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Abstract

Mixed finite  element approximation of the classical Stokes problem describing slow

viscous incompressible flow gives rise to symmetric indefinite systems for the discrete

velocity and pressure variables. Iterative solution of such indefinite systems is feasible

and is an attractive approach for large problems. The use of stabilisation methods for

convenient (but unstable) mixed elements introduces stabilisation parameters. We show

how these can be chosen to obtain rapid iterative convergence.

We propose a conjugate gradient-like method (the method of preconditioned conju-

gate residuals) which is applicable to symmetric indefinite problems, describe the effects

of stabilisation on the algebraic structure of the discrete Stokes operator and derive es-

timates of the eigenvalue spectrum of this operator on which the convergence rate of

the iteration depends. Here we discuss the simple case of diagonal preconditioning. Our

results apply to both locally and globally stabilised mixed elements as well as to ele-

- ments which are inherently stable. We demonstrate that convergence rates comparable

to that achieved using the diagonally scaled conjugate gradient method applied to the

discrete Laplacian  are approachable for the Stokes problem.



1. Introduction.

Mixed finite  element solution of the Stokes equations describing slow incompressible

viscous flow leads to a symmetric indefinite discrete system for the pressure and velocity

components. Since such systems are usually large and their solution is frequently part

of an (outer) iterative scheme to solve the Navier-Stokes equations(  [GL]), rapid solution

methods for such indefinite systems are desirable.

Given a flow domain St of Rd(d = 2or3)  with boundary aQ, a function f and

appropriate boundary conditions, the classical form of the Stokes problem is to fmd the

velocity u and pressure p satisfying

-vV*u + gradp = f inn, *

divu=o in 52.

(11).

(1 2).

For simplicity, let

u=o on dR (13).

representing ‘no-flow’ on the boundary. A weak form of the problem is obtained by

multiplying (1.1) by an arbitrary test velocity v E V and (1.2) by an arbitrary test

pressure Q E P and integrating over 0. Here

p = L;(n) = {q IqcL*(O), /
qdil = o}, v = [H,‘(fl)ld (14).

cl

H,1W) = (44~ LYn>, 2 ~L*(Ci),i=l,...,  d, +=OonN2}.
i

The resulting yeak form is: find u E V and pi P satisfying

(gradu, gradv) - (p, divv) = (f, V) VvfV
(15).

-(q, divu) = 0 VqEP l

Discretisation of (1.5) is achieved by introducing finite dimensional subspaces Vh C V

and Ph C P and the discrete Stokes problem is then: find uh E vh and ph E Ph such that

(graduh,gradv)  - (ph,divv) = (f,v) vvcVI(
(16).

-(q, divuh) = 0 vq@h.

1



Independently of the choice of Vh and Ph, the discrete system (1.6) can be written

in block matrix form as

(ii “d) (:> = (L) (1 7).

where u is a vector of the discrete velocity variables and p a vector of the discrete

pressure variables with respect to appropriate bases for Vh and Ph respectively, A
represents the terms (graduh,gradv)  and B the coupling terms -(q,divuh)  expressed

in terms of these bases. The vector f represents the body force terms. The coefficient

matrix is symmetric, but necessarily indefinite because of the zero diagonal block. The

Dirichlet boundary conditions (1.3) for the velocity ensure that A is positive definite,

and by applying the congruence transform

(; “d) =(; 7) (a’ -B;lBt) (; “I’) WV
it is apparent that the coefficient matrix in (1.7) is non-singular if and only if B has full

row rank.

For a mixed finite element which is stable in the LBB sense ([BF], page 79, there

exists a constant y > 0 independent of the mesh spacing, h, such that

SUP
(Ph 9 &VUh)

2 7 bhllz- vph E ph
UhEVh-(0) lbh Ilv

(19).

where Il*llv ad ILIIP are norms in the underlying spaces V and P. Making the specific

(and common) choice

[uhllV  = (gr~~h7graduh)‘7 bhllp  = (phrPh$

leads to the matrix form

vp E Rrn. (1.10)

Here m is the total number of discrete pressure variables (the dimension of Ph),  n the

total number of discrete velocity variables. Throughout the paper, !Rm is to be inter-

preted as excluding vectors corresponding to the hydrostatic pressure mode, i.e. vectors

representing constant functions ph and Rn is to be interpreted as discrete velocities

satisfying the boundary condition (1.3). In (LlO), Mp is the pressure mass matrix, i.e.
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the Grammian  matrix of basis functions for Ph. It is symmetric and positive definite

and has condition number independent of h for any usual finite element basis for Ph

mww~ Also, as A is a discrete representation of a second order operator, the Dirich-

let boundary conditions (1.3) ensure that there exists a positive constant C such that

utAu/utu > Ch* for all u E 3Zn - (0) ([AB]). Thus (1.10) implies the existence of a

positive constant C such that

The left hand side of (1.11) is a definition of the smallest singular value of B ([GVL]),

hence B is of full rank and we see that the Stokes system (1.7) for an LBB stable element

is uniquely solvable on any finite computational grid.

Conversely, if
p’Bu

Pee{O)  uEE~{O]  [p’p]+ [&]3 = O
(1.12)

then B is rank deficient since its smallest singular value (at least) is zero. Returning to

the system (1.7), we see that the coefficient matrix for the Stokes problem is singular

with null vectors which have only non-zero entries in the discrete pressure variables, p.
These null vectors are precisely the spurious pressure modes of which the ‘chequerboard’

mode for the t&-PO element is a well known example.

We can learn more about stable approximations from the LBB condition than just

the above: using the ‘discrete’ LBB condition (1.10) we have that for any p E !R”

r[p’&,p]f  I ‘max
ptBu p’BAfr

UE~~-{O}  [u’Au]f  = z=;;;#o [z%]+ ’

The maximum is attained when z = (p’BA*)’ and gives the value

(p’BA-‘B’p)f.

Thus
fM2p PP<Y-

p”( BA-1 Bt)p
P’P - PiP

vp E R” - (0).

