = {(r:,65) : (ri, 6;) & U}
and th = Gm,n\(Qh U (CQ)h)

The first, 4, consists of those gridpoints in @ whose four neighbors in the five-
point difference stencil used in (5) lie in © as well. We shall call these regular points.
The set (CQ), consists of those gridpoints outside of St. These are introduced into
the discrete problem by the imbedding. The capacitance matrix method yields
(meaningless) solution values at these points as well. Finally, 8Q5 contains the
gridpoints close enough to the boundary 99 for at least one of its four stencil
neighbors to lie outside of Q. These we cal irregular points. As an example,
Figure 1 shows a polar grid on an annulus into which an airfoil has been imbedded
and the points in dQp marked with circles.

To obtain a discretization of the problem (16)-(18) on A(po, p1), we can apply
the difference formula (5) at all points in 2, U (CQ)s . For the irregular points,
we use the Shortley-Weller formula (see [7]) to approximate the Laplacian. This
uses nonsymmetric two-sided difference formulas involving those stencil neighbors
that till lie in © and replaces those failing to lie in € with the intersection of grid
lines with the boundary 7. In the latter case, the value given by the Dirichlet
condition imposed on the boundary v supplies the values to be used in these dif-
ference formulas. This provides a discreteization of the Dirichlet condition on the
irregularly shaped boundary y. In addition, it causes the linear system of equations
corresponding to only the points in Q; U 0 to be independent of the values at
the remaining gridpoints in (CQ)s. Indeed, if we denote the matrix resulting from
the discretization just described by A, then there exists a permutation P of the
unknowns u;; such that A has the form

A 0
PAPT = | 1 ] :
[ A2 Az

i.e. A is reducible. This is necessary so as not to influence the computed solution
by the choice of the imbedding problem.
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Ficure 1. A NACAOQ0012 airfoil imbedded into a regular polar grid
with the points in 892, marked with ’o’.
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On the other hand, if the problem (16)-(18) is discretized without the Dirichlet
condition on v, the resulting matrix is another matrix B, e.g. the matrix Bp:n in
(21) given the proper ordering of the unknowns. The two discretizations only differ
in their treatment of the irregular gridpoints. For this reason, the matrices A and
B only differ in the rows corresponding to these points. Thus, if there are p points
in (CQ)x, the matrix A is a rank p modification of B. This can be written in the
form

A=B+UuvT

with nm x p matrices U and V. Each of the p columns of U corresponds to one of
the irregular points in 9§, and has a one at the position corresponding to the index
of that point within the grid Gm,» and zeros in al other positions. Thus, U acts as
a discrete extension operator U : 0Q, — Gmn mapping grid functions defined only
on 9Q to grid functions defined on the whole grid and having the value zero for
points in G n\0Sh . Conversdly, UT is a discrete trace operator U7 : Gmn — O
mapping grid functions defined on Gm n to their restriction to Q,. The matrix V
is then uniquely determined by

VT =UT(A-B)

since UTU = I,, the p x p identity matrix. It can be thought of as a compact
representation of the difference A — B.

Once the matrix A has been identified as a low rank modification of the matrix
B, linear systems with which can be efficienly solved due to the availability of a
fast solver, one could use the well-known Woodbury formula (cf. [8]), which relates
the inverse of A to that of B, for solving a linear system with A. However, as is
demonstrated in [10], it turns out that this is numericaly unstable for the Dirichlet
problem. A stable algorithm is obtained there guided by the integral equations of
potential theory.

4.2. An excursus into potential theory. In classical potentia theory, the solu-
tion of Poisson’s equation has a representation as the sum of a ‘free-space potential’
and the potential resulting from a single- or double-layer distribution on the bound-
ary of the region on which the problem is to be solved. For definiteness, take the
problem

(23) —Au=f inQ
(24) Up =g ondQ

when € is a bounded domain in IR? with smooth boundary. The free-space term
in two dimensions is given by

1
ur(z,9) = 5 [ f€.)log de dn

where r = /(z — £)2 + (y — n)2. We define the single-layer potential by

(25) Ve = [ ae.nlos; dste.n)
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and the double layer potential by
(20) W)= [ w(em)zme logy ds(€,)
1y - T anp ’T" Bn(f’,,) r b

with smooth functions p and g defined on the boundary Q2. The normal derivative
is taken with repct to the inward normal on the boundary. Using Green's theorem
and residua calculations, it is shown that V and 8W/dn are continuous across
0Q while 8V/dn and W satisfy jump conditions. In particular, denoting by V*
the limit of V approaching 8Q from the exterior and V= from the interior and
correspondingly for W, we have

vt = V-
ov¥E 1 / 7] 1
= - log—ds
on o 50 ”an(,,y) 97
oW+ oW~
on ~ On
1 5] 1
W¥F = 4u+-— log —ds.
S anuan(e,n) r

Inside and outside of €, the potentials V and W are harmonic functions. For the
interior Neumann problem above, the sucesssful Ansatz turns out to be

u(z, y)=ur(z,y)+V(z,9)

An equation for the yet unspecified function p is obtained by applying the boundary
condition, i.e.

