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1. In t rodllct  ion. Consider the two-dimensional convection-diffusion equation

(1) - b4 + by )y] + ruz + suy = f on R
u 9= on dR

where &? is a smooth domain in R2 and p > 0, q > 0 on $2. Let

(2) A u = f

denote the linear system obtained from a five-point finite difference discretization of
(l), where the standard scheme [lo] is used to discretize the second order term and
centered differences are used for the first order term, and u and f now represent
vectors in a finite dimensional space. Using a red-blaclc  ordering, this system can be
written as

where All and A 22 are diagonal matrices. If block elimination is used to decouple the
“red” points u (‘1 ifrom the “black” points ucb), the result is the reduced system

(4) (-422 - Ad;i+b)u (b) = f(b) _ A;;lf(‘) .

Let S = r-122  - AzlA,-,‘AI?, the Schur complement, denote the associated coefficient
matrix.

Block (or line) iterative methods for solving (4) in the self-adjoint case have been
considered by Pa.rter [8] and Nageman and Varga [7],  where it was shown that the rate
of convergence was faster than if analogous methods are applied directly to (2). Parter
and Steuerwalt  [9] and Elman and Golub [3],  [4],  [5] hs owed that there are advantages
to using the reduced system in the non-self-adjoint case as well. In particular, it
was shown in [3], [4], [5]  that line iterative methods are rapidly convergent when the
reduced operator S can be symmetrized by a real diagonal similarity transformation.
For constant coefficient problems, and problems where separation of variable tech-
niques apply, this is the case when the absolute values of the discrete cell Reynolds
numbers are either both less than one or both greater than one [3].

In this paper, we extend this analysis, for constant coefficient problems, to the
case where the reduced operator is not real symmetrizable. For centered differences
this corresponds to the case where one cell Reynolds number is greater than one in
absolute value and the other is less than one in absolute value. Although numerical
experiments in [3]  and [4]  + 13 lowed the method to be effective in this case, there were
no analyt,ic  bounds on the convergence rate. The key observation is that the reduced
matrix ca.n  a.lways be transformed into a complex symmetric matrix using a diagonal
similarity t,ransformation. We will restrict our attention to the two-line ordering
considered in [O] and [4], since this is a natural way of ordering the cyclically reduced
system in terms of convergence and parallelism.

An outline of the remainder of the paper is as follows. In $2, we describe the
centered difference discretization and the reduced matrix corresponding to the two-
line ordering, outline the technique used to transform this matrix into a complex
symmetric lnatrix, and define the block Jacobi and Gau&Seidel  iteration strategies.
In $3, we state the main results: bounds on the spectral radii of the iteration operators
in the cases when one cell Reynolds number is small and the other is large. In addition,
we present t,he results of numerical experimentas showing that the analysis is a good
indicator of numerical performance. In $4, we present the proofs of the analytic
results. F‘irlally, in !j5, we make some observations on related methods.

2



2. The discrete problem and symmetrized reduced system. Assume that
the discretization is made on a uniform n x n grid, and let h = l/(n + 1). Let

diag(dl, 6,. . . , &)

denote a diagonal matrix of order n, and let

(5) tridiag(Xj,j-1,  Xjj, Xj,j+l)

denote a block tridiagonal matrix. We will use the convention that when upper case
characters appear in the representation (5), then the entries are themselves matrices,
and if lower case characters are used, then the entries are scalars. If a natural ordering
is used for the. discrete grid, then the coefficient matrix has the form

A = tridiag(Aj,j-1,  Ajj, Aj,j+l),

where

-4j,j-1 = diag(bq,  . . . , bnj),
Ajj = tridiag(cij,  aij, dij),
A.3,j+l = diag(elj,. . .,e,j).

d

A detailed description of the coefficients of A derived from the centered difference
discretizat,ion,  PLS well as those of the reduced matrix, is given in [5]; we omit such a
description  here.

If t$he  operator of (1) is separable, then the discrete coefficients satisfy

tr:) + a(Y)Clij = ai
’bij = bj , ’ dij=di,

Cij = Ci , eij = ej.

Our convcrgcnce  analysis depends on the following result concerning a symmetrized
form of the reduced matrix.