(1.13)

(1.14)

Similarly, whether we use a stable element or not, if we assume boundedness of B, i.e.

that there exists r with

p’Bu 5 r [P’Mpplf  [dAu]f Vu E !F’andVp E !@” (1.15)



then

So for an LBB stable element

= (p’BA-‘B’p)+.

7* I PYBA-‘B’)P 5 r2

PfMpP
vp E Rrn - (0).

(1.16)

(1.17)

For an unstable element, the upper bound (only) in (1.17) holds. Since the spectral

condition number of Mp is independent of the grid size h, (1.17) simply states that the

‘Schur  complement’ matrix BA -’ Bf has spectral condition number independent of h
for any stable element. Hence any system with BAelBf  as coefficient matrix may be

rapidly solved by a conjugate gradient or other iterative method (see e.g. [GVL]). This

has lead a number of authors to propose nested iterative solution strategies based on

the block factorisation  (1.8). See [V],[BP],[BWY].

In this paper, however, we address the possibility of a single non-nested iterative so-

lution of Stokes systems. In particular, we consider the important effect of stabilisation

on the convergence of such an iteration for both unstable as well as stable elements. In

section 2 we review a Krylov space (conjugate-gradient-like) method which is applicable

to symmetric indefinite  systems (the Preconditioned Conjugate Residual method). The

relevent convergence analysis reveals that a certain minimax  polynomial approximation

problem on the eigenvalue spectrum of the coefficient matrix describes the rate of con-

vergence of the iteration in an analogous way to the positive definite case. Section 3

covers the analytic description of global and local stabilisation strategies for unstable

mixed elements. In Section 4 we establish estimates for the eigenvalue spectrum of the

stable and stabilised Stokes operator with simple diagonal preconditioning. In sectionI’
5 we present computational results obtained with the Preconditioned Conjugate Resid-

ual method in the three cases of a stable element, a globally stabilised element and a

locally stabilised element, and relate these to our analytic estimates. With regard to

these results and the characterisation  of iterative convergence given by the polynomial

approximation problem described in section 2, we consider in each case ‘good’ choices

of stabilisation parameters which ensure rapid convergence of the Preconditioned Con-

jugate Residual method.



2. Iterative Methods for Indefinite Systems

The applicability and efficiency of Conjugate Gradient methods ([GVL]) for solv-

ing symmetric positive definite  systems is widely appreciated. For symmetric indefinite

problems such as the discrete Stokes problem, block elimination yields a definite Schur

complement (for a stable element) and back substitution gives also a definite system,

hence using nested iteration ([BWY],[BP]) is an attractive approach. However, Con-

jugate Gradient methods exist for indefinite systems also, and a non-nested iterative

solution of the Stokes problem is perfectly feasible using, for example, the method of

Preconditioned Conjugate Residuals (PCR) which is alternatively called the MINRES

algorithm ([AMS]).

The PCR algorithm for solving dz = b with symmetric indefinite d and symmetric

positive de&rite  preconditioning matrix M is expressable in either the Orthodir or

Orthomin forms ([JY],[AMS]). The robust Orthodir form, for example, is

r. = b- dzo,po = r.

oi = PfdM-‘ri/pfdM-‘Api

xi+l = X i  +  Cripi

ri+l = ri - aidpi

This method can be implemented with only two matrixxvector products at each iter-

ation. Only a single matrixxvector product is needed at each iteration in general if a

hybrid Orthomin/Orthodir form is used ([AMS]).

If we define the norm

IIIYIII = YQM-‘dY,

then the PCR iterates have the property that

II X - 2 k 111 5 lb - Y 111
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for all y in the (fie) Krylov space

x0 + spn{M-‘to,  (M-‘d)M-‘ro,.  . . , (M-‘d)k-lM-‘ro}.

Thus if Hk,1 is the set of real polynomials of degree Ic - 1, we have

Illx--k!= pEm&kn r ~Id-‘ro  - p(M-‘d)M-‘ro(U (2 2).

&om which we may further deduce that

IIx-xk/n< min m8x
pEII: iE{l,...,N)

IPtAi)I llroIIM-l

where {Xi : i = 1,. . . , N} are the eigenvalues  of M-‘A,  II: is the set of Icth degree

polynomials with constant term one and ]]y]]M-1 = yfMB1y.  The Xi are real since

positive definiteness of M implies that Ml/* exists and so M-id is similar to the

symmetric matrix M-*AM-*.  The analysis is entirely analogous to that used in the

case of positive definite A (see for example Axelsson & Barker [AB]).

The convergence estimate (2.3) indicates that the convergence of the PCR iteration

depends crucially on the spectrum of M-*AM-%  The PCR method can be applied

when A is positive definite, in which case the spectrum is contained in a real positive

interval [Amin, X,,,] (using an obvious notation), and the estimate (2.3) can be expressed

in terms of shifted Chebyshev polynomials, which are the minimax  polynomials on this

interval. Using this approach, one can derive the estimate

Ill 2klllx - X0 111 (2 4).

for the PCR algorithm where IC is the spectral condition number.

The corresponding estimate for the common Preconditioned version of the Hestenes-

Stiefel CG algorithm, which is applicable when A and M are both symmetric and

positive definite, is

II 2 - xkll M-*AM-+  ’ 2 M-iAM- (2*5)

where IblIM-+A,,& = yfM-*AM-iy.  (Positive definiteness of M is not in fact

necessary, see [AMS]). The Hestenes-Stiefel algorithm requires a single matrixxvector

6



product at each iteration and thus is the method of choice in the positive definite case.

