NUMERICAL ANALYSIS PROJECT MAy 1992
MANUSCRIPT NA-92-04

On the Convergence of Line Iterative
Met hods for Cyclically Reduced

Non-Symmetrizable Linear Systems

by

Howard C. Elman
Gene H. Golub
Gerhard Starke

‘NUMERICAL ANALYSIS PROJECT
COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

(a)

=2







ON THE CONVERGENCE OF LINE ITERATIVE METHODS FOR
CYCLICALLY REDUCED NON-SYMMETRIZABLE LINEAR
SYSTEMS

HOWARD C. ELMAN ® | GENE H. GOLUB'! AND GERHARD STARKE!}

Abstract. We derive analytic bounds on the convergence factors associated with block relaxation
methods for solving the discrete two-dimensional convection-diffusion equation. The analysis applies
to the reduced systems derived when one step of block Gaussian elimination is performed on red-black
ordered two-cyclic discretizations. We consider the case where centered finite difference discretization
is used and one cell Reynolds number is less than one in absolute value and the other is greater than
one. It is shown that line ordered relaxation exhibits very fast rates of convergence.

Key words. iterative methods, reduced system, convection-diffusion

* Department of Computer Science and Institute for Advanced Computer Studies, University
of Maryland, College Park, MD 20742, e-mail: elman@cs.umd.edu. The work of this author was
supported by the U. S. Army Research Office under grant DAAL-0389-K-0016, and by the National
Science Foundat ion under grants ASC-8958544 and CCR-8818340.

'Department of Computer Science, Stanford University, Stanford, CA 94305, e-mail:
golub@sccm.stanford.edu. The work of this author was supported in part by the National Science
Foundation under grant CCR-8821078.

! Instit ut fiiv Praktische Mathematik, Universitdt Karlsruhe, Englerstrasse 2, 7500 Karlsruhe
1, Federal Republic of Germany, e-mail: na.starke@na-net.ornl.gov. The work of this author was
supported by the National Science Foundation under grant CCR-8821078 and by the Alexander-von-
Humboldt-Stiftung.



1. In t roduct ion. Consider the two-dimensional convection-diffusion equation

(1) = [(puz)s + (quy Yyl + Uz + suy - ¢ on 2
u=y on 99

where € is a smooth domain in R2 and p > 0, g > 0 on . Let
(2) Au-=f

denote the linear system obtained from a five-point finite difference discretization of
(1), where the standard scheme [10] is used to discretize the second order term and
centered differences are used for the first order term, and u and f now represent
vectors in a finite dimensional space. Using a red-black ordering, this system can be
written as

(3) A A2 un ] [

A1 A2 u® | T e |
where A;; and A+ are diagonal matrices. If block eimination is used to decouple the
“red” points ul”) ;from the “black” points ut®), the result is the reduced system

4) (Aza = Aoy AR Ara)ul® = [0 — AT ().

Let S = Aqg — AglAl_llAlg, the Schur complement, denote the associated coefficient
matrix.

Block (or line) iterative methods for solving (4) in the self-adjoint case have been
considered by Parter (8] and Hageman and Varga [7], where it was shown that the rate
of convergence was faster than if analogous methods are applied directly to (2). Parter
and Steuerwalt [9] and Elman and Golub [3], [4], [6]showed that there are advantages
to using the reduced system in the non-self-adjoint case as well. In particular, it
was shown in (3], [4], (5] that line iterative methods are rapidly convergent when the
reduced operator S can be symmetrized by a real diagona similarity transformation.
For constant coefficient problems, and problems where separation of variable tech-
niques apply, this is the case when the absolute vaues of the discrete cell Reynolds
numbers are either both less than one or both greater than one [3].

In this paper, we extend this analysis, for constant coefficient problems, to the
case where the reduced operator is not real symmetrizable. For centered differences
this corresponds to the case where one cell Reynolds number is greater than one in
absolute value and the other is less than one in absolute value. Although numerical
experiments in [3] and [4] . 4lowed the method to be effective in this case, there were
no analytic bounds on the convergence rate. The key observation is that the reduced
matrix can always be transformed into a complex symmetric matrix using a diagonal
similarity transformation. We will restrict our attention to the two-line ordering
considered in [9] and [4], since this is a natural way of ordering the cyclically reduced
system in terms of convergence and paralelism.

