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Abstract

This paper describes a parallel implementation of LDLT factorization on a distributed
memory parallel computer. Specifically, the parallel LDLT factorization procedure is based
on a row-oriented sparse storage scheme. In addition, a strategy is proposed for the paral-
lel solution of triangular system of equations. The strategy is to compute the inverses the
dense principal diagonal block submatrices of the factor L, stored in a row-oriented structure.
Experimental results for a number of finite element models are presented to illustrate the
effectiveness of the parallel solution schemes.
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1 Introduction

Displacement based structural finite element analysis often requires the solution of a linear system

of equations:
h-x = f (1)

where x and f are, respectively, the displacement and loading vectors. h’ is the global stiffness

matrix which is often symmetric, positive definite and sparse. To solve the system of linear

equations, the symmetric matrix  K is often factored into its matrix product LDLT where L is
a unit lower triangular matrix and D is a diagonal matrix. The displacement vector x is then
computed by a forward solve, Lz = f or z = L-’ f, followed by a backward solve, DLTx = z or
X = L-TD-’ z.

There are three basic forms of the LDLT factorization, depending on how the lower triangular
factor L is being stored and computed:

1. row-oriented form where L is computed and stored by rows;

2. column-oriented form where L is computed and stored by columns;

3. submatrix form where at each step. the remaining submatrix (Schur  complement) is updated

by the outer-product of a computed column of L.

In sparse matrix factorization, the column-oriented form is perhaps the most commonly used

approach [S, 51. The multifrontal method is an example of factorization in submatrix form [15].
Row-oriented form has traditionally been used primarily for variable bandwidth or profile method
[3,11,  lo], and the approach has recently been extended for general sparse factorization [13,14,16].

In this paper, we describe a parallel implementation of LDLT factorization on a distributed
memory parallel computer. Current developments in parallel sparse factorization have been re-
viewed by Heath, Ng and Peyton [9]. Previous studies have been focused on the parallelization

of column-oriented (fan-in) and submatrix (such as fan-out and multifrontal methods) forms of

factorization which are based on a column-oriented storage scheme. In this paper, we describe

a parallel implementation of LDLT factorization based on a row-oriented storage scheme. The
method is based on the recent development in sparse row-oriented factorization, exploiting all

possible zeros in the matrix factor [2, 12, 13, 14, 161.
Efficient implementation of the forward and backward triangular solutions on parallel com-

puters is quite difficult because of data dependencies [9]. Alvarado and Schreiber proposed a
scheme to partition L into column panels and compute the inverses of the partitioned factors
[l]. The idea is to eliminate the data dependencies in the forward and backward solutions and to
exploit the parallelism inherent in matrix-vector multiplication. We propose a different scheme by
computing the inverses of the principal diagonal block submatrices of L based on a row-oriented

storage scheme.
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This paper describes the development of a parallel row-oriented factorization method and its

implementation on a distributed memory Intel’s 860 hypercube computer. The paper is organized

as follows: Section 2 reviews an approach for sparse row-oriented factorization [IS]. Section 3

describes the load assignment of a sparse matrix on a multiple processing environment. A parallel

implementation of the row-oriented solution scheme is described in Section 4. In Section 5, we

introduce a strategy that computes the inverses of the principal diagonal block submatrix factors;

this approach can significantly speed up the computation time for the forward and backward

solution of triangular systems and is particularly useful for problems with multiple right-hand
sides. Experimental results are presented in Section 6. FinaJly, this paper is concluded with a

summary and discussion in Section 7.

2 A Row-Oriented Sparse LDLT Factorization

This section describes the development of a row-oriented LDLT factorization scheme. We first

review the graph-theoretic representation of sparse matrices in Section 2.1. The notion of elimi-

nation tree and symbolic factorization is described in Section 2.2. Section 2.3 presents a sparse

LDLT factorization procedure based on a row-oriented storage scheme.

2.1 Graph Theoretic Notations of Sparse Matrices

T&s section provides a brief review on the graph-theoretic representation of sparse matrices.
Detailed discussion on sparse matrix and graph theory can be found in References [4] and [6].

A finite undirected graph G = (V, E) consists of a finite set V of n elements, called nodes,

and a set E of unordered pairs of distinct nodes (u, v), called edges. When each node is assigned

an integer, ranging from 1 to n, which uniquely identifies the number or label of that node, the
graph is said to be an ordered graph. A subgraph G’ = (V’, E’) of G is a graph for which V’ C V
and E’ C E.

A (simple) path {u, . . . , v}, or Path{u. - v}, is a sequence of distinct nodes and contiguous

edges leading from u to v such that there are no repeating edges. A cycle is a path that begins
and ends at the same node. A tree T = (u, v) is a connected graph with no cycles, A rooted
tree is a tree in which one node is distinguished as the “root”. For a path {w, . . . , v, . . . , u} from

a node w to the root node u via an intermediate node v, w is called an ancestor of w and w a
descendant of V. If (UI, v) is an edge in the rooted tree T, v is termed the parent of w, and w the

child of v. A monotone ordering of a rooted tree is one for which each node is numbered before its

parent. A subtree  T(v) rooted at a node v is the subgraph consisting of v and all its descendants

in the tree.
Given an n by n symmetric matrix K( = L D Lt ) , there corresponds to it a finite ordered matrix

graph G(K) = (WV, hw ere a node v; E V denotes the ith row (or column) of the matrix K
and an edge (v;, vj) E E symbolizes an off-diagonal nonzero entry Ki,j( = Kj,;). The filled graph
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GF(~‘) = (V,EF re> Presents the structure of the filled matrix F(= L+ Lt) of matrix K. The edge

set EF in the filled graph includes the edge set E of G(K) and the set of edges corresponding to

the fill-in entries created during the LDLt factorization.

2.2 Elimination Tree and Symbolic Factorization

Sparse matrix factorization can be divided into two phases: symbolic factorization and numeric
factorization. Symbolic factorization determines the structure of matrix factor L, i.e. the locations
of the nonzero entries, from that of K. Numeric factorization then makes use of the data structure

determined to compute efficiently the numeric values of L.
In graph-theoretic terms, the problem of symbolic factorization is to determine the filled graph

GF(K) from the solution graph G(K). Let’s define a list array PARENT:

PARENT(j) = min{i 1 L;,j # 0) (2)

The array PARENT represents the row subscript of the first nonzero entry in each column

of the lower triangular matrix factor L. The definition of the list array PARENT results in
a monotonically ordered (elimination) tree T(K) of an n by n (non-decomposable) matrix K
[13, 15, 191.  In T(K), each node has its numbering higher than its descendants.

With the definition of the array PARENT, the nonzero  entries induced by a nonzero entry

- Ki,, or Li,j can be determined based on the following statement:

Lemma 1: If K;,j (or L;,J # 0 then for each k = PARENT(.  . .(PARENT(j))),
Li,k # 0 where k < i.

That is, the list array PARENT contains sufficient information for determining the nonzero
pattern of any row in L 112,  13, 191. This lemma forms the basis for establishing the row-oriented

data structure for the sparse matrix factor L.
A topological post-ordering strategy can be used to re-order the nodes of the elimination tree

T(K) so the nodes in any subtree  are numbered consecutively [13].  This post-ordering process

facilitates the partitioning of the matrix into block submatrices where the columns/rows of each
block correspond to the node set of a branch in T(K) [14, 161. Figure 1 shows the matrix

structure and its post-ordered elimination tree representation. As shall be discussed in Section
3, the parallel assignment of a sparse matrix em ployed in this study is based on the post-ordered

elimination tree representation.
The data structure for the row-oriented factorization method builds a sparse storage scheme

over a profile storage scheme. The post-ordered elimination tree plays an important role in

defining the data structure for representing the matrix factor L. As noted earlier, we partition
the matrix according to the node set along each branch of the elimination tree. Each branch of

the elimination tree defines a column block. This partitioning divides a sparse matrix into two
basic data sets: principal block submatrices and the row segments outside the diagonal blocks

3
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(see Figure 1). The storage scheme for the matrix factor is defined according to the principal

diagonal block submatrices and the offdiagonal row segments.