If there are significant gaps in the spectrum of A, then the Chebyshev estimate (2.5) is

pessimistic and more accurate estimates can be derived by considering the polynomial

minimax  approximation problem in (2.3) on disjoint subintervals which contain the

spectrum ([ABl,[Gl,[RI)*

When A is indefinite (but nonsingular), PCR is still applicable, but the Hestenes-

Stiefel method can fail. In this case the spectrum is contained in [-b, -01 U [a, b] for

some a, b > 0 and again analytic expressions for the minimax  errors on this set in terms

of Chebyshev polynomials are available ([L]). H owever, such an estimate is most likely

to be pessimistic unless the eigenvalues are essentially symmetric about the origin. In

section 5 we show minimax  polynomials on the discrete eigenvalue sets which come from

some of the specific problems considered in section 4.

The role of preconditioning for conjugate gradient solution of symmetric matrix

equations is to make the spectrum more clustered: this is often replaced by the sim-

pler goal of reducing the condition number K. Unless there is some symmetry in the

eigenvalues about the origin which is preserved under preconditioning, then the simple

reduction of K seems a less appropriate goal in the indefinite case.

In section 4 we will establish inclusion intervals for the eigenvalues of various indef-

inite discrete representations of the Stokes problem when only an elementary diagonal

scaling is used. More sophisticated preconditioning strategies are developed in [SW].

The simple diagonal preconditioning case serves to illustrate the difference between var-

ious elements, and in particular to highlight the fact that stabilisation has an effect on

iterative convergence.

3. Stabilisation.

In this section, the idea of ‘regularising’ the discrete Stokes problem (1.6) as a

means of ensuring the compatibility of arbitrary mixed approximations is reviewed.

Our objective here is to summarise the theoretical framework covering the case of low-

order elements like the PI-PO and PI-PI triangle or tetrahedron which are not stable

in a conventional (BabuSka-Brezzi)  sense. For a more complete discussion including the

generalisation  to higher-order mixed approximations, see the recent review [FHS].



With the notation (14, finite element subspaces of V and P are characterised  by

rh, a partitioning of n into triangles/quadrilaterals or tetrahedralhexahedra, assumed

to be regular in the usual sense. The mesh parameter h is given by h = max(hK)

where hK is the diameter of element K. The set of all interelement boundaries (edges

in !R*,faces  in R”) will be denoted by I’h, and the length of edge e E rh in R2 or the

diameter of face e E rh in 323  will be denoted by h,.

We assume below for ease of exposition, that the discrete velocity space Vh is either

piecewise linear (in the triangle or tetrahedral case) or else is the usual bilinear/trilinear

isoparametric approximation (in the quadrilateral/hexahedral case). The generalisation

to higher-order mixed approximations is straightforward. Once the approximations Vh

and Ph have been defined, a stabilised  discrete formulation of the Stokes problem is:

find uh E Vh and ph E Ph such that

(graduh,gradv)  - (ph,divv) = (f,V) VveVh

-(q,  avuh)  - PCh(ph,  q) = 0 v@h
(3 1).

Where ,6 > 0 is the so-called stabilisation parameter, and Ch(‘,  0) is a symmetric con-

tinuous bilinear form which is positive semi-definite on Ph x Ph, and which satisfies a

weak stabilisation condition:

=$ ch(?‘,P) # 0. (3 2).

Ideally the stabilisation should be set up so that it satisfies a consistency condi-
tion: any classical solution (u,p) satisfying (l.l),( 1.2),( 1.3) must also satisfy (3.1) for

all values of h and for any p > 0. Note that such a consistency condition excludes stan-

dard perturbations of the Stokes system, so-called penalty methods, which are not true

stabilisation methods (even though the perturbed system satisfies (3.2)). In section 4

we derive some theoretical results which demonstrate why the use of iterative solvers

applied to ‘penalised systems’ is doomed to failure.

Expressed in matrix form the system (3.1) is

(t -p’c> (;> = (;> (3 3).

where C is a symmetric positive semi-definite ‘stabilisation matrix’.



We can justify the use of the term ‘regularisation’ by considering the eigenvalue

distribution of the systems (1.7) and (3.3). In particular, constructing the congruence

transformation

(; $)=(; y)(A;’ -B/&+)(f) “I’> c304)
and applying Sylvester’s law of inertia, it is clear that the coefficient matrix in (3.3)

is always non-singular, whereas the coefficient matrix in (1.7) will have zero eigenval-

ues whenever the matrix B is rank deficient (giving rise to instability associated with

spurious pressure modes). These zero eigenvalues are transformed into strictly negative

eigenvalues  by the stabilisation condition (3.2). In simple terms the condition (3.2)

ensures that the matrix C automatically filters any ‘spurious’ pressures. Two types of

stabilised formulation of the form (3.1) will be distinguished.

Starting from a mixed approximation based on a continuous pressure, the obvious

route to stabilisation is by adding a stabilisation term Ch(‘,  ) which controls gradients

_ in pressure:

Ch(ph,  qh) =  p c hz”l /g=b’h  l  g=dqhdK (3 5)l

KEr / , K

in R* for example. This type of regularisation was first suggested by Brezzi and

Pitkiiranta  [BPi] in the context of the PI-PI triangular element. The generalisation

of (3.5) to cover higher order elements is constrained by the fact that the consistency

condition is not satisfied unless the stabilised formulation is generalised to a full ‘least

squares formulation’, as is done implicitly in [HF]. Continuous pressure elements which

depend on internal velocity bubble functions for their stability, for example the popular

‘mini element’ introduced by Arnold et al in [ABF], can also be expressed as a stabilised

method of the form (3.1) with &(‘,‘) given by (3.5) (after static condensation of the

bubble terms).’ Note that in this case the magnitude of ,8 cannot be arbitrarily chosen, it

is fixed by the underlying mixed approximation. See [P] for details in the mini element

case. An important feature of (3.5) is the ‘global’ nature of the stabilisation. The point

is that (3.5) represents an approximation to the Laplacian of the pressure, defined over

the entire domain n.

Mixed approximations based on discontinuous pressure can be stabilised in a similar

way to that above by means of a stabilisation term ch( 0,) which controls inter-element



jumps in pressure. Stabilisation methods of this type were first introduced by Hughes

and Franca [HF], and correspond to the following definition  of the stabilisation term

Ch(?‘h,qh)  = P c h.Jbh~eb?h~eda ( 3  s>.