An outline of the remainder of the paper is as follows. In $2, we describe the
centered difference discretization and the reduced matrix corresponding to the two-
line ordering, outline the technique used to transform this matrix into a complex
symmetric matrix, and define the block Jacobi and GaufB-Seidel iteration strategies.
In §3, we state the main results: bounds on the spectra radii of the iteration operators
in the cases when one cell Reynolds number is small and the other is large. In addition,
we present the results of numerical experiments showing that the analysis is a good
indicator of numerical performance. In $4, we present the proofs of the analytic
results. T'inally, in §5, we make some observations on related methods.
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2. The discrete problem and symmetrized reduced system. Assume that
the discretization is made on a uniform n x n grid, and let h = 1/(n + 1). Let

diag(d,, da, ..., d,)
denote a diagona matrix of order n, and let
(5) tridiag(Xj,j_l,ij,Xj,j“)

denote a block tridiagonal matrix. We will use the convention that when upper case
characters appear in the representation (5), then the entries are themselves matrices,
and if lower case characters are used, then the entries are scalars. If a natura ordering
is used for the. discrete grid, then the coefficient matrix has the form

A = tridiag(A;j j-1, 4jj, Ajj+1),
where

Ajj-1 =diag(bij,. .., bnj),
Aj; = tridiag(cij, aij, dij),
Aj i+ =diagleyj,.. ., €enj).

A detailed description of the coefficients of A derived from the centered difference
discretization, as well as those of the reduced matrix, is given in [5]; we omit such a
description here.

If the operator of (1) is separable, then the discrete coefficients satisfy

a;; = G,SI) * a;-y),
b,‘j = bj , d,‘j = d,',

Cij =¢Ci €ij —€j.

Our convergence analysis depends on the following result concerning a symmetrized
form of the reduced matrix.

THEOREM 2.1. If the operator of(l) is separable, then there is a diagonal matrix
Q such that S = Q~'SQ is a complex symmetric matrix.
The proof is exactly analogous to the proofs of Theorem 3 of [3], and Theorem 1 of [5],
and we omit the details. It makes use of the fact that a general irreducible nonsym-
metric tridiagonal matrix can be transformed into a complex symmetric tridiagonal
matrix (see, e.g. Cullum and Willoughby (2, Lemma 6.3.2]). If ¢;di—1 and bje;_1 have
the same sign for al : and j, then Q and S can be chosen to be real.

We perform our convergence analysis for the constant coefficient problem, i.e.,

px) =qly) =1, r(x) = 0,s(y) 3 7.

In this case, we have

a;; 54,
bij = —(1+7h/2), dij=—(1-0h/2),
cij =—(1+0h/2), e;=—(1-71h/2).

The quantit ies y = ah/2 and § = Th/2 are the cell Reynolds numbers. We consider
the natural two-line ordering, i.e.,, where grid points are blocked into certain pairs of
lines (see ligure 1).



X13

X7
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X14

X8
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X10
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X18

X12

X6

Fic. 1. Natural two-line ordering for a 6 x 6 grid.

The points in the k’'th block are those with grid indices (4, j) such that k — 1 <
i/2 < k. Since the coefficient matrix is block consistently ordered, the results also
apply for block red-black orderings. See [4], [5] for further details. We will restrict
our attention to the case where n is even. Modifications for odd n are obvious but
make the analysis more complicated. Under these assumptions, the reduced matrix
S has block tridiagonal form

S = tridiag(Sj j-1, Sjj» Sj,j+1) .

where tho diagonal blocks for j = 2,. . ., n/2 — 1 are given by

" Po Pl P2
P-1 PO
(6) Sj;=1|F? = Sy
P2
PO 131
L p-2 P-I Po ]

with p_a = —c*,p_; = —2ce,p1 = —2bd, p; = —d?,po = a® — 2be — 2c¢d and po =
a? — 2be — cd. The first and the last diagonal blocks have dightly different form:

Sn = Sd + be E01
with Eo; = diag(0,1,...,0, 1) and

Snjanj2 = Sa + be Eqo

with Eyq = diag(1,0, ..., 1,0). The off-diagonal blocks have the irregular tridiagonal
form
b2 0
2bc b7 2bd
0 b 0
Sj,j—l = - 7] = 2,. s n/2,
2bc 4% 2bd
0o b o
2bc b2




0 e o
2 €2 2de
S a1 = - , =1, n/2-1.
0 e o
2ce e 2de
0 e?

