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Abstract

This paper describes a parallel implementation of a generalized Lanczos procedure for struc-
tural dynamic analysis on a distributed memory parallel computer. One major cost of the gener-
alized Lanczos procedure is the factorization of the (shifted) stiffness matrix and the forward and
backward solution of triangular systems. In this paper, we discuss load assignment of a sparse
matrix and propose a strategy for inverting the principal block submatrix factors to facilitate the
forward and backward solution of triangular systems. We also discuss the different strategies in
the implementation of mass matrix-vector multiplication on parallel computer and how they are
used in the Lanczos procedure. The Lanczos procedure implemented includes partial and external
selective reorthogonalizations and spectral shifts. Experimental results are presented to illustrate
the effectiveness of the parallel generalized Lanczos procedure. The issues of balancing the com-
putations among the basic steps of the Lanczos procedure on distributed memory computers are
discussed.

IThis  work is sponsored  by the National Science Foundation grant number ECS-9003107, and the Army Research
Office grant number DAAL-03-91-G-0038.
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1 Introduction

Structural dynamic analysis often involves the solution of the generalized eigenvalue problem :

(K-w2M)qk0 (1)

or
(K-AM)g5=0, (2)

where K and A4 are, respectively, the stiffness matrix and the mass matrix of the structure. The

coefficients X, w, and the vector 4 are, respectively, the eigenvalue, the natural frequency and the
natural modal eigenvector of the system. In structural dynamics, the smallest eigenvalues are of
primary interest but they are often clustered and poorly separated. Efficient and robust solution
methods that are effective in computing these eigenvalues accurately are of significant importance

in structural engineering.
Recently, Lanczos method has been rapidly becoming the preferred method for the eigenvalue

problems [2,4,7,16,18,23]. The recent emergence of parallel computers has brought much interest
in the practical implementation of the Lanczos algorithm on these high performance computers.
An implemention of a generalized Lanczos procedure on shared memory parallel computers has
been reported by Jones and Patrick[8].  This paper describes an implementation of a generalized
Lanczos algorithm on distributed memory parallel computers. The algorithm implemented has been
influenced by the studies of Lanczos method by Golub, Underwood and Wilkinson[2],  the convergence
rate of Lanczos procedure by Kaniel, Paige, and Saad [9,17,20],  the spectral transformation by

Ericsson and Ruhe [l], and the partial and selective reorthogonalization  techniques by Parlett , Scott,
and Simon [18,22,23].  Our implementation follows closely the approach by Grimes et. al. [5].

One major cost of the generalized Lanczos procedure is the factorization of the (shifted) stiffness
matrix and the forward and backward solution of triangular systems. In this paper, we discuss
load assignment of a sparse matrix on distributed memory computers and propose a strategy for

inverting the principal block submatrix factors to facilitate the forward and backward solution of
triangular systems. We also discuss the different strategies in the implementation of mass matrix-

vector multiplication on parallel computers and how they are used in the Lanczos procedure. The

Lanczos procedure implemented includes partial and external selective reorthogonalizations. Spectral
shifts are introduced when memory space is not sufficient for storing the Lanczos vectors. The
tradeoffs between spectral shifts and Lanczos iterations are discussed.

This paper is organized as follows: First, in Section 2, we review the basic steps of the Lanczos

method for generalized eigenvalue problems. In Section 3, we describe in detail the parallel imple-

mentation of the Lanczos algorithm on an Intel’s i860 Hypercube computer. In Section 4, we present

a few experimental results to illustrate the effectiveness of the parallel Lanczos method. Section 5

summarizes the results of this study.
.-_



2 Lanczos Method

2.1 The Standard Lanczos Algorithm

Given a symmetric n by n matrix, C, the Lanczos method tridiagonalizes the matrix by form.ing  a

set of orthonormal Lanczos vectors ~1,. . . , qn. The orthogonal matrix Q = [ql QZ . . . q,J has the

following properties:

Q=Q = I

Q=CQ =  T

where T is a tridiagonal matrix having the form:

T =

Equation 4 may be rewritten as

w p2

P2 a2 03

. . .. . .. . .

Pn - l an-1 Pn

A %

CQ =  Q T
1 r

(3)
(4)

. (5)

By equating each column of the above equation, we obtain a three term relationship among the

Lanczos vectors:

C!Zj  = Pjqj-1  + cvjQj + Pj+lQj+l (7)

where oj = #‘Cqj. Let’s d fie ne the residual vector Tj as

We have
1

%+I = zT.i and P.3+1 = 11Tjl12

The above equations form the basis of the Lanczos algorithm.

At step j of the Lanczos process we can write .

CQj = QjTj + Tjt?: (10)

where ej is a canonical~vector with zero entries except a unit value in position j of the vector,
,] and

. . .. . .. . .

Pj-l "j-1 Pj

. (11 i



Should the residual vector Tj become zero, then an invariant subspace is found.

2.2 The Lanczos Algorithm and Generalized Eigenproblem

Given the generalized eigenvalue problem, K# = AM& there are various ways to transform the

generalized eigenproblem into the standard form. Generally, a transformation based on the inverse of

the stiffness matrix K improves convergence to the smallest eigenvalues of the original eigenproblem.
In this study, the transformation is based on:

K”Mq5 = (12)

where 8 = i.
To symmetrize the eigenproblem shown in Equation 12, we multiply the equation by M = L&L

and obtain

MK-‘M# = OMc$
LMLLK-‘L~LL4 = BLMLL~

L&K-lLMy  = t9y (13).
cy = ey

where y = LL4andC= LLK-’ LM. This transformation restores symmetry to the problem, but
it appears to require the factorization of the mass matrix M (which may be semi-positive definite).

If we now consider the standard eigenvalue problem in Equation 13 and subtitute C = L$ K-l LM
into Equation 4, we have

QTL&K-‘L~Q  =  T .

Let & = LGTQ or Q = LLQ, we have

c~~MK-‘MQ = T and oTMC) = I

By working with & directly we can avoid factorizing M into LMLG but we must now ensure that & is
M-orthonormal. Although we must form mass matrix-vector multiplications to retain orthogonality

of Q, the matrix vector products are cheaper than an additional factorization, particularly since the
mass matrix M may not be positive definite. Furthermore, as we shall show below, computing the
eigenvectors 4 using & does not require the factor LM.

For the standard eigenvalue problem, Cy = 6 y , the eigenvector y can be written as a linear
combination of the Lanczos vectors Q, that is

Y = Qs (15)

where s is an eigenvector of the tridiagonal matrix T. Thus, for the original generalized eigenvalue

problem, an eigenvector can be expressed as:
.- _

4 = LkTy = LkTQs = &s, (16)
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That is, the eigenvectors remain unchanged for the transformed problem and the original problem.
Besides keeping & M-orthonormal, we must transform the recurrence formula given by Equation

7 in terms of & rather than Q. Substituting qj = LL& into Equation 8 gives

(17)

Since C = L&K” LM, we have:

LL!ij+l = +(L&K-~LMLL& - pjLL&-1 - OjL&@j) (19)j+l
= +(LLK-‘MGj  - pjLL&-1 - ajL&Jj) (20)

J+*

Now multiplying the above equation by L;;IT yields

!ij+* p= z(K-‘Mdj - @jdj-1 - aj&)
j+l (21)

where aj = iTMK-‘M&. It should be noted that @j+l is now defined by the M-norm of the

residual vector T, i.e. pj+l = 11~11~ = dm. For simplicity, we shalI use Q and q instead of &

and 4 in the remainder of this paper.
To summarize, the Lanczos relations for the generalized eigenproblem can be stated follows:

QTMK-lMQ  =  T (22)
QTMQ =  I

The three term recurrence formula for the Lanczos vectors is:

Tj = pj+la+l = K-‘Mqj - ajqj - pjqj-1 (23)

where

aj = $hiK-‘it@ and pj+l = 11~11~  = @% (24)

The cr’s and p’s form the diagonal and offdiagonal entries of the symmetric tridi?gonal  matrix T in
Equation 5 or 11.