Following from Lemma 1, each principal block submatrix of L has a full envelope. Thus, it

is most appropriate to use a profile storage scheme to store the entries in the principal diagonal

blocks. For the entries that lie outside the principal diagonal blocks. we group them by rows as

row segments within each column block. A row segment begins at the starting nonzero  column
subscript and extends to the ending column subscript of the same column block. Based on

Lemma 1, it can be seen that in the matrix factor L, there would be no zero entries within each
row segment . A symbolic factorization procedure to set up a row-oriented data structure of L

has been developed and described in Reference [16].
To facilitate the discussion on the numerical procedures, we denote the bt h column block as

C(*) which is partitioned into the principal block submatrix, Dib), and the set of row segments,

K?). Since the matrix K is symmetric, we store only the lower triangular part of the matrix.
Furthermore, the diagonal entries are assumed to be stored in a separate vector. Subscripts are

used to denote the entries in a matrix or vector:

1. A single subscript, i, denotes a specific entry, such as K;,j or f;.

2. A range, j : ky denotes the entries from subscripts j to k; for example, Ki,j:k = [K;,j, K;,j+l,

- - - 7 Ki,k] and .f”:k = [fj, .f’+l, - - * 7 .fklT*

3. The colon, :, is also used as a “wild card” denoting a range of nonzero entries in a row or

column. For example,

(a) K,(P) denotes the ith row vector of K in column block b. If K;, f D@), the row vector:
starts at the first nonzero column subscript in that column block b and extends to the

column subscript of i - 1. If h’i,: E 7#‘), the row vector starts at the first nonzero
column subscript and extends to the ending column subscript of the column block b.

(b) K$! denotes the nonzero entries in the row vector starting from the jth column sub-
(6)script to the ending subscript of that row vector in the column block b. Ki,:j represents

the row vector starts at the first nonzero  column subscript of that row and extends to
the j column subscript.

(c) K!!) denotes the ith column vector of K in column block b.-4

The same notation is used for vectors; for example, &(:I (jr’) indicates the range of entries

starting from (ending at) subscript i in vector f corresponding to the column block b.

The above notations will be used to describe the numerical procedures in this paper.



2.3 Numerical Factorization

The sparse matrix factorization is basically a block column scheme with a row-oriented profile

factorization for the principal diagonal block submatrices. The factorization of each column block

involves three basic steps:

1. update the coefficients in the principal block submatrix and the row segments of the column
block;

2. decompose the principal block submatrix by a row-based profile factorization scheme;

3. factor the row segments by a series of forward solves.

This procedure is depicted as shown in Figure 2 and is summarized in Figure 3.

Once the matrix factor L is obtained, the solution vector can be computed by a forward solve

z = L-‘f, followed by a backward solve x = L-tD-lz.

1. In the forward solution procedure, the calculations proceed in a column block by column
block manner. For each column block, we first perform a forward solve with the diagonal
block factor. We then update the solution vector with the row segments within the column

block.

2. In the backward solution procedure, the calculations proceed in a row block by row block

fashion. For each row block of L, we first update the solution vector due to the row segments.

We then update the solution with the diagonal block factors using a backward solve.

The forward and backward solution procedures are summarized in Figure 4. Again, the solution

procedures for the triangular systems proceed in a column block by column block basis. A

sequential im r ientation  of the solution procedures discussed in this section has been described

in detail in Reference [16].

3 Matrix Partitioning for Parallel Computations

The efficiency of a parallel algorithm depends on the proper distribution of data among the

processors. In a distributed memory computer, it is desirable to confine data access to the local

memory of a processor as much as possible, thus minimizing the number of messages that must
be sent and received. Moreover, a good balance of data distribution is important to minimize

the idle time of a processor waiting for other processors to complete their tasks. In this section,

we describe a processor assignment strategy based on the matrix partitioning according to the

post-ordered elimination tree [7].

The coefficients of a sparse matrix factor are distributively stored among the processors ac-

cording to the column blocks. Figure 5 shows an example of the data assignment of a matrix on
multiple processors. Essentially, the strategy is to assign the rows corresponding to the nodes

6
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Procedure: Sequential Factorization
/* nblock denotes the number of partitioned column blocks.*/
BEGIN

FOR each column block b = 1 TO nbhxk, DO
BEGIN /* sequential factorization of each column block */

s-fact  -column,bloclc(  b);
END.

END.

Procedure: wqfact,column-block(b)
/* Sequential Factorization of each column block Cfb) */
BEGIN

/* 1. update column block by fanning in updated entries
from preceding column blocks */

FOR each row j E Ctb),  DO
BEGIN

FOR each preceding block p = 1 TO 6 - 1, DO
BEGIN

FOR each row i E Dtb)  AND i < j, DO
BEGIN /* update coefficients */

K(b) = K(b) _ &’
END:” “’

J,: * R@)=*1,: 9 /* dot product l /

IF j E ZJtb)  THEN

/* dot product */

END.
END.
/* 2. compute factor of principal submatrix Ktblb) E Dlb) */
factor ~(blb) = L(b)D(b)L(b)T*
/* 3. factor row segments */ ’

/* profile factorization */

FOR each row segment i E 7Ztb),  DO I
BEGIN /* forward solve */

j$b)T = L(b)-‘K(b)T  ; .
END.’

1,: /* note* Bfb’1,: = R!b)DW */1,:

END.

Figure 3: A Sequential Procedure for Matrix Factorization



Procedure: Sequential Forward Solve  LZ = f
BEGIN

FOR each column block b = 1 TO nblmk, DO
BEGIN

solve  z(b)  = L(b)-’ f’b’ ; /* forward solve */
FOR each row segment i E Rtb),  DO
BEGIN /* update soiution vector */

f; =fi-Rt(b)*Z(b);
END. .

/* dot product */

END.
END.

Procedure: Sequential Backward Solve DLTz = z
BEGIN

z = D-‘z ;
FOR each column block 6 = nblmk  TO 1 STEP -1, DO
BEGIN

FOR each row segment i E 7Ztb),  DO
BEGIN /* update solution vector */

Z(b) = Z(b) - 2; * RI~‘T; /* axpy operation */
END.
solve  Jb) = LWTz(b);

END.
END.

Figure 4: Sequentiai Solution Procedures for Triangular Systems

9
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along each branch (column block) of the elimination tree to a processor or a group of processors.

Beginning at the root of the elimination tree, the nodes belonging to this branch of the tree are

*signed among the available processors in a rotating block round robin fashion, or a block wrap

mapping [8]. As we traverse down the elimination tree, at each fork of the elimination tree, the

group of processors is divided to match the number and the size of the subtrees below the current

branch. A separate group of processors is assigned to each branch at the fork and the process

is repeated for each subtree. For a balanced elimination tree, the group of processors assigned
to the branch is always a subcube or subring.  Otherwise, the procedure is to follow as closely
as possible the mapping of subcubes or subrings  to subtrees. The number of processors assigned
to each branch is weighted according to the number of nodes in the subtree of that branch. For
example, five processors may be assigned to one subtree and three processors to the other, in this
case neither branch has been assigned a subcube or subring.  The process of assigning subcubes  or

groups of processors to each branch of the elimination tree continues until each subcube consists

of only one processor, then all remaining nodes in the subtree are assigned to the single processor.