THEOREM 2.1. Ifthe operator of(l) is separable, then there is a diagonal matrix
Q such ilrcrt 3 G Q-‘SQ is a complex symmetric matrix.
The proof is exactly analogous to the proofs of Theorem 3 of [3],  and Theorem 1 of [5],
and we olnit.  the details. It ma.kes use of the fact that a general irreducible nonsym-
metric tritliagonal  matrix can be transformed into a complex symmetric tridiagonal
matrix (SCP, e.g. Cullurn and Willoughby [2, Lemma 6.3.21).  If cidi-1 and bjej-1 have
the same sign for all i and j, then Q and ,$ can be chosen to be real.

We perform our convergence analysis for the constant coefficient problem, i.e.,

p(x) E q(y) G 1, r(x) G 6, s(y) 3 7.

In this case, we ha.ve

CL;j -
b “:$+rh,2),23 dij G -( 1 - ah/2) ,
Cij E -( 1 + ch/2) , eij G -(l - Th/2).

The qua.nlOil  its y = ah/2  a.nd 6 = rh/2 are the cell Reynolds numbers. We consider
the nat,ural  t,wo-line  ordering, i.e., where grid points are blocked into certain pairs of
lines (see E‘igure  1).
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x13 * x15 * x17 *

’ x14 * x16 * x 18

x7 . x9 * x11  *

. x8 * x10 * x12

Xl * x3 * x5 *

’ x2 . x4 ’ x6

FIG. 1. Natural two-line ordering for a 6 x 6 grid.

The point,s  in the k’th block are those with grid indices (i, j) such that k - 1 <
j/2 5 b. Since t,he coefficient matrix is block consistently ordered, the results also
apply for block red-black orderings. See [4],  [5]  for further details. We will restrict
our attent,ion to the case where n is even. Modifications for odd n are obvious but
make the analysis more complicated. Under these assumptions, the reduced matrix
S has block tridiagonal form

S = tridiag(Sj,j-1,  Sjj,  Sj,j+l)

where tho diagonal blocks for j = 2,. . . , n/2 - 1 are given by

P

(6)

Pl

PO

P2

P - 2
PO

P - l

=- sd

with  p-2 = -c3,p-1 = -2ce,pl = -2bd,pz = -d2,p0 = a2 - 2 b e  - 2 c d  and  PO  =
a2 - 2be - cd. The first and the last diagonal blocks have slightly different form:

Sll = sd + be J%

with Eel = diag(0,  1,. . . ,O, 1) and

Sn/?,n/2 = sd -t- be El0

with El0 = tliag( l,O, . . . , l,O). The off-diagonal blocks have the irregular tridiagonal
form

*5;,j -1 = -

b2 0
2bc b’ 2bd

0 6’ 0

2bc b2 2bd
0 b2 0

2bc b2

7 j = 2,. . . , n/2,
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Sj,j+l = -

0 e2* 0
2ce e2 2de

0 e2

The symmetrized matrix S = Q-‘SQ  is given by

with

e2 2de
0 e2 0

2ce e2 2de

S = tridiag(Sj,j-1,  Sjj,  SEj-1)

, j= l,..., n/2-1.

- where 61 = - 2dm,jz  = -cd and po,$o are as in (6). The first and the last diagonal
blocks are given by

(8)
^

S11 = sd + be EOI

and

(9) sn/2,n/2 = jh + be El0 ,

respect#ively. The subdiagona.1  blocks are defined by

Sj,j-1 = -

- be 0
‘Ldm b e  2dm

0 be 0

2s b e  2t/m
0 be 0

21/m b e

> j = 2, . . . , n/2.

If bale is positive, then S is a real symmetric matrix; this is the case, for example,
if ]y] a.ntl 161 arc either both less than one or both greater than one. These cases were
addressed iii [3],[4],  [5]. 0ur p rimary interest here is in the case where bcde is negative,
i.e., either  IX > 0 (IS] < 1) and cd < 0 (Iy] > l), or be < 0 (161 > 1) and cd > 0
(Iyl < 1). In tlrese cases S is complex symmetric.

Let D cleriote  the block diagonal matrix whose entries are the diagonal blocks
{Sjj},  and let C denote the block off-diagonal part D - S. The asymptotic rate
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of convergence of the two-line Jacobi method for solving the reduced system is de-
termined from p( D- ’ C), and because S has block property A and is consistently
ordered, t,he asymptotic rate of convergence for the two-line Gauf3-Seidel method is
determined from (P(D-‘C))~  (see [lo, p. 1071,  [ll, p. 1471).  We have b = Q-‘DQ
and (? = Q-‘CQ  and, thus, for the two-line Jacobi operator

(10) p(D-‘C) = p(Q-ID-lCQ) = p(Lj-‘c)  = /I(&?‘).

iFrom (lo),  we obtain the bound

The straight,forward  way to obtain bounds for the convergence of the two-line Jacobi
operator w011ld  be to use

This approach is equivalent to that used for the cases treated in [3]  and [4],  when S can
be transforrrlctl  int,o a real symmetric matrix, and in that case the rgsulting bounds
correspond  closely to experimental results. For the case bcde < 0, this approach
produces p(Anlistic  results, and it is necessary to examine ~~L’~-‘~~2  more carefully.
The details of t,his analysis will be presented in §4.

