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Abstract
In this paper we derive a direct method for block tridiagonalizing a single-

input single-output system triple (A,b,c}. The method is connected to the non-
symmetric Lanceos procedure developed in [8][2][1]  and also leads to cssonical
representations of such triples.

1 Introduction
The Lanczos  method is a recursive process for tridiagonalin;ing  a given real or complex
matrix A via a similarity transformation T. In numerical linear algebra this is typically
used for the computation of the eigenvalues of A by exploiting the resulting tridiagonal
form, The recurrence of the unsymmetric Lancsos procedure [lo] starts with two
(arbitrary)-vectors b and c and consists of a biorthogonalization  of the Krylov seQuences

c 4n [ b, Ab, A’b,.  . . , n-1A bl , On ii

C

CA
CA*

.
:
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9 0)

d

where n is the order of the unsymmetric matrix A. Notice that for notational conve-
nience b is a column vector and c is a row vector. If n is the dimension of the matrix
A, then C,, and 0, are also known in systems theory aa the controllability math and
observability matriz,  respectively, of the system triplet {A,b,c}.  Also their product
?i,, = O,,C,, plays an important role in that area. The elements of that matrix are all

‘moments IQ = c A“’b of the triplet and along the anti diagonals these elements are
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easily seen to be equal:

3t,*= o,c, =

cb cAb ... CA”-‘6
cAb

: ... .
l

. :
.

CA*-‘b . . . &-l)b

=

hl hl ... h,
h2

...

:.
.. :. .

ha . . . bn-l

. (2)

Such a matrix is called a Hanhel  mat& and its properties with respect to the triplet
{A, b, c} have been widely studied in the system theory literature [7][5][3].  Recently,

. the relation between the unsymmetric Lanczos procedure on A with starting vectors
1 b and c, and the system theoretic properties of the triplet {A, b,c} has been made

explicit in a number of papers in order to explain various forms of breakdown of the
Lancsos method. As a result of this, modifications of the tiidiagonal  reduction process
were proposed [8] [2] [l] .

In the present paper we develop a direct tnznafownation  method leading to a block
tridiagonal decomposition as in [2]. Our form, though, also displays the fine structure
in the blocks of the tridiagonal form, which has direct similarities with properties of
the Hankel  matrix N,,. Eventually, we also derive from this form a new canonical
form for a minimal realization of the triplet {A, b, c} under similarity transformation
{T-lAT,  T-lb,  CT}. AU derivations presented here are tied to matrix decompositions
of the matrices O,,, C,, and ‘H, and to their rank properties.

2 Th6 unsymmetric Lanczos procedure
Here we briefly recall the unsymmetric Lanceos  procedure in the case that no break-
down occurs and relate it to matrix decompositions of C,, 0, and x. Given two
linear independent vectors b and c the biorthogonalixation  of the Krylov sequences C,
and 0, (1) can be expressed as follows. Find L and R such that

A = LtAR =

=1 Y2 0
22 l . l .

. . .. .. . l .

. .. . l * Yn

0 %a  zn

(3)

Here, L and R can be generated from the relations AR = RA, AtL = LA’ where the
coefficients &j are computed to satisfy the biorthogonalization conditions L’R = I (or
a diagonal matrix). The decomposition is derived in the following ‘two lemmas where
it is also shown that A can be chosen tridiagonal and Lt = R-?
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Lemma 2.1
Let T be an invertible transformation. Then

T-lb =

if and only if

X . . . . . . X
. .:=’ .I* ... i

.
0 Xn X

T-‘C, =

i

Cl ⌧ l -* ⌧

. .
. . :

. l .

l . . X

0 - c ,

with x; # o (4)

I with ci # 0. (5)

Proof=
Defining  & = T”b and A = T-‘AT, it immediately follows that T-‘C,, = &, 4

[ b, iii, A%,*-•,wi]. 0 ne easily shows then recursively that the i-th column of
Cm has only i non-rtero  elements and that ci = 21x2  l xi # 0. Conversely, 8 is the first
column of & and hence x1 = cl # 0. Then, one easily shows recursively that column
i of A has only i + 1 non-zero elements and that xi+1 = c+l/~ # 0. 0

From the above lemma it follows that T cm be chosen to be unitary. Indeed,
consider the QR factorization C, = QR, then T” = Q’ triangularkes  C, and hence
Q*b = & and Q*AQ = A must have the required form (if C, is invertible).

