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Abetract.  We consider  the use of the multigrid  method  in conjunction  with a cyclic  reduction

preconditioner  for convection-diffusion  equations. This preconditioner  corresponds  to algebraically

eliminating  all the unknowns associated  with the red points  on a standard  mesh  colored  in a checker-

board fashion.  It is shown  that the multigrid  method  applied to the resulting  operator  often converges

much faster than when applied to the original  equations. Fourier  analysis  of a constant  coefficient

model  problem as well as numerical  results  for nonconstant  coefficient  examples  are used  to vaIidate

the conclusions.

1. Introduction.  A new method is presented for the solution of the convection-

diffusion equation

(1) -V.p(z,Y)Vu+9(x,Y)*Vu=f on 52

with

r(x, Y>U + 4x9 Ybn = 9 on %I.

This equation is of fundamental importance in a number of scientific areas (e.g. com-

putational fluid dynamics). However, using iterative methods to obtain solutions of

the corresponding discrete equations is often problematic. Many standard iterative

methods converge slowly (or even diverge) when applied to discrete systems corre-

sponding to highly convective or unstable behavior.

In this paper, we consider a multigrid solution technique in conjunction with one

step of cyclic reduction. Specifically when a five-point discretization is used on a

uniform grid, the cyclic reduction procedure corresponds to first coloring the grid in

l Computer  Science  Dept.,  Stanford University,  Stanford, Ca. This author  was supported  by the

Nationll  Science  Foundation  under grant DCR-8412314.
’ Parallel  Algorithm  Project,  CERFACS,  Toulouse,  France. Part  of this work was performed  at

Sandia  National  Laboratories  and supported  by the Applied  Mathematical  Science  Program,  U.S.

Department  of Energy,  Office of Energy  Research.
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a checkerboard fashion and then algebraically eliminating all the unknowns associ-

ated with the red points. The resulting set of equations correspond to a nine-point

discretization of a new partial differential equation. The multigrid technique is now

applied to this new system of equations. The key point is that the new system is

half the size of the original and that this system is often easier to solve with iterative

methods than the original.

The use of cyclic reduction as a preconditioner has been studied in several papers

within other iterative solvers and for other types of equations. In [l], Axelsson and

Gustafsson report improved convergence rates using cyclic reduction with the con-

jugate gradient method for symmetric systems. Elman and Golub ([5],  [6], and [7])

illustrated and analyzed the advantages of using cyclic reduction for nonsymmetric

convection-diffusion operators in conjunction with a number of iterative and block it-

erative solvers. Simpson [13]  has reported convergence benefits using cyclic reduction

for dynamic, two species, reaction-diffusion systems of partial differential equations.

In this paper, we show that similar results are possible with the multigrid scheme.

That is, the multigrid method often converges significantly faster when applied to the

algebraically reformulated equations than to the original. Further, there are instances

where the multigrid method diverges if applied to the original system, but converges

quite satisfactorily for the reduced system. A Fourier analysis is used to illustrate this

property. Additionally, numerical results are given for a wide range of PDE problems.

In Section 2 we discuss the convection-diffusion equation and its solution by tra-

ditional multigrid methods. This is followed by a description of the cyclic reduction

process in Section 3 . In Section 4, cyclic reduction/multigrid is developed. Special

attention is given to the resulting system of equations and the corresponding grid.

Smoothing analysis of the Gauss-Seidel  operator on the resulting reduced equations is

pursued in Section 5. Finally, the paper concludes with experimental results in Section

6 and general observations in Section 7.

2. Multigrid methods and the convection/diffusion  equation. The multi-

grid algorithm is a fast and efficient method for solving the systems of equations that

arise from many PDE applications. We give only a brief sketch of a typical multigrid

algorithm. Detailed descriptions of more general multigrid algorithms can be found

in [2] and (91. Excellent introductions to multigrid can be found in [4] and [lo].
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/* Solve the equations Alevelu = b */

Procedure MG(b, u,Zeuel)

if (level == Coarsest ) then u + Aiiclb

else

u +relax(  b, u, level)

r+b-Au

i + Rr /* R is a projection opemtor */

v+o

u t MG(?, u, level + 1)

u + u f Pv /* P is an interpolation opemtor */

endif

Ftc; . 1. MG Algorithm

One iteration of a simple multigrid ‘V’ cycle consists of smoothing the error using

a relaxation technique, ‘solving’ an approximation to the smooth error equation on a

coarse grid, interpolating the error correction to the fine grid, and finally adding the

error correction into the approximation. An important aspect of the multigrid method

is that the coarse grid solution can be approximated by recursively using the multigrid

idea. That is, on the coarse grid, relaxation is performed to reduce high frequency

errors followed by the projection of a correction equation on yet a coarser grid, and so

on. Thus, the MG method requires a series of problems to be ‘solved’ on a hierarchy

of grids with different mesh sizes. We summarize one iteration of this procedure in

Figure 1.