2.3 Spectral Transformation

To take full advantage of the Lanczos method it is beneficial to make the desired eigenvalues  the

extremal  eigenvalues in the transformed problem. A spectral transformation using shifts has been.m_
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proposed by Ericsson and Ruhe [l]:

(K-AM)+ =  0
((K - aM) - (A - u)M)# = 0

(Ku -;M)$ = 0
or (K;lM - t9I)qb =  0 . (25)

where KC = K-aMand29=P&. The shifting quantity ~7 is chosen to be close to the eigenvalues

sought after, and 19 is the eigenvalue of the shifted eigenproblem. The shift helps separate the

eigenvalues further and increases their magnitude. Once the eigenvalues 6 of the transformed system
are obtained, the eigenvalues X of the original system are given as:

For the generalized eigenvalue problem with shifts, we simply substitute Kb for K in the relations
shown in Equations 22, 23 and 24. In practice, the inverse K;’is not computed explicitly, rather
the matrix K, is factorized into LDLT. Therefore, the Lanczos procedure for the generalized eigen-
problem is dominated mainly by matrix-vector multiplication and forward and backward solution of

triangular systems.

- 2 .4 Test for Convergence of the Generalized Eigenproblem

We shall now consider the convergence properties of the Lanczos algorithm for
formed system. Let’s denote $ as the approximations to the eigenvalues 29
approximations to the eigenvalues X of the
be expressed as

pi - A;1 =

the spectrally trans-
of T, and A as the

! (original problem. The difference between X; and ii can

IAa-o---
4i I

1
LI,V 1

a' - u)(E - ai)I*- (27)
i t

1
A‘#A * - up; - &)I.t
i

Since the approximate eigenvalue 8; comes from projecting the eigenproblem onto a subspace, we

have Iail 5 It9;l  or I8il.s I-&l. Equation 27 becomes

Equation 28 can be used to estimate the bounds of the original eigenproblem by the bounds of the

transformed problem.

Let (29i,  si) be an eigenpair of Tj. The trial Ritz vector & can be computed as:
.-_

& = Qjsi

5



After step j of the Lanczos  algorithm, the accuracy of the approximate eigenvalue can be estimated

Substituting C = K,‘M into Equation 10 and multiplying it by s;, the ith eigenvector of T’, yields

Taking the norms on both sides of the above equation and substituting & = Qjsi, we have

where sj,i is the last (jth) element of the ith eigenvector of Tj. Combining Equations 28,30 and 33,

we have

IXi - Ail 5 +l?Ji - ail = $~j+llSj,il

i i
(34)

The eigenvalues near the shift 0 will have a large value of t9i which means that the value pj does not
need to become real small in order to obtain a good approximation of the eigenvalue A;.

There is another bound for testing the convergence for well separated eigenvalues proposed by
Parlett [19]:

where ^I; = mini+k  ]ai - dkl,k = l,... , j. The definition of yi needs to be modified to account for
double eigenvalues and for clusters of eigenvalues. In our implementation, the following procedure

has been employed:

k= i+1;
R E P E A T

7R = I?9i - dkl ;
k=k+l;

UNTIL TR > td * Pi, OR k > j.
k=i-1;
R E P E A T

7L = 18; - 8kl ;

k = k - 1 ;
UNTIL 7~ > td * 6i, OR k < 1.
7i = dn{?R,  %L}*

In our implementation on the Intel’s i860  hypercube computer, the parameter to2 is taken to be

1.6 x lo-l3 which is an estimate based on machine precision. This parameter seems to work well in
the structural engineering examples that we have tested.

6



The test against the smaller of the two bounds in Equations 34 and 35 becomes

IA; - &I 6 min{ Pj+l  JSj,i  I (Pj+l Sj,i)2 I
~;’ ’ ~?7; .

Equation 36 is the basis for the test of convergence in our implementation of the Lanczos algorithm

for the generalized eigenvalue problem.

2.5 Reorthogonalization of the Generalized Eigenproblem

So far the discussion on the Lanczos algorithm has been based entirely on the assumption of exact

arithmetic. An implementation of the Lanczos method, however, must rely on finite arithmetic and
the associated round-off errors and cancellations. It is well known that the Lanczos vectors will not
retain their orthogonality as the number of Lanczos vectors increases.

Full reorthogonalization requires that each Lanczos vector Qj+l orthogonalizes against all previous
Lanczos vectors { Qj . . . qr} as it is formed such that $M% = 6ij + en where 6ii = 1 for i = j

and 0 otherwise [2]. The process is expensive in terms of both memory space and CPU time,
especially as the number of iterations and the number of Lanczos vectors increase. Alternatives to
full reorthogonalization are partial reorthogonalization and selective reorthogonalization.

-

Both selective and partial reorthogonalizations seek to maintain semi-orthogonality rather than
full orthogonality. In this study, we define semi-orthogonal@ as maintaining the orthogonality of

the Lanczos vectors to the extent that qTM% = 6i,j + &i [22].  In the following two subsections.,
we discuss in further detail the methods for partial and selective reorthogonalizations.

2.5.1 Partial Reorthogonalization

Partial reorthogonalization requires that each new Lanczos vector orthogonalizes with all previous

Lanczos vectors when the bounds measuring the semi-orthogonality exceed an acceptable level. The
bounds used to determine the loss of orthogonality can be derived from considering Equation 23 in

floating point arithmetic:

Pj+l  %+l = K,“Mqj - aj% - pi%-1  + fj (37)
where fj represents any roundoff error occurring during the formation of qj+r . Multiplying the above

equation by CM we obtain,

Pj+lGM%+l = qrMKilMqj  - aj$Mqj - piqEMqj-l+ $Mfj.

Define q,k = $Mqi = $Mqk = f7k,i and Equation 38 becomes,

(38)

qj+l,kpj+l = &MK,-‘M!lj - “jqj,k - pjqj-1,k + q;Mfj  l (39)

Similarly for the lath step of Lanczos process, we have

pk+l  qk+l = K,-‘Mqk  - akqk  - pkqk-1 + fk (40)

7



Multiplying this equation by q: M, we have

I)k+l,jPk+l = qTME;,-‘MQk  - “k’?k,j - pkflk-lj + qjTMfk* (41)

Since MK;‘M is a symmetric matrix and qrMK;‘Mqk = qr M KT’MQ,  from Equations 39 and

41, we obtain _

1
%+l,k  = --(f)j,k+lPk+l  +  Cak  - aj)qj,k  +  Pkqj,k-1 - pjqj-l,k  + gk,j)p.

J+l
(42)

where gk,j = $Mfj - q:Mfk. It should be noted that, from the M-orthonormahty of the Lanczos

vectors, qj+l,j+l  = 1.
Equation 42, however, does not provide a value for qj+r,j, which is considered to represent the

local roundoff or cancellation error between the two vectors qj and qj+r. It is assumed this local
round off will be bounded by cfi. So, we initialize qj+ij as follows:

%+l,j
4= max(-
P.

9 4). (43)
3+1

Since this vaiue is assumed to account for every  Occurence of fj or bJk,j,  we may ignore gk$ in the

subsequent calculations of q. When gk,j (k < j) is dropped from Equation 42, we have

- L(vj,k+lpk+l  + (ak - aj)Tj,k + pkqj,k-1 - pjl]j-1,k)%+Lk  - pj+l
-

Inthecaseofk=j- 1, and using the fact that q,i = 1, we can now write

(44)

1
%+l,j-1 = -((aj-1

P.
- aj)l?j,j-l  + Pj-1 qj,j-2)

3+1
(45)

Both conditions are used to track theloss  of semi-orthogonality  [4].  When 7)maz = maX{flj,kIk < j} 2
6, both the Lanczos vectors qj and s+r must be reorthogonalized against aII previous Lanczos
vectors:

Qi = Qi - (&hk)qk (46)

where i = j, j + 1 and k = 1,. . . i. Because of the three term recurrence relationship of the Lanczos
vectors, if only qj+r were orthogonalized  but qj was not reorthogonalized, the next Lanczos vector

qj+2 would pick up poor orthogonality from qj. This component would quickly propagate in the
subsequent calculations. Thus both ~j and ~+r need to be reorthogonalized.