(See [4, §4].) A
The symmetrized matrix S = Q~1SQ is given by

S = tridiag(gj,j-l, S'.1'.7" S},‘J’-l)

with
Po P11 Po i
P1 Po .
(7) S; = | P? =84,j=2,...,n/2—1,
P2
Po D1
P2 P1 Po ]

where p; = =2v/bede, p2 = -cd and pg, po are as in (6). The first and the last diagonal
blocks are given by

(8) St =§d+be Eor
and
9) Snjans2 = Sa + be Erg

respectively. The subdiagonal blocks are defined by

i be 0
2Vbede b e 2V bede
0 be 0
Sjj-1= - : : : j=2 ..., n2
2vVbede b e 2vbcde
0 be 0
2\/@ b e

If bede is positive, then S is a real symmetric matrix; this is the case, for example,
if || and |é] arc either both less than one or both greater than one. These cases were
addressed in [3},{4], [5]. Our primary interest here is in the case where bcde is negative,
i.e, either he > 0 (|6] < 1) and c¢d < O (}y| > 1), or be < 0 (|6] > 1) and cd > 0
(J¥] < 12). In these cases S is complex symmetric.

Let D denote the block diagonal matrix whose entries are the diagonal blocks
{Sj;}, and let C' denote the block off-diagonal part D — S. The asymptotic rate
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of convergence of the two-line Jacobi method for solving the reduced system is de-
termined from p( D=1 C), and because S has block property A and is consistently
ordered, the asymptotic rate of convergence for the two-line GauB-Seidel method is
determined from (p(D~'C))? (see [10, p. 107], [L1, p. 147]). We have D = Q~'DQ
and C = Q~'CQ and, thus, for the two-line Jacobi operator

(10) p(D7IC) = p(Q~'D7'CQ) = p(D7'C) = p(CD7Y).
iFrom (10), we obtain the bound
(11) p(D7'C) < [ICD7Y 2.

The straightforward way to obtain bounds for the convergence of the two-line Jacobi
operator would be to use

(12) p(D7IC) NICD™H 2 < HICHID ™2

This approach is equivalent to that used for the cases treated in [3] and [4], when S can
be transformed into a real symmetric matrix, and in that case the rgsulting bounds
correspond closely to experimental results. For the case bede < 0, this approach
produces pessimistic results, and it is necessary to examine ||C'b‘1||2 more carefully.
The details of this analysis will be presented in §4.

3. St atement of main results and numerical examples. Our main result

is as follows. The proof is deferred to $4.
THEOREM 3.1. For even n, we have, for the two-line ordered cyclically reduced

system, the following bounds for ||CD"1|[2

Zl)c 4cd)2 — 4dbe(a® - be))? — 16(be)3cd]!/?
13 4./|bede|
(13) e (bede] — 4cd)? — 4be(a? — be)]3/2
for be > 0 and = a‘+13;(a2_2be)2 <ed <0,

1/2

(14) @ pp2be T ((ar = ded)? fAbe(a® - be))/? [1 + az(azbe-)IZbeVl

a’~  ai43(a?-2be)?
12 ’

for be > 0 and —“3—'42@ <ed<

2 1/2
(15) 2be + be K m (be)3 /
a® — 2be a® + be a’(a? — 2be)?
forbe > 0 and cd < —“2‘421’3, and
(16) 2|be|

[(«? = 4cd)? + 4fbe|(a? + [be])]/2

(a? —4cd )2 + dfbe|(a® + [be]))? + 16[be[3cd]'/?
4+/|bede|
+4\/|bede| ~4cd)? + ajbe|(a? + |be])]*72

forbe<O0and ca > 0.