Application of the multigrid algorithm to the convection-diffusion equation re-

quires some care. To understand many of the potential difficulties, we consider the

constant coefficient convection-diffusion equation

(2) - AU+UU,+TU~ = f

on the unit square with Dirichlet boundary conditions. The system is discretized via

central difference and yields the following computational stencil at the interior grid
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points:

(3)

where6=+,7=9 and h is the mesh spacing.

Unfortunately, the application of the multigrid method to (3) becomes more  prob-

lematic as 6 and 7 become larger. Ln particular, the discrete difference operator asso

ciated with (3) is no longer diagonally dominate for large 6 and 7 and so most clasical

iterative methods (e.g. Gauss-Seidel, Jacobi, etc.) diverge when applied to this prob-

lem. For multigrid methods, the above difficulties with classical iterative schemes

correspond to difficulties in finding a relaxation procedure that properly smoothes

high frequencies. Notice that even if 6 and 7 are fairly modest on the finest grid, it

may still be difficult to find an appropriate smoother on the coarse levels due to the

fact that 6 and 7 become larger on coarser grids. Thus, a simple multigrid method

applied to (3) will most likely diverge when 6 and 7 are large due to the divergence of

the smoother.

To reduce the problems associated with the convection diffusion-operator, a num-

ber of multigrid approaches have been considered (see [3], [9] and [ 111). For example,

the use of downstream relaxation can alleviate many difficulties for moderate 6 and

7 (see [3]).  That is, when the points are relaxed in the direction of the flow with up-

stream points begin relaxed first, the smoothing properties of the relaxation scheme

are usually enhanced. Another possibility is to add artificial dissipation’ to the dis-

crete operator. In particular, the convergence difficulties associated with large 6 and

7 can be viewed in terms of t ’ ctability  of the discrete approximation. That is, as

6 and 7 become larger, the discretization becomes increasingly unstable making the

successful application of most classical iterative methods unlikely. In fact, in the limit

as 6 and 7 approach infinity the equations at the even and odd points completely de-

couple resulting in large oscillations in the solution. To rectify the situation, artificial

dissipation can be introduced to generate equations which are more stable and thereby

more amenable to standard smoothers. Though this may be somewhat unsatisfactory

’ The PDE that  one  winha to rdve is mod&d by- adding terms  containing  second (and poesibly

fourth)  derivatives.  This  effectively  adds  more  diffusion  into the problem.
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on the finest grid since a different set of equations are being solved, it is quite suitable

on coarse meshes.

3. Cyclic reduction. We now describe the cyclic reduction process for trans-

forming the original equations into a more well-behaved system.

Consider the discrete system

Au = b.

When the matrix A corresponds to a five-point finite difference discretization, it has

property-A [14].  That is, its rows and columns can be symmetrically permuted to the

form

(4)

where D and F are diagonal matrices and (4) corresponds to a red-black ordering of

the underlying grid. By eliminating the unknowns ~(‘1, we can produce the reduced

system

[F - ED-‘C]utb)  = ffb) _ ED+‘).

The new system of equations corresponds to a 9 point finite difference operator

(for the interior grid points). We omit the details (see [5])  and simply state that one

cyclic reduction step applied to the matrix associated with (3) yields an operator with

the following stencil at the interior grid points:

(5)

,
(6 - q2

2(1- 7)(1- 6) 2(1+ 7)Q - 6)

(7 - II2 -16 + 2(1- 6’) + 2(1 - 7’) (1+7)2  l

2(1- 7)(1+ 6) 2(1+ 7)U + 4

(1 + q2 I

Similar operators can be worked out for the boundary stencils.

We conclude this section by describing a few of the connections between cyclic

reduction and other approaches. For example, the one step cyclic reduction proce-

dure can be viewed as a specific type of domain decomposition method (see [8] for

discussions of other types of domain decomposition) where each domain contains only
5



one interior grid point. In this case the reduced equations correspond to the interface

equations which have been explicitly computed. While the reduced operator has been

derived by purely algebraic means, it is also possible to generate the same equations

by considering a slightly different PDE. In particular, the original convection-diffusion

equation (2) can be differentiated multiple times with respect to z and y. Taking

appropriate linear combinations, the following equivalent PDE is obtained:

h2
-8 ( uxttt + 2u,,y/v + uymy )

h2
= f++fz+Tfy+fzz+ Iyy)

where h is some constant which will be taken as the mesh spacing for the discrete

equations. If the first and second order terms in (6) are discretized in a specific

fashion (see appendix), the reduced stencil (5) is again obtained. This implies that

one cyclic reduction step is equivalent to the introduction of the terms (h2u2/8)u,,,

(h2r2/8)u, and “>h2-u=,, into the discretization making the discrete equations more

diffusive in nature. Thus, the cyclic reduction approach is quite similar to the addition

of artificial dissipation. However, the key point to recognize about cyclic reduction

is that it does not change the solution to the underlying equations which are being

solved (as artificial dissipation does). The solution we obtain on the black points is

the solution to the original PDE at the black points and the solution at the red points

can be easily recovered using (4).