2.5.2 Selective Reort hogonalizat ion

Selective reorthogonahzation attempts to reduce the number of vectors with respect to which the

new Lanczos vector must be orthogonalized.  Whenever an eigenvalue converges during the Lanczos
process, the method is interrupted to Berm the corresponding approximate eigenvector or Ritz vector
as a linear combination of the existing i,anczos vectors. This forms an approximate Ritz pair (Oi, 4;)

to the eigenpair (Xi, &). Now, instead of measuring the loss of orthogonality with respect to previous

8



Lanczos vectors, the loss of orthogonahty is measured in terms of the Ritz vectors. When the loss
of orthogonality becomes too large, the Lanczos vector ~i+l is reorthogonalized not to the previous

Lanczos but only to the Ritz vectors for which the bound on orthogonality has grown too large.
L.n this implementation, we follow closely the approach by Grimes et. al. 151. In this approach,

for each new shift, selective reorthogonalization is used to maintain semi-orthogonality of the new

Lanczos vectors to the Ritz vectors that converged from a previous set of Lanczos vectors with
a different 0. When a new shift o is selected, the initial starting Lanczos vector is chosen that

is orthogonal to all previously converged Ritz vectors. This orthogonality would be maintained
in the Lanczos iterations if the Ritz vectors were exact eigenvectors and exact arithmetic were

used. However, since we always deal with floating point arithmetic we need to trace the loss of
orthogonality to the converged Ritz vectors. When the loss of orthogonality occurs, the Lanczos

vector is reorthogonabzed  with the previously converged Ritz vectors. The converged Ritz vectors to

which we want to maintain orthogonality are independent from this iteration of Lanczos. Therefore
this method is appropriately called external selective reorthogonalization [5]. This external selective

reorthogonahzation is important in eliminating the possibility of computing the same Ritz (eigen)
vector twice.

For the-external selective reorthogonalization of the Lanczos vectors with respect to the Ritz
(eigen) vectors of different shift values, let’s begin by multiplying Equation 37 by t&TM  and form:

pj+lJTMqj+l  = JTMKi’Mqj  - ajJTM%  - pjJTM%-1  + JTMfj. (47)

For the spectrally transformed problem, define the residual vector ui of the Ritz vector & as

Ui = K,‘jbfJi - Eli.- -t (48)
Now from Equation 48 we can form

MK,-‘MJi = ~M~i + Mu; (49)
i-

If we define rii = $Mqj and substitute Equation 49 into Equation 47, we obtain

P 1
3+17i,j+l = -7' . - ajTi,j -

?9i --d "
pjri,j-l + $Mfj + uTMQ~ (50)

Taking the absolute value or bounds on the above equation, we have:

IPj+lG+lI 1= IGG,j - QjG,j - @jri,j-l + JFMfj  + t$MqjJ
t

1
5 lzoT’,j - ajG,j

i-
- PjG,j-1 + @Mfjl + IuTM~).

Let’s examine the bounds on the term UTMqj.

ll”TM% II = llu’M”2 M’j2qj  II

S l(U?M”2 II IlM”2% II
5 Il~ll~ll%II~
5 II"illA4

(51) i

(52) !
9



Let 7i,l = cfi and let this value account for the term JTM fj in Equation 50. If we substitute

IltL;llM for Uf’Mqj,  Tii+l becomes an upper bound on the loss of orthogonality and is given by

1 1Ti,j+l ,< pJ+l[l(G - aj)ri>  - Pj%j-11 + II”ill~l* (53)

Equation 53 is used to test for loss of orthogonality of the Lanczos vectors with respect to external

Ritz vectors. It should be noted that IIuiIIM fo a converged Ritz vector is computed only once per

each spectral shift. For a more formal discussion on the use of Equation 53 and an alternative

formulation of IluIl~,  see Reference [5].

For se.lective reorthogonalization, when the parameter Ti,j+l 2 ,,/G, the Lanczos vector qj+l is

reorthogonalized  with the converged Ritz vector & as

Qj+l = qj+1 - ($=+I  M$i )& (54)

Furthermore, the next Lanczos vector qj+2 needs also be reorthogonalized to the same Ritz vector
,.

4; because of the three term recurrence relationship of Lanczos vectors. In our implementation, a
combination of both partial and external selective reorthogonalization is used.

2.6 Ritz Vector Refinement

The Ritz vectors or approximate eigenvectors are generally not as accurate as the appraximations  to
the Ggenvalues. Therefore it is necessary to refine the Ritz vector beyond & = Qsi. This refinement

can be performed using one step of inverse iteration:

pv, =t $Kil  M4i.
i

Since

Ki’M& = SiJi + Pj+lqj+leTS;

(55)

(56)
we have

Jinev) = & + ($Pj+l Sj,i)* %+I- (57)

This refinement was suggested by Ericsson and kuhe [l]. The values pi+1 and qj+l are readily

available since they are calculated in the same iteration as aj is calculated. So the refinement
accounts to one axpy operation for each Ritz vector.

2 .7 Summary of Generalized Lanczos Algorithm

The generalized Lanczos algorithm described in this section is summarized as shown in Figure 1.

There are five basic operations involved in the Lanczos procedure:

l Matrix fwtorization: The (shifted) stiffness matrix, K or Kc, is factorized into its LDLT
factors.

10



Procedure: Generalized Lanczos  Procedure
BEGIN

WHILE (# of converged eigenvalues < # of desired e@walues)  DO
BEGIN

Choosearhifta;
FormK,=K-aM;
Factor Kv = LDLT ;
set ppo;
set t&)=0;
/* Compute residual of Ritz vectors after spectral rhift */
FORi= 1 to number of converged Ritz vectors, DO

p= M& ;
p = hy’p  ;
p=p-**is;
lluill  = d&G ;

END.
Choose r ;
/* orthogonal.& t to all converged Ritz vectors */
FOR i = 1 to number of converged Ritz vectors, DO

TjJ = -1. ;
END.
SeAectiveReorthogonalization  ;
p=Mt;
4dJ;
Ql ;
P = PIP1 ;

72;-L-P*/
FORj= 1 UNTIL inrafecient space for Lanczos vectors ~j, DO
BEGIN

f = (abl;‘P;
t=t-*j = ppJ*yl * (h-1 ; .

t=t- Qj * 41 ;
p=Mr;
Bj+l  = 45 ;
Reorthogonaiize;
4j+l = r/B,+1 ;

P = PlPj+l  ;
SOAVC eigensystem T, for (di,Sj,i),i  = l,...,j;
Test for convergence of eigenvalues  ;

END.
END.
R.itzR.&nement;

END.

Figure 1: Generalized Lamzos  Procedure
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Procedure: Reorthogonalbation
/* 6, = cJ;; where c denotes machine precision ‘/
BEGIN

SekctiveXeorthogonalization  ;
Partialleort hogonalizat ion ;

END

Procedure: SekctiveJLeorthogonalisation
BEGIN

/* Selective Reorthogonalization  - perfbrm as needed
FOR i = 1 TO number of converged eigenpaim (A,$), DO
BEGIN

IF fIti 2 0 THEN t;j+l =
IF sid+l

~ ~ OR T, < jl~~h - &Q-l1 + Iluill)lBj+l~

e+1 = 41+1 - (~+*‘hd&  i
IFr,jcOTHEN

Ti, = 0;
r1,+1  = fs ;

ELSE
/* set negative as a w hr next Lanczoa vec to r  l /
si,+l = -1 ;

ENDIF.
ENDIF.

END. *
END

Procedure: PartiaLReorthogonalkation
BEGIN

/* Partial Reorthogodization  - perfdm as needed */
Q+L.?+1  = 1 ;
qj+i J = max{cav b/&i) i

vJ+~,l-l = ((q-1 - ajhjj-1  + Bj-lrljj-2)/83+1  ;
FORklTOj-2,D0
BEGIN

%+l,k = (@k+lqj,k+l  + flkqj,k-1  - @jqj-1.k  + (ak - aj)~j+)/~j+l  ;
END.

- maxk< -(r)j+l  k)
g=;= 2 ,,k T&N

FORk=lTOj-1,DO’
BEGIN

qj = qJ  - (!+?k,  l q k  ;

!?j+l  = %+l - (qT+l  Ju!?k) l 9k  i
END.

%+I = 4j+l - (C?T+*☺M G) l Qj i

hid = P i
P = 4 ,r ,*M q j+l ;

UNTIL  (P/h&d  L d/z)  i
Bj+* = JF i

ENDIF.
END.