We remark that we only consider the case bede < 0 in Theorem 3.1 since the
(real) syminetrizable case bede > 0 has been addressed in [4]. However, for be < 0
and cd < O (|]y] > 1 and {6] > 1) the bounds of [4] can also be improved using the
techniques descri bed below.

Note that Theorem 3.1 does not only give us an upper bound for p(D~1C), the
asymptotic convergence factor of the method, but also a rigorous estimate for the
error reduction. since

D=l2lICl1-

D=1Vl = QD1 ED-1Y1CQ Y|, < conda(@) NP2 fy—1 ok
fI( V'l = 1QD™( )*7ICQ7 |2 £ cond2(Q) -1l Il II2

~ CoRoLrARY 3.2. For the centered difference scheme, if |y| > 1 and |6] < 1, then
[ICD=|2 ts hounded by

114

i T A 9 = (= (15 + ) = (4 = 871 = )2

748 [4(7% + 3)2 = (1 — 62)( 15 + 62)}3/2
(17)
2 6443(746%)% -2
for v <{————, )
(18) 1—5?+ 2/(1=6)(2 - 1) . (1—62)3 1/2
T+6% (472 +3)% - (1-62)(15 + 62)]1/2 64(7 + 62)2
for @ <y < 942,6—2, and
_ 52 1— 62 1/2 _ 623 1/2
(19) _1, 6,,+(_, q) 1+_L1.___)_
7+ 6° 17 — 82 64(7 + 62)2

forv% > r—'f,s—

Proof. ‘T'he inequalities for [|[CD~!{[» result from inserting be = 1 — 62 and cd =
1 —-~%into (13), (14) and (15), resp., of Theorem 3.1. O

We remark that for be > 0 and cd < 0 the bound on the right hand side of (12)
leads to

p(P C ) < 4y/|bede] + 2be _ 4 (1=6)(y2 - 1) + 2(1 = 6%)

a® - 2be 14 + §2

which, for 1 he centered difference scheme, if |§| < 1, obvioudly tends to co as v — oo.
In contrast, al three bounds in Corollary 3.2 are less than 1, which implies that the
method actually converges for any choice of |y| > 1 and |§] < 1.

Table 1 shows different upper bounds for the spectral radius of the GaufB-Seidel op-
erator associated with the two-line ordered cyclically reduced system. The columns in-
dicated by » =1/8, h = 1/16 and h = 1/32 contain the computed numbers ||CD~1||2,
the last column contains the (asymptotic) bounds from Corollary 3.2. A comparison
with [4, Table 6.1] sllows a surprising conformity of ||CD~! ||3 and the GauB-Seidel
spectral radius.

As 7 — x, our bound for ||CD~!||» tends to 1/7 + % = 0.1486 which implies
that the limiting value for the spectral radius of the GauB-Seidel operator is bounded
by 0.1486. FFor comparison, if SOR with optimal relaxation parameter is applied to
the non-reduced system, a convergence factor of 0.1885 is obtained for large values of
y (see Chin and Manteuffel [1}).
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TABLE 1
C'omputed values and bounds for [[CD~| jor two-line Gauf-Seidel, 6 = 0

y h=1/8 h = 1/16 h = 1/32 bound
10 0.0134 0.0180 0.0197 0.0204
12 0.0368 0.0410 0.0426 0.0954
14  0.0523 0.0562 0.0575 0.1278
1.6 0.0622 0.0652 0.0662 0.1463
18 0.0677 0.0698 0.0705 0.1562
2.0 0.0701 0.0713 0.0717  0.1603
3.0 0.0680 0.0713 0.0715 0.1486

The case |y| > 1 and |§] < 1 corresponds to orienting the GauB-Seidel sweeps
orthogonal to the direction of flow associated with (1). It was observed by Chin
and Manteuffel in [1] that, for the non-reduced problem, this orientation gives better
convergence rates than if sweeps are oriented in the direction of flow, for large cell
Reynolds numbers. We will see below that the same is true for the cyclicaly reduced
system. In particular, if y = 0 and |§] > 1, our ordering of the unknowns corresponds
to sweeps in the direction of flow and the numerica results as well as our analytica
bounds give larger convergence factors in this case athough both the computed values
of ||[CD~"||» and analytic bounds are still small for moderate sizes of 6. This can be
seen in Table 2. We have aso observed that for larger values of 6 than those in the
table, the computed vaues of ||CD~!||2 become larger than 1, so that we cannot even
guarantee convergence for arbitrary 6 in this case.