4. Cyclic reduction/multigrid.  The cyclic reduction multigrid algorithm con-

sists of first applying one step of cyclic reduction to the discrete set of equations and

then applying the multigrid algorithm to the resulting reduced system. In this section

we discuss some multigrid issues that must be resolved.

To apply the multigrid method, a grid hierarchy must be constructed: &, &, 6, . . .

where & corresponds to the finest grid, & corresponds to the next finest grid, etc.

Given that the reduced stencil is defined on a somewhat irregular grid (corresponding

to the black points in a checkerboard), some thought must be given to appropriate

grid hierarchy. For example, the next coarsest grid can be an evenly spaced mesh

with grid spacing 2h (where h is the mesh width of the original problem on the fine
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grid). That is, half the black points are removed to define the next coarsest grid.

This corresponds to using the same coarse grid that would be used if the equations

were not cyclically reduced. The advantage of this approach is that the algorithms

and coding are similar to the standard (unreduced) case. Another possibility is to

consider the entire stencil skewed. That is, we can reinterpret the reduced operator as

a standard nine point discretization defined on a diamond shaped grid (using a mesh

spacing of JZh). The next coarsest grid can then be defined by simply doubling this

mesh spacing. This has the advantage that all the grids can be treated in a uniform

way. Figure 2 shows the grid hierarchy for the two approaches using three levels.

In our multigrid implementation we have chosen the first strategy for the grid

hierarchy. This choice was primarily motivated by programming considerations. We

use standard projection and interpolation operators. To project from the finest grid,

&, to the next grid, &, an operator with the stencil

/1 11
1

4fi 1 41 1 J

is used. To project between other coarse grids, an operator with the stencil

(7)
\l 2 11

is used. The interpolation operators are the transpose of the projection operators.

For a smoothing procedure, Gauss-Seidel is used on each level. To complete the

specification of the method, we must define coarse grid difference operators. The

general idea is that the coarse grid difference operator should approximate the behavior

of the reduced finite difference operator on smooth components. For the grids G; and

i > 2, we use a combination of Galerkin coarsening and artificial dissipation. For

Ai+l, we first define

A*1+1 = RiAiPi

where Pi and Ri are the interpolation and projection operators associated with the

ifh grid. If Ai+r is diagonally dominate, we take

A* Ai+l.t+1 =

7
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FIG. 2. TWO di&nnt choices for the grid hiemrrhy within a 3 grid method.
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Otherwise, artificial dissipation (second order terms cru,, and cZuyy) is added until

the operator is diagonally dominate. It is important to note, however, that no artificial

dissipation is added to the finest grid. For the second coarsest grid, &, we proceed in

a slightly different fashion to avoid growth in the number of elements in the stencil.

The operator Al is given by the local stencil

We split the operator Al into 2 components

Al = Af + A;

where Ai corresponds to the derivative terms given by the coefficients b, c,g, and h.

We use Galerkin projection on Ai followed by artificial dissipation to create A$. The

coarse grid operator is now given by

A2 = A; + A;.

Finally, for purposes of comparison we also apply the multigrid method to the original

set of equations using bilinear interpolation and full weighted restriction (7) to transfer

between grids, and using the same scheme of Galerkin and artificial dissipation to

produce the coarse grid equations.

5. Fourier Smoothing Analysis. We estimate the convergence of the m&grid

method using Fourier analysis [2]. Specifically, we use Fourier analysis to determine

how well the relaxation procedure damps the high frequency error components.

We illustrate the Fourier smoothing analysis by considering the lexicographical

Gauss-Seidel operator applied to a constant coefficient problem with the following

stencil

(8)

For the analysis that follows we assume p&io,lc boundary conditions. Typically, when

the equations are stable with a modest amount of dissipation, the periodic boundary
9



analysis gives accurate convergence predictions for problems with Dirichlet bound-

ary conditions. However, for problems where the equations are slightly unstable this

analysis may be inaccurate. If we denote by ek,j(‘) the error associated with the approx-

imate solution at the point (C, j) after c Gauss-Seidel iterations, then the following

relationship holds

(4 (cl (4
‘llek-l,j-l  +312ekj,l  +a3ek+lj-l  +

(9) (4
Szle&-l,j

(4
+s22Qj

(c-1)
+e3ek+l  j +

(c-1)
‘31ek-l,j+l

(c-1) (c-1)
+S32ek,j+l  +Q3ek+l,j+l  = 0

where it is assumed that the points are relaxed in lexicographic order. The general