CErh  c

which, in the limit of p + 00, leads to a globdy continuous pressure solution. Here [*I,

represents the jump across edge or face e. To see that this type of stabilisation is also

‘global’, consider using (3.6) to stabilise a piecewise constant pressure approximation

defined on a uniform grid of square elements. As the contributions to a particular

element pressure comprise differences with the four neighbouring pressures, the resulting

stabilisation matrix C is the standard five-point &rite  difference approximation to the

Lap&an.  Henceforth, both (3.5) and (3.6) till be referred to as global stabtisation

methods.

A second general class of stabilisation methods, which are particularly applicable in

the case of discontinuous pressure approximations, are those based on macroelements.

- They will be referred to here as local  stabik’sation  methods. Given any subdivision rh,

a macroelement partitioning M h is defined to be a union of macroelements M, each

macroelement being a union of neighbouring elements from rh, such that the interior is

simply connected. In addition, every element K must he in exactly one macroeleme,nt,

which implies that macroelements do not overlap. For each M, the set of interelement

boundaries which are strictly in the interior of M is denoted by rM. A typical example

of a locally stabilised method is that developed by Kechkar and Silvester [KS] in the

case of piecewise constant pressure:

Ch(Phd?h)  = P c c he/b’hlr[qh& (3 7).

MEM/,  CE~M  c

which, in the limit of p + 00,  leads to a IocaJy (ie. within macroelements) continuous
pressure solution.

Note that if the space.&  of spurious pressure modes:

Nh = {qh  E ph; (qh,d+)  = 0 VvcVh}

can be explicitly characterised  (for all values of h), then a very natural way of generating

a consistent stabilisation of the form (3.1) is to define a stabilisation term such that:

Ch(ph,qh)  = P(nhph,nh!?h) (3.8)



Here IIh denotes the orthogonal projection of the space Ph onto the space Nh,  so that

the stabilisation condition (3.2) is automatically satisfied. When the space Nh is one

dimensional, e.g. in the case of the Ql-PO rectangular element, constructing a Ch

satisfying (3.8) is straightforward. Furthermore if this projection can be done locally

(e.g. using a 2 x 2 macro-element construction), then (3.8) is also a local stabilisation.

For further details in the Ql-PO case, see [PSI.  In more general cases however, for

example stab&sing  the PI-PO triangle, this idea is perhaps not quite so straightforward

to implement.

The stabilisation condition (3.2) is a necessary condition for a well-posed discrete

problem since it ensures that all the eigenvalues of the matrix in (3.3) are non-zero,

so a solution of the discrete system always exists and is unique. In simple terms the

condition (3.2) establishes the existence of a strictly positive BabuSka-Brezzi  constant

for any fixed  value of h; in practice we need to ensure that this constant is independent

of h, which implies that a slightly stronger stabilisation condition must be satisfied. In

- this work we will need to make a precise definition of such a condition, in particular

for any specific choice of Ch we assume that there exists constants r,I independent of

h such that the (uniform-) stabilisation condition:

Y2 L p’(BA-‘B’ + PC)P 5 r2
P’MPP

7 vp E srn - (0) (3 9).

is satisfied for all ,O > 0. Note that this is the obvious extension of (1.17) to the stabilised

case.

As stated earlier our objective in this paper is to analyse the effect of stabilisation

on the convergence of iterative solvers applied to the discrete system (3.3). The point

of our analysis is to show how to choose a stabilisation parameter p which is optimal

in a fast solution sense. Numerical experience (see for example [SK]) shows that if fast

solution is the objective, then there is a clear advantage in using a local stabilisation

approach ((3.7) or (3.8) above), rather than a global stabilisation approach such as

(3.5). The basic problem with a global stabilisation is that the numerical solutions

tend to be quite sensitive to the particular choice of p, and in particular, the accuracy

deteriorates in the limit of arbitrarily large p. Some examples of this in the case of PI-PI
stabilised via (3.5),  and in the &I-PO case stabilised via (3.6), are given in [P] and [SK]
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respectively. This limitation does not apply when using a locally stabilised method, in

which case there is far greater scope for tuning the magnitude of p to improve the rate

of convergence of the iterative solver, without adversely affecting accuracy. This issue

is discussed in more detail in section 5.

4. Eigenvalue Estimates.

We are interested in solving systems with the symmetric coefficient matrix

(4 1).

where A represents a block diagonal matrix of discrete Laplacians, /3 is the stabilisation

parameter, -C the stabilisation matrix, and B the coupling terms between velocities

and pressure. A is positive definite and C is positive semi-definite. We will denote by

n the order of the square matrix A and by m the order of C. (Thus B is m x n). In

all practical cases n > m. For a stable element, we may simply take C = 0 throughout

_ this section.

We choose the positive definite preconditioner

M=(% ,:,) (4 2).

where DA = diag(A),  DC = diag( C) if C # 0, else DC = hdI where d is the spatial

dimension as before. Certainly DA is positive definite with (diagonal) entries of O(1)

in R* and O(h) in !R3. For all types of stabilisation described in the previous section,

DC is also positive definite with the diagonal entries being O(h*) in Z&dimensions,  and

O(h3) in 3-dimensions.  The definition of DC in the stable case is designed to satisfy a

corresponding scaling with the mesh size. The important point is simply that DC be

spectrally equiralent  to the pressure mass matrix, i.e. that there exist constants 8, 0

independent of h such that

02 < P’MPP < 02
- p’Dcp - ’ vp E R” - (0). (4 3).

Using the results of [WI, DC = diag(M,)  satisfies (4.3) and is thus another reasonable

choice for both stable and unstable elements. As the parameter p does not arise in (4.1)

in the stable case and the scaling of DC with h is prescribed, it is not appropriate to

j take p to be other than unity in the case of an unstabilised stable element.



