
NUMERICAL ANALYSIS PROJECT
MANUSCRIPT NA-92-01

JANUARY 1992

A Look-Ahead Algorithm for the Solution of
General Hankel Systems

bY

Roland W. Freund
Hongyuan Zha

NUMERICAL ANALYSIS PROJECT
COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY
STANFORD, CALIFORNIA’~~~~~

A Look-Ahead Algorithm for the Solution of
General Hankel Systems

Roland W. Freund*
RIACS, Mail Stop T041-5

NASA Ames Research Center
Moffett Field, CA 94035

Hongyuan Zhat
Scientific Computing and Computational Mathematics

Stanford University
Stanford, CA 94305

Summary. The solution of linear systems of equations with Hankel coefficient matrices can
be computed with only 8(n2) arithmetic operations, as compared to O(n3) operations for
the general case. However, the classical Hankel solvers require the nonsingularity of all lead-
ing principal submatrices of the Hankel matrix. The known extensions of these algorithms to
general Hankel systems can handle only exactly singular submatrices, but not ill-conditioned
ones, and hence they are numerically unstable. In this paper, a stable procedure for solv-
ing general nonsingular Hankel systems is presented, using a look-ahead technique to skip
over singular or ill-conditioned submatrices. The proposed approach is based on a look-
ahead variant of the nonsymmetric Lanczos process that was recently developed by Freund,
Gutknecht, and Nachtigal. We first derive a somewhat more general formulation of this look-
ahead Lanczos algorithm in terms of formally orthogonal polynomials, which then yields the
look-ahead Hankel solver as a special case. We prove some general properties of the resulting
look-ahead algorithm for formally orthogonal polynomials. These results are then utilized in
the implementation of the Hankel solver. We report some numerical experiments for Hankel
systems with ill-conditioned submatrices.

Mathematics Subject Classifications (1991): 65F05, 15A57, 42CO5

*The research of the first author was supported by DARPA via Cooperative Agreement NCC 2-387
between NASA and the Universities Space Research Association (USRA).

tThe research of the second author was supported in part by NSF grant DRC-8412314 and Cooperative
Agreement NCC 2-387 between NASA and the Universities Space Research Association (USRA).

1

Roland W. Freund and Hongyuan Zha2

1 Introduction
Many important applications lead to linear systems of equations

(1 1). H,,x, = b,

with real or complex coefficient matrices of the special form

(1 2). Hn = [hj+k lj,k=O,...,n =

h, h, h, a-0 h,
h, :’ :- :

h, 0..
...

. h2n-1
in -0. .-- h2,,D1 h,,

A matrix of the type (1.2) is called a Hunkel matrix, and in the sequel, we refer to the
corresponding linear system (1.1) as a Hankel system. Note that Hankel matrices are always
symmetric, but they are non-Hermitian if complex entries occur. For example, Hankel sys-
tems arise in connection with orthogonal polynomials [5, 81, Pade approximation [l3, 31, the
minimal realization problem in systems theory [23, 22, 21, 161, and the Berlekamp-Massey
algorithm for decoding Reed-Solomon and BCH codes [l, 27, 7, 201.

It is well known that the special structure of H,, can be exploited when solving Hankel
- systems, and there are algorithms that require only O(n2) arithmetic operations for the

solution of (1. l), as compared to O(n3) operations for general systems of order n + 1. These
algorithms are based on a factorization of H,, of the type

(13). U,TH,,U,, = D,,

where

(14). un = [‘jk I j,k=O,...,n =
0 1 -a . i

* . .

. . .

. .

. U n--l,n
0 . . . 0 1

is a unit upper triangular matrix, and

(1 5). Dn = diag(S(O), S(l) ‘)“‘Y #“)))

is a nonsingular block diagonal matrix. Furthermore, (1.3) and the solution x, of (1.1) are
computed recursively by updating the decompositions U~H,JJ,,, = D, and the solutions x,
of those leading (m + 1) x (m + 1) subsystems Hmx, = b, of (1.1) for which m < n and H,
is nonsingular. A classical method of this type is due to Trench [31]. His algorithm requires
that H,, is strongly regular, i.e., all leading principal submatrices H,, m = 0, 1, . . . , n, of
H, are nonsingular. It generates a factorization of the form (1.3), where D, is a scalar
diagonal matrix, i.e., Z(n) = n in (1.5). However, strong regularity is only guaranteed

A Look-Ahead Algorithm for the Solution of General Hankel Systems 3

in special cases, such as Hermitian positive definite H,, and generally, singular principal
submatrices H,, m < n, cannot be excluded. Rissanen [30] and others (see [19] and the
references therein) have proposed extensions of Trench’s algorithm to general nonsingular
Hankel systems, which can handle singular leading principal submatrices. These algorithms
again generate factorizations of the form (1.3), where, in general, D, is now block diagonal.
Furthermore, in (1.5), each block 6(k) of size Sk > 1 corresponds to Sk - 1 successive singular
leading principal submatrices of H,.

In order to obtain a numerically stable Hankel solver, it is crucial to skip not only over
exactly singular, but also over nonsingular, yet ill-conditioned leading principal submatrices.
However, all known extensions of Trench’s algorithm to general Hankel systems are designed
to handle only singular submatrices exactly. At best, they can handle ill-conditioned sub-
matrices approximately by treating a nearly singular submatrix as an exactly singular one.
The purpose of this paper is to present an extension of Trench’s algorithm for solving general
nonsingular Hankel matrices, designed to handle singular, as well as ill-conditioned leading
submatrices exactly.

It is well known (see, e.g., [29, 141) that H an e matrices and their factorizations (1.3)k 1
are intimately connected with the nonsymmetric Lanczos process [25] for tridiagonalizing
general non-Hermitian square matrices. In particular, singular or ill-conditioned leading
principal submatrices correspond to exact or near-breakdowns in the classical form of the
Lanczos algorithm. Due to the problem of breakdowns, the nonsymmetric Lanczos method

- did not receive much attention in the past, although it has been known for quite some time
that exact breakdowns (see [14, 24, 161) and even near-breakdowns [28] can be overcome
by using so-called look-ahead techniques. In recent years, there has been a true revival of
the nonsymmetric Lanczos process; we refer the reader to [17, 9] and the references given
there. Freund, Gutknecht, and Nachtigal [lo] have developed a look-ahead Lanczos algorithm
that can handle exact and near-breakdowns in the classical process. Here, we first derive
a somewhat more general formulation of this look-ahead Lanczos algorithm, from which we
then immediately obtain our look-ahead Hankel solver as a special case.

The remainder of this paper is organized as follows. In Section 2, we present a look-ahead
Lanczos process for formally orthogonal polynomials and give elementary proofs of some of
its properties. In Section 3, we describe our look-ahead algorithm for solving general Hankel
systems. In Section 4, it is shown how Trench’s method and other Hankel solvers can be
obtained as special cases from the look-ahead algorithm. In Section 5, we report results
of numerical experiments with Hankel matrices that have various kinds of ill-conditioned
submatrices. Finally, in Section 6, we make some concluding remarks.

Throughout the paper, all vectors and matrices are allowed to have real or complex
entries. As usual, iVIT and MH denote the transpose and conjugate transpose of a matrix
M, respectively. The smallest and largest singular value of 1M is denoted by oti,(M) and
0max (A!), respectively. The vector norm [lx]] = 4’ is the Euclidean norm, and]/Ml] =
a,,, is the corresponding matrix norm. Moreover, for square matrices M of size > 1,
we denote by K@?) = llAf11 - llM-‘II the EUC i1 dean condition number, and, if iU is 1 x 1,
we set K(hf) = l/]M]. Whenever we call a matrix ill-conditioned, it is with respect to this

4 Roland W. Freud and Hongyuan Zha

condition number. We denote by

the set of all complex polynomials of degree at most 12 and by P the set of all complex
polynomials. The symbol 0 will be used for the number zero, the zero matrix, and the
polynomial ‘p(A) E 0; its actual meaning and, in the case of the zero matrix, its dimension
will be apparent from the context. Finally, we denote by I the identity matrix; its dimension
will always be evident.