(b) Raxthogudization

Figure 1 (continued)
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Procedure: RitzRefinement
BEGIN

/* Form eigcnvectors of converged eigenvalues  l /
/+ Use TQL2 to obtain eigenpaira  of tridiagonal matrix*/
Solve cigensystem  Tj for (X*ydi)ci=  l....,j i
l=O;
FORi= lTOj,DO
BEGIN

IF (eigenvaiue i converged) THEN
1 = I+ 1; /* counter for converged eigenvalues  */I

Oi
g;R k = 1 TO j, DO
BEGIN

$1 = 4h + 8k.i * qk i
END.
iI = 41 +(Pj+*sj,i/di)*q~+*  i /* rehemeat l /

’ ENDIF’.
END.
/* orthogonal&e eigenvecton  for each converged eigenvalue*/
FOR i=lTOI,DO
BEGIN

p= M&i;
P=@Pi
/* normalize Ritz vector and scale maas matrix vector product l /
ii = &i/G i
P=Pl@i
/* orthogonalbe following Ritz vectors */
FORk=i+ltoI,DO
BEGIN

f=pTik  i
=@k-P*& i

ENEFOR.
ENDFOR

END.

(c) Ritz-Vector Refinement

Figure 1 (continued)
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0 Solution
tions are

of triangular systems

performed for calcul

: The forward and backward solves of triangular systems of equa-
ating the residual vector, r = K,“p, at each Lanczos iteration.

l Matrix vector products: Mass matrix-vector multiplication is performed at each Lanczos iter-

ation as well as when the Lanczos vectors are reorthogonalized.

l Vector-vector products: These operations are of two types: dot products, uTv, and axpy

operations, u = u + ev. These two vector operations are the basic BLAS routines which are

often available as library routines.

l Eigensolution of tridiagonal systems: The eigenvalues of the tridiagonal matrix Tj are solved at

each Lanczos iteration. However, the size of the tridiagonal matrix is often small in structural
dynamics problems. Standard sequential routines such as TQL2 of EISPACK are available

for computing the eigenvalues [24].

In the next section, we describe in detail the implementation of these operations on an Intel’s 860

hypercube, a distributed memory parallel computer.

3 Parallel Implementation

In this section, we examine the parallel implementation of the generalized Lanczos procedure. First,
we discuss sparse matrix solution methods in Section 3.1, where we introduce a solution scheme that

is particularly suitable for the problems with multiple right-hand sides by partially inverting the
matrix factor. In Section 3.2, we discuss in detail the mass matrix-vector multiplications that are
involved in the Lanczos scheme. The parallel generalized Lanczos procedure is given in Section 3.3.

3.1 Parallel Matrix Factorization

The parallel matrix factorization is based on a row-oriented storage scheme that takes full advan-

tages of the sparsity of the (shifted) stiffness matrix, Kc. The development of the parallel solution
procedures is discussed in details in Reference [ll]. In this section, we discuss the use of the parallel

solution procedures for the generalized Lanczos algorithm. We first discuss a load assignment strat-
egy for sparse matrices on a multiprocessing system. We then describe a parallel implementation of

the LDLT factorization procedure. An approach to partially invert a matrix factor is also discussed.

3.1.1 Parallel Assignment of Sparse Stiffness Matrix

The notion of elimination tree plays a significant role in sparse matrix study [l4]. Let’s define a list

array PARENT:
PARENT(j) = m.in{i 1 L;,j # 0) (58)

The array PAR&NT represents the row subscript of the first nonzero entry in each column of the

lower triangular matrix factor L. The definition of the list array PARENT results in a monotonicalIy

14



ordered (elimination) tree T of which each node has its numbering higher than its descendants

[1‘2,14,21].  With the definition of the array PARENT, the nonzero entries induced by a nonzero

entry Ki,j or L;,j can be determined based on the following statement:

Lemma 1: If Ki,j (or L;,j) # 0 then for each k = PARENT(. . .(PARENT(j))),
L;,k # 0 where k < i.

That is, the list array PARENT contains sufficient information for determimng.the nonzero pattern

of any row in L [10,12,21].

If the elimination tree T is post-ordered topologically, the nodes in any subtree  are numbered con-

secutively [l2]. Furthermore, the resulting sparse matrix factor is partitioned into block submatrices
where the columns/rows of each block correspond to the node set of a branch in T [13,15].  Figure
2 shows the matrix structure and its post-ordered elimination tree representation. This partitioning

divides a sparse matrix into two basic data sets: principal block submatrices and the row segments
outside the diagonal blocks [15].

The coefficients of a sparse matrix factor are distributively stored among the processors according

to the column blocks. Figure 3 shows an example of the data assignment of a sparse matrix on
multiple processors. The strategy is to assign the rows corresponding to the nodes along each
branch (column block) of the elimination tree to a processor or a group of processors. Beginning at
the root of the elimination tree, the nodes belonging to this branch of the tree are assigned among

the available processors in a rotating block round robin fashion, or a block wrap mapping [3]. As we
traverse down the elimination tree, at each fork of the elimination tree, the group of processors is

divided to match the number and the size of the subtrees  below the current branch. A separate group

of processors is assigned to each branch at the fork and the process is repeated for each subtree.
For a balanced elimination tree, the group of processors assigned to the branch is always a subcube
or subring. Otherwise, the procedure is to follow as closely as possible the mapping of subcubes or
subrings to subtrees. The process of assigning subcubes or groups of processors to each branch of

the elimination tree continues until each subcube consists of only one processor, then all remaining
nodes in the subtree  are assigned to the single processor.

-

As noted earlier, a sparse matrix is partitioned into two basic sets: the principal diagonal block
submatrices and the row segments outside the principal block submatrices. For the principal block

submatrix, which has the profile structure, the processor assignment proceeds on a row group by
row group basis. In our implementation, we assign a row group corresponding to a node in the finite
element model, grouping individual degrees of freedom per that node as a unit.

The row segments are assigned to the processors that share the column block. When the node
set of a branch in the elimination tree is shared among a number of processors, the rows are assigned

to the processors sharing the node set (column block) in an alternating round robin or wrap fashion.

That is, for a subtree-to-subcube mapping, two successive rows are assigned to the neighboring

processors in the subring. This can be determined easily using a simple formula as follows:
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Procedure: processor( row-number,  #-of-sharehpmessors,  prrocessor,list)
BEGIN

index  = mod(row-number, #-ofshared-processors);
processor = processorlist [index];

END.

where pnxessor,list is a list of processors sharing the column block, index  points to the position in

the list where the processor number can be found, and processor  is the processor to which the row

segment is assigned. Using this simple procedure, if the entire node set of a branch in the elimination

tree is assigned to a single processor, the coefficients of the entire column block, including the row
segments, are assigned to the same processor.

3.1.2 Parallel Matrix Factorization

The sparse matrix factorization is basically a block column scheme. The block factorization scheme

consists of (1) a profile factorization for the principal diagonal block submatrices; and (2) a profile

forward solve for the row segments per each column block. The matrix factorization is divided into
two distinct phases. During the first phase, the column blocks assigned entirely to a single processor

are factorized. During the second phase, the column blocks shared by more than one processor are
factorized.

In the first phase, each processor independently factorizes the column blocks that are not shared
by other processors. There are two distinct stages in this first phase of LDLT decomposition.

D.I.l Factoring the column blocks entirely in the same processor:

D.I.l.l update the coefficients in the column block by the computed factors in the previous

column blocks;

D.I.1.2 decompose the principal block submatrix;

D.I.1.3 factor the row segments by a series of forward solves with the principal block submatrix

factor.

DA.2 Forming dot products among the row segments. These dot products are then fanned-out to
update the remaining matrix coefficients  in the same processor or saved in the buffer to be
fanned-in to another processor during the second phase of factorization.

The strategy is to carry out as much computations as possible in the processor. When a processor
sends the dot products to another processor, all dot products saved in the buffer for that processor

are sent as a package. This procedure is graphically illustrated as shown in Figure 4,

In the second phase of numerical factorization, the column blocks shared by more than one

processor are factorized. The parallel factorization of a column block proceeds as follows:
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D.II.l Each processor fans-in the dot products saved previously in the buffers on the other processors

sharing the column block. The dot products received are used to update the principal block

submatrix and the row segments.

D.II.2 Perform a parallel profile  factorization and update the row segments. The profile factorization
proceeds in a row by row basis. For each row in the principal block submatrix,

D.II.2.1 compute the row factor of L and D in the column block; and

D.II.2.2 broadcast the row factor and update the remaining coefficients in the column block.

D.II.3 Form dot products among row segments in the column block. This step consists of two basic

operations:

D.II.3.1 Form dot products among the row segments stored in the processor.

D.II.3.2 Form dot products between the row segments stored in different processors. This
operation is carried out by circulating the row segments of the column block among the
processors sharing the column block. When a processor receives another processor’s row

segments, it forms the dot products between its own row segments and the row segments
received from the neighboring processor. The row segments received are then passed on

to the next processor.

