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ABSTRACT

SamyM&t
Nirmal  Sczxena

Edward J. iUcCluskey

,

This paper presents an assertion scheme based on the backward error analysis for error detection in algorithms
that solve a system of linear equations, Ax = b. This Backward Error Assertion Model can be easily instru-
mented in a Watchdog processor environment. The complexity of verifying assertions is O(n2> compared to the
0(n3)  complexity of algorithms solving Ax = b. Unlike other proposed error detection methods, this assertion
model does not require any encoding of matrix A. Experimental results under various error models are
presented to validate the effectiveness of these assertions.

1. Introduction
Some issues in the robust solution of systems of linear equations are addressed. The specific object is the

design of a watchdog scheme that can guarantee that the solution is correct in some sense, or else signal that an
error occurred during the solution process, such as from temporary hardware faults. Properties of some tech-
niques for the solution of this problem are discussed.

Many papers [l], [2], [3] have been devoted to the study of checksum schemes for algorithms such as
Gaussian Elimination on a matrix A. We do not attempt to fully describe these methods. The basic idea of
these methods is to extend the matrix A with some additional columns which represent weighted checksums of

the matrix rows using different, linearly independent weight vectors. As Gaussian Elimination (GE) proceeds by
row operations, these checksums are preserved and can be used to detect, and in some cases correct, temporary
errors in the elements of the matrix or in the multipliers during the course of the elimination. A description of
this scheme can be found in many places (cf. [2]).

It is well known (e.g. [8], set 2.4) that in floating point arithmetic, the numerical solutions to many prob-
lems are almost never exact, but they suffer from contamination arising out of the round-off error. Hence, any
method that attempts to detect or correct errors must account for the fact that some error occurs in normal pro-
cessing in floating point arithmetic. In [4] there is an extensive discussion of the behavior of checksum schemes
for detecting or correcting multiple errors when floating point arithmetic is used.

. In this paper, we propose another scheme, not based on the checksum approach, to certify the correctness
of a solution to a set of linear equations when operating in an environment of floating point arithmetic. The
basis of our approach is the error analysis for the method used to compute the solution. We check that the COM-
puted solution satisfies a a priori error analysis for the particular method used. Suitable a priori bounds are
given in the Appendix.

The rest of this paper is organized as follows. We illustrate the checksum scheme with a simple example,
which we then use to show a major weakness of this scheme, as it is commonly defined. We then describe our
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approach using GE with two different pivoting strategies, as well as Orthogonal Triangularization.  We illustrate
the approach with some numerical experiments and finish with some concluding remarks. In an Appendix, we
sketch the derivation of the bounds from the backward error analysis of the numerical methods we used.

2. What Checksum Schemes Won’t Find
We illustrate the checksum scheme with a simpleminded example which we then use to point out a major

weakness of this approach. Suppose we want to solve the system Ax = b in 3 decimal digit rounded arithmetic,
where I.

The method we use is GE with Partial Pivoting [5] to factor the matrix A as the product of a permutation matrix
P, a unit lower triangular matrix of multipliers L and an upper triangular matrix U, to get A = PTLU. At each
stage k of GE with Partial Pivoting, the k-th column is searched from the diagonal down for the largest entry in
magnitude. The row containing this entry then becomes the new Pivot row for this stage. The Pivot row is
swapped with the k-th row, and then multiples of it are added to rows k+l, . . . ,n to annMate all the entries in
column k below the diagonal. In this example, painvise pivoting ([6],  ~236-9) is the same as partial pivoting.
In pairwise pivoting, only neighboring rows are swapped in such a way that the Pivot row is bubbled up to
occupy the position of the A-th  row.