As noted in Section 2.2, a sparse matrix is partitioned into two basic sets: the principal

diagonal block submatrices and the row segments outside the principal block submatrices. For

the principal block submatrix, which has the profile structure, the processor assignment proceeds

on a row group by row group basis ‘. In our implementation, we assign a row group corresponding
to a node in the finite element model, grouping individual degrees of freedom per that node as a

unit.
The row segments are assigned to the processors that share the column block. When the

node set of a branch in the elimination tree is shared among a number of processors, the rows are
assigned to the processors sharing the node set (column block) in an alternating round robin or

wrap fashion. That is, for a subtree-to-subcube mapping, two successive rows are assigned to the

neighboring processors in the subring. This can be determined easily using a simple procedure as
follows:

Procedure: processor( row-number, #-of-shared-pmessors,  processor-list)
BEGIN

index = mod{ row-number, # -0 f shared-processors);
processor = processor,list[index]

END.

where processor-list is a list of processors sharing the column block, index points to the position
in the list where the processor number can be found, and processor is the processor to which the

row segment is assigned. By this rule if the entire node set of a branch in the elimination tree is

assigned to a single processor, all of the row segments in that column block are assigned to the

‘It is more  efficient to assign the rows  in a row block fashion. The  optimal  block width will  be determined  by
the relative  speed of the processors and  communication  time. For the Intel/i860  hypercnbe  we have  found  that
block width to be about  eight.  For the Intel/iPSCZ we found  the optimal  block width to be about  three  or four.



same processor. Thus if a column block is not shared, no processor to processor communications

are needed to factorize the column block.

4 Parallel Solution Procedures

4.1 Parallel Factorization

As in the sequential computing environment, the parallel numerical factorization procedure com-
putes the matrix factor L on a column block by column block basis. The block factorization

scheme consists of (1) a profile factorization for the principal diagonal block submatrices; and (2)
a profile forward solve for the row segments per each column block. The matrix factorization is

divided into two distinct phases. During the first phase, the column blocks assigned entirely to

a single processor are factorized. During the second phase, the columns blocks shared by more

than one processor are factorized. The operations involved in these two phases are described in

the following subsections.

4.1.1 Phase One of Parallel Factorization

In the first phase, each processor independently factorizes the column blocks assigned to a single

processor. There are two distinct stages in this first phase of factorization.

111 Factoring the column blocks entirely in the same processor using the same procedure as in

the sequential factorization.

I.2 Forming dot products among the row segments for updating the coefficients in the column

blocks shared by a number of processors. These dot products are then fanned-out to update
the remaining matrix coefficients in the same processor or saved in the buffer to be fanned-in
to another processor during the second phase of factorization.

This procedure is graphically illustrated as shown in Figure 6.
The procedure for the factorization of a column block stored entirely in a processor is described

in Figure 7. The factorization of each column block in a processor follows the same procedure as

in the sequential factorization. We first fan-in the dot products among the row segments located

in the preceding column blocks to update the coefficients in the current column block. For the

principal block submatrix which has a variable banded structure, a profile-oriented factorization

scheme is used to decompose the submatrix. For the row segments which lie in the same column

block, a profile forward solver is used to calculate the numerical coefficients in these segments.

(This is the reason that all of the row segments of the column blocks are stored in the same
processor as the diagonal block. It eliminates the need to send the row segments to another
processor in the forward solve.)

12
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Procedure: Parallel Factorization - Phase I
BEGIN

/* I.1 Factorization of column blocks entirely in my processor */
FOR each column block b E mygwce~~ot,  DO
BEGIN /* sequential factorization of each column block */

seqfact-column-block(  b);
END. /* Compiete factoring column block */
/* I.2 Perform dot products between row wgments */
FOR each column block b E myqroceaaw, DO

FOR each row segment j E R(*), DO
BEGIN

y = ~w-~~~~~*;
FORrowi=jTOn,DO
BEGIN

8 = jp’1,: * v; /* dot product */
/* find what processor Lij belongs to */
proc = procenaor(i, #-shczrcdgrocessor,ptoceJaot~ist);
IF (proc  = mygroceasor)  THEN

Ki,j = Ki,j  - S; /* faxwnt  update */
ELSE

accumulate update coefkient:  sij = sij + u;
save codikient  (8ii, i, j ) in buffer for processor proc;

ENDIF.
R!b) =?A .
E’&D .

END.
END:

END.

Figure 7: A PanIle Factorization Procedure for Column Blocks Entirely in the Processor
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At the end of this phase, each processor forms the dot products among the row segments in
its column blocks which have been factored. These dot products are fanned out immediately to

update the coefficients of the remaining matrix in the same processor or saved in a buffer for

fanning into another processor for updating the column block during the second phase of parallel

factorization. The strategy is to carry out as much computations as possible in the processor.

When a processor sends the dot products to anot her processor, all dot products saved in the
buffer for that processor are sent as a package.

4.1.2 Phase Two of Parallel Factorization

In the second phase of numerical factorization, the column blocks shared by more than one

processor are factorized. The parallel factorization of a column block proceeds as follows:

II.1 Each processor fans-in the dot products saved previously in the buffers on the other proces-

sors sharing the column block. The dot products received are used to update the principal

block submatrix and the row segments.

II.2 Perform a parallel profile factorization and factor the row segments.

II.3 Form dot products among row segments in the column block. This step consists of two
basic operations:

11.3.1 Form dot products among the row segments stored in the processor.

11.3.2 Form dot products between the row segments stored in different processors.

The dot products are fanned-out to update the remaining matrix coefficients in the same

processor or saved in the buffer to be fanned-in to another processor (see Step 11.1.)

This procedure is illustrated in Figure 8.

The parallel factorization of a column block shared by multiple processors is described in
Figure 9. In this procedure, the factorization is performed in place; that is, the matrix factors

L, R and D share the same storage as the original matrix K. We use the overbar, such as iz, to
indicate the coefficients that have not been divided by the diagonal entries of D. Furthermore,

we assume that every processor has a (temporary) copy of all the diagonal entries for the column
block; those entries that do not belong to the processor will be discarded after the column block

is factored.

After the profile submatrix has been factored and all of the row segments in the column block

have been updated, each processor forms the dot products among the row segments in the same

processor. Then the row segments of the column blocks are circulated among the processors

sharing the column block. When a processor receives another processor’s row segment, each
processor forms the dot products between its own row segments and the row segments received
from the neighboring processor. In this manner, each processor receives the other processors’ row

1.5
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Procedure: Parallel Factorization - Phase II
BEGIN

FOR each column block 6 E mypoccssof,  DO
BEGIN

/* matrices can share same storage in implementation */
assign Ktb) to D(b),  i(b) and a(b);
/* II.1 Update column block by fanning in updated entries from

previous column blocks in other processors */
receive update entries (a, i, j) from other proceusors  sharing Ctb);
FOR each entry (s, i, j) received, DO
BEGIN

IF (i = j) THEN Di,i  = Di,i  - 8;
IF’ (i, j) E D(*) and i # j THEN t$ = ziy - s;
p (i, j) E R(b) THEN a!*!  = R!*! - J*‘9’ ‘J 9

END.
/* II.2 parallel factorization of column block */
FOR each row i E a(*),  DO
BEGIN

IF row i E myqmxessor,  THEN
/* form L!*) and D, . */
y _ $b’;l; *”

. 9

Lip:)  = [:‘I. 7 yj/Dj>,  -. . ,yi-~/Di-l,i-~j;
D; i = D. - L!q)  * y; /+ dot product */
br&daTt L$*and  Dii  to other processors  sharing ‘C(“);

ELSE
receive Lit), Dii from other p~~esaors  shariig  C(*)  ;

ENDIF.
assign Dii  to DfbJ; /* every processor has entire copy cxf D(*) */
/* update remaining entries in column block */
FOReachrowj  E @*)andj>i+l,DO
BEGIN /* dot product */

IF row j E myqtocesw-r THEN iif! = $! - I$:$ 1 * t!f:’ ;
END.
FOR each row j E Rib),  DO
BEGIN /* dot product */

IF row j E myqtoccssor  THEN l?$:j  = af” - l$~, rt Lif:);
END.