- The dot products are fanned-out to update the remaining matrix coefficients in the same

processor or saved in the buffer  to be fanned-in to another processor (see Step 0.11.1.)

This procedure is illustrated in Figure 5.
The forward solve is divided into two phases as shown in Figure 6. In the first phase, each

processor calculates the portion of the solution vector corresponding to the column blocks which
reside entirely within a single processor. Each processor also updates the shared portions of the
solution vector based on the row segments in these column blocks residing in the processor. In
tte second phase, the parallel forward solve for the shared portions of the vector is performed.

This parallel procedure is carried out in a column block by column block basis. There are three
basic operations for the parallel forward solve for the portion of solution vector shared by multiple
processors:

FL1 Send and receive updates for the solution vector corresponding to the current block.

F.II.2 Calculate the solution for the current block using the principal block submatrix. Since the

principal block submatrix is distributively stored, after each solution value is computed, it is
broadcast to the processors sharing the column block to update the remaining coefficients in

the solution vector.

F.II.3 Use the solution computed to update the remaining coefficients using the row segments in the

column block.
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In the forward solve, each processor begins working independently (in Phase I) and finishes working
concurrently with all other processors on the last (root) column block.

The backward substitution procedure is essentially a reverse of the forward solve. The backward

solution procedure is described in Figure 7. Similar to the forward solve and the factorization, the
procedure is divided into two phases. Phase one deals with the portion of the solution vector shared

by multiple processors. The procedure is essentially a reverse of Phase II in the forward solve and

consists of the following steps for each shared column block:

B.I.1 Update the portion of solution vector corresponding to the current block by the row segments;

B.I.2 Calculate the solution for the current block using the principal block submatrix. After each

solution value is computed, the solution vector is updated and the update is sent to the next
processor to update the remaining coefficients of the solution vector;

B.I.3 Send the results to other processors.

Our implementation of the backward solve for the principal profile submatrix follows closely the

forward solve procedure described in Reference [3]. In the second phase, each processor calculates the
portion of the solution vector correponding to the column blocks residing within a single processor.
The processors perform the calculations independently without any processor communications and
may complete the solution at different times.

3.1.3 Parallel Matrix Factorization with Partial Inverses

The Lanczos  procedure for the generalized eigenvalue problems requires the solution of triangular

systems at each Lanczos iteration step. While the parallel matrix factorization procedure described in
the previous section performs well, the parallel forward and backward solves do not exhibit similar
efficiency. It has been noted that there is little that can be done to improve the performance of

the parallel triangular solvers [6]. However, when examining closely the procedures of the forward
and backward solves, most of the parallelism come from assigning many column blocks to a single

processor so that the processors can work independently. Reasonable parallelism also occurs when
working with the distributed row segments. The main deficiency is due to the parallel solutions
of the triangular systems for the dense principal submatrix factors (see Step F.II.2 of the forward
solve and Step B.I.2 of the backward solve). The triangular solution procedures have significant
number of communication overhead because of the data dependencies in the solution of the dense
triangular systems. In this section, we describe an alternative method that can expedite the solution
of triangular systems. The strategy is to invert the dense principal submatrix factors that are

shared by multiple processors so that the triangular solution can be carried out by matrix-vector

multiplication. The problem is to directly compute the inverse of a dense matrix factor.
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First, let’s define Li to represent the triangular matrix factor that contains the ith row of L :

-

1
. . .

. . L* .
1 3 l *a

1
L** 11,1-l

1
. . .

l-

(59)

The triangular matrix factor L can now be written as:

L = L1 . . . L;L;+1  . . . L, = L(‘)Li+1 . . . L, (60)

where L(‘) = L1 . . . L; contains the first i rows of the triangular factor L. The inverse of the triangular
factor becomes:

where

r-1 = L,’ . . . L;l Lf’ . . . L,’ = L,-’ . . . Ly’$ L(‘)-’L (61)

Lfl =

1

1
. . .

1
-L;,l l l . - Li,j . . . - Li,i-1 1

1
. . .

1

(62)

In other words, Lrl can be obtained by negating the offdiagonal values in the ith row of L. Note
that the ith row, Li,:, of L can be computed as:

LT. .
b

= L(��)-�  ☯Ki,* 9. . ., Ki,i-1  3 1 90, l l l 7 OIT

Once the ith row of L is computed, the inverse of the matrix factor L(‘) is given by

(63)

LW-’ = L(i-1)-l  L;l
(64)

Based on the equations above, the procedure for inverting a lower triangular factor on a row by row
basis can be summarized as follows:

D.II.2.1 Compute the row factor of L (and D) by Equation 63.

D.II.2.2 Negate the entries of the row factor to form Lfl as in Equation 62.
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D.II.2.3 Compute L(‘)-’ by multiplying Lyl with L(‘-‘1-l as in Equation 64. I

D.II.2.4 Broadcast the inverted row factor and update the remaining coefficients in the column block.

The multiplication shown in Equation 64 only affects the entries on row i of L(‘)-l. Therefore, no
additional processor communications are needed when L(‘)” is formed in the processor responsible

for row i. We can apply this simple procedure to directly compute the inverses of the dense principal

block submatrix factors. That is, the procedure for matrix factorization with partial inverses is

essentially the same as the direct parallel LDLT factorization except in the factorization of column

block (Step D.II.2). The number of processor communications are the same for both the direct

LDLT factorization and the factorization with partial factor inverses.
As noted earlier, one approach to speed up the solution of triangular systems is to transform the

triangular solution into matrix-vector multiplication by inverting portions of the matrix factors. With

the inverses of the principal submatrix factors that are distributively stored in multiple processors,

the main difference is to change Step F.II.2 of the forward solution procedure and Step B.I.2 of
the backward solution procedure described earlier and to replace the procedures with matrix-vector
multiplication between the principal submatrix inverses and the solution vector. In parallel matrix-
vector multiplication, each processor calculates its contribution to the product; the partial products

are then summed across all processors sharing the block to complete the matrix-vector multiplication.
That is, we can reduce the communication to a single global summation among the processors shared
by the column block.

3.2 Mass Matrix-Vector Multiplication

While the element stiffness matrices are assembled into the global stiffness matrix for factorization,
the Lanczos procedure does not require the assembly of element mass matrices since the matrix

is used mainly in the matrix-vector multiplication. In this section, we examine the mass matrix-

vector multiplication with respect to the Lanczos procedure and show that the multiplication can
be performed with either assembled global mass matrix or the unassembled element mass matrices.

3.2.1 Matrix-Vector Multiplication with Global Mass Matrix

The coefficients  of the global mass matrix are assigned to multiple processors similar to the stiffness
matrix except that only the nonzero entries (without fills) are stored with an explicit indexing scheme.
It is well known that a matrix-vector product can be formed by first performing the multiplication

with the coefficients in each processor and then sum the partial products across all processors. In
this section, we examine how the mass matrix vector product, p = Mq, is computed and being used

in the Lanczos procedure.

Let’s denote the global mass matrix as M(l), iVt2),  . . . , A!(‘), . . . A@p),  where M(‘l represents

the matrix pa&ion in processor i and np is the number of processors. On a distributed memory

computer, each processor computes partial matrix-vector multiplication p(‘) = M(‘)q, where p(‘)
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represents the resulting matrix vector product in processor i. The results are then summed from each

processor p = Cnp ~(‘1. Since only that portion of the vectors p and Q involved in the multiplication
need, to be stored in a processor, the processor assignment for the vectors can be depicted as shown

in Figure 8.
Now let’s consider how the mass matrix vector product p is used in the Lanczos procedure. In

the first case, the vector p is used to form a vector-vector dot product. When a dot product is to be
formed, we have:

(65)
i=l i=l

Therefore we can form qTp(‘) in each processor and then sum the scalar results over aJl processors;
this global sum operation is often provided as a library routine, such as the procedure globalsum
on the Intel’s hypercube. Forming the global sum of scalar values is considerably cheaper than a
global sum of vectors.

The second case is when the mass matrix-vector product p is to be used as a right-hand side
vector for a system of linear equations, KO r = p. In this case it would appear that a global sum would
need to be formed. However, if we examine closely Step F.II.l of the parallel forward solve described

in Section 3.1, we notice that it involves sending and receiving updates for the shared block vector.
Therefore, we can directly send and sum the partial vector pti) as the forward solution procedure is

performed. That is, the global sum of vector p takes place as part of the forward solution phase.