We construct a Checksum matrix--. 1 0  I12
HWIH,)= 0 1 1 1 19[ I

where the number of additional checksum columns Hc depends on the dimension of the matrix. The row opera-
tions are carried out on the extended matrix

A,=AH=(AIAJ=
1.00 2.00 1 3.00 4.00

I

1.00 I 1.00 1.00 l

In the pivoting algorithm used, no row swap occurs, so that we get a multiplier matrix:

1.00 0
L = [ Il.OOe-3 1.00 ’

and A is overwritten with the extended upper triangular matrix. After rounding  to 3 decimal digits, the result is:

1.00 2.00
I

3.00 4.00
Uw=(UpJc)= [ 0 1.00 1 1.00 11.00 ls

Toverifythatnoerrorsoccurred,weformtheChecksumDifferenceMatrixD=UH,-U,andnotethatallall
its entries are zero. In this particular case, even in the face of round-off errors, the Difference Matrix D is
exactly zero. If we carry out back-substitution on this result, we arrive at the solution x = (1.00, l.OO)T,  which
is timost correct to the accuracy shown. The true answer (to 15 digits of accuracy) is
x = (1.00200400801603, 0.99899799599198)T,  which when rounded to 3 digits is x = (1.00, .999)T.

It is generally assumed that temporary errors can occur in the entries of A or among the multipliers in L
any time during the course of the elimination. This checksum scheme will detect and in some cases correct
such errors. However, temporary errors could affect intermediate results that are not stored either in A or in L.
Such intermediate results are used to determine the order of the rows in pivoting. It has been shown in [4] that
errors to the matrix entries may also affect the row order, but such errors will be detected by a checksum
scheme, even if correction is precluded by the catastrophic cancellation resulting fmm the incorrect row order-
ing. We show by example that errors in intermediate results may also result in incorrect row orderings, giving
rise to possible catastrophic cancellation, and that such errors may be completely undetected by the checksum
scheme.

Consider the effect if a temporary error occurs in the sign bit in one of the compares during the search for
the Pivot row. In our particular example; we end up with a row swap where none was needed. The matrix A
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becomes

A,=AH=(AIA,)=
l.OOe-3 1.00 I 1.00 1.00

[ I1.00 2.00 I 3.00 4.00 ’

and the result of the elimination would be

(where the permutation representing the row swap has been combined into i> and

1.00 I 1.00 1.00
-1.OOe+3  I -1.OOe+3 1-1.OOe+3  *

Again, the Checksum Diffmnce Matrix fi = fiHc - &, computed in the precision of the processor (3 digits), is
exactly zero. However, back-substitution on this result yields the solution I = (0, l.OO)T, which has no digits of
accuracy at all! We have illustrated that catastrophic loss of accuracy can occur as a result of a temporary error
not detected by the checksum scheme. This is an extreme example, but it does show that a zero Checksum
Difference Matrix may not guarantee the accuracy or correctness of the computed answer.

3. Backward Error Assertion Model
In this section we outline another way to check for errors in the solution of a set of linear equations. In

what follows, we use the subscript c to denote numerically computed quantities, possibly with errors. The vector
and matrix norms we use are defined as follows (cf. [8] pp53,56-7)

Ilxlll E C cXil* llxl12 E C Exil 2
I I

2. IlXll- ifi max l&l,
i i i 1

II4 %iE - c Ia&i i
ll4.. = y c lagI9 IIAIIF = c la&j2 2-

i [ Ii j

We examine three methods:  Gaussian Elimination (GE) with partial Pivoting, GE with Complete Pivoting,
and Orthogonal Triangularization using Householder Transformations (QR Factorization). It is well known from
the landmark work of J. H. Wilkinson (e.g. [6] pp157-160,  209-215, 236, 247-252) that these methods are all
backward stable. That is, if the methods are used to find the solution to Ax = b, the computed solution x, will
exactly satisfy the approximate system (A + E)xc = b, and in each case a bound on the norm of E can be given
in terms of the original data and the floating point precision of the processor. It is well known [5] that the rela-
tive error in the solution is bounded by K(A).IIEIIIIIA  + Eli, where K(A) = llAll*p-‘ll  is the condition number of A.

* The accuracy of solutions computed in floating point arithmetic is guaranteed only indirectly through this rela-
tionship [5].