Ou + 9V~
(27) o = —%{ o om =g
which, using the jump condition above, yields
(28) —p+%/;npanzy)log%ds=§
with
§=g9- Gur :
on |3a

This is a Fredholm integra equation of the second kind, which congtitutes a well-
posed problem. It has the form (I — K)p = § with a compact operator K.

If the same Ansatz is used for the interior Dirichlet problem, proceeding in
the same manner results in a first-kind Fredholm integral equation, an ill-posed
problem. This is why another Ansatz is necessary, the proper one being

u(:c, y) = up((l!, Y) + W(z) y)
This leads to the equation

1 o 1
29 + —/ log= ds = §
(29) k m anp One n) g"
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for the function p, where in this case § := g — ur|an. In operator notation, this is
I+ K =3

in which KT is the adjoint of the operator K.
The same procedure can be applied to the exterior Neumann and Dirichlet prob-
lems, yielding
(I +K)p=gad (- KT)p=3.
It is a discrete analog of the equations (28) and (29) that Proskurowski and
Widlund used to derive capacitance matrix equations for the Helmholtz equation

—Autcu=f

with non-negative constant c. For lack of a better idea, this is the approach we
have taken to construct our capacitance matrix equations in the case of the radiative
Helmholtz equation, where the constant c is negative.

4.3. The capacitance matrix method. Following the continuous case, we make
the following Ansatz for the Dirichlet problem:

(30) u=B-f + 2B 'Np.

The matrix B is the matrix of the discrete Helmholtz problem with DtN boundary
condition on an annulus, into which the scatterer is imbedded. Thus, its inverse
B~! serves as a discrete analog of the free space Green's function and B~!f as the
discrete free-space potential. The matrix N is nm x p and represents p discrete
dipoles. This is to say that, for a grid function v, the product NTv € CP? is
an approximation of a constant times the normal derivative of the function v,
which v approximates, at the irregular mesh points. The constants are chosen
such that NTU = I,, which can be achieved by using only exterior points in the
approximation formulas of the norma derivative at an irregular point in addition to
that point itself. Note also that, with this construction of N, the vector N¢, € € IRP
is a grid function vanishing at all interior mesh points, i.e. on al of 5. The vector p
has p components and is the analogue of the dipole distribution g in the continuous
case. An equation for p is obtained by computing the residua

Au-f= B+ UVT)YB'f + 2B"'Np)

31
(3 = 2N+ 2UVTB-'N)u + UVTB'f,

From the construction of U and N, it follows that the residual vanishes at all points
in ©p independently of . For it to vanish also on 9y, we must have, multiplying
equation (31) with UT and making use of UT U = UT N = I, :

(32) (2I, + 2VTB~IN)u = -VTB~f.

The matrix C := (21, +2VTB~IN) is called the capacitance matrixand (32) is the
capacitance matrix equation. The algorithm for solving the original problem can
now be summarized as follows:
(1) Compute B~!f.
(2) Generate the capacitance matrix C and use B~!f to compute the right
hand side of (32).
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(3) Solve the capacitance matrix equation.
(4) Compute u from (30).

Step (1) can be carried out using the fast solver, after which step (2) requires p
applications of the fast solver, since the matrix N has p columns. If one neglects the
effort needed to solve the (dense) p x p capacitance matrix equation, this produces a
complexity of O(pnm log n) operations to solve the imbedding problem. Neglecting
the effort for solving the capacitance matrix equation is justified by the results of
[12], where it is shown that Krylov subspace methods, in that particular case CG
applied to the norma equations, can solve this problem very efficiently. This is a
direct consequence of using discrete analogues of the integral equations (28) and
(29). In future work, we intend to look a more modern methods for non-symmetric
systems such as GMRES or QMR for solving the capacitance matrix eguation.

In [10], step (2), in which the capacitance matrix is generated, is performed in
only one application of the fast solver by using a translation invariant free space
Green's function. This results in the capacitance matrix being circulant and hence
determined by just one of its columns, any of which can be obtained with one fast
solve. Carrying this idea over to the present problem is another subject for future
research.