2 A Look-Ahead Lanczos Algorithm for Polynomials
In this section, we derive a look-ahead Lanczos process for formally orthogonal polynomials
(referred to as FOPS hereafter) and present elementary proofs of some of its properties.

2.1 Formally Orthogonal Polynomials
Let (hj}j”,o be a given infinite sequence’ of real or complex numbers, and let H,, n = 0, 1, . . . ,
be the associated family of Hankel matrices (1.2). We define a symmetric bilinear form

- (2 1).
by setting
(2 2).

for any two polynomials

(2 3). y(X) E ☯l A l ** qu, ?)(A) G [l x l ** A+, u, VE cn+l,

of degree at most 7t, n = 0, 1,. . . . Note that

hj = (X’,l), j =O,l,...,

and hence hj is just the jth moment associated with (m, l).
A polynomial vn E P,, vn # 0, that satisfies

(+,y,) = 0 f o r all 1c) E pn-1,

is called a FOP (with respect to the bilinear form (2.1)) of degree n (see, e.g., [8, 171). Note
that, in general, the bilinear form (2.1) does not define a positive definite inner product.
In particular, in contrast to polynomials that are orthogonal with respect to a true inner
product, FOPS vn need not exist or need not be unique for every degree n (see [17] for

‘One can always assume that the sequence is infinite, by simply setting hj := 0, j = n + 1, n + 2,. . . , if
only a finite sequence ho, hl, . . . , h, is given.

k
h

(2 5) n+l. Hn - l i 1 ...
h’2n-1

Furthermore, in view of (2.5)) we have the following result.

A Look-Ahead Algorithm for the Solution of General Hankel Systems 5

details). A FOP pn is called regular if it is uniquely determined by (2.4) up to a scalar
factor. Regular FOPS vn have maximal degree n, and in the following we will always assume
that regular FOPS are normalized to be manic, i.e.,

y , (A) = Uo n + U☺ + - * l + un+An-l + A�.

Using (2.4), (2.3), and (1.2), one readily verifies that the coefficients uOn, urn,. . . , ~,-i,~ of
9, are given as the solution of the special Hankel system

Lemma 2.1 A regular FOP of degree n exists ii and only ih H,,-, is nonsingular.

2.2 The Algorithm
Let {cp,, }j”=, denote the sequence of all existing regular FOPS. Here J = co or J < 00; note

- that, in view of Lemma 2.1, the latter case occurs if, and only if, there exists an integer n,
(=: nJ) such that Hneml is nonsingular and H,., is singular for all n 2 n,. It is well known
(see, e.g., [8, 16, 171) that the existing regular FOPS are connected via three-term recurrences
of the form

(2 6)
Y”,+l P> = A, (WrL, P> - %a, Yn,-1 (a.

where A, E R,+1 -?I3 7 YTQ E c*

The relation (2.6) is the basis for the modified Lanczos algorithms given in [24, 16, 171, which
skip over exact breakdowns in the classical Lanczos method [25] and generate all existing
regular FOPS. In particular, if a regular FOP v,., exists for each n, then (2.6) reduces to a
standard three-term recurrence, which is the basis of the classical Lanczos process. We recall
(see, e.g., [lo]) that an exact breakdown occurs in step n of the standard Lanczos algorithm
if no regular FOP of degree n exists.

Of course, in finite precision arithmetic, a numerically stable procedure also needs to skip
over near-breakdowns in the classical Lanczos method. Therefore, instead of generating all
existing regular FOPS, one attempts to compute only a subsequence {~,,,}~Zo 5 {cp,,}~=, of
“well-defined” regular FOPS; for simplicity, we will set nk := nj, in the sequel (cf. (2.7)). Af-
ter introducing some further notation, we will present a sketch of such a look-ahead Lanczos
process for FOPS.

The algorithm generates a sequence of polynomials {~,}~=,, where each polynomial yn
is manic and of exact degree n. We use the indices

(2 7).

6 Roland W. Freud and Hongyuan Zha

to mark those polynomials that are generated as regular FOPS vnk, k = 0, 1, . . .; the remain-
ing polynomials are called inner. Note that the condition (2.4) is void for n = 0, and hence
YO = 1 is a regular FOP of degree 0. Furthermore, for each fixed n, we define 1 = l(n) by

n1 L n < n1+1,

so that I= l(n) always denotes the number of the last regular FOP with degree 5 n.
Then, the first n + 1 polynomials yo, pr,. . . , pn can be grouped into I+ 1 blocks:

(2 8). atk):= [y,, ynk+l *** ynk+l--l], ~=~,L*..,~--1,
V) := I%, YrQ+1 - - ’ Yn 1 l

Note that the first polynomial ynk in each block is a regular FOP, while the remaining
polynomials in each block are inner polynomials. We remark that the lth block is complete
if n = n1+1 - 1; in this case, the next polynomial yn+r is constructed as a regular FOP.
Otherwise, if n < q+, - 1, the lth block is still incomplete, and (P~+~ is added to the lth
block as an inner polynomial.

So far, we have not specified how to actually construct the inner polynomials. The point
is that the inner polynomials can be chosen such that the yn’s from blocks corresponding
to different indices k are still orthogonal to each other. More precisely, as we will prove in
Section 2.3, the following block orthogonality relations hold:

(2 9). (atk), a(j)) = { (j!(k) ii j $ i’ for all j, k = 0, 1, . . . ,I,
7

where

(2.10)
6tk) is nonsingular, k = 0, 1, . . . ,I - 1,

a n d 6(‘) is nonsingular if n = nl+, - 1.

Here and in the sequel, we have used the notation

(@, @) :=

where
. . . 41j a nd @ = ☯$ +) $ 1 l *’ +k]

are row vectors of polynomials in P.
After these preliminaries, the look-ahead Lanczos process for FOPS can be sketched as

follows.

Algorithm 2.2 (Look-ahead Lanczos process for FOPS)
0) Set y. = 1, (D(O) = yo, c~(O) = ((P(O), Q(O)).

Set no = 0, 1 = 0, !P(--l) = 0.

f

A Look-Ahead Algorithm for the Solution of General Hankel Systems

For n = 0, 1, . . . , do :
1) Decide whether to construct yn+l as a regular FOP or as an inner polynomial

and go to 2) or 3), respectively.
2) (Regular step.) Compute

(2.11) cy, = (5(‘))-yip), Xy,), p, = (6(‘-‘I)-‘(GP-‘I, Xy,),

(2.12) Yn+1 = xy, - @)a, - cw)&,

set n1+1 = n + 1, 1 = I+ 1, a(‘) = 8, and go to 4).

3) (Inner step.) Compute

(2.13) pn = (~(l-y (@U-l) 7 Alp)n 7

(2.14)
n

Yn+i = xY~ - C trncP, - %P)p,,
m=q

4) Set
@(I) = [Q(l) yn+l]) s(‘) = (@(Q, dZJ).

- We remark that, by (2.10), the matrices &(I) and S(‘-l) in (2.11) and (2.13) are guaranteed
to be nonsingular.