Our approach is to check whether the computed solution meets this guarantee. Whether or not temporary
errors occur, if the solution meets the guarantee, then it is as close to the true solution as the method can make
it anyway. In this case, the solution will be just as acceptable as the computed solution that would be obtained
in floating point arithmetic with no temporary errors.

How does one check that it meets the guarantee? Let x, be the
subject to temporary errors. We can compute its residual: r, = Ax,-b.
the approximate equation (A + E)x, = b, where

computed
Itiseasy

solution
to show

that
that

may have been
x, must satisfy

(1)

Indeed, this is the smallest E in the F-norm for which x, will satisfy the approximate equation. Therefore, the
computed solution x, meets the guarantee if this E (1) satisfies the a priori bound for the particular method.
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To describe our validating procedure in detail, we use GE with Partial Pivoting as an example. For this
method, the basic steps are as follows:

1. Use GE with Fbrtial  Pivoting [5] to factor A into PA = L&, where Le, UC are lower and upper  tri-
angular, and P is a permutation. (cost: O(n’))

2. Solve triangular systems LJ = Pb for yc and l.J$ = yc for x,. (cost: O(n2))
3. Compute Residual rc - Axe-b. (cost O(n2))
4. Use the residual r, to check that the matrix E-(l) satisfies the bound (A3):

llEl,  Ildl-*llx,ll1“= J&c
Sgcl.02[n3+2n2++j]. (2)

(cost O(n~)
In the above, E is the “machine epsilon”, also known as the unit round-off for the floating point arithmetic. Note
that the norm of E in (2) can be computed directly in terms of the norms of rc and x, (the left-most equality)
without explicitly forming E ([IS],  p60).  Also, in the above formula the growth factor g represents the maximum
possible value that can occur in a matrix entry during the elimination process. For Partial pivoting, the max-
imumgrowthis

g = 2*‘)I4(-,

though Wilkinson [fl points out that it is extremely rare to encounteramatrixwithgrowthgreaterthat

--. 8 = 8ll& (4)
In those rare cases where this last heuristic bound is exceeded, those cases are exactly the ones in which great
improvement in accuracy could be achieved by using one of the other methods mentioned here, which have
smaller possible growth factors. So it would be legitimate to use the heuristic bound instead of the hard bound
in the watchdog checking process. In those cases where it fails, it will be either due to temporary errors or (less
likely) be one of those rare cases where Partial Pivoting has large growth. In either case, the solution should be
re-attempted with one of the other two mere robust algorithms.

Steps 1 and 2 describe the basic underlying method for solving a system of linear equations. Steps 3 and
4 together make up the validating procedure. Note that the total cost of the validating procedure is O(g), com-
pared with O(n3>  for the basic method. This property is maintained for the other methods described below.

As used in this model, the underlying method (steps 1 and 2) is used with no modifications. It is not a
difficult matter to use a different method for this portion of the computation. It is only necessary to replace
steps 1 and 2 with the new method and to rephe the bound (2) with the new bound appropriate for that
method. For GE with Complete Pivoting, we replace steps 1 and 2 with this method:

1’ Factor PAQ =: LJ, where P, Lc, UC are defined as above, and Q is another permutation. (cost:
a O(n3N

2’ Solve triangular systems LJ = Pb for ye and Us = yc for G, then form solution x, = QTzc, (cost:
O(n2N

Thq the bound in step 4 will again be (2), but with a different growth factor g [7]:
. g = l&&1’4)10@‘. (5)

We remark again that for both pivoting strategies, g is a bound on the growth in the matrix elements that
can occur during the elimination process. If a slight modification to the software in steps 1 and 2 is allowed,
one can monitor this growth and if nassary abort if this growth factor is exceeded. In particular, for Partial
pivoting, it is known [5] that at the k-th stage, the maximum possible growth is

g = ~‘IlAllm,
so that a further check can be had by monitoring this growth during the elimination.