3 .2 .2 Matrix-Vector Multiplication with Element Matrices

The matrix-vector multiplication, Mq, can also be formed directly with the element mass matrices.

The mass matrix-vector product can be written as:

P = M q
= ATMeAq (66)
= ATMeqe

In the above equation, Me is a block diagonal matrix consisting of element mass matrices M(‘), i =
1 7.‘. 7 nef where nel is the number of elements, and A is a boolean (kinematic) matrix denoting
the (displacement/compatibility) relationship between the global (displacement) vector q and the

element (displacement) vector q’. Thus we can write:

P = ATpe (67)
where pe = M’q”. The (static) relationship shown in Equation 67 simply denotes summing the

contributions of element (force) vector p” into the global (force) vector p. Each processor can
perform the element matrix-vector multiplication (p(9 = M(‘)q(‘)).  The element mass matrix-vector

products are then accumulated or summed over the multiple processors.
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Let’s now examine the use of the mass matrix-vector product p in the Lanczos procedure. From

Equation 67, the vector product qTp can be rewritten as:

qTP = qTATpe

= qeTpe

= (Q(‘JT  . . . qwvj(pw . . . pw))T (68)
= c qwpo

where qe = Aq consists of element vectors &‘I, i = 1,. . . ,neZ. That is, the vector product can be

obtained by summing over the multiple processors the scalar values resulting from the dot product

between q(‘) and p(‘).
Let’s consider that the mass matrix-vector product p is used as a right-hand side vector of the

system of equations, Kar = p. As noted in Equation 67, the mass matrix-vector product p (= ATpe)
is a sum of the element vectors p(;I. So when the vector p is used as a right-hand side vector in
the parallel forward solve, the vector sum can be formed as part of the forward solve similar to the
case for the assembled mass matrix. That is, the same forward solution procedure works for either
assembled or unasembled mass matrices.

3.3 Parallel Generalized Lanczos Procedure

We will now introduce the parallel implementation of the generalized Lanczos algorithm. The
procedure is summarized in Figure 9. The parallel factorization and solution procedures and the
mass matrix-vector multiplication procedures described in the previous sections are employed in
the implementation. In this section, we examine the difference between the parallel procedure
and the sequential generalized Lanczos procedure described in Section 2.7. As shown in Figure 9,
the Lanczos procedure is composed mainly of matrix-vector multiplications and vector operations.

Based on the development discussed in Section 3.2, if no reorthogonalization is needed, the only

communications required occur in the global sum operation in calculating cy and p in lines 27, 38
and 42 of the procedure shown in Figure 9(a). When the global sum is performed, all processors

must be synchronized.
A form of synchronization is also needed in the solution phase, see lines 10 and 34 of the procedure

shown in Figure 9(a). The processors may begin the forward solution procedure asynchronously
since each processor computes the factors of the column blocks residing on the processor. At the
completion of the forward solution, all processors are synchronized before the backward solution

procedure begins. In the backward solution, the processors begin working together on the same last

(root) column block and complete the calculations asynchronously by working independently on the

column blocks residing entirely in individual processors. As discussed in Section 3.1.2, the forward
and backward solution of triangular systems require a number of messages passing among the shared

matrix column blocks. Similarly, the factorization step also involves significant amount of message
passing and synchronization.
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Procedure: Paralkl Generalized Lanczos Procedure
BEGIN
1 WHILE (# of converged cigenvalues < # of desired eigenvah~) DO
2 BEGW
3
4
5
6

7
0
8
10
11
12
1s
14
lb
16
17
10
18
20

21
22
23
24
25. 26
27
20
29
30

31
32
33
34
35
38
37
38
38
40
41
42
43
44
4s
46
47
443
49
SO

Choorearbifta;
Form Kg =h--CTM;
Factor h’e = LDL* ;
set&=O;
/* Compute residual of Ritz vector after spectral rhift */
FOR i = 1 to number of converged Ritz vectors, DO

p=iM&;
Scatter(p,  y) ; /* dktribute p to vector y of kngth n */
Solve y t K;ly /* fbrward and backward oohws */
Gather(t,y)  ; /* assign y to bul vector t of kngth = depth of tree */
r=t- x”,-.ii ; .
p=Mt;
lluill=pT*r  ;

END.
☺w& umb ) i / * u = IIl~lII l l 4 u;lllT l /

i = 1 to number of converged Ritz vectors, DO
lltcill  = j/I/q ;

END.
Choose t ;
/*orthogonrliu t to all converged Ritz vecton ; */
FORi= 1 to number of converged Ritz vectors, DO

7XJ = -1. ;
END.
ParalkLSekctiveReorthogonalization  ;
p=M+;
B = 7p ;
B = giobalsum(0) ;
P1=JD;

Ql =  T/PI ;

Pl = PIP1  ;
/* Lanuo8 Loop */
FOR j=
BEGIN

1 UNTIL insufficient space hr Lanczos vectors ~j DO

Scatter(p, y) ; /* distribute p to vector y of kngth n */
Solve y = K,“y /* forward and backward aolvea *I
Gather(t,y) ; /* aarign y to iocal vector t of length = depth of tree */
f= f - B;-1 * qp1 ;

Q= PT’ i
a; =gkhlsum(a)  ;

- Qj * qj ;
;=rMt;
B=Tpi
B = g~~um(B);
Pj+l = JB;
PualkLReorthogoualisation;
9j+l = rlSj+l i
P = PIBj+l  i
Solve eigenryrtem T; for (t9;,8jj), i = 1,. . ., ji
Test for convergence of eigenvslutr;

END.
PadkLRitzRdnement;

51 END. ’
END.

(a) Pardld Lanczc~ Procedure

Figure 9: Parallel Generalized Lanczos Algorithm
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Procedure: PardkLbo rthogomaiization
/’ c, = efi where f denote8 machine prw&ic#n l /
BEGIN

PUdkLSktivc~rthOgOdiS8tiO~  i
PadkLPartklRsorthogonrl;utbn  ;

Procedprc:  PurllcLsclect ivdtaJrthogoMli8ation
BEGIN

/* a ⌧ta na l8tdutive r a o r th o g o nr liutio o  - p er fo r m a 8 ma ded l /
1 FORitl... TO number of converged eigenpairs (6, t$), DO
2 BEGIN
3 IF rid > 0 THEN rid+1 =
4 IF ~S~J+l

I ~ oa f,J < o(lahj - Bjria-11 + Iltrill)/h+l~

/ � p a r dk l o p emtio n: r eo r tho go di8e  gj+l to  &  l /
S C = $+l MGi ;
6 ( = &hLom(C) i

7 qj+1  ‘qj+*  -c*& i
8 IF (T,~  < 0) THEN /’ nqwmtid  ope.ratbpI  */
9 fiJ ro;

10 si&l = f0 ;
11 ELSE
12 ?j+l = -1 ;
13 ENDIF.
14 ENDXF’.
1s END.

Procedruc:  PudkLP artklRborthogouali8atian
BEGIN

/ � p a r tia l mio r tho g o ~tia n - p er fiml u needed l /
rlJ+ld+l = 1 ; /* rsqucntid  OpemioM begin l /
Q+lj = mif.9 b/B~+l Ii
T);+i~-l = ((Qj-i - aj)rljd-i + Bj-ll)jj-l)lBj+l i
FORk=lTOj-2,D0
BEGIN

9j+ll = (B&+lrlj&+l + Bkr)j+-1  - BjrlJ-l$  + (ah - ajh$)lBj+l i
END.
k = muri<'(f)j+l$)  /* #qoCUtid  O~tiOM d l /
IF~>~THEN/*pa.mUel~tionr~*/

10 pl=hfQi;
11 Pz = mj+r i
12 FOBi=lTOj-l,DO
13 BEGIN
14 wk(q =gC ;
1s td[i+j-l]=&;
16 END.
17 wo r k  = gk hb wn(umk ) ; /* vactar stun l /
16 FORi=lTO  j -1 ,DO
19
20
21
22
23
24
2s
26
27
28
29
so
31
32
33
84

BEGIN -
q ☺ = * - WOF k ☯i]  l Qi ;

mkTl, = Qj+l - W&(i  + j - I] l 4; i

Pl = Fqj+l i
P=‘%+l i
P = l&M-(p) i
REFEAT

U= 8% i
8 = gbbaAmum(s)  ;
qj+l =qj+1-3*qj  ;
PI = hj+1  i
Pold  = P i
p=l+lj+1  i
P = *hum ;

UNTIL (PIPodd  14/2) i
3s Bj+l = fi i
38 ENDIF. /* pualkl  operation end l /
END.