END.

Figure 9: A Parallel Factorization Procedure for Column Blocks Shared among Processors
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/* II.3 Perform dot products between row segments */
/* 11.3.1 For the row segments in my processor */
send all row segments l?(*) to next processor;
FOR each row segment j E mypocessot  , DO
BEGIN l

FOR each row segment i E myqrucessor  and i 2 j , DO
BEGIN

s = aif:’ * y; /* dot product l /
/* find what processor L;; belongs to */
proc  = processor (i, #-of s~red~~essot,ptocessorlist  );
IF (p+oc = myqmcessur)  THEN

Ki, = K;j - s; /* fan-oat update l /
ELSE

accumulate update coeflkient:  s;i = sii + s;
save coefikient (s;j, i, j) in bufk for processor proc;

ENDIF.
END.
J&b) = YT.

7.: 9
END-:

.
/* 11.3.2  Circulate row aegmentr  to other processors */
FOR k = 1 TO #-of-shated,processore  - 1, DO
BEGIN

receive row segments R(b) kom  preceding procesror;
FOR each row segment i E mygrocessor,  DO
BEGIN

FOR each row segment j < i received fkom  other processor, DO
BEGIN /* dot product */

s = alp:) * Jp*
/* find wha&&xssor Lij belongs to */
proc = processor(i,  #-of~haredqmcessor,processorJist);
IF (proc  = my,ptocessor)  THEN

h’;,j = Kii - S; /* fan-out update */
ELSE

accumulate update coef3cient:  sij = *i + s;
save codikient (sii, i, j) in buffer for processor proc;

ENDIF.
END.

END.
END.
/* circulate the received row segments to other processor */
IF (k # #-of-shared-processors - 1) THEN

send row segments iitb) to next processor;
END.

END.

Figure 9 (continued)
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segments and computes the dot products only once. The row segments are then passed on to the
next processor. It should be noted that, in actual implementation, memory buffers are allocated

for sending and receiving data.

4.2 Parallel Forward Solve

The forward solution procedure can be viewed symbolically as the traversal of the elimination tree

from the leaves to the root. Each processor begins to work on the column blocks or subtree that

reside entirely in the processor. As work proceeds up the elimination tree, the processors begin to
work on the column blocks corresponding to the branches that are assigned with more than one

processor. That is, each processor begins working independently and then merges its work with
other adjacent processors until all of the processors work together on the same (root) block at

the end. For the forward solve, the processors may begin asynchronously but finish synchronized

at the same time.
The parallel forward solution procedure is described in Figure 10. The solution procedure can

be performed in place in that the solution vector t and the load vector f can share the same

memory locations. Although the vectors t and f are divided into blocks just as the matrix is

divided into column blocks, we assume that each processor contains an entire vector of length n;
those entries that do not belong to the processor will be discarded after the solution is completed.

The forward solve is divided into two phases. In the first phase, each processor calculates the

portion of the solution vector t corresponding to the column blocks which reside entirely within
a single processor. Each processor also updates the shared portions of the solution vector based
on the row segments in that column block.

In the second phase, the parallel forward solve for the shared portions of the vector is per-
formed. This parallel procedure is carried out in a column block by column block basis. There
are three basic operations for factoring a column block shared by multiple processors:

1. Send and receive updates for the solution vector corresponding to the current block.

2. Calculate the solution for the current block.

3. Use the solution computed to update the remaining coefficients using the row segments in
the column block.

At the end of the

other entries that

procedure, each processor has the correct value of z;

do not belong to the processor can be discarded.

4.3 Parallel Backward Solve

assigned to the processor;

The backward substitution solves the upper triangular system of equations DLTx = t. The

procedure is essentially a reverse of the forward solve. Symbolically, the procedure proceeds at
the root of the elimination tree and traverses down to the leaves. In the backward solve, all of
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Procedure: Parallel Forward Solve Lz = f - Phase I
BEGIN

/* Initialize the entire vector f in the processor */
FOReachmwi =lTOn,DO
BEGIN

I F  i E mygrocessor  T H E N
fi = fi;

ELSE
fi = 0;

ENDIF.
END.
FOR each column block b E myqrocessur  , DO
BEGIN

solve  ,P) = L(b)-lfw  ; /* forward solve */
FOR each row segment i E 7Ztb), DO
BEGIN /* update sdution vector l /

f; = f;-R,(t)*%@);
END.

END. /* partial updates computed and stored */
END.

Procedure: Parallel Forward Solve Lz = f - Phase II
BEGIN

FOR each column block b , DO
BEGIN

/* 1. update solution vector l /
broadcast f!b’, i E Dtb), to th0 er processors rharing  Cfb);
Receive f(,‘,) and accumulate fib) = fib)  + f(,,,) ;

/* Note: every processor has a copy of fib’ */
/* 2. parallel forward solve */
FOR each row i E Z)tb),  DO
BEGIN

IF i E my-processor THEN
2;- f**
broadGt  2; to other proces~rs  sharing Ctb);

ELSE
receive &;

ENDIF.
/* update solution vector */
FOR each row j E Z7ib).,  j < i, DO
BEGIN

fj = fj -t; *L’b!*34 ’
END.

END. /* Note: every processor has a copy of I(*) */
/* 3. update vector by row segments *J
FOR each row segment i E 7Zlb)  , DO
BEGIN

f; = fi - Ri;’ * ~(~1;
END.

END.
END.

J* dot product */

Figure 10: A Parallel Forward Solution Procedure
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the processors begin working together on the same block and branch out into smaller groups of

processors until each processor is working independently on data within its own local memory.

During the backward substitution, the processors start the computations synchronized, but may

finish asynchronously at different times.

The backward solution procedure is described in Figure 11. Similar to the forward solve and

the factorization, the procedure can be divided into two phases. In phase one, the processors
compute the portion of the solution vector shared by multiple processors. In the second phase,
each processor calculates the portion of the solution vector corresponding to the column blocks

residing within a single processor.

Phase one of parallel backward solve is performed as follows: For each shared column block,

ctb).

1. update the vector based on the values that have been resolved;

2. perform a backward substitution to solve for the portion of solution vector corresponding

to the current block;

3. distribute the result and assign the solution to each processor.

Again, the solution procedure can be performed in place, in that the vectors x and t can share

the same memory locations. We assume that each processor has an entire vector z of length n.
We first initialize the solution vector z in each processor and divide it by the diagonal entries,
z = D-’z. We then update the vector t tb) based on the row segments. The updates are summed
across all processors so that each processor has a copy of ~(~1.

The backward solve for the principal profile submatrix is performed by a procedure similar to
the forward solve procedure described in Reference [8]. In this backward solve procedure, each

processor updates the vector zib) only as far as necessary to keep the other processors busy. It
updates ztb) from the current row up to the next row that the processor is responsible for. It then

sends off this portion of the vector and then proceeds to update the remaining coefficients of the
vector based on the current row of L. To illustrate this process, let’s assume that a processor is
responsible for rows i and k, where k < i and both k, i f Dtb).  The processor receives a vector

(b)containing the updates for z; . . . zf’r. The processor then adds this vector to z and then update
part of the vector using row i of L:

v4 Jb)
‘k+l:i-1  = &Ck+l:i-1  - tZ’ * Lygl i, :- 1

The processor immediately sends z$ . . . z$ off to the processor responsible for row i - 1 so
that the receiving processor can proceed its own computations. After this message is sent off, the

processor continues to update the remaining coefficients based on row i of L:
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Procedure: Parallel Backward Solve DLTz = t - Pb 1
BEGIN

/* Initialize solution vector in each processor */
FOReachrowi=l,n,DO
BEGIN

. -- 0;
EN&F.