Lemma 2.2
Let T be an invertible transformation. Then

T-‘AT =.

if and only if

T-‘C,, =

with c; # 0, o; # 0.

x Y2 0
22 l . �-.

. .. . l .. . .

. .. . ‘* Yn
0 %a X

CT = [ y1 0 . . . . . . . . . 0 ] with y; # 0, x; # 0

Cl ⌧ l ** ⌧

. . .

l . l . :

.
.

. X

0 Cn I and O,T =

, T-lb=

Xl
0
:. 9
:

iI

01 0
⌧ l .
l . .
. . .
. . .

X
. . .

X On

(6)
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Proofi
Apply the above Lemma on {A, b} and {At, d}. The t&diagonal  form of A = T-‘AT
follows from the fact that it is both upper Hessenberg and lower Hessenberg. 0

An immediate corollary of the above two lemmas is now the following.

corollary 2.1
Let X, be the n x n Hankel  matrix (2) corresponding to the system triplet {A, b, c}
where n is the dimension of A. Then there exists a transformation to a system {T-‘AT,
T-lb,  CT} as in (6) if and only if all the leading principal minors of ‘H, are non-zero.
Proof:
If there exist such a system {T”AT,T”b,cT}  then

0-l
x*n = O,C, =O,TeT-lC,A i l . .

X . . . On 1 Cl l ** ⌧

.
. :
l .

0
c ,

is a LU decomposition of ‘H, without pivoting. Since the oi and ci are non-zero, all
leading principal minors of X, must be non-zero.

Conversely, if this property holds then there exists a LU decomposition of ‘Ic, with
nonsingular L and U factors:

?&=L*U

Since Pi,, also equals OnCn we have that L-‘On and CnU-l must be each others inverse.
Taking T = C,,U-’ and T” = L-‘On yields (7) and hence also (6). 0

When 7&, does not have all leading principal minors non-zero, then one can not
obtain an t&educed  tridiagonal form (6), but instead one can always reduce {A, b, c}
to a block tridiagonal form of the same type as (6). As one would expect this is linked
to a block LU decomposition of R,, and the block sizes are related to the index set
for which the leading principal minors of R,, are non-zero. A proof of this based on
the Lanczos recursion can be found in [8][2]. In the next section we derive a direct
algorithm for this decomposition.

When x does not have  full rank-n then either On or Cn (or both) are singular and
{A, b, c} is said to be non minimal. For simplicity we assume in the following sections
that the system {A, b, c} is minima2 (i.e. 0, and Cn are non singular) and we comment
on the general case in the concluding remarks.

3 A direct elimination procedure
We start by reducing our minimal system {A, b, c} to the form (4) by a unitary trans-

formation Tl = Q. The new system {Q’AQ,  Q*b, cQ} b {a, 8,;) has an unreduced
Hessenberg matrix a since Cn has full rank ({A, b} is controllable). The total flop.
count for this reduction is fn3 for the construction of {A, 6,e) and an extra n3 for the
construction of Q [9].
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Since in this coordinate system e* is upper triangular, one can only allow upper-
triangular transformations to further reduce {&&,C} to (possibly block) tridiagonal
form. Suppose in this coordinate system &I is the firat non-zero  element in the row
vector 2 (we call this element yl in the future). Then partition the system {A,&, 3)
into the first El columns/rows and the remaining (n - kl) ones as follows:

Xl x . . . . . .
I

x
I

X . . . . . . X

x2 l ** :. X .*. .*. X
. s l . : : :. . . . .

=k l ⌧ X . . . . . . X

Xk l+l ⌧ l ** l � ⌧

w&2 l --
.

:
. . .

l . l . :

Xn X

We now show how to eliminate by a unit upper triangular matrix Ts all of 22 and
all of 21, except for the first row as follows:

[i&i%]=

T2 =
I-1 xz

In-k1
-

+ kl
.
:

+l 9

y1 0 ...... 0'
Xl ⌧ . . . . . . ⌧

X
... ...