(b).Paralld Reorthogonalization

Figure 9 (continued)

31



Procedure: PardkLRitzJLtfinemtnt
BEGIN

/* Form tigenvecton  of converged eigenvalue8  */
/* Uw TQL2  to obtain eigenpairs  of tried mat*/

1 SOAVe  h,g~Il8ySteIIl  T, for (Xi*&)*i=  l,...,j ;
2 k0;
3 FORi=lTOj,DO

- 4 BEGIN
5 IF’ (eigenvaht  i converged) THEN
6 2 = 1+ 1; /+ counter for ammgad eigenvaAue8 */
7 &=o;
0 FOR k = 1 TO j, DO /* pardkl  operation */
8 BEGIN
10 61 = 61 + 8k.i * qk ;
11 END.
12 ii = ir +(P,+~+.i/~i)*qj+i  i /+ parallel rdne=ent */
13 ENDIF.
14 END.

/* pamlkl  orthogonalization of eigemmctors hr each converged eigenvalue*/
15 FORi=lTOI,DO
16 BEGIN /* parabel operations  ./
17 p=M&;
18 P = @P ;
19 P  =  ?M-u=m ;

!* normabe  Ritz vector and mcak mam matrix vector product l /
20 di = &/fi ;
21 P=PI&

/* orthogodize  foliowiug Ritz vectora */
22 FORk=i+lTOI,DO
23 BEGIN
24 umk(k  - i] = t$p  ;
26 END.
28 w o r k  = globaJsum(tumk)  ; /* vuctor  rum l /
27 FORk=i+lTOf,DO
20 BEGIN
28 ik = ik - utotk(k  - i] l & ;
30 END.
31 END.
END.

(c) Parallel Procedure for Ritz-Vator  Refinement

Figure 9 (continued)
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While most operations in the Lanczos algorithm are well suited for paralhzation, certain oper-

ations are duplicated in each processor. For example the eigenvalues of the tridiagonal matrix T

are solved for at each Lanczos iteration. Since the size of the tridiagonal matrix T is usually small

and the solution of this small tridiagonal eigensystem problem is quite fast on a single processor,
any attempt to distribute the calculations over a number of processors would in fact slow down the

execution because of the communication overhead. As shown in line 47 of the procedure shown
in Figure 9(a), each processor computes the eigenvalues and eigenvectors of the. tridiagonal matrix
using a modification of the routine TQL2 of the EISPACK software package so that it only solves

for the last entries of the eigenvectors instead of the entire eigenvector [24]. The routine generates

all the information needed to test for convergence of the eigenvalues, so this step is also duplicated

in each processor.
For the parallel reorthogonalization procedure shown in Figure 9(b), the steps to test for loss

of orthogonality are duplicated in each processor. If orthogonality has been deteriorated, then the

work to orthogonalize qj and Qj+r  is distributed among multiple processors. The matrix-vector and
vector-vector multiplications are performed in parallel as described in Section 3.2. The results are
accumulated across all the processors using the global sum operation. As shown in Figure 9(b), the
procedure for reorthogonalization  requires four additional globalsum operations to sum the vector
dot products: one for a vector of length 2(j - 1) and three for simple scalar values.

Figure 9(c) summarizes the parallel procedure for Ritz-vector refinement. After all desirable
- eigenvalues are obtained, the routine TQL2 is used to compute the eigenvectors of the tridiagonal

matrix; the operation is duplicated in each processor. The Ritz vectors are then refined in that
each processor works on its portion of the vectors. Finally, for each converged eigenvalue, a parallel
orthogonalization procedure is used to refine the eigenvectors.

4 Experimental Results and Discussions

The procedures described in the previous section have been implemented in a finite element program
written in the C programming language and run on au Intel iPSC/iSSO hypercube. Version 2.0 of
the compiler and optimized level 1 BLAS routines were used. In this section, we present the results
on two different finite element models that we have used to evaluate the parallel Lanczos procedure.
The two models are a set of square finite element grids and a high speed civil transport model.

The square grid model is ordered using a coordinate nested dissection scheme which recursively
partitions the grid into smaller subgrids and provides a very regular and well balanced work load
distribution on a parallel computer. The civil transport model is an irregular model that does not

yield to good load balance for the a number of re-ordering schemes that we have experimented with.

Here, we show the results based on an incomplete nested dissection scheme. Figures 10 and 11 show,

respectively, the square grid and the civil transport model; the number of equations and the number
of nonzero entries in the stiffness matrices and the matrix factors are also shown in the figures.
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In this implementation, the (shifted) stiffness matrix factor, mass matrix, converged eigenvectors
and Lanczos  vectors are all stored in memory. For the square grid model, the mass matrix is not

assembled and the computations are carried out with the element mass matrices. The matrices for

the civil transport model, however, are provided in assembled form.
We conduct two different types of experiments to evaluate the Lanczos procedure. The first

experiment is intended to examine the various steps in the parallel Lanczos procedure. In the second
experiment, we examine the situation when multiple spectral shifts are required due to insufficient

space for storing the Lanczos vectors. To initialize the Lanczos procedure, we use the following initial

heuristic shift [5]:

The results are discussed in the following.
For the first set of experiment, we run the Lanczos procedure for 40 iterations without spectral

shifts other than the initial shift. Our objective is to examine the performance of the Lanczos

algorithm implemented and to compare the effectiveness in the use of the factorization with partial
factor inverses and the direct LDLT factorization. The results for the square finite element grid
models are tabulated as shown in Table 1. It is clear that the use of factorization with partial
factor inverses is more efficient than the direct LDLT factorization, particularly when the number of
processors increases. Furthermore, the processors are utilized more effectively for larger problems.
In Table 2, we profile the steps in the Lanczos procedure for an 120 by 120 square finite element
model. It is interesting to note that the most costly step is the forward and backward solutions which

further explain the importance in the use of partial factor inverses. Finally, we can also observe that,
when only a few eigenvalues are solved, the sequential eigensolution of tridiagonal  system is quite
inexpensive comparing to the other operations in the Lanczos procedure.

Similar results are obtained as shown in Table 3 for the civil transport model. Again, there is a

moderate gain in the solution time when using the factorization scheme with partial factor inverses.
As shown in Table 3, which gives the profile on the various steps of the Lanczos procedure, the
factorization cost is the most expensive operation when using eight processors but the forward and

backward solution of triangular system of equations dominate the computation when 32 processors
are utilized. As shown in the table, the benefit of using 32 processors is not high because of the
problem size and that, as noted earlier, the computational loads on the processors are not well
balanced for this irregular finite element model.

In the second experiment, we test the Lanczos procedure for problems that may require multiple
shifts due to insufficient memory space for storing the Lanczos vectors. As noted earlier, external

selective re-orthogonalization is used when a new shift is selected to ensure that the starting Lanczos

vector is orthogonal to the previous set. The shifted stiffness matrices are factorized with partial
factor inverses. ye select the civil transport model as a test problem and solve for 60 and 105 eigen-

values using 8, 16 and 32 processors. As more eigenvalues are solved on small number of processors,
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elements number of numba of number of nonzeros
per side elements equations (in matrix factor L and D)

80 6,400 13,114 841,951
100 10,000 20,394 1,450,027
120 14,400 29,274 2,221,911
1503 22,500 45,594 3,736,351

Figure 10: Square Plane Stress Finite Element Grid Models
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number of number of nonzeros number of nonzeros r
equations (’ 1m ower triangle of K) (in matrix factor L and D)

16,146 515,651 3.783.704

Figure 11: A High Speed Civil Transport Model
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Table 1: Solution Time for Square FEM Grid Models (Time in seconds, 40 Lanczos  iterations)

with with partial
&umber of processors LDLT Factorization 1 matrix factor inverse

80 by 80 mesh (13,114 equations, 17 eigenvalues)
2 PROCESSORS 42.77 42.42
4 PROCESSORS 23.55 22.93
8 PROCESSORS 14.71 13.76

16 PROCESSORS 10.87 9.40
32 PROCESSORS 10.06 8.01

100 by 100 mesh (20,394 equations, 16 eigenvalues)
2 PROCESSORS 68.60 68.13
4 PROCESSORS 36.79 35.98
8 PROCESSORS 22.18 20.90