END.
FOR each column block b = duck,. . . STEP -1 DO
BEGIN

/* 1. update the solution vector db) by row segments */
FOReachrowj  E Rib)andj>i,DO
BEGIN

*(b) = *P) - 2j * R(lfJT;
END.

/* axpy operation */

/* sum the updates across processors */
broadcast ~(~1  to other procamom~  sharing Cfb)  ;
receive ArK) and accumulate: xlb)  = z@) + z(‘=);

/* Note: every procesor has a copy of db) l /
/* 2. parallel profile backward solve */
/* k denotes the row preceding row i, both k, i E Z)tb) and my*txessot  */
FOR each row i E ZJtb)  STEP -1, DO
BEGIN

XF i E myqruccaaw  THEN
IFi#lastrowofZ)(b),THEN.rc?CelW!  tf&+l  :i ;

zk+l:i =  *k+lti  +  wk+l:i;
ENDIF.
2i 1 %i;

IF i # first row of Z)(*),  THEN
wk+l:i-1  = %k+tl:i- tl - 2i * Li,k+l:i-1;
send wk+l:i-l to processor responsible forrowi-1; , .

= &k -

EN:!&
2i * Li,:k

ENDIF.
END.
/* 3. distribute the solution vector */
broadcast 2ib),

receive 2ircc)

i E myqwceuwr, to other processors  sharing Cfb);
and assigned them to 2tb);

/* Note: every processor has a copy of 2fb) */
END.

END.

Figure 11: A PamlIe Backward Solution Procedure
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Procedure: Parallel Backward Solve DLT2 = z - Phsv II
BEGIN

FOR each block b E myqnxeswr,  DO
BEGIN

/* 1. update by row segments in column block b l /
FOR each row segment j E 72@),  DO
BEGIN

J*) = #4 - 2j * fpj';
END.
/* 2. update by rows in principal block b */
FOR each row j E D(*) STEP -1, DO
BEGIN

2; - *w3 t

*$) l = ‘(b) 2. * L!))T2:,-l - f 1,:1-l ;
END-.

- _

END.
END.

Figure 11 ( cant inued)

23



The processor will then wait until it receives another vector containing updates from the processor

responsible for row k + 1 and repeat this process for row k and so on until the block backward

solve is complete. At the end of the profile backward solve, each processor has the solution vector

for the rows it is responsible for. The solution values are distributed to all the processors sharing
the column block.

Phase two of the backward solve computes the solution vector based on the column blocks
entirely in the processor. The two basic steps of the backward solve for each column block Ctb)

are:

1 . Update .ztb) based on the row segments in the column block.

2. Execute a profile backward solve using the principal block submatrix factor Ltb).

The processors perform the calculations independently without any processor communications
and may complete the solution at different times.

5 Partial Matrix Factor Inversion

While the parallel matrix factorization procedure described in the previous section performs well,

the parallel forward and backward solves do not exhibit similar efficiency. Heath et. al. concluded

that there is little that can be done to improve the performance of the parallel triangular solvers

[9]1 Our procedures suffer in a similar way. When examining closely the performance of the

forward and backward solves, most of the parallelism come from assigning many column blocks

to a single processor so that the processors can work independently. Good speed up also seems to

occur when working with the distributed row segments. The main deficiency lies on the parallel

solutions of the triangular systems for the dense principal block submatrix factors; the triangular
solution procedures have a significant number of communication overhead. Additional messages

are also required before and after the profile submatrix solve for the backward solution phase.
In this section, we describe an alternative method that can expedite the solution of triangular

systems. The strategy is to invert the dense principal block submatrix factors that are shared by

multiple processors. This strategy can significantly improve the performance of the direct solu-
tion methods for problems that involve multiple right-hand side vectors. Section 5.1 describes

a method that computes the inverse of a dense matrix factor without extra processor communi-
cations. Section 5.2 presents the forward and backward solves based on the matrix factors with

partial inverses.

5.1 Parallel Computation of the Inverse of a Dense Matrix Factor

A faster method to solve for z in Lz = f in parallel would be to form L-l, the inverse of the
matrix factor. By distributing the coefficients of the factor inverse L-l over all the processors,
each processor can form the partial matrix-vector product from the entries in its processor and
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sum the partial products from each processor globally to form the solution. This reduces the

communication overhead down to one set of messages, which is to sum the partial products

among the processors sharing the principal block submatrix D(‘). The problem is to directly

compute the inverse of a dense matrix factor L.

First, let’s define L; to represent the triangular matrix factor that contains the ith row of L :

1
. . .

1

Li,i-1 1

1
.

The triangular matrix factor L can now be written as:

L = L1 a a a LiLi+l a . . L, = L(‘)Li+l . . . L,

1 ,

(3)

where L(‘) = L1 . . . Li contains the first i rows of the triangular factor L. The inverse of the

triangular factor becomes:

T- 1 = L,l . . . Li’;l, L;l . . . L,’ = L,’ . . , Ly--l L(‘)‘l (5)L

where

Lfl =

1
1

. .

1

. . . -&i-1 1

1
. . .

(6)

In other words, Li’can be obtained by negating the offdiagonal values in the ith row of L. Note
that, each row of L can be computed as:

LT:*-, = L(‘-‘)-‘Klf,i-l (7)

Once the ith row of L is computed, the inverse of the matrix factor L(‘) is given by

L(i)-1 = L(i-lblL;l (8)

Based on the equations above, the procedure for inverting a lower triangular factor on a row by
row basis can be summarized as follows:
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1. Compute Li,: by Equation 7.

2. Negate the entries of L,,: to form LF1 as in. Equation 6.

3. Compute L(+r by multiplying Lr’ with L(“‘)-’ as in Equation 8.

The multiplication shown in Equation 8 only affects the entries on row i of L(‘)? Therefore, no

additional processor communications are needed when L(‘)-’is formed in the processor responsible

for row i. We apply this procedure to directly compute the inverses of the dense principal block

submatrix factors.
Figure 12 summarizes the procedure for parallel factorization that includes inverting the dense

block submatrix factors that are shared by multiple processors. The procedure is the same as
the direct parallel LDLT factorization described in Figure 9 except in the factorization of column

block (step II.2). We assume that there is a duplicate temporary copy of the coefficients for the

column block that is being factorized. In our implementation, we use the buffer reserved for

the messages to hold the temporary column block. The factor inverses are formed mainly by

matrix-vector multiplication instead of the forward triangular solve. The number of processor

communications are the same for both the direct L D LT factorization and the factorization with

partial factor inverses.

5.2 Forward and Backward Solvers for Partially Inverted Matrix Factors

As noted earlier, it has been well recognized that efficient implementation of parallel forward and
backwards solves is quite difficult because of the data dependencies in the solution of triangular
systems. One approach is to transform the triangular solves into matrix-vector multiplication by

inverting portions of the matrix factors. An approach of using the inverses of partitioned factors
for parallel forward and backward solution has been proposed by Alvarado and Schreiber [l].

Their approach is to partition the matrix factor L into column panels (blocks) and compute the

inverses of the partitioned factors. Our approach, however, differs from the approach of Alvarado

and Schreiber in a number of manners. First, we store the column block using a row oriented

scheme rather than a column storage scheme. Since we do not invert the portion of L stored in
row segments, we do not need to worry about the extra fills that may occur during the matrix
inversion. We also do not need to reorder or permute any rows or columns of the matrix factor
in order to minimize the number of partitions that can be inverted. In our approach we look for

any shared principal block submatrices that are dense. This is often the case for the submatrix
blocks corresponding to the branches near the root of the elimination tree.