idea behind smoothing analysis is to determine how well the relaxation procedure

damps the high frequencies errors. If the coarse grid correction adequately damps the

low frequencies, then the smoothing analysis will accurately predict the asymptotic

multigrid convergence rate. To do the analysis, consider a Fourier mode

l~ll,l~21  I r

(‘)where i = fl, AdI,, is the amplitude, and (@ 1, 2 are the frequencies in the z and8 )

y directions. One simple definition of the smoothing number is

That is, the smoothing number is the damping factor associated with the high fre-

quency mode that is damped the least. Using (9) this can be rewritten as

(10) P =
&E&~

q3ei81 +  sglei(-h +@2) +  as2eie2 +  smeitBl +b)

~llei(-61-@2) +  al&@2 +  s13ei(el’~) +  s21ewiel  +  s22 ’

Thus, to compare standard multigrid with cyclic reduction/multigrid we must compute

the smoothing numbers for the operators (3) and (5). Substituting (3) and (5) into

(10) we get the following smoothing numbers:

P(S) = ?MZ$$&
(y + l)eiel + (6 + l)eie2

(6 - l)eei62 + (y - l)eWiB1 + 4

2( 1 + y )( 1 - 6)eiB1 + 2(6 - l)(y - l)ei4

+ (1- Y) 2,i(-h+d2) + (1 _ 6)2ei(B1+82)

(1 + Q2e4th +42) + (1 + y)2ei(e1-'2)  - 12 - 2(h2 f y2)

+ 2( 1 - y)( 1 + b)eeiel t 2( 1+ y)( 1 t 6)eBie2
10
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F~ti.  3. Smoothing numbers for leziwgmphic  Cows-Seidei when y = 0. Lower curve wrrespondr  to

the nzduced  opemtor while the upper denotes the original opemtor.

where p(S) and c(( R) denote the smoothing factors for the standard and reduced

stencils respectively.

Finding the maximum of the above functions analytically is a bit cumbersome,

but can often be done over certain ranges of 6 and y. Since the expressions are quite

involved we instead plot the smoothing numbers as a function of 6 and y. Figure 3

illustrates the smoothing numbers for the case y = 0. Figure 4 illustrates the smooth-

ing numbers when y = 0. Figure 5 and Figure 6 shows the smoothing numbers (see

appendix for details) when a multicolor Gauss-Seidel is u~ed.~ In the figures we only

plot the convergence estimates for the original (unreduced) system for d 5 1.0 as the

convergence rates predicted by this analysis (i.e. using periodic boundary conditions)

are not accurate for 6 > 1.0 due to the instability of the equations in this regime. For

the most part, the two cases given represent extremes in terms of performance. That

is, the reduced operator offers the largest performance improvement over the standard

operator when y = 0 and the least performance improvement when 6 = y. Overall, it

is quite clear that there is a noticeable improvement in the convergence rate when the

’ Note  that for a 5 point operator  we use standard  red-black  GauasSeidel.  However,  for the 9 point

operators  we use a 4 color  Gauss-Seidel  operator  so that no two neighboring  poinb  have the same

color.
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FIG.  4. Smoothing  numbers  for lezicogmphic  GauaAeidel  when y = 6. Lower curttc wnrpondr to

the mduccd  opemtor while the upper denotes the original  opemtor.

gamm8=0
1

FK.  5. Smoothing numbers for multiwior  Gaurr-Seidel  when  y = 0. Lower curve wwerponda to the

reduced opemtor while the upper denotes the original opemtor.
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gamma = delta

01 1
0 1 2 3 4 5 6 7 8 9

delta, gamma

FK. 6. Smoothing  number3  for multicolor  Gauss-Seidel  when y = 6. Lower  curve co-qwnda  to the

nxiuced opemtor  while the upper denotes the original  operator.

reduced operator is used. In many cases the convergence rate is greater than a factor of

2. That is, when the PDE problem is not strongly convective, the smoothing ra$s  for

both schemes are satisfactory. However, those associated with the reduced system are

significantly better over most ranges of the parameter space. Given that the smooth-

ing rate usually approximates the convergence rate and that the cost per iteration of

the two schemes is roughly equivalent (the reduced system requires slightly less work

per iteration), we can expect that the computer time required to solve the reduced

system wil.l be significantly less than to solve the original system. More importantly,

the reduced operator always yields convergent smoothing rates (i.e. p < 1) as opposed

to the the original operator (see Section 6). That is, even when the operator is highly

convective or unstable, the corresponding smoothing rates are less than 1. However,

it shonld be noted that the smoothing rates deteriorate (i.e. x 1) for very large 6 and

y. This is a consequence of the reduced operator becoming increasingly anisotropic.
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For example, when y = 0 and b + 00 the dominate terms in the operator are

(11)

For anisotropic problems pointwise relaxation is not effective and some form of line-

relaxation or semicoarsening should be used in conjunction with multigrid. We do not

pursue the subject further and refer the reader to [3].