Recalling the convergence estimate (2.3) we are interested in the optimal minimax

polynomials of increasing degree on the eigenvalue  spectrum of the diagonally scaled

matrix

M-iAM-3 =
D,+AD,*

’ D-+BDA)
7B c

(4 4).
(Note 2; = 0 in the unstabilised case).

By applying Sylvester’s Law of Inertia to the congruence transform of J-tI

(4 5).
for t = 0 we see that the inertia of x is invariant with h > 0 and p > 0 provided C

(equivalently ch) satisfies the weak stabik’sation  condition (3.2) or the element is stable.

This follows since in algebraic form (3.2) is

p’Bv = 0 vvQRn * PlCP # 0 (4 6).

or in scaled form

pt& = p’D,iBD,+v  = 0 vv E !Rn * p’D,+CD;+p = p’cp # 0. (4.7)

We thus denote the eigenvalues of A by

Correspondingly, we denote the eigenvalues of X by (0 <) X1 5 X2 5 . . . 5 An and the

eigenvalues  of -C by A-m 5 X-m+1  5 . . . < A-1(5  0). Note A-i = 0, i = 1,. . . ,m for

an unstabilisedamethod.  We also (break the usual convention to consistently) write the

singular values Of zi as (0 5) 61 5 62 5 . . . 5 Um.

Since i is a set of discrete Laplacians, it follows that & = O(h*),  Xn = 0( 1) for

small h (see e.g. [AB]). Our first task is to prove that 0, is bounded independent of h.

iFrom (1.17), whether we are using a stable or unstable element, we have

P’(BA-lBf)P < r*
PfMpP -

vp E Rrn - (0).

13
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Also, by construction, DC satisfies  (4.3), so

-3
#(DA-‘B’)P  = Q’@A-‘Bt%  q s r202

P’DCP Q’Q

for all q = D$p(# 0). Further, since &,,(D,lA)  = O(l), there exists @r with

T2 < ufA-~u
- dD;‘u

vu E w - (0).

Thus in @JO), for all q with B’D,‘q # 0, we have

-3q’D, BA -l BLo,+q
q’D;4BDi1BtD;+q

q’DcfBD;‘B’Dc q-3

Q’Q

which using (4.11) and the definition  (4.4) of B gives

q’E?q < r202
Q’Q - y2 l

- For q # 0 with B’D,+q = 0, (4.12) is trivially satisfied, so (4.12) holds for all q E

Rrn - { 0). Thus, since the singular values of 5 are the square roots of the eigenvalues

(4.11)

(4.10)

(4.12)

of EEt, it follows that gm 5 M/Y’.  That is, bm is bounded independent of h.

We now write

(4.13)

and apply the minimax  result on the eigenvalues of the sum of two symmetric matrices

([Wi], page 101-102). The eigenvalues of

are --6m,...,-61,0(~-mtimeS),ol,...,Um ([GVL], page 286), thus the eigenvalues

of 3 satisfy the bounds

pi - 6,
Ji7 <pi<Xi+a,,  i=-m,...,

JB
-l,l,. . . ,n. (4.14)

Since 6, = O(l), this gives simple P-dependent inclusion intervals for the eigenvalues

of 2. The intervals are centred  on the eigenvalues of 2 and -e. Note that the inclusion

14



intervals are small for large p. For small p, we may interchange the roles of the matrices

in (4.13) to obtain
u .--I x

u *- - -
I#

max 5 Pi 5 -2 +Xmax,
l/F

i = -m,...,-1

-Amax < /Li 5 Amax, i = 1,. . . ,Tl - m (4.15)
Ui-n+m

Jp
- Amax  5 /Li < ui-n+m + Amax,

47
i = f2 - m + 1,. . . , n.

Here, Xmax = max{  -A-m, A,} is independent of h in general. Certain refinement of

(4.14) is possible: for any 0 < { < Xi, application of the Sylvester Law of Inertia to the

congruence transform (4.5) hs ows that X1 5 p1 for any p. Thus the positive spectrum

of x lies in the interval [A,, A,, + u B
7

] for any stabilisation. We see in practice that the

smallest positive eigenvalue of .X moves away from the origin as ,B is decreased for a

fixed value of h.

The negative part of the spectrum of 2 will depend on the form of stabilisation Ch

which gives rise to the stabilisation matrix C. For a stable element (without stabilisa-

- tion), 2; = 0, so (4.14) says how far the negative eigenvalues can move away from the

origin. For a typical penalty method, C = DC = hdI,  so A-i = -1 for i = 1,. . . , m. In

this case, further use of the Sylvester Law of Inertia on (4.5) with -1 < < < 0 reveals

-1 - 6, 5 /J-i
l/P

< -1, i =l,..., m,

but as p must necessarily be small for reasons of consistency, the lower bound must

necessarily be large. Furthermore, (4.15) shows that some of the positive eigenvalues

must also be large. Computations do indeed indicate severe degradation of iterative

convergence due to the presence of large eigenvalues with such a method.

For stabilisation methods such as (3.5),(3.6),(3.7)  and (3.8) a key issue is how

the zero eigenvalues of E move away from the origin for finite values of p. CertainlyI’
X-j < O,i = 1,. . . , m for any finite p since the inertia is invariant with any bounded

value of p and any h. Some further analysis, which also applies in the case of stable

elements, helps answer this question:

Once again we make use of the Sylvester Law of Inertia. From (4.5), if we can show

the existence  of [ < 0 with

1 p’B(L~I)-l&p  + pep-
P P’P

- > -(
P’P

vp E a?” - (0) (4.16)



then it follows  that ~-1 < [. (Note (z-(I)-’is positive definite for aU 4 5 0). Firstly

using the definition (4.4) of x, B and c we see that the left hand side of (4.16) is

1 q’B(A-[DA)-lBtq + q’Cq
P Q’DCQ Q’DCQ

, e2 q’B(A-@A)-‘B?l  + 02 Q’cq- P Q’MpQ mp!l

(4.17)

(4.18)

$rom (4.3) with q = D,tp. For an unstable element, if B’q = 0 then from (3.9)

!tG? L r”
Q’Mp!? P

thus (4.16) holds for any such q = D, p with -[-3 = O(1). -For any other q satisfying

B’q # 0, then (4.18) is

e2 z’(I-[A-+DAA-+)-~z  1 qfBA-’ Btq + e2 qtCq
2% P q’Mpq QlMpQ

with z = A-iBtq(# 0). Now writing y = (I - ~A-~DAA-~)-*z(#  0), we have

rf(I - tA-4 DAA-~)-’ z =
2%

y’(I - CA-3 DAA-~)~
YfY

(4.19)

(4.20)
-1

1-t
W~DAW

=
wtAw 1 ,w=A-+y#O.