5. NuMERICAL RESULTS

In the first experiment, we solve the exterior problem for kK = 1 on a disk centered
at the origin with radius @ = 0.5. We place the artificial boundary a p; = 1 and
impose Dirichlet boundary conditions u( a, 8) = cos(j#) for various values of j.
Since the internal boundary of the computational domain falls on a grid line, no
imbedding is necessary and the whole problem can be solved in one application of
the fast solver. Figure 2 shows the grid in the case m = n = 10.

Table 1 shows the maximum deviation ||e@)|jof the computed solution to the
exact solution

H (ke
u(r, 9) = cos jﬁé)—()
H3 (kp1)
at the gridpoints. The number of terms in the DtN series was chosen as N = |, as

the boundary function is orthogonal to all higher modes. To verify the complex-
ity of the fast solver, the following execution times were clocked using the Beta3
version of MATLAB4 on a SUN SPARCstation4, the environment in which all
the computations were done. When the execution time is divided by nmlog n, the
result remains very close to constant as it should. This can be seen in Table 2.

In the second experiment, we solve the previous problem by imbedding the disk
r = 05 into the annulus .A4(0.3,1) with. This is the simplest possible case for the
imbedding method, as the boundary of the domain to be imbedded is a coordinate
line. The grid spacing is chosen so that the mesh width in the region of the grid
exterior to » = 0.5 coincides with that in the previous example. These results are
contained in Table 3, a picture of the grid with the irregular points marked is shown
in Figure 3.

This exact agreement with the discretization is removed in the next test case,
where the scatterer is again a disk, but now is no longer centered at the origin cf.
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Ficure 2. The grid used in

the first example, no imbedding

!

m [ o | 1®¥o | ¥l
10 10 | 2.6466( -4) | 5.7616(—2) | 1.5923(—1)
20 20 |6.6217(=5) | 1.4424( -2) | 4.0189(~2)
30 30 |2.9434( -5) | 6.4079(~3) | 1.7743(-2)
40 40 | 1.6558( -5) | 3.6047( -3) | 9.9555( -3)
50 50 | 1.0597(—5) | 2.3074(~3) | 6.3627( -3)
60 60 |7.3593( -6) | 1.6024( -3) | 4.4145(-3)
70 70 | 5.4069(—6) | 1.1772(~3) | 3.2421(-3)
80 80 |4.1396(—6) | 9.0129(—4) | 2.4822( -3)
90 90 |3.2708(—6) | 7.1211(—4) | 1.9610(—3)
100 100 | 2.6494( -6) | 5.7681(—4) | 1.5881( -3)

TasLe 1. Error of computed solution around disk centered at the

origin, no imbedding
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m = n execution time [s] |execution time /nm logn
16 1.19 0.0017
32 4.01 0.0011
64 15.7 0.009
128 66.1 0.008
256 315 0.009
512 1620 0.001

TaBLE 2. Actua and normalized execution times in seconds for

one application of the fast solver to solve problem 2

mn | [ TSI [ERAS
10 10 | 2.6466( -4) | 5.7616(—2) | 1.5923(—1)
20 20 | 6.6217(—5) | 1.4424( -3) | 4.0187(-2)
30 30 |2.9434(=5) | 6.4079( -3) | 1.7743( -2)
40 40 | 1.6557(=5) | 3.6047(—3) | 9.9555( -3)
50 50 | 1.0597( -5) | 2.3074( -3) | 6.3627( -3)
60 60 |7.3593(—6) | 1.6024(—3) | 4.4144(-3)
70 70 | 5.4069(—6) | 1.7724(—3) | 2.4823(-3)
80 80 |4.1396( -6) | 9.0129(—4) | 2.4822( -3)
90 90 | 3.2708(—6) | 7.1211(—4) | 1.9610(—3)
100 100 | 2.6494(—6) | 5.7681(—4) | 1.5881(—3)

TasLe 3. Error of computed solution around

origin with imbedding

disk centered at the



Ficure 3. Grid used in the second problem, centerde circle imbed
ded into an annulus
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Ficure 4. The grid used in the third problem, non-centered disk
imbedded into an annulus

Figure 4). In al the test cases, the exact solution is given by 11, where the series
consists of only one term due to the choice of the Dirichlet boundary condition.

Finaly, we attempt a more application oriented problem where the scattering
body is a NACAQ012 airfoil. We display the solution time needed to solve the whole
problem for various mesh widths. Figure 1 shows the grid and the airfoil with the
irregular boundary points marked.
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