X

x2 ‘-0 .: 0 . . . . . . 0
. . . .

l . . : : ..

=kl x 0 . . . . . . .

X& 1 +1  ⌧ l ** l ** ⌧

=k1+2 l -*
.

, :
. .. . :. l .

Xn ⌧ #

(10)

+l

+ kl
:.

+2 . (11)



Here we marked the order in which the rows in (11) are eliminated and the rows
of X2 in (10) are calculated by the numbers 1 to ICI. This order is crucial in order
to guarantee that previously created zeros are not destroyed afterwards. The pivot
elements that are actually used to zero out the consecutive rows are: gl for row 1,
zk, for row 2, up to 1s~ for row kl. The total flop count for the transformation Tz is
$nkl(n - kl) for updating the system triplet and an additional nkl(n - kl) for updating
the transformation matrix.

The trassformation  Ta has now the following effect on the matrices d,, and. &
Since T2 is unit upper triangular, Tr’e,,  remains upper triangular (in fact its diagonal
,eIements  do not change). The matrix &, on the other hand, was a full matrix and
&Ts  is now block triangular :

&T2 =

,

0 01
.

.* X
.. . ’ :. . .

Ok I ⌧ l �* ⌧

X
. . . . . .

X

. .

. .

. .

:
.
.

. .

X
. . . . . .

X

0

X
:.
;.
X

. . .

. . .

. . .

. . .

X
.
:
:.
X

kl

n- h
(12)

Jcl n -- kl

with ol = yl and oi = oi-1xkr--i+2 for i = 2,. . . , kl.

.

Redefine 2 = T;‘aT2  partitioned into blocks &, A12,  d2i and 322 as in (11). If
we now let the first row of A,2 play the role of a new E vector the last column of AZ1
play the role of a new b vector and 122 play the role of a new A matrix, then the above
procedure can be repeated. If k2 is the first non-zero element in that row c (we call
this element yz) then a similar step embedded into (11) would yield (define q = Icl
and r2 = kl + k2) :
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Y2

xQ+l X ..* . . . X
.

++2 '* :.
l . . . :. . .

XT, X

X,+1

with an updating transformation

Ts =

X . . . . . . x

X . . . . . . X
. .

"?a+2 .' :
. .

l . �. :.

Xn X

As before, T,-‘T,-‘&  is still upper triangular and &T2Ta  has the form:

&T2T3  =

with o,,+~ = o+,

0 01
.= x

. ..* : :.
O+r X . . . X
X . . . . . . X
: :. .
: :. .
X . . . . . . . X
X . . . .*. X
: :. .
: :. .
X . . . . . . X

X . . . . . . X
I
X . . . . . . X

:. :. : :. .
: : :. . .
X . . . . . . X

= OT,+i-1 l "Q-i+2 for i = 2,...,k2.

X . . . . . . X

0 Or, +1... X
. .. . :. . .

o tl ⌧ l *- ⌧

:.

(13)

(14)

(1 15

F’rom here on, it is easy to see by induction that the following block tridiagonal
form is obtained by a product of updating unit upper triangular transformations T;,
which we denote together by the matrix T (we choose p = 4 blocks for illustration
below):



I1
q )( . . . . . . x

22 l ** :.
. .. . :. .

2ta ;

2,* +1

82 1

I

X . . . . . . X
.

%,+2 l * :.
. . .
‘. . . :

2t, X

-a+1 X . . . . . . X Y4

2*+2 l **
...

. . .. .. . :
2,s X

2,,+1 X . . . . . . X
. ..%3+2 l

.

.

. . .
. . .

. l .