Now (4.20) is as sm& as possible for w satisfying W’AW/W’DAW  = v2h2 for any t < 0

and for some constant v. In (4.19) we thus have

e2 z’(I-~A-*DAA-#)-~z  1 q’BA-‘B’q  + 02 qtCq
2% P Q’Mpq Q’M.!?

I’ 2 62 [l _ &-2p]-’ i q’tf?&lrtq + e2 f$
P

> 02 ~1 _ &-2h-2]-1  [j qttf>ftq + E]

P

(4.21)

a-St<0  * [l - (V-~/Z-~]  > 1. But now we may use (3.9) (which is (1.17) in the-
stable case, C = 0) giving

[l _ &,-2h-2]-1 (4.22)



for any t < 0. Finally,
!$! [l - &pq-’ 2 -( (4.23)

is certainly satisfied for

t = -h eyv/fi + h2 v/2. (4.24)

I Thus ~1-1 is not closer to the origin than O(hlJp).

In the case of a large stabilisation parameter, a more refined  estimate of ~-1 can

be derived by noting that for equality in (4.23), we have that

t
v2h2 v2h2 48272z-e-

2 2 l+pq’ (4.25)

so that if p > 4e2y2 Jv2h2 = O(hm2), we can expand in terms of the binomial series to

give

t
v2 h2 2ez72 28474 ezr2=-- - -

2 pv2hZ - p2,4h4  + “* p (4.26)

for P sufficiently large. In this case p-1 is not closer to the origin than 0(1/p), ie. it is

independent of h.

One comment on these estimates in the stable case (for which they hold by simply

setting C = 0 throughout) is appropriate: the choice of ,8 (> 0) in the preconditioner

(4.2) is apparently unconstrained, however choosing other than p = 1 affects the bounds

(4.14), (4.15) on p-m and (4.24) on ~-1 in a compensating manner, i.e. making one

better makes the other worse. Our computations in the next section in any case indicate

that (4.24) is pessimistic at least for the particular stable element considered there. The

method behaves more like (4.26) for that element.

5. Discussion.

In this section, the question of how to choose the stabilisation parameter so as

to enhance the rate of convergence of the PCR algorithm of Section 2 is addressed.

We compare the performance of the different types of stabilisation introduced in Sec-

tion 3 with that of an a-priori stable method. For convenience we restrict attention

to two-dimensional elements and consider only the lowest order continuous velocity

approximation, i.e. based on linear triangle or bilinear square elements.



As a test example we solved the ‘leaky’ two-dimensional lid-driven cavity problem in

a unit square domain with a flow solution, calculated using the stable method below, as

illustrated in Fig. 1. This problem was also discussed by Pierre [PI, wherein he showed

the sensitivity of the solution accuracy to the choice of the stabilisation parameter

using (globally-) stabilised PI-PI and Qi-Qi methods. In this work, only half the

domain was modelled exploiting the natural symmetry of the solution about the line

x = 112. Rectangular and triangular element grids were both used; starting from a

uniform subdivision of N x 2N square elements, the triangular grids were constructing

by dividing each square into two. In all cases an initial solution guess of zero was used,

and the tolerance for convergence was a reduction of 10m6 in the &norm  of the residual.

All computations were done using Pro-MATLAB on an SGI 40/S Iris-workstation.

The stable case is discussed first.

5.1 Using a.n LBB stable method.

Restricting ourselves to linear triangular or bilinear rectangular elements necessarily

implies that the pressure approximation must be defined  on a coarser grid if the element

is to satisfy the LBB condition (1.9). Using a standard four-triangle macro-element

(with internal edges connecting the mid-points of the macro-element edges), we can

construct a stable PI-PI method by using a continuous pressure approximation defined

by the macro-element vertices. The method is commonly referred to its the PlisoP2
method, c.f. [BF], p.255. For the uniform grids we used, the asymptotic ratio of

velocity to pressure degrees of freedom is 8:l as h + 0 which is somewhat high. Thus

from an approximation point of view this method is probably too under-constrained to

be the ‘best’ fist order method (ie. with an O(h) error for velocity in the H1-norm).

Note that the tetrahedral analogue of this method is also LBB stable.

Solving the test problem using the PCR algorithm gave the iteration counts in

Table 1. Results for p = 1 with two choices of the matrix DC (in (4.2)) are presented.

Here DM,,  is the diagonal of Mp. These results vividly illustrate the importance of

having the right scaling for the ‘pressure part’ of the Stokes operator.

A nice feature of these results is the fact that in the case where the ‘correct’ scaling

is used, the iteration count behaves like O(h-‘), as would be expected using diagonally



Grid DC =.I DC = DMp
I

2x4 17 16
4x8 88 56
8 x 16 261 130

16 x 32 * 276

Table 1.

Number of PCR iterations in the stable case.

scaled CG to solve Laplace’s equation on a uniform sequence of grids. This behaviour

can be explained by considering the actual eigenvalue distribution of the preconditioned

Stokes operator (4.4). To get a flavour of this, the eigenvalue distribution for the 4 x 8

grid is illustrated in figure 2. Also plotted in figure 2 is the optimal polynomial approx-

imation (of degree 11) on the discrete set of values, ie. the polynomial is constructed

such that the PCR error contraction estimate (2.3) is minimised. Each vertical bar

represents an eigenvalue of (4.4) and is of height equal to twice the minimax  error.