Moreover, note that, in (2.14), trn E C, m = 0, 1, . . . , are arbitrary recurrence coefficients.
For the Hankel solver, we will chose trn s 0 (cf. (2.26)).

Finally, we remark that Algorithm 2.2 reduces to the classical Lanczos process [25], if
only regular steps 2) are performed.

2.3 Properties
In this subsection, we prove some properties of Algorithm 2.2. We will make use of the
relation
(2.15) ($J, XY) = (W,Y) for all Y, + E p7

which is an immediate consequence of (2.2) and the Hankel structure of the matrices (1.2).
First, we show that the polynomials y,, yi, . . . , yn generated by Algorithm 2.2 do indeed

satisfy the orthogonality relations (2.9) and (2.10).

Theorem 2.3 Let n E {O,l,. . .} and 1 = l(n). Then:

(2.16) (Qck), y,) = 0 for all k = 0, 1, . . . ,I - 1,

and
(2.17) (p-1) .-.- (@(l-l), @(l-l)) is nonsingular.

8 Roland W. Freund and Hongyuan Zha

Proof. The proof is by induction on n. For n = 0, by (2.7), I= 0, and thus both conditions
(2.16) and (2.17) are void.

Now let n > 0, 1 = l(n), and assume that (2.16) and (2.17) hold for all polynomials
Y,7 Yl7 - * * 7 Y** Hence, using the notation (2.8), we have

(2.18) (@(k), @(j)) = 0 for all j # k, j, k = 0, 1, . . . , 1.

We need to show that

(2.19) (@(k),yn+l)=O forall k=O,l,..., I’-1,

and that
(2.20) @I’-1) .-. - P

(V - 1) (p-1))
7 is nonsingular,

where
(2.21) 1’

1
= l(n + 1) = { l + 1

if yn+r is inner,
if yn+i is regular.

First, we remark that

(2.22) (@ck),Xy,J = 0 f o r a l l k=O,l,..., l - 2 ,

or, equivalently,
(yj, Xy,) = 0 for all j = O,l,. . . , nlml - 1.

- Indeed, if yj is a regular FOP, then, with (2.15) and (2.12) (with n replaced by j), one
obtains the relations

(Yjy ‘Yn> = (‘Yj7 Yn)

(2.23) = (yj+*l y,,) + aT(@z(j), 9,) + PjT(@z(j)-17 Y,>Y

where, by (2.18), all terms in (2.23) vanish. Similarly, if yj is an inner polynomial, then,
with (2.15), (2.14) (with n replaced by j), and (2.18), it follows that

(Yj, ‘Yrl> = PYjY YJ

= 0.

Now we turn to the proof of (2.19). First, consider the case that yn+r is constructed as
an inner polynomial. Note that, by (2.21), 1’ = 1, and let k E (0, 1. . . , 1 - 1). Using (2.14),
(2.18), and (2.22), one easily verifies that

ptk), Yn+1> = (ip), Ay,) - -g [,(d"), ym) - ptk), @(i-l)jPrz
m=nl

= ptk), Ay) - (@(k),@(z-l))p
n n

= 0 .

A Look-Ahead Algorithm for the Solution of General Hankel Systems 9

Here, for the case k = I- 1, the last equality follows from (2.13). Next, consider the case that
yntl is constructed as a regular FOP. Note that, by (2.21), 1’ = I+ 1, and let k E (0, 1. . . ,I}.
Then, with (2.12), (2.18), and (2.22), we obtain

Wk)7 Yn+* > = (igk), xy) - (gk), igZ))a - pgk), @(z-l))pn n n

i

0 for k = 0, 1, . . . ,I - 2,
= (fD(‘-‘), Ay,J - (Q(z-1), @(z-1))& = 0 for k = I- 1,

(HZ), Ay,) - (HZ)) @(z))a, = 0 for k = 1.

Here, the last two equalities follow from the definition of P, and CL~ in (2.11).
Finally, we turn to the proof of (2.20). If yn+i is an innerpolynomial, then 1’ = 1, and

(2.20) is identical with the assumption (2.17). Therefore, we only need to consider the case
that y,.,+r is a regular FOP. Suppose that (2.20) is false, i.e., the matrix 6(z’-1) = (@(‘), @(‘))
is singular. This implies that there exists a vector c with

(2.24) (Q(‘) d%) = (@(‘), @(‘))c = 0 and @(‘)c # 07 7

and we set
0 := yn+* + @(‘)c.

Note that + is a manic polynomial of degree n + 1, and, by (2.24), $ # yn+i. On the other
hand, by (2.19) and (2.24), it follows that $ satisfies

(+,$) = 0 f o r a l l 1c) E pn.

Consequently, @ and yn+* are two different manic regular FOPS of degree n + 1, which
contradicts the uniqueness of regular FOPS. This concludes the proof. 0

Remark 2.1 The result of Theorem 2.3 is also contained in Gutknecht’s work [17, 181 on
the Lanczos algorithm. However, the approach taken in [17, 181 is based on the intimate
connection between the Lanczos process and Pad6 approximation. In particular, for the
proofs in [17, 181, nontrivial results from the theory of Pad6 approximation are used. In
contrast, our proof of Theorem 2.3 is self-contained and completely elementary.

Remark 2.2 The Lanczos method is a powerful tool for iterative matrix computations, see,
e.g., the survey paper [9] and the references given therein. More precisely, let A be a given
N x N matrix, and let vo, 20~ E CN be two nonzero starting vectors. Then, the Lanczos
process can be used to generate two sequences of vectors vo, vr, . . . , and 2oo, wi, . . . , of the
form
(2.25) % = yn(A)vo a n d w, = yn(AT)wo, n = OJ,. . . .

If all polynomials yn in (2.25) are regular FOPS, then the resulting algorithm is the classical
nonsymmetric Lanczos method and the Lanczos vectors are biorthogonal:

w;vk = (yj,yk) = 0 for a.11 j # k.

10 Roland W. Freund and Hongyuan Zha

Freund, Gutknecht, and Nachtigal [lo] have developed a look-ahead Lanczos algorithm that
overcomes possible breakdowns and near-breakdowns in the classical Lanczos procedure. The
scheme proposed in [lo] can also be viewed as a special case of Algorithm 2.2; it generates
vectors (2.25) that correspond to regular FOPS or inner polynomials. For details of the
resulting algorithm and the look-ahead strategy, we refer the reader to [lo].

From now on, we assume that the recurrence coefficients in (2.14) are chosen as

(2.26) tm = 0 forall m=O,l,... .

In Section 3.2, we will need the following result.

Theorem 2.4 The blocks Stk) in (2.9) are Hankel matrices.

Proof: By (2.9) and (2.8), the matrix 6(k) is given by

I n&+1 -1
m,n=nk ’

Hence, we have to show that
(2.27) (Pm7 Pn+l> = (Vm+l 7 Pn>

for all
(2.28) my n E {nk,nk + l,--e,nk+l -2).

Let m and 12 be any pair satisfying (2.28). Note that vrn+r and (P~+~ are both inner polyno-
mials. With (2.14), (2.26), (2.16), and (2.15), it follows that

Similarly, we have
(Ym+l) Pn > = (Aym7 9,) - Pz(@(k-1)7 Yn)

= lAYmY Yra>7

and, together with (2.29), we obtain the equation (2.27). o

3 A Look-Ahead Hankel System Solver
We now turn to the solution of Hankel systems Hnx,., = b,, where

is a general right-hand side. In this section, we present a look-ahead Hankel solver based on
Algorithm 2.2 and discuss some implementation issues. We will also show how to choose the
look-ahead step sizes.