CorOLLARY 3.3, For the centered difference scheme, if |[y| < 1 and |6] > 1, then
we have

§2~1
[A(7?+ 3 + (62~ )( 15 + 62|12

(20) A DT'CY<S|ICDTY| <

P2+ 3) + (5 ~1)(15 + 8%))° + (6 — 1P(1 = y)/?

- A(
NN
+2V/(e2 = 1)(1 - y) [4(y2 + 3)" + (52 = 1)(15 + 62)]3/2

TABLE 2
Computed values and bounds for |[CD~||; jor two-line Gauss-Seidel, ¥ = 0

§ h =1/8 h = 1/16 h = 1/32 bound
10 0 0 0 0

12 0.0369 00426  0.0445 0.1335
14 00745 00858  0.0896  0.2591
16 01125  0.1289 01345 0.3745
18 01506 01716 01788  0.4791
20 01890 02139 02222  0.5732
30 03800 04159 04243  0.9098




4. Analysis. We now present the proof of Theorem 3.1. Let

01
0
10
U, = y
0
1 01
so that
(21) C = 2Vbede tridiag( U , 0, U,,) + be tridiag(Is, 0, I) .

We will bound ||CD~Y|]2 using

IC DI, < 2v/]bede] ||tridiag(UT, 0, U,) D™ ||z + |be| ||tridiag(Ln, O, I)||2[|D~ |2 -
(22)
Note that #

(23) 1D~ 12 = max{{IST;! 1z, 1157 ll2, 18 g m/oll2}
and, using (7, UT + UTU, = (Uy + UT)? = U2 = (UT)? = (Un + UT)? = T2,

T.0,Un) D7 .
—=—1 . —=1 oA . A
(24) < ma.\'{p(S“. UnU,TSfllk),p(Sd Tﬁ?,z 1))p(Sn/Z,n/2UZUﬂSn/lz,n/Z)}l/Z
= max{[|UT ST |2, (17057 12, 1UaSy 5 nyall2} -

|ltridiag(U;T

The proof’ proceeds by first bounding the terms in the center of (23) and (24), i.e,
157 12 and | T.S7 2

which correspond to the interior blocks of the matrices. After that, we will derive
bounds for the first and last blocks in terms of these quantities. It should be noted
at this point that the numbers a®> — 26e and a* — 4cd appearing frequently in the
following analysis are aways positive.

LEMAA 4.1, The matriz norm ||S7'|l satisfies the following bounds:

(25) 157 2 <

for be > 0 and c¢d < 0 ,
a® — 2be

1

T ((02 - 4Cd)2 + 41665(0‘2 + lbel))l/2 or be < and cd >

(26) syl

Moreover, for the matriz norm [|T,,5';'1||g, we have

) 1 ] 2_2p
(27) ||'ﬂ,.b';1i|g < 2(ed|(a*+be))/% for be > 0 and cd < —%
2
((a? = 4cd)? + 4]be|(a? + |be]))1/?
9

(28) 1 T.S7 2 <




for be > 0 and —<=2%¢ < ¢d < 0 and for be < 0 and cd > 0.

Proof. From Lemmas 2 and 3 in [4], we have Sy = (a2 —2be)I, —2v/bedeT, — cdT?.

It follows that

) . 1
29 S7Hl2 = p(S;h) < max
(29) 1537112 = 253 < r€[-2,2] |a? — 2be — 2v/bcdex ~ cdz?|

1
- xén[]-a'-"\,:'] [(a® = cdz?)? — 4be(a? — be)]1/2

The maximum is attained a x = 0 for ¢d < 0 and a x = £2 for cd > 0 which leads
to (25) and (26). Andogously, we have

x |

11287 2 = p(TwS3') < max

30
(30) z€[-2,2] [a? — 2be — 2v/bedex — cd:c2|

B ' |z|
" seli2 [(aF — cda?)? — dbe(a? — be)]1/? #

which, after an exercise in elementary calculus, leads to (27) and (28). O
We will need the following result to handle the other terms of (24).
LEMMA 4.2, For the tridiagonal Toeplitz matrix T, = tridiag(1,0, 1),

(31) ThEv = FEnTn, ThEor = E1oTh .