I Grid I P -m I k-1 1 Pl I Pn

2x4 -0.2842 -0.0286 0.4822 1.7307
4x8 -0.3538 -0.0405 0.1925 1.9255

8 x 16 -0.3688 -0.0407 0.0505 1.9809
16 x 32 -0.3721 -0.0404 0.0127 1.9952

Table 2.

Eigenvalues of 2 in the stable case

To see the way the eigenvalue distribution changes as h + 0, the extremal eigenval-

UeS P-m7 P-1 ,Lc(l~  Pn are listed in Table 2. The key point is that the extremal positive

eigenvalues indeed behave like those of a scaled Laplacian, whilst the negative eigenval-

ues remain in a fairly tight cluster which is bounded away from the origin independently

of h. The behaviour of the positive eigenvalues is consistent with our perturbation anal-

ysis, but the fact that the eigenvalue 11-1 appears to be independent of h is slightly

surprising. Our estimate (4.24) is clearly pessimistic in this case.

To conclude our discussion of Table 1, when we solved the test problem on the finest



grid using the naive preconditioner DC = I (and p = l), the PCR algorithm broke down

after 576 iterations; after a residual reduction of about 10m5, the IEEE number NaN  was

calculated. This erratic behaviour seems to emphasise the importance of preconditioning

the Stokes operator so as to ensure the right scaling of the pressure and velocity with

respect to h.

5.2 Using  a globally stabil’sed  method.

We will use the continuous pressure PI-PI triangle stabilised using (3.5), as a

representative globally stabilised method here. A very attractive feature of this method

is its inherent simplicity, both the velocity and the pressure being defined by the same

piecewise polynomial basis set. Another important feature, is that the approximating

power of the method is much better than that of the stable method above. If the effect

of the stabilisation term is ignored, then the asymptotic velocity to pressure constraint

count is 2:1, which is ‘optimal’ in two-dimensions. Perhaps the only negative feature of

this method is the fact that solution accuracy is known to deteriorate if the stabilisation

parameter is not chosen correctly, see [P] for details. On the one hand, if the parameter

is too small then the method might not be sufficiently stable to give good results.

For example, solving our test problem with p < lOa gave rise to oscillatory pressure

solutions. On the other hand, it is easily seen that in the limiting case of p + 00 the

pressure solution tends to a constant, which implies that the corresponding velocity

field is nowhere near divergence-free. Solving the test problem with ,8 > 10 gave poor

solutions on all of the grids we considered.

Returning now to our main concern; that of finding  the ‘optimal’ choice of stabil-

isation parameter in the sense that the contraction factor in (2.3) is minimised. PCR

iteration count’s using preconditioner (4.2) for a range of values of p are listed in Table 3.

These results illustrate that the efficiency of the PCR solution method is also crucially

dependent on the choice of stabilisation parameter.

The characteristic feature of globally stabilised methods is the fact that the stabil-

isation matrix C represents some discrete approximation to the Laplacian (with Neu-

mann boundary conditions). This means that the eigenvalues A-m, . . . , X, 1 of -zI are

fairly evenly spread within the interval [-2,0]. For comparison with the a-priori stable
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Grid p = 0.01 b = 0.025 /? = 0.1 /? = 1.0 p = 10.0

2x4 22 21 22 23 23
4x8 71 61 65 91 93

8 x 16 169 135 150 285 359
16 x 32 400 307 369 741 1279

Table 3.

Number of PCR iterations in the globally stabilised case.

case above, we plot the eigenvalue distribution corresponding to the case of p = 0.025

in figure 3, together with the optimal minimax  polynomial (of degree 11).

The results in Table 3 closely agree with our perturbation analysis. For a small

value of p the estimate (4.15) applies, and the extremal eigenvalues p-m and pn are

forced to move out towards &w (by an amount proportional to l/d) independently

of h. Applying (4.15) in the case of the smallest positive eigenvalue ~1, we see that its

movement away from the origin is bounded independently of p by Xmax(=  2). Hence the

condition of the preconditioned system necessarily deteriorates as p + 0, as reflected by

the iteration counts in the case of ,8 = 0.01. For a large value of p the estimate (4.14)

applies, showing that the spectrum of the preconditioned system is ‘close’ to that of .Z

on the positive side, and to that of -c on the negative side. In particular as ,8 + 00

the spectrum becomes essentially symmetric about the origin. In this situation, it is

well known that the application of Conjugate Residuals gives essentially the same rate

of convergence as would be obtained using CG to solve the ‘normal equations’, ie. the

condition number of the system is effectively squared ([Fr]). Thus for large values of

p, we could expect the number of iterations to increase by a factor of four for each

succesive  refinement of the grid, as can be seen in the case of ,0 = 10. Interestingly, the

‘optimal’ choice of p = 0.025 &om the table turns out to be a very natural choice. It

is precisely the value (see [PI) which generates the system that would result using the

analogous subdivision of PI-PI  Mini-elements, after elimination of the internal velocity

bubble terms.

In Table 4 we illustrate the variation of the extremal eigenvalues with grid refine-

ment in the Mini-element case (ie. with ,8 = 0.025). Comparing these values with those



c

Grid P - m P-l Pl Pn

2x4 -2.2251 -0.6888 0.6986 2.5778
4x8 -2.3667 -0.5122 0.1974 2.5916

8 x 16 -2.4553 -0.2846 0.0507 2.5931
16 x 32 -2.4865 -0.1476 0.0128 2.5931

Table 4.

Eigenvalues of .X in the globally stabilised case

with parameter p = 0.025.

in Table 2, note that there is a fundamental difference in the behaviour of the largest

negative eigenvalue p-1,  our estimate (4.24) of O(h) movement of the eigenvalue p-1

appears to be tight in this case.