Likewise, we can use the method of Orthogonal Triangularization, also known as the QR Decomposition
(cf. [83,  set 5.2.1). In this method, steps 1 and 2 are replaced by
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1 I? Factor A = Q& where Q, is an orthogonal matrix, and R, is an upper triangular matrix. (cost:
O(n3N

2” Solve triangular system Rp = QFb  for x,. (cost: O(nq)
Normally QE is left as a list of Elementary Reflectors known as Householder Transformations whose product is
QC. These Householder Transformations am exactly those generated by the method itself. Multiplication by QF
is accomplished by applying the individual Householder Transformations in reverse order. In this case, the error
bound equivalent to (2) becomes (A9):

llEll Ilrcll2*ll4l2 ..
F =

hc
5; e/AIIF(l.18n2 + 30n). (6)

Note that also in this case we can compute the norm of E directly from the norms of r, and x, without explicitly
form@ E ([81, p60).

4. Numerical Experiments
As a simple illustration of the Backward Error Assertion Model, we apply the method to the example in

Section 1. There are two computed solutions x = (1.00, l.OO)T  and P = (0, l.OO)T, corresponding to the elimina-
tion without and with a row swap, respectively. ‘The two corresponding residuals are r = (0, le-3), and
f = (1, 0), though the frrst  residual will be exactly zero if computed in the 3 digit arithmetic of the processor
itself. The norms of the matrix E and l? (1) are, respectively, 1r3 and 1. The right hand side of (2) with (3) is
9.&-2  indicating that x is accepted, and R is rejected. Even with the very limited accuracy of 3 digit arithmetic,
this method can guarantee -accuracy in excess of one digit.

To validate the effectiveness of the Backward Error Assertion Model on larger examples, a series of prel-
iminary numerical experiments was performed. Double precision floating point was used, in which each word is
64 bits long, allocated as follows: the sign bit in bit 63 (left-most), the exponent in bits 62-52, the mantissa in
bits 51-O.

In the experiments, a matrix with random elements uniformly distributed in the interval (-1,l) was chosen
and factored into A = LU using GE with Partial Pivoting. Then certain entries in the L and U were chosen, and
errors injected into each bit of each chosen entry. Figures 14 show how the behavior of the error detection
model as a function of the bit with the error. An error was detected if the residual exceeded the theoretical
bound (2). Two different error detection models were tested: the hard bound (3) and the heuristic bound (4).
Also two different error injection models were testedz the Single Element Error Model, in which errors were
injected into a single, randomly chosen, element of L or U at a time, and the All Element Error Model, in which
errors were injected into all the elements of L and U at once. In each case, the errors were injected once for
each of the 64 bits in the word. In all cases, the results represent an average over several randomly chosen
matrices, and in the case of the Single Element Error Model, an average over several randomly chosen elements
intheLandU.

.
Prew experiments am reported in Figures l-4, and more experiments are under way. The Figures

show the percentage of detected errors versus the bit location of the injected error. As expected, Figures l-2
show clearly how the hard bound (3) becomes less sensitive as the matrix size grows; in extreme cases only
errors in the sign bit or the exponent fields can be detected. However, as shown in Figures 34, the heuristic
bound (4) detected errors in the upper half of the word reliably for all matrix sixes. The error in the computed
solutions themselves can be bounded once the condition number of the matrix is known. Thus this error detec-
tion model would guarantee at least single precision accuracy. The results illustrate how errors in the low order
bits are not detected, but are treated instead as “acceptable round-off noise”.

5. Conclusions
We have shown by example that the checksum scheme may fail to detect certain errors, and in some cases

even catastrophic errors. We then outlined a methodology based on the backward error analysis to verify the
correctness of numerical results. We applied this methodology to three different numerical methods for the solu-
tion of systems of linear equations. The numerical experiments showed that the Backward Error Assertion
Model is effective in detecting errors that other schemes might not detect. The results show on the one hand the
validity of this overall approach and on the other hand the limitations of the particular error bounds used. The
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Backward Brror Assertion Model will detect errors that have the greatest effect on the accuracy of the final
result, namely errors in the high order part of the floating point word. In addition, this model allows the simul-
taneous use of other assertion schemes, such as a checksum method, at no extra cost other than the separate
costs of the methods used.
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r Appendix
In this appendix we outline the derivation far the error bounds used for the three methods we have con-