16 PROCESSORS 15.42 13.52
32 PROCESSORS 13.82 10.92

120 by 120 mesh (29,274 equations, 16 eigenvalues)
4 PROCESSORS 53.94 53.00
8 PROCESSORS 31.63 29.90

16 PROCESSORS 20.93 18.55
32 PROCESSORS 17.83 14.21

150 by 150 mesh (45,594 equations, 17 eigenvalues)
8 PROCESSORS 50.18 48.08

16 PROCESSORS 31.98 28.97
32 PROCESSORS 25.34 20.48
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Table 2: A Profile of Solution Time for a 120 by 120 Grid Model (Time in seconds, 40 Lanczos

iterations, 16 converged eigenvalues)

Number of
processors
Spectral shift
Factor Kc = LDLT
Data initialization
Triangular Solution
Formation of o, fl and T

Reort hogonalization
Tkidiagonal  eigensolver
Formation of Ritz vectors
Miscellaneous
Total

LDL’ factorization Partial matrix factor inverse 1

4 8
0.99 0.55

12.76 7.77
0.20 0.10

19.35 12.08
7.99 4.03
5.54 2.81
1.21 1.23
5.71 2.98
0.19 0.09

53.94 3 1 . 6 3

16
0.31
5.08
0.05
9.22
2.05
1.45
1.23
1.50
0.04

20.93

32 4
0.21 0.99
4.05 13.04
0.03 0.20
9.39 18.14
1.19 7.99
0.83 5.54
1.21 1.21
0.91 5.71
0.02 0.19

17.83 53.00

‘8 1 16 / 32 ii
0.55 0.31 0.21
7.87 5.05 4.00
0.10 0.05 0.03

10.43 6.87 5.83
4.03 2.06 1.18
2.81 1.45 0.83
1.23 1.23 1.21
2.79 1.50 0.91
0.09 0.04 0.02

29.90 18.55 14.21

Number of
processors 8 16 32 8 16 32
Spectral shift 1.52 0.58 0.24 1.52 0.57 0.24
Factor K, = LDLT 22.63 15.84 12.53 23.34 16.19 12148
Data Initialization 0.09 0.07 0.03 0.09 0.07 0.03
Triangular Solutions 16.58 14.58 18.32 14.17 11.14 12.25
Formation of o, ,8 and T 3.46 2.73 1.41 3.45 2.74 1.41
Reort hogonalization 4.43 3.59 2.00 4.44 3.59 2.00
Tridiagonal eigensolver 1.37 1.37 1.37 1.37 1.37 1.37
Formation of Ritz vectors 1.33 1.10 0.720 1.33 1.11 0.72
Miscenallaneous 0.06 0.06 0.05 0.06 0.06 0.05

1 Total 51.46 39.91 36.66 49.77 36.82 30.54

Table 3: A Profile of Solution Time for the Civil Transport Model (Time in seconds, 40 Lanczos
iterations, 9 converged eigenvalues)

LD L’ factorization Partial inverse
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spectral shifts are required because of insufficient memory spaces on the 8 and 16 processors. The

results are tabulated in Table 4.
Let’s examine closely the solution time required to solve the eigenvalues for the civil transport

model. We separate the timing results for computation and for input and output of the stiffness
matrix. From the computation point of view, the forward and backward solutions remain to be a
very costly step. Since each shift requires that the shifted stiffness matrix to be refactorized, the
factorization cost for spectral shifts can become expensive. However, when spectral shift is used, the

tridiagonal matrix T becomes small and the sequential eigensolution of the tridiagonal matrix is very

efficient. When spectral transformation is not used, the sequential eigensolution of the tridiagonal

matrix can become expensive and the number of Lanczos iterations and reorthogonalizations may

also increase. There appears that, besides the case when insufficient space is available for storing the
Lanczos vectors, spectral shifts should also be used to optimize the number of Lanczos iterations,
reorthogonalizations and eigensolution of tridiagonal systems.

As noted in Table 4, another cost in the spectral shift is the input and output of the stiffness

matrix. In our implementation, the stiffness matrix is stored using secondary storage. When a
spectral shift is performed, the stiffness matrix is restored  to compute the shifted stiffness matrix
Kc = K-aM. Presently, the input and output on the Intel’s i860 hypercube are fairly time
consuming. One way to improve the efficiency of the I/O operations is to interleave the factorization

procedure and the input of the stiffness matrix. In summary, the use of more processors is beneficial
to minimize the number of re-starts when memory storage is limited. The optimal use of input and
output devices and spectral shifts is, however, system and architecture dependent.

5 Summary

In this paper, we have discussed an implementation of generalized Lanczos procedure for distributed
memory parallel computers. While the Lanczos procedure is well suited for parallization,  the forward

and backward solutions required at each step of Lanczos is expensive, particularly when only a few
eigenvalues is desired. We have developed a strategy to invert the dense principal submatrix factors

that are shared among multiple processors. Although the number of operations required for the
factorization increases slightly, the number of communications remains the same with or without the
inversion of submatrix factors. With the partial factor inverses, the parallel solution of triangular

systems can be made more efficient,  and higher parallelism for the triangular solution process can
be recognised. The benefit of this factorization with partial factor inverses is clearly demonstrated

for the test problems used in this study. We believe that the scheme will work even better with
block Lanczos algorithm because more computations are distributed among the processors in the

triangular solution process. Furthermore, the block Lanczos scheme may justify solving the block
tridiagonal eigensystem in parallel rather than duplicating the computations on each processor.

Our implementation includes partial and external selective reorthogonalizations in the Lanczos
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Table 4: Solution Time for 60 and 105 Eigenvalues for the Civil Transport Model (Time in seconds)

LT
Solution for 60 eigenvalues

Number of processors 8 processors 16 processors 32 processors
Total number of Spectral shifts 3 1 1
Total number of lanczos iterations 167 127 127
Total Number of partial reorthogonalizations 49 63 63
Solution time (in seconds):
Data Initialization:

Setup 7, q, u and other parameters 31.87 0.07 0.04
Reorthogonalize initial vector 0.34

Spectral shifts 4.62 0.53 0.25
Factoring K, = LDLT 69.74 16.20 12.57
Triangular solutions 10.48 36.69 36.69
Formation of cy and p and T 14.38 8.67 4.62
Reort hogonalization 27.11 19.30 12.30
Tridiagonal eigensolutions 10.48 36.69 36.69
Formation of Ritz vectors 17.23 35.94 21.45
Miscellaneous 0.27 0.18 0.15
Total solution time 235.22 153.00 126.77
Input of stiffness matrix 59.44
Output of stiffness matrix 69.30 80.17 81.33
Total time 363.96 233.17 208.10

Solution for 105 eigenvalues
Total number of Spectral shifts 54 2 1
Total number of lanczos iterations 744 280 287
Total Number of partial reorthogonalizations 122 130 143
Solution time (in seconds):
Data Initialization:

Setup r, q, u and other parameters 1,558.43 41.91 0.03
Reorthogonalize initial vector 0.93 0.40

Spectral shifts 73.84 1.34 0.24
Factoring h’, = L DLT 1,317.56 30.83 12.47
Triangular solutions 261.21 77.26 87.88
Formation of CL and /3 and T 74.77 19.07 10.05
Reort hogonalization 86.91 66.41 52 .OO
Tridiagonal eigensolutions 3.82 268.45 381.03
Formation of Ritz vectors 265.58 80.36 63.05
Miscellaneous 1.26 0.41 0.34
Total solution time 3,644.31 586.04 607.10
Input of stiffness matrix 1,225.30 33.26
Output of stiffness matrix 66.62 76.99 81.17
m ,. 1 AAA A. a-a am -AA Am.lotaJ time I 4,Yim.Z4 1 bYb.25 1 tiUU.Itb
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process. A new spectral shift is selected when memory space is insticient to store the Lanczos
vectors. Each new shift or re-start requires restoring the stiffness matrix, re-factorization of the

shifted stiffness matrix and re-orthogonalization of the new Lanczos vector with respect to the

converged eigenvectors. The number of processors should be used to store as many Lanczos vectors

as possible so that the number of re-starts can be minimized. Based on our experimental results, use

of more processors is well justified for large problems and when relatively large number of eigenvalues
is needed. Last but not least, for each parallel computer system, some criterion is needed to measure

the tradeoffs between spectral shifts and computation costs.
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