We conclude this section with heuristic arguments to explain the convergence

improvement associated with the algebraic elimination process. As stated earlier, one

benefit of cyclic reduction is that it introduces more dissipation into the corresponding

PDE operator. For large b and r, the added dissipation effectively stabilizes the

equations and plays the key role in improving the convergence. However, for small 6

and I the added dissipation is not particularly significant. That is, while the PDE is

more diffusive in nature, it is defined on a coarser grid (the mesh spacing is fi times

larger than for the original operator) and so locally it may appear more convective

(i.e. the 0(1/h) convective terms are larger relative to the O(l/h2) diffusive terms

on the c-r mesh). Of course the use of a coarser grid improves the convergence

of many iterative methods. However, the convergence of the multigrid method does

not depend on the mesh spacing. Instead, the better smoothing rate for small 6 and

T is a result of the stencil being spread smoothly over more points making it easier to

smooth the error by relaxation. For example, the smoothing properties of the 9 point

. discrete Laplace operator are better than the smoothing behavior of the standard 5

point Laplace operator (which corresponds to the cyclically reduced 5 point operator).

Thus in the case of small 6 and 7 the benefit is essentially the smooth spreading of

the stencil.

8. Experimental Results. A multigrid W-cycle program has been implemented

to test the cyclic reduction approach. 3 A number of problems have been tested. In

this section we describe the results of this experimentation.

3 The W cycle  differa  from the V cycle  in the nimber  of times  coarse  grids  are visited.  By replicating

the line  u - MG(  . . . ), the prog ram fragment  given  in Fig.  1 can be modified  to a W cycle.
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Y original reduced

DS AS DS AS

iter  t ime i ter  t ime iter t i m e  i t e r time

0. 23 19.5 23 19.5 14 12.3 14 12.3

.25 21 17.9 26 21.8 14 12.3 15 13.1

.5 19 16.4 31 25.7 14 12.1 18 15.1

1.0 19 16.3 58 47.0 17 14.6 34 27.9

1.5 38 31.3 171 136.1 19 16.3 59 47.6

2.0 135 107.7 nc 21 17.8 75 60.1

4.0 nc nc 26 21 .7  52 42.1

8.0 nc nc 76 60.9 105 83.6
T.". 0.' 1

Itemtioru  ond time  (entire  CPU time  including  time for olgebroic reduction  ) on model  proMem with

u = 0 using  1 lesiwgmphic  Gauss-Seidel  itemtion  per level. ‘nc’ indicates  no convergence.

We first consider the model PDE previously int reduced

(12) - Au + uu, + ruy = 0

with zero Dirichlet boundary conditions on the unit square so that the exact solution

is u = 0. 0 and r are varied to test the cyclic reduction approach over a wide range of

parameters. Additionally, we experiment with different orderings within the Gauss-

Seidel smoothing. Tables 1 and 2 depict the results using a Gauss-Seidel relaxation

procedure and natural ordering. Specifically, the columns labeled ‘DS’ correspond to

the case when the points are relaxed in the direction of the flow. That is, up stream

grid points are relaxed first. The columns labeled ‘AS’ denote the case when the points

are relaxed in the up stream direction. That is, opposite to the flow direction. For all

the experiments in this section a random initial guess is used and the computation is

terminated when the initial residual is reduced by 10”. Additionally, all experiments

were performed on a 64 x 64 grid. For the purpose of comparison we illustrate the

multigrid behavior on both the reduced equations and the original equations as a

function of the cell Reynolds numbers, 6 and y.

By comparing the two schemes we can see the computational benefits of cyclic

reduction. Specifically, when 6 and y are less than 1.0, the cyclic reduction scheme
15



Itemtiona  and

u = r wing 1 leriwphic

I 0Y

I

0.

.25

.5

1.0

1.5

2.0

4.0

8.0

original reduced

DS

i ter  t ime

23 19.5

21 17.9

16 12.7

1 2.0

nc

nc

nc

nc

time (entire

AS

iter  t ime

23 19.5

30 24.9

47 38.3

194 153.9

nc

nc

nc

nc
TALJL~G

DS

i t e r  t i m e

14 12.3

12 10.7

11 10.0

1 2.0

13 11.6

19 16.2

68 54.6

225 177.7
,

AS

iter  t ime

14 12.3

17 14.7

21 17.8

40 32.7

51 41.3

48 39.0

81 64.8

249 196.6

CPU time  including  time for  olgebmic

Gauss-Seidel  itemtion  per level.

nzduction ) on model pdlem

converges noticeably faster than the standard scheme and thus requires less overall

time.’ Further, when 6 and y are greater than 1.0, the multigrid method applied to

the original equations usually does not converge. That is, the Gauss-Seidel procedure

does not smooth the error. By contrast, the multigrid convergence for the reduced

equations is quite satisfactory for aJ.l values of 6. For both schemes the convergence

behavior is quite sensitive to the ordering of the equations. Specifically, when the

equations are ordered in the direction of the flow, the convergence rate is dramatically

improved as compared to when the points are ordered opposite the flow direction.