3. St atcmcnt of maiu results and numerical examples. Our main result
is as follows. The proof is deferred to $4.

THEOREM  3.1. For even n, we have, for the two-line ordered cyclically reduced
system, ihe ~olloming bounds for [l($i>-‘112:

(13)
2 - 4be(a2 - be))2 - 16(be)3cd]1/2

- 4be(a2 - be)1312

for be > 0 nnd ‘l?- a4+3(n2-2be)2
12 <cd<O,

(14 ZGe

112

(I2 - ‘LOP ’ 4Jpzj w3( ( a ? - 4cd)’ - 4be(a2 - be))l12 1+ a2(a2 - 2be)2 1
for be > 0 crntl -d$!L<cd< a2- a4+3(a2-2be)2

12 I

(15)

2jbel
[(a2 - 4cd)’ + 4lbel(a” + lbel)]1/2

+,dp----&((a’ - 4cd)’ + 41bel(a2  + lbel))2 + 161be13cd]1/2
[(a? - 4cd)” + 4jbel(a2 + lbel)]3/2

for be < 0 (III rl cd > 0.



We rcnlark tha.t we only consider the case bcde  < 0 in Theorem 3.1 since the
(real) symmetrizable  case bcde  2 0 has been addressed in [4]. However, for be < 0
and cd < 0 (Iyl > 1 and 151 > 1) the bounds of [4] can also be improved using the
techniques dcscri bed below.

Note that Theorem 3.1 does not only give us an upper bound for p(D-‘C),  the
asymptotic convergence factor of the method, but also a rigorous estimate for the
error reduction. since

COROT,I,,\RY  3.2. For the centered diflerence scheme, ifly > 1 and ISI < 1, then
llC’iP1~l~  IS hounded by

1 -s2
yq+.LJ(  1 - 63)(y2 - 1)

[(4(y2 + 3)2 - (1 - P)(15  + s2))2  - (1 - 62)3(1  - y2)]li2
[4(y” + 3)2 - (1 - P)( 15 + 62)]3/2

(17)
f o r  y’ 5

ii.?+9(7-+6?)“-2
6 7 i

-
(19) g$ + (gq2  [l+ 6&$2]“2

Proof. ‘I’hc inequalities for IlCO-‘lj2  result from inserting be = 1 - b2 and cd =
1 - y2 into (In), (14) and (15), resp., of Theorem 3.1. Cl

We rc~nark  that for be > 0 and cd < 0 the bound on the right hand side of (12)
leads t,o

P C ) 4dm + 2be 4J( 1 -p( 5 b2)(y2 - 1) + 2( 1 - 62)=
(I2 - 2be 14 + 62

which, for I lot:  cent.ered  difference scheme, if 161  < 1, obviously tends to co as y -+ 00.
In contrast, all t.hree bounds in Corollary 3.2 are less than 1, which implies that the
method act.ually  converges for any choice of 171  > 1 and 161 < 1.

Table 1 shows different upper bounds for the spectral radius of the GauB-Seidel  op-
erator associated with the two-line ordered cyclically reduced system. The columns in-
dicated by h = l/8,  h = l/16 and h = l/32 contain the computed numbers jlCB-‘ll,“,
the last column contains the (asymptotic) bounds from Corollary 3.2. A comparison
with [4,  Table 6.11 . 1s lows a surprising conformity of llCkl 11;  and the Gaul%Seidel
spectral raclius.

As 3 - ‘s’, our bound for IIC’klll:!  tends to l/7+  s z 0.1486 which implies
that the litnit.illg  value for the spectral radius of the GauB-Seidel  operator is bounded
by 0.1486. For comparison, if SOR with optimal relaxation parameter is applied to
the non-rcclllcecl  system, a convergence fact,or  of 0.1885 is obtained for large values of
y (see Chin and RIanteuffel  [l]).