sidered in this paper. In the case of GE with Pivoting, it is a classical result [5] that once one knows what the
row/column interchanges will be, one can carry out all those interchanges and then carry out all the row opera-
tionsthatmakeuptheeliminationitself. Thus,forthepurposeofthiserroranalysis,wecanassumethatAhas
already been permuted into the right order so that no further permutation is necessary. The following analysis is
well-known and comes from [5]. To solve a set of linear equations using GE, we use three steps: (a) factor
A = LU, (b) solve Ly = b, (c) solve Ux = y. In floating point arithmetic, what we compute are the approximate
factors L,, UC and approximate solutions y,, x,, which satisfy [5]

LcUc = A + El, (Lc + Edyc = b, (UC + E3)xc = yc (Al)
.wheretheerrormmatrices satisfy the bounds

llElllm S gen2,  /E& S gev 1.01, [E3H..  S ey 1.01

where g is the “growth factor” (the maximum element that ever occurs during the elimination),’ n is the dimen-
sion of the system, and E is the “machine epsilon”, otherwise known as the unit roundaff error. Throughout this
whole analysis, we make the implicit assumption that na s 0.01. The factor 1.01 in (A2) can reduced closer to
1 by reducing this implicit bound on na. The final solution  x, satisfies from (Al)

(A + &ll)x,  - (A + El + LS3 + &UC + E#3)q = b,

andEurcanbeboundedfiom(A2)by

From [5], [7], a priori  bounds for g are given for Complete Pivoting by (5), and for Partial Pivoting by (3),
though in this last case g is almost always bounded by (4) [7J, as aheady mentioned above.

We can carry out a similar analysis far the Orthogonal Triangularization method, otherwise known as the
QR Decomposition. To solve Ax = b, we factor A = QR, where Q is orthogonal, and solve the system
Rx =’ y = QTb. In floating point arithmetic, we actually compute ([6], pp157-160,  236, 250) the approximate
factorization Q& and approximate vectors y,, x, which satisfy:

QJG = A + E4, ye = P(b + ed, (RE + Edx, = Y,,
where P is a true orthogonal matrix close to QT. Assuming Q is left as a product of Householder Transforma-
tions, we have the following bounds ([a, pp157-160,236,250):

llE& 5 12.36(n-l)(l  + 12.%&)R2&IIAllp,

/e& I 12X+1)(1  + 12.36@“2Ellb112,

lk/F 5 n(n-l)l*OldlR&-

where llRllp = IlAllF. This bound is not &rived directly f?om (A2),  but rather from a bound on the individual



entries in & in back-substitution found in [5J.
Using the bound (1 + 12.36c)“2 S 1.1316, valid if no I, 0.01, we rewrite the above bounds as

11~4llF s 14W)+G

Ml2 5 14bWllbll2  5 0.14llbll2~

11E41b + iE619 I &llAllp(l.l6n2  + 13n).
(4

W)

As in the case of GE, we combine the above relations to find that x, exactly satisfies

(P(A + E4) + E& = P(b + es) W9

We would like to reduce this to the form (A + E)x, = b, putting all the perturbation into the coefficients A. We
can do this by rewriting (A6) as

T
(PA + E&K, = Pe& 1q=Pb. WI

&Xc

Take norms and combine (A4). (A5):

II&& 5 E ll&w~ + 13n) +
☯

lbll
14& l

C 1
We now need a lower bound on 11~~11~.  To obtain this, take norms in (A6) and use (A4):

<lbb + lP& + ~E6b~llxc~~2  2 lb + all2 2 llbllrll~5ll2  2 O-@WJII~~
and use (A5) to arrive at

.

lklla 2
0J3611b112

* llAllF[l + e(1.16n2 + 13n)J  ’

Use this lower bound in (AS) to obtain the final bound

. llEeRllF I; aIIAllp(l.18n2  + 3On). WV
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