A Look-Ahead Algorithm for the Solution of General Hankel Systems 11

3.1 The Algorithm
Let y,, 92 = 0, 1, . . . , be the sequence of polynomials generated by Algorithm 2.2. Each of
these polynomials is manic and can be represented in the form

Now, the key observation is that the vector

u, : = [Uon
%a l ** %a -l,n 1 1 *,

which consists of the coefficients of y,, is just the last column of the upper triangular matrix
U,, (1.4) in the decomposition (1.3) of H,. Indeed, by simply rewriting, by means of (2.2)
and (2.3), the block orthogonality relations (2.9) in terms of the coefficient vectors of the
PolYnomials Yo, Yl, * * * 7 YrI,, we arrive at the factorization (1.3). Furthermore, note that the
last block 6(‘), I = l(n), in (1.5) is given by

Here and in the sequel, we denote by

the submatrices of U, that contain the coefficients of the blocks of polynomials (2.8). Note
that the following relations hold:

Unk+l -1 = [un;-l 1 U(‘)], k=o,l,..., Z - 1 , &:=&

u, = [Un;-l / u(I)].

Finally, the coefficient vector u, is called regular vector if the corresponding polynomial y,,
is generated as a regular FOP. If vn is an inner polynomial, then u, is referred to as an inner
vector.

With these preparations, we can reformulate Algorithm 2.2 as the following look-ahead
procedure for computing Hankel factorizations of the form (1.3).

Algorithm 3.1 (Look-ahead algorithm for Hankel decompositions (1.3))
0) Set u. = 1, u(O) = uo, b(O) = (u(“))THou(o),

Set no = 0, 2 = 0, G-l) = 0.
For n = O,l,. . . , do :
1) Decide whether to construct u,+~ as a regular or as an inner vector

and go to 2) or 3), respectively.

12 Roland W. Freund and Hongyuan Zha

2) (Regular step.) Compute cy,, and &., by solving

(3 2). icy,., = [‘;‘I’ H,,+, [OJ and P-~)P, = [‘(rl’]* H~+~ [J’] ,

respectively.
Compute

(3 3). %+1 = [ZB,] - [y’] a , - [y-l)] p,,

set nl+l = n + 1, 1 = I+ 1, U(l) = 8, and go to 4).
3) (Inner step.) Compute p,.., by solving

(3 4).

and set

(3 5).

p’)A = [“‘b”]‘H,+l [in]
%+1 = [f] - [u(;l)] A.

4) Set
-. U(I) = [“d” 1 u~+~] , 6’) = (U(‘))*H,,,U?

We remark that, by Lemma 2.1, the matrix H,, is nonsingular if u,+i is constructed as
a regular vector. In particular, the matrix H, is guaranteed to be nonsingular if a regular
step 2) is performed in Algorithm 3.1. Furthermore, in view of (2.5) (with n replaced by
n + l), the vector

2, := bon+1 3
T

7 Ul,n+l * ’ * %,n+1 7

which is obtained from a regular vector u,+r by deleting the last element ~,+~,++i = 1, is
the solution of the following Hankel system with special right-hand side:

H,x, = -

h n+l
h n+2I 1 ...

h’2n+l

Systems of this type are referred to as Yule-Walker equations. Actually, when Hankel systems
arise in practice, they are often of the special form (3.6).

The solution of Hankel systems H,x, = b, with general right-hand sides (3.1) can also be
obtained easily. Recall that H, is guaranteed to be nonsingular for n = nl, - 1, k = 1,2,. I“7 7
and we only update the solution x, for these values of n. To this end, we simply need to
insert the following procedure at the beginning of each regular step 2) in Algorithm 3.1:

A Look-Ahead Algorithm for the Solution of General Hankel Systems

(3 7).

Set 72’ = nl - 1, and partition U (I), b,, and H, as follows:

u(l)= [;I, b,= [“;‘], H,.,= [$;],

13

where 0 and tx just contain the last n - n’ rows of U(l) and b,, respectively.
Compute y by solving

(3 8).

and set

(3 9).

s(')y = OT(p - STxn,),

X2, = [I0”’ + my.
Indeed, one easily verifies that x, given by (3.9) and (3.8) is the solution of Hnx, = b,, by
using 4 3.7) and the relation

In the following, we denote by

sk := nk+* - nk) k=O,l,...,

the dimension of the kth block Sfk) of the matrix D, in the factorization (1.3). We will also
refer to Sk as the length of the kth look-ahead step.

3.2 Implementation Details
In this section, we discuss some implementation details for Algorithm 3.1 and give an opera-
tion count. Among other things, we will show that-despite the look-ahead procedure--each
iteration step involves the computation of only two inner products. This is exactly the same
as in the classical Trench algorithm for strongly regular matrices.

For the operation count, we will use the following convention: a computation that re-
quires only arithmetic operations of order O(si) or less is considered negligible. The rationale
is that-except for contrived examples- the Hankel matrices we encountered in many ap-
plications only have at most a small number of consecutive ill-conditioned leading principal
submatrices. Therefore, Algorithm 3.1 will mostly perform regular steps, and if look-ahead
steps do occur, their length Sk is small.

At each step (regular or inner) of Algorithm 3.1, we first compute

91 = 0-T f,.

Here, as in (3.7)) 0 just consists of the last s1 rows of U(‘), and f! denotes the last column
of 6(l). Then, we have

0

(3.10) H ‘d,,‘I [In+l u n 71

72

14 Roland W. Freund and Hongyuan Zha

where r1 and r2 are obtained by forming two inner products:

71 = [h n+l *** h 2n+l 1% 72= h&+2 l * * h2n+21%

Now, consider a regular step 2) of Algorithm 3.1. By means of (3.10), the right-hand
sides of the equations in (3.2), and hence Q, and P,, can be generated with negligible work.
To form the second term in the right-hand side of (3.3)) we further need to compute sl
SAXPYs2. As we will see below, the third term in (3.3) can be obtained by one scalar
multiplication of a vector. In summary, at each regular step, the arithmetic operation count
is two inner products and sI + 1 SAXPYs.

Now, we consider an inner step 3) of Algorithm 3.1. It can be verified that

[“~;l~]THn+l [jj = [;,I 9
where fo, is the first element of f,. We can precompute

0** = uw)(swy 8 ,[I1
which costs sl-i SAXPYs. Then (3.5) can be written as

%+1 = [u”,] - [;] fol;

hence for each inner step, we only need to compute one additional SAXPY.
Next, it is shown that, for the calculation of 5(‘) in step 4)) no extra inner products are

needed. If u,+r is generated as a regular vector, then, with (3.10), we have

cw = uT;+1H71+lu?a+l = u~+1H,+* ([u”,l - [Lbll’]%- [u’b-l’]B,)
= u~+lHrl+l O[I%I
= .

Note that here we also used the orthogonality conditions

uT+*K+* “0[I = 0 for a l l j = O,l,..., 12.

2A SAXPY operation is z = (YZ + y, where x and y are vectors and cr is a scalar, see, e.g., [12].

A Look-Ahead Algorithm for the Solution of General Hankel Systems 15

Now, consider the case of an inner step. Note that 5(‘) is a matrix of dimension bigger
than 1. However, the key observation here is that, by Theorem 2.4, 6(‘) is a Hankel matrix,
and therefore, at each step we only need to generate the last two elements of the last column
of 6(‘). The last element u~+J,+, ~,+i is obtained as follows:

The other element is given by

T%aI 1 0

0 Hn+lUn+l = unT 91 ’[I71

All these computations are negligible, and hence the work for step 4) is also negligible. In
summary, the operation count for each inner step is two inner products and two SAXPYs.
We remark that the vector zl will also be used in the calculation of the next regular vector.