5.3 Using a locally stabilised method.

Finally we discuss the performance of a representative locally stabilised method,

namely the Q1-Po quadrilateral, locally stabilised over 2 x 2 macroelements via (3.7).

The attractive feature of this method (apart from its simplicity) is the fact that it also

has the ‘optimal’ approximation property of having an asymptotic velocity to pressure

constraint count of 23.  The use of a discontinuous pressure is especially alluring since

it gives the method a ‘local bias’, for example, it leads to conservation of mass at an

element level. Despite it’s inherent instability the raw &1-P* method is often used

in practical computations without any stabilisation. Indeed, in terms of accuracy the

velocity solutions are usually reasonable, and pressures often appear to be realistic after

post-processing. The lack of inherent stability has to be overcome in our case; the crucial

point is that if’the  method is not stabilised then the eigenvalues of the Schur complement

BA-‘B’ in (1.17) are not independent of h, (the LBB constant y is O(h)), hence the

performance of the PCR solver rapidly deteriorates as h + 0. Such deterioration in

convergence must also be expected with a nested iterative strategy based on the Schur

complement.

As in the globally stabilised case, solution accuracy tends to deteriorate if the

stabilisation parameter is not sufficiently large. For example, solving our test problem,



oscillatory pressure solutions are evident if p < 10B2; see [SK] for some related results.

In contrast to the globally stabilised case however, solution accuracy is retained in the

limit of an arbitrarily large stabilisation parameter. This implies that there is more

freedom when seeking to optimise the choice of stabilisation parameter to speed up the

rate of convergence of the PCR solver. Of course if the effect of the stabilisation is

localised,  then we might expect that varying p might have less effect on the iteration

counts. This expectation is boume out by the results in Table 5.

Grid p=o.o1 p=o.1 p=1 p=10 p=100

2x4 17 17 17 17 16
4x8 73 55 55 59 65

-8 x 16 202 142 156 152 147
16 x 32 * 347 375 329 263

Table 5.

Number of PCR iterations in the locally stabilised case.

The characteristic feature of locally stabilised methods is the fact that the stabil-

isation matrix C must always be block diagonal, since it represents a discrete approx-

imation of some local operator. The block size corresponds to the number of discrete

pressure variables on a macroelement. In the case above the blocks are 4 x 4 matrices, all

having eigenvalues O,l,l,2 after diagonal scaling. The repeated eigenvalue structure of

the operator CI, (after scaling) means that for large p the preconditioned Stokes matrix

will have well clustered negative eigenvalues as illustrated by the spectrum plotted in

figure 4.

Comparing the results in Table 5 with those of Table 3, we see that in both cases,

the performance is poor if ,8 is too small. In the locally stabilised case with P = 0.01 the

PCR algorithm breaks down on the finest grid (in the same way as when using the stable

method with the ‘wrong’ scaling). As discussed above this poor behaviour is explained

by our eigenvalue theory of the last section. On the other hand, for a large stabilisation

parameter the eigen-spectrum of the locally stabilised method is fundamentally different

to that in the globally stabilised case, and this is reflected in the iteration counts. In

the locally stabilised case, the clustering on the negative side of the spectrum can be



exploited by the PCR.dgorithm and the nice behaviour of the iteration count growing

like O(h-‘) is retained. This is in stark contrast to the globally stabilised case with

large values of p. Note also that our analysis clearly shows that ,B must not be too large,

otherwise the smallest negative eigenvalue p-1 (ie. the right-most cluster) will be close

to the origin, which will certainly slow down convergence.

In Table 6 we show the variation of the extremal eigenvalues for the optimal choice

of parameter from the table above, (ie. with ,8 = 100). Comparing with the values in

Table 4, we see that the fundamental difference is the fact that with this value of ,8 the

largest negative eigenvalue seems to be insensitive to h, much as in the stable case (cf.

Table 2). This is perhaps to be expected since- any locally stabilised method must tend

to an a-priori stable method (in this case the P&soQ2 method) in the limit of ,8 + 00.

For more moderate values of /3 (for example, p = 1) the eigenvalue p-1 moves towards

the origin like O(h), so that the convergence behaviour is more like the Mini-element

case above.

Grid P -m P-1 Pl Pn

2x4 -2.0004 -0.0019 0.3983 1.2526
4x8 -2.0011 -0.0016 0.1135 1.4297

8 x 16 -2.0012 -0.0013 0.0309 1.4839
16 x 32 -2.0012 -0.0012 0.0091 1.4982

Table 6.

Eigenvalues of A in t-he locally stabilised case

with parameter p = 100.

Our conclusions from this are as follows: using an a-priori stable method, conver-

gence rates analogous to those which would be expected solving the diagonally scaled

Laplacian can be obtained in the indefinite case, as long as the preconditioner  (4.2) en-

forces the ‘correct’ scaling. Using a globally stabilised method, good convergence rates

can only be achieved by making the correct choice of stabilisation parameter. However,

even when chosen optimally the iteration counts are likely to be asypmtotically inferior

to those which would be obtained using an a-priori stable method as above. Using a



locally stabilised method leads to reasonable rates of convergence and solution accuracy

as long as the stabilisation parameter is not too small. Making the ‘optimal choice’

in the locally stabilised case as discussed above, again gives the convergence behaviour

obtained in the a-priori stable case.

In part II of this work ([SW]), we extend our analysis to cover the case of more

sophisticated preconditioners,  for example, based on the Laplacian part of the Stokes

operator.
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Fig la: Stokes Problem Velocity  Plot
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Fig lb: Stokes Problem  Pressure Distribution

: -. c- ----- -F----T--~



I I I 1
-2.0 -1.5 -1.0 -0,

I-0

lure 2



I
-2.

0.5

-&e
5

-0.5

Figure 3



I
3 -1.5

1.5

1.c

0.5

n
I A

3 -0.5
-0.:

-1.c

-1.t

.Flgl !4

I I
.5 2.0