In many applications the flow direction is not known or the flow is quite compli-

cated. Further, on parallel machines it is somewhat difficult to efficiently parallelize

the somewhat sequential Gauss-Seidel scheme with natural ordering. In these cases,

it is usually best to use a multicolor ordering strategy. In particular, for a 5 point

discretization where the grid points are colored in a red-black (checkerboard) fashion,

it is possible to UPC all the red points in parallel and then to update all the black

’ The  cyclic  reduction  code was developed  from  a standard  multigrid  code  and has not  been  opti-

mized. Currently,  aomt  uselaw  operations  are performed.  We anticipate  that the cyclic  reduction  run

time  can be reduced  by 25% with further  optimizationa.

16



Y original

i ter  t ime

0. 16 18.6

.25 15 17.5

.5 15 16.3

1.0 34 37.5

1.5 130 132.

2.0 nc

4.0 nc

8.0 nc<
TABLE

1

13

reduced

i ter  t ime

9 9.5

11 11.2

13 12.7

22 21.4

33 32.9

41 39.0

31 32.1

94 89.2

Itemtionr  and time (entin  CPU time including  time for algebraic reduction  ) on model problem with

u = 0 wing I multicolor Gauss-Side1  itemtion  on each level.

points in parallel. Since the points with the same color are independent of each other,

the convergence is not particularly sensitive to the flow direction. In the case of a 9

point discretization one can use 4 colors and a 4 color relaxation scheme to achieve

the same Sect. In Tables 3 and 4 we illustrate the performance using the multicolor

ordering schemes on the model problem. Once again it is quite clear that the reduced

operator performs significantly better than the original operator and that unlike the

original operator convergence occurs for all 6 and y. Overall, the multicolor schemes

usually do not perform as well as the downstream orderings for highly convective flows.

However, they perform much better than the upstream orderings and thus are prob-

ably the best choice when the flow direction is not known or when the computations

are carried out on a parallel computer.

We now consider a series of nonconstant coefficient problems. First we consider

the following convection diffusion PDE taken from Van der Vorst, 1981:

a2u au--az2 + & + (1+ yl)(-g + g) = f(w)

with Dirichlet boundary conditions. The CPU time and iterations are illustrated

in Table 5. The most important observation is that the results are similar to the

constant coefficient case. Specifically, the solution time for the cyclically reduced

case is significantly better than when the multigrid method is applied to the original
17



Y

0. 16 18.6 9 9.5

.25 15 15.2 13 13.3

.5 20 19.9 18 17.7

1.0 165 154.0 33 33.0

1.5 nc 38 36.9

2.0 nc 33 30.9

4.0 nc 74 67.5

8.0 nc 270 243.1

original

i ter  t ime

reduced

i t e r  t i m e

1AYLE  4
Itemtionr  and time (&tin CPU time including  time for algebraic  nduction  ) on model problem  with

CT = I uring  1 multicolor Gauss-Seidel itemtion  on each level.

smoother

1 multicolor 24 22.0 10 8.9

2 multicolor 13 15.5 8 9.1

1 lexicographical 31 24.5 14 11.1

2 lexicographical 15 14.2 10 9.4
TAILL; 5

Number of multigrid itemtionr  wing diffennt Gauar-Seidel smoothing  combinations  on each  grid for

the Van der Vorrt problem.

equations. It is interesting to note that when only one relaxation sweep is performed

per level that the convergence benefit of the cyclic reduction procedure is greater than

when 2 Gauss-Seidel sweeps are used. This is due to the fact that when 2 sweeps

are used the bottleneck in the convergence rate is no longer the smoothing rates but

instead the accuracy of the coarse grid correction. Thus, the cyclic reduction benefit

is somewhat less. I. terms of overall work, the best approach is the cyclic reduction

scheme that uses only one Gauss-Seidel iteration.
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Y

0.

20.

40.

60.

80.

100.

120.

140.

original

i ter  t ime

13 32.8

13 32.4

12 30.7

11 28.2

11 28.6

17 43.9

nc

nc
TAILIG

reduced

i ter  t ime

6 16.1

6 15.7

7 17.5

8 20.5

8 20.5

8 20.6

9 23.1

9 23.0

Itemtions  and time  (entin CPU time including time for algebmic reduction  ) on (12) using 6 multicolor

Gauss-Seidel itemtion  on each level. ‘nc’ indicates  no convergence.