2n X

(1 6)

Each diagonal block i&i is upper Hessenberg and unreduced.  Each off diagonal block
has only one non-zero element in the upper right comer. The corresponding T”& is
upper triangular and d,,T is block lower triangular. We thus have the following block
LU factorization of F&:

⌧, = (j,☺� l T-l&  =

(17)
The “anti triangular” shape of the k; x k; diagonal blocks of &T is easily checked
by induction. It also follows from (17) that the leading principal minors of R, are
non-zero if and only if those of d,,T are non-zero. Because of the special structure of
this block triangular matrix one readily sees that the non-zero leading principal minors
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are those of dimension
i

Tj = j = l 9.•*,P*
i=l

The kis are thus the “rank increasesn  of the nonsingular leading principal submatrices
of R,,, as was also observed in [5][8].  Notice that the minimality assumption guarantees ’
that r,, = n, which cares for a proper ending of the recursive block reduction.
Remark 3.1
By flipping around the diagonal blocks in (16), i.e. perform a state space transforma-
tion

T=diag [ 1 .a* -l] ,..., [ 1 .** l’]

kl Ic,

(19)

one obtains the dual form of (16), where the role of 8 and E is interchanged and i is
lower Hessenberg. The “profile”  (i.e. the pattern of l;ero and non-zero elements) of
(16) is then just its transpose. Also &T is then lower triangular and T-l& upper
block triangular. Their uprofle” is then each others transpose again. This is used in
the various canonical forms presented in the next section. 0
Remark 3.2
IfwedcfineR=n,  ~=n;,l-k;=
the system-@,  8,Z) to {A, 5, E} is

n--i then the total operation count for updating

P-l
flops = c ni,1  kgzi

i=l
2

and twice this amount for accumulating T. The above flop count is in fact maximized
when all k = 1 (the tridiagonal case!) and the flop count is then only d/6. Notice
that this is much less than-the preliminary reduction to {a&}. 0

4 Canonical form .

In this section we still assume {A, b, c} to be minimal. It was shown above that the
block tridiagonal from (16) is intimately connected to the block LU decomposition
(17) of X,,. What are the degrees of freedom left over for these profiles ? Ram the
properties of LU decompositions [4] it is well known that the only degrees of freedom
left over in a decomposition with the profile of (17) is a block diagonal matrix ;

Tup =

Ul

vz
. .

UP

.
(21)
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where each block Ui is k x k and upper triangular. It is readily seen that the off
diagonal  blocks in (16) become UG\ &-I+ Vi and UC’ &+I Q-1 respectively, and
they both have still only one non-l;ero element in the top right comer. The diagonal
blocks become UC’ &,i Vi and their protie can be affected by this, as is shown in the
following lemma.
Lemma 4.1 [lo]
An unreduced  upper Hessenberg matrix can always  be transformed by an upper trian-
gular similarity U-lHU  to either one of the two forms:

HI =

a1 l ** l ** a?
1

l . .

1 I i9 H2=

cu,
1 .:

. . :.
1 6,

where the a; determine the characteristic polynomial of H.
1 9 (22)

0

These axe aho known aa companion forms of the matrix H. They both determine U
completely up to a scalar factor d, which obviously cancels out in U-‘HU.  This factor
d in turn can be used to make either the elements of c’ and &-l,i equal to 1, or those
of & and &,i-l equal to 1. In each of those two cases p elements are involved which
can be put equal to 1 by an appropriate choice of the p scalar factors 4, still free to
choose in the Vi factors of (21).  Depending on these choices we now present two types
of canonical forms of a minimal system {A, b, c} under state space transformations T.
We fkst choose to put the non-zero elements of 5 and &,i-l  equal to 1 (here we use
p = 3 blocks for illustration):

[T=&G]=

i

-

-

. . .

-1
1

P2

P3

1
(23)

For this form T-‘C,, is unit upper triangular and O,,T is block lower triangular with
anti diagonal blocks of size Ic; x k.+ A variant of this form is to choose the non-zero
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elements of Z and &-1,; equal to 1. The resulting form is easily checked to be almost
identicd to (23), except that the & elements now occur below the block diagonal. Then
T-‘C,,  is no more identity on the diagonal but CY,,T has unit anti diagonal blocks. Both
these variants axe connected to decompositions of 7-&,  of the type:

(24
These are connected to the work of [2] as discussed in the next section.

Another type of canonical form uses the second companion form of Lemma 4.1.
Again we use p = 3 for illustration:

i

L I

P1

-1

1 .:
. . :. .