Finally, we turn to the updating procedure of solutions for general right-hand sides. To
compute the right-hand side of (3.8), we need to generate STZ’,, which involves sl inner
products. The computation of the vector x, in (3.9) requires another sl SAXPYs. Note
that x, is only updated once within each cycle of sl steps. Thus, in the average, the update
procedure requires one inner product and one SAXPY per step.

In the following table, we summarize the operation count for one step of A
and for the updating procedure of solutions for general right-hand sides.

lgorithm 3.1,

regular step inner step update of x,
inner products/step 2 2 1

SAXPYs/step s1 + 1 2 1

As we will see in Section 4, the operation count of Trench’s algorithm for solving Hankel
systems with general right-hand sides is three inner products and three SAXPYs per recursive
step. The overhead of the look-ahead Hankel solver is sI - 1 SAXPYs for every look-ahead
step with size sl. Since the algorithm will mostly perform regular steps, and the look-ahead
step sizes are usually small, the overhead of our look-ahead algorithm is quite negligible.

3.3 The Look-ahead Step Size
In this section, we discuss the criteria that are used in step 1) of Algorithm 3.1 to decide
whether the next vector is constructed as a regular or an inner one. For this purpose, there

16 Roland W. Freud and Hongyuan Zha

are two quantities, denoted by n(P) and v,,, that are monitored throughout the process.
Both of them are obtained from local information only. In particular, we do not need to
estimate the condition number of the current leading principal submatrix H,. The decision
about building a regular or an inner vector is then based on a comparison of “(r(l)) and
7, with two threshold parameters COND (> 0) and GFACTOR (2 l), respectively. We stress
that COND and GFACTOR need not be specified by the user; they are determined dynamically
during the run of the algorithm. The only input that is required from the user is the number
Smax, which is the maximal allowed block size in the decomposition (1.3).

The initialization phase of the algorithm is as follows. As the first block, we set S(O) =
H,, where H, is the matrix with the smallest condition number3 tc(H,.,J among H,, s =
u-,smax - 1. Then we build the next vector u,+~ as a regular vector and we set n1 =
m + 1. Furthermore, we initialize COND to be this smallest condition number K(H,) and set
GFACTOR to 1.

Now we consider a general iteration step of Algorithm 3.1. Since in the classical Trench
algorithm for strongly regular matrices only regular vectors are built (cf. Section 4), the
goal for the look-ahead Hankel solver should be to build as many regular vectors as possible.
Therefore, in each iteration step, we first pretend that u,+r can actually be constructed as
a regular vector. Then, we compute the condition number of

r(l) := &qj(‘)p-1,

- where 0 is the lower triangular part of U(I) (cf. (3.7)), and check whether

(3.11) I) < 2*COND.-

If (3.11) is not satisfied, then we go to step 3) in Algorithm 3.1 and build u,,+r as an inner
vector. To justify the criterion (3.11), recall that for a regular step, both S(‘) and, by (1.3),
H,, are required to be nonsingular. Actually, at the end of this section, we will point out
that K(W) is also closely related to K(H,).

If (3.11) is satisfied, we compute CY, in (3.2) and its Ii-norm 7, = Ila,11r. Then, we check
whether
(3.12) qn 5 fZ*GFACTOR.

If the criterion (3.12) is not satisfied, we proceed with step 3) and construct u,+r as an inner
vector. The justification for (3.12) is as follows. Note that (1.3) (with n replaced by 12 + 1)
can be rewritten as
(3.13) Hn+l = u,-,T, Dn+l”tLilo

If one would compute the decomposition (3.13) of H,,, directly by means of Gaussian elim-
ination, then pivoting would be used to ensure that the size of the off-diagonal elements of
u;;I is bounded by 1. Indeed, this is the key to the numerical stability of Gaussian elimina-
tion. However, for an algorithm exploiting the Hankel structure, pivoting is not an option,
since it does not preserve the structure. Roughly speaking, the look-ahead Algorithm 3.1

3Recall the definition of condition number at the end of Section 1.

A Look-Ahead Algorithm for the Solution of General Hankel Systems 17

avoids pivoting by building a block of size bigger than 1, whenever a small pivot is encoun-
tered in Gaussian elimination. Consequently, the look-ahead strategy should also guarantee
that off-diagonal elements of r/l,-:, are not too large. Since

u - 1
n+l =I+C+C2+-+Cn+‘, w h e r e C:=I-Un+l,

a large off-diagonal element of V,,, usually leads to a large off-diagonal element of U,$.
Therefore, in each step of the Algorithm 3.1, we limit the growth in the newly generated off-
diagonal elements of U,,, , which are just the components of u,+r. This is done by imposing
the check (3.12).

If both criteria (3.11) and (3.12) a.re satisfied, then we proceed with step 2) in Algo-
rithm 3.1 and construct u,+r as a regular vector.

It cannot be excluded that the algorithm has reached the maximal block size s,,,, but
the two checks for building the next vector as a regular one are still not satisfied. In this
case, we increase the values of the threshold parameters COND and GFACTOR, so that, when we
would rebuild the block, the two criteria (3.11) and (3.12) are satisfied within the maximal
look-ahead size. This can be done by setting COND to be the condition number of I’(‘) that is
minimal within the maximal look-ahea.d range. Then, the second parameter GFACTOR is reset
to the value of the corresponding vn. In this way, the algorithm is guaranteed to choose the
I’(‘) with best possible condition numbers, while at the same time the off-diagonal elements
of Un. are not too large. With the described look-ahead strategy, the algorithm will produce--
accurate solutions of Hankel systems as long as the coefficient matrix has at most s,, - 1
consecutive ill-conditioned leading principal submatrices.

Remark 3.1 The philosophy of our look-ahead strategy is similar to the one used by Freund,
Gutknecht, and Nachtigal [lo] in their implementation of the Lanczos method for nonsym-
metric matrices, in that the only input required is the maximal look-ahead size, while any
other parameters are determined dynamically during the run of the algorithm. For the non-
symmetric Lanczos process, the crucial point is to keep the Lanczos vectors (2.25) sufficiently
linearly independent. In the implementation [lo], this is ensured by a look-ahead strategy
based only on criteria of the type (3.12)) while the current block s(‘) is merely checked for
nonsingularity. However, for the look-ahead Hankel solver, it is crucial that, at the beginning
of each regular step, the block 6(‘) is sufficiently nonsingular, since it is used in updating the
solution of the Hankel system (cf. (3.S) and (3.9)). Hence, in contrast to [lo], the look-ahead
strategy for the Hankel solver also involves the check (3.11) to ensure that the blocks 6(“)
are well-conditioned.

We conclude this section with a. discussion of the connection of the condition numbers of
lYcr) and H,. Set n’ := n1 - 1 and let H, be partitioned as follows:

where H,, is the last well-conditioned Hankel matrix. With this notation, I’(‘) is, in fact, the

1s Roland W. Freund and Hongyuan Zha

Schur complement4 of H,, in H,, and we have

which implies that

r(l)

(3.14)

= Lo ‘1 [-STIH,’
= [-STH,’ I]H, -H;;ls .[1

From (3.14), it follows that

a,,,(r(l)) 2 II[-FH,,’
1111 I[

. -H;;Is] // U~JH,J.

It is easy to verify that

II[-STH,’ 1 III < Jl + ~11~11~~~~~~111~~~11~2-
Therefore, letting

P = 1 + ~11~11~~~,1~111~,~11~2,
we have
(3.15) %as(W < P- maxw 1n *

Similarly, we can show that
(3.16) Omin(Hn> 5 es-d?
First, consider the case that I’(‘) is of size bigger than 1. Then by combining (3.15) and
(3.16), we arrive at

qrQ)) < e2tc(H- n).