We now introduce the forward and backward solvers for the partially inverted matrix factor

introduced in the previous section. Since the column blocks assigned to a single processor are not
inverted, no changes are needed for the first phase of the forward solve and the second phase of

the backward solve. The routine for the second phase of forward solve is summarized in Figure

13. Notice that the only difference is to replace the parallel forward solution procedure on the
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Procedure: Parallel Factorization (Partial Factor Inverses) - Phase II
BEGIN

FOR each column block b E myqmcessor,  DO
BEGIN

/* matrices can share same storage in implementation */
assign Mb) to D(b), E(b)  and R(b);
/* II.1 Update column block by fanning in updated entries from

previous column blocks in other processors l /
{ same as in Parallel Factorization shown in Figure 8 )
/* Duplicate a copy of column block l /
assign Kfb) to Jffb)
/* 11.2 parallel factorization of column block l /
FOR each row i E Ctb), DO
BEGIN

IF row i E my-processor, THEN
broadcast ( Lfb))i, and D;,i to other PIXX~SSOM sharing  Cfb)

ELSE
receive (L(“)),*  , Di,i fFom other processors

END.
assign Dii to Dfb); / * every processor has entire copy of Dtb) */
/* update remaining entries in column block */
FOReachrowj  E D(b)andj>i+l,DO
BEGIN

IF row j E my-processor THEN
pj = q - (L(“));;:‘~~~~V,; /* dot product */
L!b! =19: -$!!/D. .aa,* 9
Djj = Dj:; Lack * ~~~~;
(Lq-,‘i,*  = (L’b’);f  1 + L,: - $4 * ( L(b));zl ; /* dot product */

END.
FOR each row j E ‘Rfb),  DO
BEGIN /* dot product */

END.
/* II.3 Perform dot products between row segments */
{ same as in Parallel Factorization shown in Figure 8 }

END.
END.

Figure 12: Phase II of Parallel Factorization with Partial Factor Inverses
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principal block submatrices with a matrix-vector multiplication and a summation of the resulting

product over all processors sharing the column block. The communication is reduced to two global

summations among the processors shared by the column block. By working from the bottom and

up to the top of the column block, the procedure can be performed in place such that the solution

vector can share the same memory locations as the original vector.

Similarly, the first phase of the parallel backward solution procedure requires very little

changes. The new backward solve routine is summarized as shown in Figure 14. Like the forward

solve, after the matrix product is calculated in each processor, the vector is summed across all
processors sharing the block to form the entire matrix vector product. When multiplying the

transpose of a submatrix by a vector, we begin the computations at the top of the block and work

down to the bottom of the block so that the solution vector can overwrite the original vector.
Again, we reduce the communication to two global summations among the processors shared by

the column block.

6 Experimental Results

The procedures described in this paper have been implemented in a finite element program written

in the C programming language and run on an Intel iPSC/iSSO hypercube computer. Version

2.0 of the compiler and optimized level 1 BLAS routines were used. The level 1 BLAS routines

include vector operations, such as dot products and axpy procedures. It is interesting to note
that on the RISC i860 processor, the dot product operation is generally more efficient than the
axpy operation. The row oriented factorization scheme discussed here includes mainly vector dot

products.
In this section, we present the results on three different finite element models that we have

used to evaluate the parallel sparse factorization and solution procedures. The three finite element

models include a set of square finite element grids, structural domes and a high speed civil

transport model. These models are ordered using various nested dissection schemes to re-number

the sparse systems of equations.

6.1 Solution of Square Finite Element Grid Models

Our first experiment deals with the solution of a number of square finite element grid models
of sizes ranging from 80 by 80 to 240 by 240 elements. The square grid problems are ordered
using four levels of coordinate nested dissection which recursively partitions the grid into smaller
square subgrids. The coordinate nested dissection of the square grid problem provides a very

regular and well balanced work load distribution to run on a parallel computer. Each processor
is responsible for approximately the same number of elements and equations. The good load

balance is intended to minimize the synchronization and processor idling overheads so that we

can examine the procedures in detail. The number of equations, the number of nonzero entries
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Procedure: Parallel Forward Solve Lt
BEGIN

= f (Partial Factor Inverses) - Phase II

FOR each column biock b , DO
BEGIN

/* 1. update solution vector */
broadcast fjb’,i E V@) to th0
Receive free)

er proce880rr  rharing C(*);
and accumulate fib)  = f’*) + f(,,,) ;

/* Note: every processor has a copy of d” l /
/* 2. parallel forward solve - matrix-vector multiply */
FOR each row i E Vtb) STEP -1, DO
BEGIN

IF i E mygroccssor  THEN t; = (L@));’ t fs;
END.

/* dot product */

broadcast z(‘) to other processors  sharing C(*);
receive AVee) and accumulate: z@)  = z@)  + A,,);

/* Note: every processor has a copy of z(*) l /
/* 3. update vector by row segments l /
FOR each row segment i f ?2@),  DO
BEGIN

fj = fi - gb) * Z(b);
END. END. *

END.

Figure 13: Phase II of Pamllel Forward Solve with Partial Factor Inverses
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Procedure: Parallel Backward Solve DLTz  = z (Partial Factor Inverses) - Phase I
BEGIN

/* Initialize solution vector in each processor */
FOReachrowi=lTOn,DO
BEGIN

IF i E mypwccssot  THEN

EL&
= r;/D;,;;

0;
ENZ

END.
FOR each column
BEGIN

/* 1. update the

block b = nblock,  . . . STEP - 1 DO

solution vector 8’) by row segments */
FOR each row j E 7Z(‘) and j > i, DO
BEGIN

*@I = *(b)  - 2; * Jq=; /* axpy operation l /
END.
broadcast z(*) to other processors sharing C@)  ;
receive A”‘) and accumulate: z(*)  = ztb) + z(‘~~);  *

/* Note: every processor has a copy of z(*) * /
/* 2. parallel profile  backward solve : matrix-vector multiply*/
FOR each row i E Dtb), DO
BEGIN

IF i E myqrocessot  THEN
a - t;;
z(b)  = A*)  + a * (cc”));:=

ENDIF.
END.

/* axpy operation */

/* 3. distribute the solution vector */
broadcut  z(*)  to other processors sharing C(*);
receive Are’) and accumulate: z(*)  = z(*)  + drec) ;
/* Note: every processor has a copy of z(*) */

END.
END.

Figure 14: Phase I of Parallel Backward Solve with Partial Factor Inverses
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in the matrix factors and the square grid models are shown in Figure 15.
Tables 1 and 2 summarize the results of the factorization and solution procedures for the

direct LDLT factorization and the factorization with partial factor inverses, respectively. We

first examine the results on the factorization of the sparse matrices. The results are plotted in

Figure 16, showing the computing time verses the number of equations for different number of

processors. It is interesting to note that, for these square grid problems, the computing times for
the factorization schemes with and without the factor inverses are in general comparable. When

sixteen or thirty-two processors are utilized, it actually takes slightly less time for the factorization
with partial factor inverses than the direct LD LT factorization. This rather unexpected result

may be due to the following reasons in our implementation:

1. When the normal matrix factor L is formed? the principal block submatrix is assumed to be

a variable banded structure. Thus, the length of each row is checked every time it is used

or updated. For the factor inverses, since it is known that the principal block submatrices
are dense, the row lengths are not checked.

2. Another contributing factor may concern with the on-chip cache. When the column block
is distributed over a large number of processors, each processor stores less amount of data

so that large portion of the column block can be kept in the cache. The extra operations to

form the factor inverses can all work out of the cache and take advantage of data locality.

This may explain why the better performance of the factorization with partial factor inverses

occurs only for larger number of processors.

For such well balanced square grid problems, it appears that the factor inverses of the principal
block submatrices can be formed with very little costs.