We next consider the problem

-k ?hlz - [CC27 YM,  + [k ?I> ch ?&lz
(13)

+ [d(? Y)Uly + e(2, Y)U = f
defined on the unit square with

b(z, y) = eBzy, C(& Y) = 2 + Y,

Q,Y) = Y@ + Y), e(2, y) = (I+ xy)-’

with zero Dirichlet boundary conditions. In general, as y increases the problem be-

comes more convective. In Table 6 we illustrate the results as a function of y. Once

again the cyclic reduction/multigrid often produces an answer in less than half the

time required for the traditional scheme. Further, for large enough y, we see that

standard multigrid does not converge while the cyclic reduction/multigrid procedure

converges satisfactorily.

We conclude with a circulating flow problem taken from [12]

-cAu + 2y(l- x2)uz - 22( 1 - y’)u, defined on 0 = (-1,l) x (0,l)

l :

19



02 0.4  0.6 0.8

FIG. 7. Sham fines for circulation jiow ptobiem.

with

U = 0 0 < y 5 1,z = fl,

U = 0 -15 2 5 l , y = 1,

t&n = 0 OLz<l,y=O,

u = (1 -x2) -l<z<O,y=O,

These equations essentially describe a circular flow entering (leaving) the cavity at

5’0 and z < 0.0 (z > 0.0). Contour lines are given in Figure 7 corresponding to

thecaseofc=.OOlandh = $ where h is the grid spacing in the 2 and y directions.

In Table 7, the results are given for a multigrid iteration using 4 multicolor Gauss-

’ Seidel iterations for each grid level. From the table, we see that the convergence for

the reduced equations is often significantly faster than for the original. Further, the

multigrid method applied to the cyclically reduced equations always converges whereas

the method diverges when cyclic reduction is not used on the highly convective flows.

7. Conclusions. A new method has been given for convection-diffusion equa-

tions. The procedure, cyclic reduction/multigrid, proceeds by algebraically eliminat-

ing half the unknowns and then solves for the remaining unknowns using a multigrid

method. The primary benefits of the algebraic reformulation is. the addition of dissi-

pative terms in the corresponding PDE, the coarsening of the grid, and the smooth
20



e

II

original

i ter  t ime

reduced

i ter  t ime

10.

1.

.l

.Ol

.005

-001

12 19.2

12 18.9

11 11.4

nc -

nc -

nc -
T. ..a .a

Iterations  and  time (entin  CPU time including  time for algebraic  Feduction  )  on circulating f?ow

problem using  2 multicolor Gauss-Seidel iteration  on each level. ‘nc’ indicates  no convergence.

spreading of the discrete operator (9 point as opposed to 5 point). For dissipative

equations, the smooth spreading of the stencil is the most important. For highly con-

vective equations, the increased dissipation is most important. A Fourier analysis has

been used to illustrate the improvement in the smoothing rates associated with the

reduced operator. Additionally, a number of numerical experiments have been given

to demonstrate the computational efficiency of the procedure. In general, when the

PDE is not strongly convective, there is a noticeable improvement in the convergence

rate associated with the reduced operator. Further, when the equations are highly

convective or unstable, the cyclic reduction/multigrid  method often converges quite

satisfactorily while the standard multigrid method may diverge.

8 7.9

8 7.9

8 7.9

13 12.0

15 13.6

159 134.5
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Appendix 1: Continuous Derivation of Reduced Operator

We derive the interior stencil for the reduced system of equations corresponding to

applying one step of cyclic reduction to a standard S-point discretization of

(14) - Au + au= + rt+, = f.

Specifically, we consider the following differential equation:

(1+ qux* + (1+ T)u,, + au, + ruy + !$,,+

(15) ;tqlyx + ruxxy + uuxxx + ruyyy )+

. gxxxx + 2UZq/~  + uyyyy)
h2

= f + +x + Tfy + fix + fyy)

obtained by differentiating (14) multiple times and then taking linear combinations.

We can now consider approximating (15) using a finite difference operator. To do so,

we first define a series of stencils and give their leading error terms.

D;th). = -&[u(x + 2h, y) - 24~7 Y) + ~(2 - % Y)l

h2x uxx + ~U’xzx

Df$)u = -&[u(x,  y + 2h) - 24x, Y) + u(z,  Y - 2h)l

h2

D$2h)~ = fru(x + 2h, y) - u(t - 2h Y)]

2h2
= us + -uxxx3

D(2h)U
Y = -&(z, y + 2h) - ~(2, y - 2h)]

2h2a uy+-uyyy3
@h). = -&(z+h,y+h)+u(z+h,y-h)

-u(z-h,y+h)-u(z-h,y-h)l

h2 h2
= u, + -uxxx  + -u6 2 Yw

23



= -&(x t h, y t h) - u(x t h, y - h)