TABLE 1
r’ontputed  values  a n d  b o u n d s  f o r  [[C?B>-‘11  j2 or two-line GauJ?-Seidel,  6 = 0

Y h = l/8 h = l/16 h = l/32 bound
1.0 0.0134 0.0180 0.0197 0.0204
1.2 0.0368 0.0410 0.0426 0.0954
1.4 0.0523 0.0562 0.0575 0.1278
1.G 0.0622 0 .OG52 0.0662 0.1463
1.8 0.0677 O.OG98 0.0705 0.1562
2.0 0.0701 0.0713 0.0717 0.1603
3.0 0.0680 0.0713 0.0715 0.1486

The case Iyl > 1 and 151  < 1 corresponds to orienting the Gauf3-Seidel sweeps
orthogonal t,o the direction of flow associated with (1). It was observed by Chin
and Manteuffcl in [l]  that, for the non-reduced problem, this orientation gives better
convergence  rates than if sweeps are oriented in the direction of flow, for large cell
Reynolds I~tlnlbers. We will see below that the same is true for the cyclically reduced
system. Tn particular, if y = 0 and ISI > 1, our ordering of the unknbyns  corresponds
to sweeps ilr t,he direction of flow and the numerical results as well as our analytical
bounds give larger convergence factors in this case although both the computed values
of ll~B-‘II~  and analytic bounds are still small for moderate sizes of S. This can be
seen in Table 2. \Ve have also observed that for larger values of 6 than those in the
table, the conjputed  values of l/~B-‘ll:!  b ecome larger than 1, so that we cannot even
guarantee  CoIIvergence  for arbitrary S in this case.

COROLLARY 3.3. For the centered diflerence scheme, ifIr] < 1 and ISI > 1, then
we have

(20) p( II- ’ C) 5 Il&j-‘II:!  5
iY2 - 1

[4( y’ + 3)’ + (62  - l)( 15 + 62)]1/2

+2J(cl’ - l)(l - y”)
[(4(y’ + 3)’ + (5” - 1)(15  + s2))2  + (b2  - 1)3(1  - y2)]1’2

[4(y2 + 3)” + (52 - 1)(15  + P)]3/2 *

TABLE 2
C’omputed  utrlues  and bounds for  IICB-‘112  jor t wo-line Gauss-Seidel, y = 0

6 h = l/8 h = l/16 h = l/32 bound
1.0 0 0 0 0
1.2 0.03G9 0.0426 0.0445 0.1335
1.4 0.0745 0.0858 0.0896 0.2591
1.6 0.1125 0.12s9 0.1345 0.3745
1.8 0.1506 0.1716 0.1788 0.4791
2.0 0.1890 0.2139 0.2222 0.5732
3.0 0.3800 0.4159 0.4243 0.9098



4. Analysis. We now present the proof of Theorem 3.1. Let

0 1
0
1 0

so that

(21) 6’ = 2&& tridiag( UT, 0, Un)  + be tridiag(l,,  0, In) .

We will I)o11nt1  1160-‘112  using

IIC’i>-‘IIY < 2JGQ  I[tSridiag(U,T,  0, U,>i>-‘l12 + lbel  Iltridiag(l,,  0, l~)~~~~~&l~~~.
(22)  -
Note that i

(23) p1112  = ~~a4ll%~‘ll2l lljh-‘I121 ll~&,,ll2~  7

and, using r!,,Uz + UTli,  = (Un + UT)’ - U: - (UT)’ = (Un + UT)” = Tz,

The proof’ Ilroceeds by first bounding t,he terms in the center of (23) and (24), i.e.,

IIS~‘IIZ  ad I157&111~  ,

which correspond  to the int,erior blocks of the matrices. After that, we will derive
bounds for t,he first and last blocks in terms of these quantities. It should be noted
at this poillt.  [#hat  the numbers u” - 26e and a2 - 4cd appearing frequently in the
following atlalysis are always positive.

L~nr~x  4.1 .  The  matrix norm Ils’~‘ll2 satisfies the following bounds:

(25) IlS,-‘ll, 5
a2

_’ 2be for be > 0 and cd < 0 ,

t 26)
1

IlaSn ‘II’ ’ ((a2  _ 4cd)z  + 4lbel(az + Ibel))l/” for be < 0 and cd > 0.