1 al
1-

P2

am
1

.
:

. .. . :

1 a,,+1
1

P3

1
a‘1

.... .. ..
1 a,;1

(25)

Now T-‘C,,  is block upper triangular with identity on each diagonal block and O,T
is block lower triangular with anti triangular blocks of size ki x ki. We thus have a
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decomposition of ‘H, of the type:

(26)
The variant here of choosing upper block diagonal elements equal to 1 maintains the
profile of (26) but the identity matrices in U become diagonal matrices while the anti
triangular matrices in L have now l’s on the anti diagonal. For each of these four forms
there is of course yet a dual form where the diagonal blocks &i are lower Hessenberg.

From the above discussions it is readily seen that all these forms can be derived from
one another by just moving around block triangular factors and scalings between the L
and U factors of 3G, in (24)(26). These forms are therefore essentially identical. They
indeed all have the ramc  nomero  elements {a+ = 1,. . . ,n} and {pi, i = 1,. . . ,p}.
Notice that the form in the work of [8] is in fact related to (25)(26).

5 Concluding remarks

.

The approach presented in this paper assumed everywhere that the system {A, b, c)
is minimal. In a sense this is not a restriction since controllabiity  and observability
are implicitly checked by the algorithm. Indeed, the reduction to upper Hessenberg
form (9) would detect the uncontrollable subsystem (when xi = 0) and one would
only continue with the controllable subsystem (4, b,,c,}. The recurrence (11)(13)(16)
applied to that subsystem would detect its observable subsystem {&,b,,c,) (when
some s = 0) and one would stop the procedure there. The links with ti,, and the
canonical forms are of course still valid for the minimal subsystem {A,, b,,c,,) of
{A, b, c}. The canonical forms presented in the previous section are not really new
since they are essentially to be found in the work e.g. of [7][5] and [l]. The novelty
here is the simplicity of their derivation from elementary matrix operations and of their
mutual connection.

The direct matrix derivation presented here also makes sense because of some ad-
vantage over the Lanczos  type recurrence of [8][2][6].  We therefore discuss the cliffer-
ences  below. The complexity of the direct approach is appealing. In the worst case,
in3 + in3 = fn3 flops are needed for calculating {A, 6,E) in the block from (16) or

.
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even in any of the canonical forms. The calculation of the transformation T itself takes
n3 + $3 = rfPs flops. The Lancz;os  procedure on the other hand, requires 2n matrix
products Abi and A’cf, but if A is sparse this may be relatively cheap, say 2mn2,  where
m is the number of non-zero elements in one row/column of A. For sparse systems the
Lanczos procedure also has the advantage of not requiring to store A as such, whereas
the direct method would require this. The biorthogonakation requires in total 2d
flops, but this includes the construction of T and T-l. If full reorthogonalization  is
not requested then this figure can be replaced by 10 kn’ where k is the average block
size of the diagonal blocks. The numerical stability of the direct approach is, normally
superior to that of the Lances  procedure. In the Srst stage of the direct approach,
only unitary transformations are performed. The rank tests there involve the off di-
agonal elements xi of the Hessenberg  matrix (4) which are computed from orthogonal
similarity transformations. In the Lanczos procedure the rank tests involve scalars or
block matrices, which are computed from non-unitary transformations of the original
{A, b, c} triplet. In the direct approach, similar disadvantages are encountered in the
second stage as well. The upper triangular transformation eliminating the elements
above the diagonal of A, may be very ill-conditioned. When using a threshold 6, in-
stead of checking for non-sero elements, one can bound the condition number of the
updating triangular transformations Ti by some function of 6. This is far less obvious
in the Lanczos procedure, where the condition number of the matrices T and T-l,
constructed during the process, is far more difficult to monitor.

A fkl disadvantage of the Lanczos procedure is the multiplication with the A and
A’ matrices, which cause instability when the eigenvalues of A have a large spread
(when A is ustiE”).  This is e.g. one of the reasons why reorthogonalisation is needed
in the Lancios  procedure. This drawback is typical for the Lanc~os  procedure and is
not encountered in the direct approach.
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