With the same technique, we can show that

K(H) < Q2K(r(1))n - 7

and hence
(3.17) K(H,)/Q~ 5 K(T’(‘)) 5 p2tc(Hn).

For the case that I’(‘) is a scalar., from (3.15) and (3.16), we obtain

(3.1s)
1 5 q+)) - < e .0 5r,as (1%.) 0min (H >n

Roughly speaking, the inequalities (3.17) and (3.18) state that, if Hnr is well-condi-
tioned, then H, is well-conditioned if, and only if, I?(‘) is well-conditioned.

4We remark that fi is an upper triangular Toeplitz matrix. This, combined with the fact that 6(‘) is
Hankel, shows that I’(‘) is a quasi-Hankel matrix, by which we mean a matrix with Hankel displacement
rank 2 [6, Chapter 41, [26].

A Look-Ahead Algorithm for the Solution of General Hankel Systems 19

4 Special Cases

In this section, we point out that the classical Trench algorithm [31] and several of its
extensions 130, 27, 16, 71 are special cases of Algorithm 3.1. Specifically, it is shown that, if
in Algorithm 3.1 one only skips over exactly singular leading principal submatrices, then the
procedure reduces to the one described in [27, 16, 71, and the factorization (1.3) reduces to
the decomposition given in Theorem 1 in [161. I n addition, if the Hankel matrix is strongly
regular, then we recover the classical Trench algorithm.

We now assume that the sequence {n,}f=, in (2.7) consists of the indices of all existing
regular FOPS (cf. Section 2.2). Then, by Theorem 1 in 1161, the blocks U@) and @) in the
decomposition (1.3) of H, are of the form

(4.1) UC”) =

0 . . . 0

U nk-l,nk

. 0

' Unk-lrnk * ' * %nk
1 *-. :

. U nk-1 rnk
. . . 0 1

0 . . . 0 er)

Matrices S tk) of the type (4.1) are called anti-lower triangular Hankel matrices. Next, we
show that the construction of the blocks (4.1) is a special case of Algorithm 3.1.

We only need to exa.mine one look-ahead step here. Let Hnlsl be nonsingular and Hn,
be singular. Hence, unI is a. regular vector, and in Algorithm 3.1, the next vector u,,+~ is
constructed as an inner vector. Using (14, it is easily verified that Hnlunl = 0, and thus
the vectors

(4 2). Hnl+l [‘;I] = [f] and Hnl+l u”,, = p’ I [I
have possible nonzero elements (indicated by *‘s) only in their last position and last two
positions, respectively. From (3.4) and the second relation in (4.2), it follows that p,, = 0.
Therefore,

0
U ni+l = [1u

‘21

is just the vector u,, shifted down by one position. This procedure of building inner vectors
by shifting down the previous vector by one position will continue until we first encounter
an n such that the vector

HnzLn= [TO *** 7nl T

has a nonzero element yZ11) := 2n, in position nl. In matrix form, this can be expressed as

20

follows:

(4 3).

where

(4 4).

4

L

G(‘) =

..
UO7l,

.
ll .

W-l,% .

1 %,-I,*(

0 1
.
0 . . .

0 . . . 0
.

Roland W. Freund and Hongyuan Zha

. . . 0
.
. . . 0
. . . u0711
.
. . . U nl-lm

1

0= G(‘) ’[1

7 wi th #’ # 0 .

Clearly, G(l) is nonsingular, and together with the nonsingularity of H,,t-l, it follows that
H, is nonsingular. Hence the next vector u,+r will be constructed as a regular vector, and
one sets rzl+r := n + 1 and sl := nl+, - nl. Note that n - nl = sl - 1 in (4.4). Moreover, we
have

- (4 5).

Later, we will also need the relation

H, [%y] = (0 #-‘1 #-” . . * y(1-:)
s1- +1-l’ T)91 1

which follows from (4.3) (with I replaced by I - 1) and, in the case sI > sl-r, by defining the
elements $:I,‘), . . . , $f-‘) accordingly.

Clearly, (4.3) hs ows that Algorithm 3.1 generates blocks U(l) of the form (4.1). Further-
more, from (1.3) and (4.3), we obtain

(4 7).
Here, as in (3.7), 0 consists of the lower triangular part of UQ). To recover the decomposition
in Theorem 1 of [16], it remains to note that St’) is an anti-lower triangular Hankel matrix.
This can be verified by direct computation using (4.7), (4.3), and (4.4); also note that

(+‘) (1)
0 =^lo *

Next, we give formulas for the coefficients vectors cy, and ,B, in (3.3) in terms of the
quantities y!‘) and y!‘-I), j = 0 13 * *

= #‘1 OIT, a n d ’ thus
7 sl. First, consider &. With (4.5) and (3.2), it follows

that b(‘-l) p [n

(4 8). P
#’ 1- -

n - [1$1) 0 -

A Look-Ahead Algorithm for the Solution of General Hankel Systems 21

Now we turn to CY,. By multipling (3.3) from the left by H,+l and using (4.5) and (4.8), we
obtain

(4 9) H
u(l)

- Hn,l 0 QIn[1 #’. - -H u;-~ .

P’ n+l [1
Note that-since u,+~ is a regular vector-the left-hand side of (4.9) is zero, except for pos-
sibly the last component. Hence, by deleting the last component in (4.9) and by considering
only the last sl rows in the resulting relation, we get the equation

(4.10) - [0 I] H,U(‘)a, - -2’1, [0 I] H, [“a-l].
70

By (4.3), the second term of the right-hand side of (4.10) is just G(‘)a,. Furthermore, from
(4.6), we have

[O I]Hn[u;-l] = [o #-” #‘) . . . -is:_l)]T.

Therefore, it follows from (4.10) that-

(4.11) a, = (G”‘)-’ YP...
\I y(l)91

We remark that the formulas (4.S) and (4.11)
nus’s algorithm”) in [16].

are just the ones stated in Corollary 5 (“Mag-

Finally, we turn to the strongly regular case, and assume that only regular vectors are
built, i.e., 2 G n in Algorithm 3.1. Then, the equation (3.3) reduces to the three-term
recurrence

where, in view of

u,+* = rtyn] - [2k”]%- [y]Pn7
4.8) and (4.11),

4”’ (n-1)
71 #’

cyn = - -= a n d P, = -(n)
Yo 70

& 4 l

These are the formulas used in the classical Trench algorithm [31]. Next, we consider the
process of updating the solution for Hnxn = b,. The partitioning in (3.7) now reads as
follows:

u,= [;I, b,= [‘;;I, H,= [fj”; ‘;tll]y

22 Roland W. Freund and Hongyuan Zha .

where s,-~ = [h, ... hznB1 I’. Note that H&i = -s,-~, and thus

/l,, - s~~~x,-~ = pn + CT!+,_, = u,Tb,.
Hence, the formulas (3.8) and (3.9) for the general case reduces to the update:

X[1 Gbnx, = n-l
0

+ -uS(n) n’
Finally, we note that the operation count for Trench’s algorithm is two inner products

and two SAXPYs per recursive step. To update the solutions x, for Hankel systems with
general right-hand sides, we need to compute one extra inner product and one SAXPY per
step. This operation count, together with the total number of multiplications and additions
after 72 steps, is summarized in the following table.

inner products/step SAXPYs/step multiplications additions
factor 2 2 2n2 + O(n) 2n2 + O(n)

update of x, 1 1 n2 + O(n) n2 + O(n)

5 Numerical Experiments

In this section, we report some results of numerical experiments using the look-ahead Al-
gorithm 3.1. First, we give a brief description of how to generate Hankel matrices with
prescribed rank or condition number profiles. Then we present some numerical examples,
together with some comments.