Moreover, there exist matrices V,,, W, that satisfy the following relations:

(32) Vilio= EvoVa, VaEor=EnVa,

(33) WhEio=FEg 1 Wa, WpEn = E1oW,

(34) S7 Eo1 = EoiVn + E1oWa |, Ea1S7' = VaEor + Wy Ero
and

(35) S7' Evo = EroVy + EaiWa , E10S;" = VaEro + WaEos |

I n addition, Vy, is positive definite and the norm of W, is bounded by

v 2~ faT+3(a% = Zbe)?
(36) “”/'”‘”3 < 9 ! qledeI D) fOT' Cd > a \/a * 3((1 8) )
= (a® + d|ed])? — 4be(a’® - be) 2 o

Vbe a® = /a* + 3(a? - 2be)?
—— 5 :

R gu— +Jla”
37) Il < a(a® — 200) for be > 0 and cd <

1

Proof. The verification of (31) is straightforward. We will only prove the first
part of (34) since the second part and (35) are completely analogous. We wish to find
matrices |, and ¥, such that

54_1501 = Eo Vu + E1oWh
10




holds. This is true if and only if

= SaEq\Va +  SaE1cW,
= Eoi[((a® ~ 2be) I, — cdT}}) Vo — 2Vbede T, Wa]
+E10[((a® = 2be) I, = cdT2)Wp — 2VbedeT, Vs ] .

Eﬂl

It is sufficient to find V;, and 1V, that satisfy

2VbedeT, Vy, = ((a® = 2be)], — ch,?)W,, ,
((a® = 2be)I,, — cdT2)V,, = 2V/bedeT,, Wy, = 1, .

Obvioudy, these equations are solved by
Vo = (@ = 2be)I, — cdT2)((a*I, — cdT?)? — 4be(a? —~ be)l,) !,
N7, = 2VbedeT, ((¢*I, — cdT?)? — dbe(a® — be)I,)7!,

the relations (32) and (33) can now be obtained from (31). Since the matrix V, is a
rationa fu nction in Ty,

ar — e — ed)\? “

o(Vu) = {(a?’ — ¢cd)?)? — 4dbe(a® — be) ‘A€ o(Tn)}-

This implics that al the eigenvalues of the symmetric matrix V,, are bounded below
by

. a”— 2be — edz?
min -

r€[-2,2) @2 — cda?)? — 4be(a? — be) >0,

and therefore V,, is postive definite. The norm bounds (36) and (37) follow from

X |

[|Walle = p(Wh) < 2¢/|bede] max

re[-2,2]| (a? — cdz?)? — 4be(a? — be)
D -~
LEMMA 4.3. For the first and last blocks of D™, we have
N o S7M2 if be > 0
38 !.SIQ:SI,, ’)2<{Hd < - ,,‘_ -
O8Il =W el S (Y el 18721870 47 <0

Analogously. for the norm of the first and last blocks of tridiag(UT, O, U,,)[)‘l, we
have

(39) TSI = WSSy alle < (1 (o)Wl 2TaS7 ]2

where [V, 1s the matrix defined by (4) in the proof of Lemma 4.2.
Proof. Consider the case be > 0. From (8) and the fact that £ Syz is located in
the right half plane for any » € C", 2 # 0, we have

oSz = e Sz 4 be(|zal? + -+ + [zal®)| < |z S| .
Moreover, since Sq is normal, this leads us to

min_||S11y]lz ,
yll2=1

min S'dy 9 =
Hy”z=1|’ If lyl

min |y Sqyl < min |y Sy <
llyll==1 flylla=1 f
11




which implies [|ST {2 < 1155 ]l= -
For the case be < 0, we apply the Sherman-Morrison-Woodbury formula (see {6,
p. 51]) to (1), giving

(40) St =S —beS7 Eor(In + beS7 Eqy) 7 STt
Moreover, by (34), we have

Eo1S; Eor = Eoi( En Vo + E1oWy) = Eo1 Vi = Eo1VaEo
which leads to
(41) (La + beEoy Vi) Eor = Eo1(In + beS3 Eor) .