+u(z - h,y t h) - u(z - h,y - h)]

h2 h2
= u,+-u6 Yd~“=y

(b!1' + qy)u = &(x t h,y t h) t ~(2 + &Y - h)

-4u(x,y)tu(x-h,yth)tu(x-h,y-h)]

h2 h2z +x + %Y + -bxxxx t uyyyy  ] + -uxxyy12 2

= -&[u(x t h,y t h) - u(x + h,y - h)

-+ - h,y t h) t u(z: - h,y - h)]
h2

z UXY t yy [ uxzxy t uyyyx  -1
We approximate the first and second order terms in (15) using the difference operators

defined above. This yields the mixed difference/differentiaJ equation

( + ’’ y)D::,+(I+z y)Dgu + ;(ijii) + ijg))u+

(I( D$2h)u + Bih)u) + f( Dfh)u + @)u)+
2

g%y + hl[tu,, + Au- t ;uxxx + $,]
h2x f + $oD!“)f t rDth)f + D:;!f t Dfh)f)Y YY

where we have combined the O(h2) error terms in the difference approximations with

the O(h2) terms in (15). The main point is that the discrete operator defined by the

difference operators on the right hand side of the above equation is identical to the dis-

crete operator corresponding to performing one step of cyclic reduction to a standard

S-point discretization  of (14). Further, the 0( h2) error tern the above expression

are identical to the O(h2) error terms that would be obtaine(rI  ” one approximates the

original convection-diffusion equation by central differences.
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Appendix 2: Multicolor Gauss-Seidel Smoothing Analysis

In this section we sketch the basic elements of the multicolor Gauss-Seidel smoothing

analysis. To begin, we express the Gauss-Seidel operator as a series of Jacobi, projec-

tion, and interpolation operations. Specifically, consider the projection operators

we0 =
(16)

Reov,
Wa = Roev,

W00 = Roov

which each map v (defined on the fine grid) to a coarse grid. Specifically, the w’s

are defined on coarser grids and assume the same values as v. For example, wee is

defined on the even points in both the x and y directions of the fine grid and takes

on the same values as v on these even points; we0 is defined on the even points in the

x direction and the odd points in the y direction and assumes the same value of v at

these points; etc. We also define the Jacobi operator, .I, as

J=I-D-IA

where A is the discretization operator and D is the diagonal of A. We can now write

the four color Gauss-Seidel iteration matrix as

G = (I - Xee + XeeJ)(I - Xo,, t &oJ)(I - X,, t X,,J)(I - X, t XaJ)

where

Xij = RsRij.

That is, we can view the first step of a 4 color Gauss-Seidel operator as a Jacobi

iteration that is only performed on the coarse grid points defined by X,. To analyze

the smoothing properties of the multicolor Gauss-Seidel operator we compute the

largest eigenvalue  of the operator

S = C G

where C is an approximation to the multigrid coarse grid correction. Specifically, C

is defined as

0
CVkj =

if licl 2 n/4, ljl S 44

vkj otherwise
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where Vkj is the vector

{vkj},m = pwl+JYm) _

corresponding to a Fourier mode,

1 m
xi= -, Ym = -n n 1, m = 0, . . . . n - 1,

and n is the number of mesh points in each dimension of the grid. This definition

simple states that C completely eliminates low frequency Fourier modes and does not

disturb high frequency modes.

To compute the eigenvalues  of S, we first take the Fourier transform

where we use a tilde to denote the Fourier transform of each operator. For constant

coefficient discretizations and periodic boundary conditions, J fs a circulant matrix

and hence is diagonalizable by the Fourier transform. By definition  c‘ is also diagonal.

Similarly, the Xij operators reduce to block diagonal matrices (with 4 x 4 blocks)

by the Fourier transform. This can be seen by exmaining the Fourier properties of

the projection operators. Each Rij projects four Fourier modes onto one coarse grid

Fourier mode. For example,

R,eVkj = Skj if lkl 5 n/4, lil 5 44,
R,,vLj = Skj if lkl > n/4, Id S n/4,
&r)kj  = 6kj if lkl < n/4, Id > 4%
&=0&j  = Skj if lkl > n/4, IA > 44

w h e r e

I = sgn(k)i - k, 3 = sp(j)z - j,

1
sgn(k) =

ifkL0

- 1 i f k < O

and 6kj  are the Fourier modes on the (even-even) coarse grid.

We omit the details and simply state that the smoothing operator, 3, can be

transformed to block diagonal (4 x 4 blocks) using a simple permutation matrix. That
26



is, the 4 x 4 blocks can be compute analytically. The maximum eigenvalue  of S is

given by the maximum eigenvalue of all the block matrices. In specific cases, explicit

expressions can be computed. However, for the general operators considered in this

paper we have used a program to compute the maximum eigenvalue of these 4 x 4

blocks and obtain the smoothing rates given in Section 5
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