5 . 1 Generating Hankel Matrices With Ill-Conditioned Principal
Submatrices

In this subsection, we describe two methods we used for generating Hankel matrices with var-
ious types of rank profiles and ill-conditioned principal submatrices. The condition numbers
of the ill-conditioned principal submatrices can generally be controlled by adding random
Hankel matrices to the generated ones. The simplest examples are Hankel matrices with
only one ill-conditioned leading principal submatrix. To this end, we first generate a random
Hankel matrix H,, then for some 171 (< n) compute an eigenvalue X of the Toeplitz matrix
H,Ern7 where E, is the exchange matrix, with l’s on the anti-diagonal. Setting the element
h, of H, to h, - X gives a. Hankel matrix which in exact arithmetic will have a singular
principal submatrix of order nz + 1. Then we form

where fi is a Hankel matrix, a.nd c is a small number to control the condition number of the
(m + l)th leading principa.1 subma,trix of fin.

A Look-Ahead Algorithm for the Solution of General Hankel Systems 23

To obtain Hankel matrices with more general rank or condition number profiles, we make
use of the decomposition theorem in [16, Theorem l]. For some reason which we still do not
fully understand, the generated Hankel matrices themselves tend to be very ill-conditioned.
Whenever this is the case, as a remedy, we extend the ill-conditioned Hankel matrix until
we reach a well-conditioned one. More precisely, we construct

such that H is a well-conditioned Hankel matrix, and then continue to use the recursive step
in the decomposition theorem to build Hankel matrices of larger dimensions.

5.2 Numerical Examples
All computa.tions reported in this section were carried out using Matlab on a SUN/SPARC
workstation or a SiliconGraphics workstation, both with machine precision of order 0(10-16).
For each set of numerical examples, we generated 100 Hankel matrices H with certain pre-
scribed ill-conditioned lea.ding principal submatrices. The index j, j = 1,2,. . . ,100, is used
as a counter for the 100 matrices. For each H, we solved the linear system

Hx = b,

where b was chosen such that the vector of all l’s is the exact solution x,,,~. The relative
Euclidean error is defined as

3 - X
relative error = II compt exact II

II II
.

Xexact

We always plot this relative error versus the index number j.
1. This test set consists of 100 50 x 50 Hankel matrices with only one ill-conditioned

leading principal submatrix. A typical condition number profile of such Hankel matrices is
plotted in Figure 1. Figure 2 shows the relative errors generated by the classical Hankel
solver without look-ahead (the classical Trench algorithm)5. We observe that there is almost
no relative accuracy in the computed solution. In contrast, Figure 3 shows the relative errors
computed by using the look-ahead Hankel solver with s,,, = 2.

2. This test set consists of 100 :300 x 300 Hankel matrices with one ill-conditioned leading
principal submatrix. The condit*ion number profiles are similar to the one plotted in Figure 1,
and hence are not presented here. Figure 4 shows the relative errors computed by using the
look-ahead Hankel solver with s,,, = 2.

3. This test set consist,s of 100 60 x 60 Hankel matrices with two or three consecutive
ill-conditioned leading principal submatrices. A typical condition number profile is plotted
in Figure 5. In Figure 6, we display the relative errors computed by using the look-ahead
Hankel solver with s,,, = 4. We should mention here that, if we choose s,,, = 3 for this test

5Actually, we use the look-ahead algorithm with smax = 1.

24 Roland W. Freud and Hongyuan Zha

Dimension of principal leading submatrix

Figure 1: Condition number profile of a 50 x 50 Hankel matrix

+ +4.: :

__
._

::
::

1 0-l i 1 1.

0 10 20 30 40 50 60 70 80 90 100

Number j of Hankel matrices of dimension 50

Figure 2: Relative errors for 100 50 x 50 random Hankel matrices with one ill-conditioned
submatrix, run without look-ahead

A Look-Ahead Algorithm for the Solution of General Handel Systems 25 .

Figure 3: Relative errors for 100 50 x 50 random Hankel matrices with one il l-conditioned

10-15 L
0 10 20 30 40 50 CjO 70 80 9(-j lo(-)

Number j of Hankel matrices of dimension 50

submatrix, run with look-ahead

10-8

10-9

- ;: -I

::
::- .:- :: t
: +
.:
i.

8 'lo-'0 _ ;;

;;
+ : t: : ;I

.: : :

E
- .: :::: :: ::- .: : :::

?
:: iI . .:: * t ::

: .: +
'5

: :: :; .ii ;:. ': if

1 ; ;:, fi ;;
:': ;: : : : ?

(d f +: .::: ::

2 IO-11 - $: : ;
._

;:
. . .:: : : ; t;;i::

.;t ;;
:: -

= ;* : : . . ::<:
. ii : :

- : f ; : .: .: iit
: ‘: :: : :

;: : :
Ii : ::

: : .: : : ; j+
.: i’::. i ; ; ii;

I ;
-: :: . . f. ‘,.a.

i i ; ; ;: : : ii:. : i :
+ ;jt: + . . .

‘t T + :.
.:j,.t :; :;I f ii: . . :

:t;+::+. :
; .: ? : ‘L -

+,: ::.: ::. ., 1
::..I :+

+, .::+ :: j.;+ ;i \ : : : : . . . : . . . iii::. :.t+
-

IO-12 j
+++ :‘+:

; ‘:, :. :.

+ : 4 if i; ‘, f :
: i.t ;z, ;+.j:;;+ y 1.4 g’, ;+;i

:
;

:+: : f’,
i. ‘I

.:
+i L + ++ i $.:; i

+ :; :; :. -
i ;: :. :. _

w c c L
l * :i; + i .I t; -

. +
:i
i -

i i

10-13 * I 1
0 10 20 30 40 50 60 70 80 90 100

Number j of Hankel matrices of dimension 300

Figure 4: Relative errors for 100 300 x 300 random Hankel matrices with one ill-conditioned
submatrix

26 Roland W. Freund and Hongyuan Zha

106-

105-

4
2

104-

0”-a.d
2 103 -
3

102-

10’ -

1OOL -I-_
0 10 20 30 40 50 60

Dimension of principal leading submatrix

Figure 5: Condition number profile of a 60 x 60 Hankel matrix

set, then we see an obvious deterioration in the accuracy of the computed solutions. This
is due to the fact that some of the Hankel matrices have three consecutive ill-conditioned
leading principal su Dmatrices. But if we choose s,,, = 5 in this test set, the accuracy of the
solutions will be ah lost the same as that plotted in Figure 6.

6 Concluding Remarks

We presented a look-ahea,cl Lanczos process for generating formally orthogonal polynomials
and gave elementary and self-contained proofs of some of its properties. Based on this poly-
nomial formulation of the look-a.hea,d La.nczos process, we devised a look-ahead algorithm
for solving general Ha.nkel systems. The resulting procedure is an extension of the classi-
cal Trench algorithm for the strongly regular case. In contrast to other generalizations of
Trench’s algorithm, which can only skip over exactly singular submatrices, our look-ahead
Hankel solver can handle exactly singular as well as ill-conditioned submatrices. We also
discussed implementation issues of the look-ahead Hankel algorithm and gave an operation
count. It was shown tha.t Trench’s a.lgorithm and several of its extensions can be obtained eas-
ily as special cases of the look-a.head Hankel solver. Finally, we reported results of numerical
experiments, which clearly clemonstra,te that the look-ahead algorithm generates solutions of
Hankel systems with ill-conditioned submatrices nearly to full accuracy. For such systems,
the solutions producecl by the classical Hankel solver are usually of no accuracy at all.