Moreorvr, Jar /he matrix storm IITn,T?~llj?, w e  h a v e

l II:!
1 a2 - 2be(27) ll’I:& 5 -2( Icdl(az + be))l/” forbe > 0 and cd 5 4 ,

(28) llG$p  II? I
2

((a? - 4cd)’ + 41bel(a2  + lbel))1/2



a’-3befor be > 0 crl~d -d 5 cd < 0 and for be < 0 and cd 2 0.
Proof. From Lemmas 2 and 3 in [4], we have ,$d = (a2-2be)I,, -2&&Tn -cdTz.

It follows t,hat

(29) II,S,‘ll2 =  ~(3:~)  < m a x
1

- ZE[-~,Z] Ia2 - 2be - 2dmx - cdx21

1= r
rug&]  [(a2 - cdx2)” - 4be(a2 - be)]lj2 *

The maximum is attained at x = 0 for cd < 0 and at x = f2 for cd > 0 which leads
to (25) and (26). Analogously, we have

IIT,l,$‘l12 = p(T,s,‘) 5 max
X

xcE[- 2,2]  a2  - 2be - 2dmx  - cdx2

I4= xE[--,-lna?qj  [(a? - cdx2)” - 4be(a2 - be)]‘/2 t
which, after an exercise in elementary calculus, leads to (27) and (28). 0

We will riced the following result to handle the other terms of (24).
LEMMA 4.2. For the tridiagonal  Toeplitz  matrix Tn = tridiag(l,O,  l),

(31) TnElo = EoJ” , Tn EOI = EloT, .

Moreover ,  there exist matrices Kl,  CV, that  satisfy the following relations:

(33) W,, El o = E. 1 W, , WnEol = EloK ,

(34) a‘;(; ’ E. 1 = EoIV, + EloWn , ED&’ = VnEol+  W&o

and

(35) Si’ El0 = - 1&OK + EolK , E,o$ = V&o + WnEol  .

I n  addifrolr. \,l;, is positive definite and the norm  of W,, is bounded by

(36) ll~K,lll!  L
4&zj

(a2 + 4]cd])?  - 4be(a? - be) for cd ’
a2- Ja4 + 3(a2 - 2be)2

12 1

( 3 7 )
6

IllI;, 112 < a(a2 _ 26e) for be > 0 and cd 5 a2 - “” ‘1i(a2 - 2be)2 .

Proof. ‘I‘lre verification of (31) is st(raightforward.  We will only prove the first
part of (34)  since the second part and (S.5) are completely analogous. We wish to find
matrices \,h ;IIICI CV, s u c h  that,

S’,‘Eol =  EolV,, +  EloW,,
10



holds. This is true if and only if

.
.

^ ^
&I1 =  sc&lvn +  sdEloi&,

= Eol[((a’ - 20e)I,  - cdT:)Vn - 2d&&T, Wn3
+Elo[((a’ - 26e)I, - cdTi)Wn  - 2&&T,V,, I*

It is sufficient to find V, and IV,, that satisfy

2dmT,,V,  = ((u’ - 2be)I, - cdT,“)Wn  ,
((a2 - 2be)I,, - cdT,“)V, - 2&ZT,,  W,, = I,, .

Obviously, !,hcse equations are solved by

I;, = ((a’ - 2be)I,, - cdT,f)((a31n  - cdTz)2 - 4be(a2 - be)In)-’ ,
II’,, = ‘L&&T,,((a’I, - cdT,fJ2 - 4be(a2 - be)&)-’ ,

the relat.iolls (:{‘2)  and (33) can now be obtained from (31). Since the matrix Vn is a
rational flI nct.ion in T,,

2 - 2be - cdA’ /
(T(‘f/td = {(a? _ zdh?)? _ 4be(a’ _ be) : A ’ dTn))  ’

This implies  t,hat all the eigenvalues of the symmetric matrix V, are bounded below

min
a ’- 2be - cdx2

XE[- ?,?I (a? - cdx3)? - 4be(a” - be) >o,

and thcrcli>rc  \,A is positive definite. The norm bounds (36) and (37) follow from

X

cdx2)2 - 4be(a2 - b e )  *

LERMI 4.3. For the first and las! blocks of Lkl, we have

Analogou.41q. jar ihe ~2or~~~  of /he first nnd last blocks of tridiag(U,T,  0, V,)Lk’, we
have

(39) (lr’y,‘(l? = llli*s,;fi,n,J2  I (1 + ~~~~‘llI,v,ll,2~“211~~~~1112
where 11/-,, IS !lre matrix defined by (4) in ihe proof of Lemma 4.2.

Proof. Consider the case Oe > 0. From (8) and the fact that xHjhx is located in
the rigllt, haIf  plane for any t E C”, J: f 0, we have

I+c”sllxI = Ix”sdx  + be(lC2l’ + . .
,.