Figures 17 and 18 summarize the performance of the triangular solvers for, respectively, the

forward and the backward solutions. The forward solution procedures are generally more efficient

than the backward solution procedures. This result may be due to the following reasons:

1. The forward solves have less data dependencies, permit more computations to be done in

parallel, and require less communication.

2. The forward solution procedure is mainly composed of vector dot products rather than axpy

operations.

It is also clear that the factor inverses significantly decrease the solution time for the triangular

systems. In fact, for moderate size problems, only the triangular solves with factor inverses show
any speed up as the number of processors increases.

6.2 Solution of Structural Dome Problems

The second experiment deals with the solution of a number of structural dome models. The models
are ordered by a spectral nested dissection scheme which generally works well on partitioning
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Table 1: Square FEM Grid Models: Direct LDLT Factorization (Time in seconds)

Number of Drocessors i LDL’ Factorization 1 Forward solve 1 Back solve
80 by 80 mesh

1 PROCESSOR 17.579 0.228 0.448
2 PROCESSORS 8.840 0.127 0.232
4 PROCESSORS 4.709 0.072 0.131
8 PROCESSORS 2.939 0.051 0.090

16 PROCESSORS 2.022 0.044 0.080
32 PROCESSORS 1.667 0.048 0.088

1 PROCESSOR
2 PROCESSORS
4 PROCESSORS
8 PROCESSORS

16 PROCESSORS
32 PROCESSORS

100 by 100 mesh
31.473 0.358 . 0.745
15.582 0.195 0.383
8.189 0.109 0.210
5.021 0.073 0.137
3.358 0.059 0.114
2.726 0.064 0.122

2 PROCESSORS
4 PROCESSORS
8 PROCESSORS

16 PROCESSORS
32 PROCESSORS

120 by 120 mesh
24.789
12.941

7.821
5.149
4.118

0.284 0.570
0.158 0.306
0.100 0.191
0.077 0.150
0.079 0.155

150 by 150 mesh
4 PROCESSORS 22.963 0.251 0.496
8 PROCESSORS 13.805 0.154 0.298

16 PROCESSORS 8.865 0.111 0.219
32 PROCESSORS 6.744 0.105 0.212

180 by 180 mesh
8 PROCESSORS 21.555 0.229 0.410

16 PROCESSORS 13.524 0.160 0.296
32 PROCESSORS 10.086 0.159 0.285

200 by 200 mesh
16 PROCESSORS 17.379 0.193 0.356
32 PROCESSORS 12.943 0.186 0.331

212 by 212 mesh
16 PROCESSORS 20.167 0.212 0.397
32 PROCESSORS IL.506 0.189 0.354

240 by 240 mesh
32 PROCESSORS i 19.160 1 0.243 1 0.434
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Table 2: Square FEM Grid Models: Factorization with Partial Factor Inverses (Time in seconds)

Number of processors 1 LDL’ Factorization 1 Forward solve 1 Back solve
80 by 80 mesh

1 PROCESSOR 17.579 0.228 0.448
2 PROCESSORS 8.906 0.116 0.228
4 PROCESSORS 4.733 0.064 0.122
8 PROCESSORS 2.942 0.043 0.073

16 PROCESSORS 1.996 0.036 0.052
32 PROCESSORS 1.639 0.038 0.049

100 by 100 mesh
1 PROCESSOR 31.473 0.358 0.745

2 PROCESSORS 15.742 0.183 0.378
4 PROCESSORS 8.257 0.099 0.199
8 PROCESSORS 5.056 0.063 0.116

16 PROCESSORS 3.324 0.049 0.077
32 PROCESSORS 2.670 0.050 0.065

120 by 120 mesh
2 PROCESSORS 25.063 0.268 0.564
4 PROCESSORS 13.081 0.142 0.294
8 PROCESSORS 7.877 0.086 0.166

16 PROCESSORS 5.106 0.063 0.105
32 PROCESSORS 4.012 0.060 0.084

150 by 150 mesh
4 PROCESSORS 23.241 0.231 0.480
8 PROCESSORS 13.884 0.136 0.266

16 PROCESSORS 8.760 0.091 0.163
32 PROCESSORS 6.610 0.077 0.119

180 by 180 mesh
8 PROCESSORS 22.004 0.189 0.390

16 PROCESSORS 13.548 0.120 0.229
32 PROCESSORS 9.915 0.097 0.158

200 by 200 mesh
16 PROCESSORS 17.504 0.149 0.280
32 PROCESSORS 12.732 0.115 0.192

212 by 212 mesh
16 PROCESSORS 20.164 0.163 0.318
32 PROCESSORS 14.336 0.122 0.206

240 by 240 mesh
32 PROCESSORS 1 19.061 1 0.147 1 0.257

34



r I- one Rocess01
1 Two Processors
-+ FourPxwcwaors
- - Eight Processors
-+ 16prOa~rs

P
---e-  32 Processors

4 I

i

I _

/

I

I
/ /” +.

/ .o/ 0 .-
k’ .-/ .-.-

P

I .-.-/ / 0’

.�

X
A� l

*..d

/

0 *.e�

d

/
.

.-

/ .-

/ .

/ /

.d

@

/ �

/+- � / =-

0

.

, - .e.=�

r."'.."..."..'...'...J
0 20 40 60 80 100 120

Number of Equations
(in Thousands)

(a) Direct LDLT Factorization

30.0 -

25.0 -

Two Processors
Four Rocessors
Eight Procemors
16 Processors
32 Processors

20.0 -

15.0 -

10.0 -

5.0 -

k

+
0

/ 0
X

/
A’ *

.d

H’

.*-

. .o.-.-
.- .-.-.-

..d.-
0

/’
/+- /==
,..=-

.--
.’

0.0". ". . ' L . ' *. . '. -. " . . 1
0 20 40 60 80 100 120

Number of Equations
(in Thousands)

35.0 t

(b) Factorization with Partial Factor Inverse8

Figure 16: Timings for parallel factorization

3*5



0.40 t

0.35 r

0.30 -

0.25 -

-hdkocessor
-lkGrmmors
-+ Fmrfroceuors
--EightProcsuors
-+-16Procmmra

P
0

8
/ /

X

/

0 20 40 60 80 100 120

Number of Equations
(in Thousands)

(a) Foward Solve with LDLT Factorization

0.25 -

++ One Proumor
--Tw0Proa8ao~
-* FourProcawmra
--EightProcemm
-+16Procemm
--a- 32 m

,*
,

20 40 60 80 100 120

Number of Equations
(in Thousands)

(b) Forward Solve with Partial Factor Inversea

Figure 17: Timings for Pamllel Forward Solves

36



0.80 l
- One Proc888or

0.70 - TwoProcessors
-* FourProceaors

0.60
: I

--Eight-
-*16-

P
--a)- 32 pnrceuora

0.50

0.40

0.30

0.20

0.10

0....-- .-
A’
.O’

. ..-•.+ .-.- ..--
,:..e--’

o.ook.. ‘I.. . ’ * ‘. “. . “. * ’ . . .
0 20 40 60 80 100 120

Number of Equations
(in Thousands)

(a) Backward Solve with LDL* Factorization

0.80

fi I

---8-OnePmcessm
0.70 - TwoProcemm

-* FourProcmaoxa
--wt-

0.60
P

1-r: ge

0.50 / / 0 0

0.40 /
P 0 / / /[

0.30 y P'I x/
.+

d
A'(

/ 0. ..-@-0.20 / 4-- ..--- ,f l / 0 - 0 *....'--'
- -*-��~ * ~ 0 ..-*�.  . . . .

. 0 -0----c ☺.:.+--* # )f *..e...