Since fbel||S7 2 < 1 (see (25) and (26)) and since V;, is positive definite, the existence
of (In +b(5[‘;‘()15d_1)—1 and (I, + beEg; Vy,)~! is guaranteed. With this, we obtain from
(41)

(42) Eoi(, 4+ beS7 Eor) ™! = Eoi(In + beEg1Vp)™t . »
Inserting (42) into (40) leads to
(43) St = ST = beST Eoi(In + beEg1 Vo)1 STt
But V), is positive definite (see Lemma 4.2), so that by (32)
Eo1Vn = EnVaEor
is positive semi-definite and we have
(44) (L + beEg Vi) Yla < 1.

The second bound of (38) then follows from (43) and (44).
For (39), we have UT = T, E|o, s0 that

NUTSTM 2 = T EvoST Iz -

Then, from (43) and Lemma 4.2, we have

T, Ew0S7) = TaE10S7' = beTnE10S7 Eor(In + beEo1Va)~1S7!
= ThE10S;! = beTn EvoWa(In + beEo1 Vo)™t 57! by (34)
= TwEw0S7! — beTa Wy Eor(In + beEo1Vp)~1 St by (33)
= Eoi[l, = be( 1, + beEgy V)" W] TuS7? by (31) and (33)

where we have used the facts that 1o Eo; = Fo1Fio = 0, and that 7,, commutes with
Vn, and 1V, . Consequently, (44) implies

A 9 1/2 ~_
ITw EvoSTill < (1 (5e)2Wall?) I TaS7 0

Proof of Theorem 3.1. jFrom (22) we get, using (23), (24), (38), (39) and

2wh

[|tridiag( s, 0, In)|]2 < 2 cos( T h

) <2,
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1D s < 2¢/Tbede](1 + (be)*[|Waal[3) 31T S5 Hl2 + 21el[1S7 -
for be > 0 and ¢d < 0, and

ICD™Hl2 < 2v/lbede](1 + (be)* [ Wall3)'/*II TSy Iz + 2lbel(L + [bel[|S7 H12)11S57 Iz

for be < 0 and cd > 0. All that is left to do now, is to insert the bounds (25) and (26)
for ||S7 ! |2, (27) and (28) for ||T,,S7 ]2, (36) and (37) for ||W,||2. This leads to (13),
(14), (15) and (16) of Theorem 3.1. O

5. Concluding remarks. We conclude with some observations relating these
results lo ( hose of [3], [4], and [5]. There are three essentia differences in the analysis:
1. the use of a complex diagona similarity sSimilarity transformation to produce
the complex symmetric matrix S;
2. the use of (22) rather than (12) to derive bounds on p(D~1C);
3. t he use of the Sherman-Morrison-Woodbury formula in Lemma 4.3, to bound
the norms of first and last blocks of the block diagonal matrix D.
Item (1) can be thought of as a generalization of the real diagonal similarity transfor-
mation used in [3] et. al. The more careful analysis determined by items (2) and (3)
were not, necessary for the cases of small cell Reynolds or upwind difference schemes
considered in [R] et. a. In those cases, the nonzero entries of C' are real numbers of
the same sign, and the analysis based on (12) is essentidly tight; similarly, the block
diagonals satisfy ||ST;'|l2 < ||S7"||2 (essentially as in the proof of the first part of
Lemma 4.3), and there is no need for a careful perturbation analysis. We remark,
however, that the techniques of items (2) and (3) can be used to improve the previous
results in the case where both cell Reynolds numbers are greater than one in absolute
value.

Finalty, although we have restricted our attention to the two-line ordering con-
sidered in [4], it is also possible to derive analogous bounds for the one-line ordering
discussed in [3]. For this case, however, the analysis is considerably less clean and the
results not as strong, so we do not consider them here.
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