-+ lxn12)l  5 IxHsdxI.

Moreover, siIic*e  Sd is normal, t,liis leads us to



which implies 1/$1’ 112 5 ][~~‘I[~  .
For the case be < 0, we apply the Sherman-Morrison-Woodbury formula (see [6,

p. 511)  to (I), giving

(40)

Moreover, I)y (31), we have

which leads to

(41) (La + beEo1  WE01 = EOl(ln  + be3y1E01)  .

Since Ilc~I~,s’~~‘~~~  < 1 (see (25) and (26)) an d since V, is positive definite, the existence
of (I,., +6eEol,S~‘) -l and (In + be&l  i&)-l is guaranteed. With this, we obtain from
(41)

(4’2) EOl(l, + 6eS;‘Ef-J’ =  EOl(ln +  beEoll/,)-’ .  F

Inserting (.12)  illto (40) leads t,o

But v1 is I’ositive definit)e  (see Lemma 4.2), so that by (32)

EOlVn = ~01K-h~01

is positivcl  semi-definite  and we have

The secolltl  honncl  of (38) tl~en follows from (43) and (44).
For (iIn),  wc have U,T  = T, Elo, so t’1~a.t

Then, frown (43) and Lemma 4.2, we have

T,, ElO.$’ = ~1E103;1 - beT,Elo,!$‘Eol(l, + 6eEo&,)-‘jh-1
= T’ EloSd‘-’ - beT,Elo\l/‘,(I, + beEo~V~)-‘$’ bY (34)
= T,,Elo$’ - 6eTnIVnEo1(In  + 6eEoJ,J1S~’ bY (33)
= Eel [m - be( I,, + 6eEol I<,)-‘Ir/,] Tnjb-’ by (31) and (33)

where we have II& t#he facts t8hat  El0 Eel = EolElo = 0, and that T’ commutes with
Vn and {I<‘,,  . Corisequentjly, (44) implies

IIT~&‘~o~~~‘~~~ 5 (1 +  (6e)‘llW,ll$‘2  IITn$1112 .

II
Prooj or 7’lrcorem  3.1. iFrom (22) we get, using (23), (24), (38), (39) and

Iltridiag(  In, 0, l,l)llz 5 2 cos( f$)<2,
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for be > 0 antI ctl < 0, and

IlCfi-‘ll:! L 2dm(l + (he)“l(T~V,~~~~)““llT~~~~‘~~2 + 2/6el(l + )belll~~‘ll2)lljh-‘ll2

for be*<  0 and cd > 0. All that is left to do now, is to insert the bounds (25) and (26)
for IlS~‘II~,  (27) and (28) for llZIS~‘(l~,  (36) and (37) for IIWnl12.  This leads to (13),
(14), (15)  antI (16) of Theorem 3.1. 0

5. Collc:lllclillg  renlarks.  We conclude with some observations relating these
results lo ( lios~ of [3], [4], and [5]. There a.re  three essential differences in the analysis:

1. IIIC USC,  ot’ a complex diagonal simila.rity  similarity transformation to produce
t.llc complex symmetric matrix 2;

2. t,hc USC of (22) rather than (12) to derive bounds on p(D-‘C);
3. I I-IV ~3 of the Sherman-Morrison-Woodbury formula in Lemma 4.3, to bound

1.11~  norms of first and last blocks of the block diagonal matrix fi.
Item (1) can be thought of as a generalization of the real diagonal similarity transfor-
mation nscd in [3]  et. al. The more careful analysis determined by items (2) and (3)
were not, necessary for the cases of small cell Reynolds or upwind digerence schemes
considcrctl  in [R] et. al. In those ca.ses, the nonzero  entries of C are real numbers of
the same sigll. and t(he analysis based on (12) is essentially tight; similarly, the block
diagonals satisfy IIS,lII:!  5 llSl,-‘II:! ( essentially as in the proof of the first part of
Lemma .i.3), and there is no need for a careful perturbation analysis. We remark,
however, that  the techniques of items (2) and (3) can be used to improve the previous
results itI t,l-tc case where both cell Reynolds numbers are greater than one in absolute
value.

FillaIl>*, although  we have restricted our attention to the two-line ordering con-
sidered in [I!], it, is also possible to derive analogous bounds for the one-line ordering
discussed in [Xl. For this case, however, the analysis is considerably less clean and the
results IIOI,  as strong, so we do not consider them here.
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