0.00 I . . . . . ..�...I I...

0 20 40 60 80 100 120

Number of Equations
(in Thousands)

(b) Backward Solve with Partial Factor Invemes

Figure 18: Timings for Parallel Backward Solves

37



irregular models [ 181. The matrix size and the number of nonzero entries for the dome problems

are summarized in Figure 19. Tables 3 and 4 summarize the results of the factorization and

solution procedures for, respectively, the direct LDLT factorization and the factorization with

fat t or inverses.

For this problem, the load balance is not as good as the square grid problems discussed above.

One indication is the time for the different processors to complete the backward solves. In the
backward solve column of Tables 3 and 4, the results within the parenthesis show the time for the

first processor to complete the backward solve while the results without the parenthesis show the
time for the last processor to complete the computations. The two results show a slight difference
in the completion time for the backward solve among the processors.

As the results indicate, the efficiency for forming the partial factor inverses depends on the
number of processors used, the problem size and the number of right-hand side vectors. For

example, the solution of 2 to 4 right-hand side vectors would compensate for the extra cost

involved in forming the partial factor inverses when sixteen or thirty-two processors are used.

However, when only two processors are used, it may require up to fifty-two right-hand side vectors
to compensate for the extra cost of forming the factor inverses for the same problem. In general,

the benefit in forming the factor inverses increases as both the number of right- hand side vectors

and the number of processors increase.

6:3 Solution of High Speed Civil Transport Model

The third experiment deals with the solution of a High Speed Civil Transport plane model. This
model does not yield to good load balance for a number of re-ordering schemes that we have

experimented with. Here, we show the results based on an incomplete nested dissection ordering
[6]. Figure 20 shows the model, the number of equations and the number of nonzero entries in the

matrix factor. Tables 5 and 6 summarize the results of the factorization and solution procedures

for, respectively, the direct LDLT factorization and the factorization with partial factor inverses.

As noted in the timings for the backward solves, there is a relatively large difference in the

timings between the first and the last processors to complete the solution. This relative difference
indicates the poor load balance of the model based on the ordering scheme used. It is again
evident that the factorization with partial factor inverses provides significant improvements on
the forward and backward solution of triangular systems. This result is particuiarly  important
for problems that require the solution of multiple right-hand sides vectors.

7 Summary and Discussion

In this paper, we have introduced a row-oriented sparse matrix factorization scheme for distributed

memory parallel computers. This row-oriented scheme is formulated to take advantage of the
RISC i860 processor architecture which performs vector dot products more efficiently than the
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,
Dome number of number of number of nom

number elements eqaatiom (in matrix factor)

1 1,250 3,606 338,925
2 1,800 59226 538,707
3 5,400 16,026 2,028,495

Figure 19: Structural Dome Models
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Table 3: Structural Dome Models: Direct LDLT Factorization (Time in seconds)

[I Number of processors / LDL’ Factorization 1 Forward solve 1 Back solve
II Dome 1 (3,606 equations)

1 PROCESSOR
2 PROCESSORS
4 PROCESSORS
8 PROCESSORS

16 PROCESSORS

1 PROCESSOR
2 PROCESSORS
4 PROCESSORS
8 PROCESSORS

16 PROCESSORS
32 PROCESSORS

2 PROCESSORS
4 PROCESSORS
8 PROCESSORS

16 PROCESSORS
32 PROCESSORS

12.449.
6.880
4.423
3.393
2.754
2.303

Dome 2 (5,226 equations)
0.115 0.253
0.068 0.142 (0.122)
0.048 0.088 (0.066)
0.039 0.074 (0.055)
0.040 0.079 (0.063)
0.049 0.072 (0.091)

Dome 3 (16,026 equations)
26.065 0.205
14.887 0.118
9.118 0.078
6.261 0.065
5.026 0.069

* 0.166
0.097 (0.080)
0.062 (0.048)
0.055 (0.045)
O.OSl(O.052)

0.474 (0.452)
0.264 (0.220)
0.169 (0.123)
0.136 (0.104)
0.133 (0.112)
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Table 4: Structural Dome Models: Factorization with Partial Factor Inverses (Time in seconds)

Number of processors 1 LDLT Factorization [ Forward solve 1 Back solve
Dome 1 (3,606 equations)

1 PROCESSOR 7.358 0.076
2 PROCESSORS 4.362 0.044
4 PROCESSORS 2.946 0.029
8 PROCESSORS 2.067 0.027

16 PROCESSORS 1.606 0.029
Dome 2 (5,226 equations)

1 PROCESSOR 12.449 0.115
2 PROCESSORS 7.065 0.064
4 PROCESSORS 4.651 0.041
8 PROCESSORS 3.460 0.035

16 PROCESSORS 2.823 0.035
32 PROCESSORS 2.329 0.044

Dome 3 (16,026 equations)
2 PROCESSORS 26.320 0.202
4 PROCESSORS 15.147 0.112
8 PROCESSORS 9.337 0.071

16 PROCESSORS 6.398 0.057
32 PROCESSORS 5.240 0.057

0.166
0.094 (0.078)
0.054 (0.042)
0.041(0.031)
0.040 (0.031)

0.253
0.140 (0.120)
0.079 (0.057)
0.056 (0.038)
0.048 (0.035)
0.052 (0.040)

0.472 (0.449)
0.256 (0.212)
0.150 (0.104)
0.101 (0.071)
0.083 (0.065)
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number of number of nonzeros
equation8

1
(in matrix factor)

16,146 1 39783,784

Figure 20: A High Speed Civil Transport Model (Courtesy of Dr. Olaf Storaasli of NASA Langley

Research Center)
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Table 5: High Speed Civil Transport Model: Direct LDLT Factorization (Time in seconds)

Number of processors LDL’ Factorization Forward solve Back solve f
4 PROCESSORS 37.694 0.157 0.488 (0.332)
8 PROCESSORS 22.463 0.106 0.306 (0.175)

16 PROCESSORS 15.436 0.093 0.268 (0.150)
32 PROCESSORS 12.262 0.166 0.285 (0.190)

-. Table 6: High Speed Civil Transport Model: Factorization with Partial Factor Inverses (Time in

seconds)

Number of processors L DL’ Factorization Forward solve Back solve
4 PROCESSORS 39.084 0.134 0.474 (0.317)
8 PROCESSORS 23.201 0.086 0.265 (0.140)

16 PROCESSORS 15.801 0.080 0.194 (0.078)
32 PROCESSORS 12.392 0.146 0.155 (0.078)
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vector axpy operations. We have shown that it is possible to obtain good speed up using a

row-oriented factorization scheme. In our current implementation. the reordering of the finite

element model and the matrix partitioning are performed on a workstation as a pre-processing

step. The objective is to test the efficiencies of the direct solution procedures.

Based on our experimental results, a relatively good speed up for parallel factorization can

be achieved when there is a good load balance. Furthermore, we need a sufficient size problem

in order to utilize the parallel computer effectively. For the Intel’s iPSC/iSSO hypercube, we

need at least 1500 equations per processor in order to use each individual processor efficiently.
For the models that we have used in the experiments, for example, it is not optimal to assign
more than eight processors to the last column block (with only the principal block submatrix)

on the iPSC/iSSO hypercube. As the number of processors increases, the problem size also need

to increase to fully utilize the multiple processors. As processor speed changes and message

communication costs improve, the number of equations required to efficiently use the processors
and the number of processors to assign a column block will change.

We have developed a strategy to invert the dense submatrix factors that are shared among

multiple processors. Although the number of operations required for the factorization increases
slightly, the number of communications remain the same with or without the factor inverses. With

the dense factor inverses of the principal block submatrices, the parallel solution of triangular
systems can be made more efficiently, and higher parallelism for the triangular solution can be

recognized. The benefit of this factorization with partial factor inverses can be exemplified with
problems, such as generalized eigenvalue problems, that involve the solution of multiple right-hand

side vectors [17].
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