It remains to give a rigorous sta.bility analysis of the proposed look-ahead Hankel solver.

A Look-Ahead Algorithm for the Solution of General Hankel Systems

lo-”

10-13

27

1 O-14 I I 1 I I
0 10 20 30 40 50 60 70 80 90 100

Number j of Hankel matrices of dimension 60

Figure 6: Relative errors for 100 60 x 60 random Hankel matrices with three ill-conditioned
submatrices

This will be the subject of future work.
Also, we remark that similar techniques, based on a Lanczos-type process for formally

biorthogonal polynomials, can be used to derive a look-ahead Levinson algorithm for solving
general Toeplitz systems. This is described in detail in [ll].

Recently, Cabay and Meleshko [4] have proposed an algorithm for stably generating Pad4
approximants. As a by-product, their procedure can also be used to invert general Hankel
matrices. However, the resulting approach is different from the one taken in this paper.
In particular, their algorithm for inverting Hankel matrices does not seem to be a direct
extension of the classical Hankel solver.

The Hankel algorithms discussed in this paper all involve O(n2) work. There are also
so-called superfast Hankel solvers (see, e.g., [2, 15]), which require only S(n log2 n) work.
However, like Trench’s algorithm, these superfast solvers require that the underlying Hankel
matrices be strongly regular. It is an open problem whether these algorithms can be extended
to numerically stable procedures for solving general Hankel systems.

Another class of fast Hankel solvers, which are essentially different from Trench’s algo-
rithm and its extensions, are so-called Schur-like methods (see, e.g., [22, 71). Unlike Trench’s
solver and its generalizations, Schur-like Hankel algorithms do not involve inner products
of long vectors. On pa.ra.llel architectures, the computation of such inner products usu-
ally represents a bottleneck, and algorithms that are based only on SAXPY operations are
preferable. Our polynomial formula.tion of the look-ahead Lanczos process can also be used to
design a Schur-like Hankel solver, which skips over exactly singular as well as ill-conditioned

28 Roland W. Freund and Hongyuan Zha

submatrices. The resulting algorithm will be presented in a future report.

Acknowledgment

We would like to thank Susanne Freund, No4 Nachtigal, and Gerhard Starke for their careful
reading of parts of this manuscript.

References
[l] Berlekamp, E.R. (1968): Alg be raic Coding Theory. McGraw-Hill, New York

[2] Brent, R.P., G tus avson, F.G., Yun, D.Y.Y. (1980): Fast solution of Toeplitz systems of
equations and computation of Pad6 approximants. J. Algorithms 1, 259-295

[3] Bultheel, A. (1987): Laurent Series and their Pad6 Approximations. Birkhguser, Base1

[4] Cabay, S., Meleshko, R. (1991): A weakly stable algorithm for Pad6 approximants and
the inversion of Hankel matrices. Preprint

[5] Chihara, T.S. (1978): An Introduction to Orthogonal Polynomials. Gordon and Breach,
New York, 1978

[6] Chun, J. (1989): Fas array algorithms for structured matrices. Ph.D. Thesis, Stanfordt
University

[7] Citron, T.K. (1986): Algorithms and architectures for error correcting codes. Ph.D.
Thesis, Stanford University

[8] Draux, A. (1983): Polyn&nes Orthogonaux Formels - Applications. Lecture Notes in
Mathematics, Vol. 974. Springer, Berlin Heidelberg New York

[9] Freund, R.W., Golub, G.H., Nachtigal, N.M. (1991): Iterative solution of linear sys-
tems. Technical Report 91.21, RIACS, NASA Ames Research Center. Acta Numerica:
to appear

[lo] Freund, R.W., Gutknecht, hLH., Nachtigal, N.M. (1991): An implementation of the
look-ahead Lanczos algorithm for non-Hermitian matrices. Technical Report 91.09, RI-
ACS, NASA Ames Research Center. SIAM J. Sci. Stat. Comput., to appear

[ll] Freund, R.W., Zha, H. (1991): Formally biorthogonal polynomials and a look-ahead
Levinson algorithm for general Toeplitz systems. Technical Report 91.27, RIACS, NASA
Ames Research Center

[12] Golub, G.H., Van Loan, C.F. (1989): Matrix Computations, Second Edition. The Johns
Hopkins University Press, Baltimore

A Look-Ahead Algorithm for the Solution of General Hankel Systems 29

[13] Gragg, W.B. (1972): The Pad& table and its relation to certain algorithms of numerical
analysis. SIAM Review 14, 1-62

[14] Gragg, W.B. (1974): Matrix interpretations and applications of the continued fraction
algorithm. Rocky Mounta.in J. Math. 4, 213-225

[15] Gragg, W.B., G tus avson, F-G., Warner, D.D., Yun, D.Y.Y. (1982): On fast computation
of superdiagonal Pad& fractions. h!Iath. Programming Stud. 18, 39-42

[16] Gragg, W.B., Lindquist, A. (1983): On the partial realization problem. Linear Algebra
Appl. 50, 277-319

[17] Gutknecht, M.H. (1992): A completed theory of the unsymmetric Lanczos process and
related algorithms, Part I. SIAM J. Matrix Anal. Appl. 13, to appear

[18] Gutknecht, M.H. (1990): A completed theory of the unsymmetric Lanczos process and
related algorithms, Paart II. IPS Research Report No. 90-16, ETH Ziirich

[19] Heinig, G., Rost, K. (1984): Algebraic Methods for Toeplitz-like Matrices and Opera-
tors. Birkhauser, Base1

[20] Jonckheere, E., Ma, C. (1989): A simple Hankel interpretation of the Berlekamp-Massey
algorithm. Linear Algebra Appl. 125, 65-76

[21] Kailath, T. (1980): L inear Systems. Prentice-Hall, Englewood Cliffs

[22] Kalman, R.E. (1979): On partial realizations, transfer functions, and canonical forms.
Acta Polytech. Stand. Math. Comput. Sci. Ser. 31, 9-32

[23] Kalman, R.E., Falb, P.L., Arbib, M.A. (1969): Topits in Mathematical System Theory.
McGraw-Hill, New York

[24] Kung, S.-Y. (1977): M u ivariable and multidimensional systems: analysis and design.It
Ph.D. Dissertation, Stanford University

[25] Lanczos, C. (1950): An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. J. Res. Natl. Bur. Stand. 45, 255-282

[26] Lev-Ari, H., Kailath, T. (1986): Triangular factorization of structured Hermitian matri-
ces. In: I. Schur Methods in Operator Theory and Signal Processing (I. Gohberg, ed.).
Operator Theory Bidv. Appl. 18, pp. 301-324, Birkhauser, Base1

[27] Massey, J.L. (1969): Shift-register synthesis and BCH decoding. IEEE Trans. Inform.
Theory IT-15, 122-127

[28] Parlett, B.N., T yla or, D.R., Liu, Z.A. (1985): A look-ahead Lanczos algorithm for
unsymmetric matrices. hlath. Comp. 44, 105-124

30 Roland W. Freund and Hongyuan Zha

[29] Phillips, J.L. (1971): Th e t riangular decomposition of Hankel matrices. Math. Comp.
25, 599-602

[30] Rissanen, J. (1973/74): So u ion of linear equations with Hankel and Toeplitz matrices.1 t
Numer. Math. 22, 361-366

.] Trench, W. (1965): A n algorithm for the inversion of finite Hankel matrices. J. Sot.
Indust. Appl. Math. 13, 1102-1107

