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Abstract
We consider the problem of generating the recursion coefficients of or-

thogonaf  polynomials for a given weight function. The weight function
is assumed to he the weighted sum of weight functions, each supported--
on its own interval. Some of these intervals may coincide, overlap or are
contiguous. We discuss three algon’thms. Two of them are based on
modified moments, whereas the other is based on an explicit expression
for the desired coefficients. Several examples, illustrating the numerical
pefiormance of the various methods, are presented.

1. Introduction

Let [Zj, IQ], j = 1,2,. . . , N, II 5 Zs . . . 5 IN , be N, not necessarily disjoint, real
intervals. Furthermore, let wj be a nonnegative weight function on [Zj, uj], j =
1727”‘7 N. With every wj there is associated a system of orthogonal polynomials

(3{Pk }, in which Pk(j) has exact degree k and

Jui p~‘(~)p$$(~)wj(~)d~  { 1 i
Ii

s : ; : .

They satisfy, as is well-known, a three-term relation

zpF’(z)  = b~‘p~;l(z)  + ay’pf’(z)  + cl;i)p~$(z), k = O,l, . . .

p-&)(j) S 0, p?)(z) E 1,

(11).

(12).
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2 Bemd Fischer and Gene H. GoZzlb

where a?‘, cp’are real numbers and b(ki’ > 0. We set

Z := Ii and u := max uj
l<j<N-a

and consider the nonnegative weight function w(z) defined in the interval [I, U] by. .
N

w ( x )  : = C &j Xrlj tujl Cx) wj(x> (2 O) (13).

j=l

where
cj E { -1,l) a n d  XI~i,ujl

1 if 2 E [Zj, Uj]

0 if 2 4 [Zj, Uj] '

The inner product associated with w(z) will be denoted by <, >, i.e.

< f,g>:= Ju f mlb9~(z)d~1
N

=
CJ

ui

&i f (x)dx)wj(x)dx~
j=l Ii

(14).

Clearly,  there exist a set of polynomials {$k} that is orthogonal with respect to this
inner product. In this paper we investigate the problem of numericahy  generating
the recurrence coefficients in the relation

x’bk(d =  Pk$k+l(x) +  ak+k(x) +  yk+k--l(x), k = &I,. . .

&1(4 = 0, $0(x)  = 1,
(15).

under the asumption that the coefficients b(kj), a;‘, cp), j = 1,2,. . . , N, for what-
ever value of k is required, and the moments

(j) .-vo .-
J

ui wj(x)dx,  j = 1,2 ,..., N, (16).
li

are given.
Problems of this type arise for example in connection with the numerical solu-

tion of large systems of linear equations (see e.g., Saad [17]), in theoretical chemistry
(see e.g., Wheeler [21]), and of course in the determination of Gaussian quadrature
formulae.

We will discuss two classical approaches for generating the recursion coeffi-
cients. The first one is based on the fact that the desired coefficients are given
bY



Orthogonal Polynomiab

< @k,$k >
ak =

<$‘k,tik>’
k = OJ,...

^lk = Pk-1
< $k,$k >

< $k-1,  ‘bk-1  > ’
k = 1,2,...

(17).

where the pk: (> 0) are arbitrary. The resulting procedure, alternating recursively
between (1.7) and (19, is called Stieltjes procedure [Stieltjes]  (for historical re-
marks see Gautschi [3,4]).  The Stieltjes procedure wilI be discussed in Section
3.1.

Our second approach involves the so - called modified nonent$

uk :=< qk,l >=
J

, u qk(+(x)dxv k=O,l,... (18).

where {qk} is a given suitable set of polynomials whith degree qk = k. Two al-
gorithms using the modified moments will be described in Section 3.2. They are
generalizations of one derived by Chebyshev in the case of ordinary moments, i.e.,
qk(z) = xk, and are therefore called modified Chebyshev algorithm [modCheb](for
historical remarks see Gautschi [3,4]).  Both algorithms, basically, obtain the desired
recursion coefficients in terms of the Cholesky factor R in the Cholesky decompo-
sition (see e.g., Golub, Van Loan [12, Ch. 4.2.31)

M=RRT (19).

of the associated Gram matrix M = [< qi,qj >]. One  method  [modcheb-
Cholesky] computes first the Cholesky decomposition (1.9) and then the coef-
ficients Pk, ok, yk, whereas the other scheme [modChebUpdate] alternates recur-
sively between updating R and computing Pk, c&k, rk. We conclude Section 3 with
a simple proof of a determinantal expression, in terms of the Gram matrix M, for
the desired coefficients.

All three algorithms have in common, the need to compute the inner product
<, > fast and accurately. We will discuss a method for this purpose in Section 2.
In Section 3.2 we will see, that this method leads in particular to an attractive al-
gorithm for computing the modified moments (1.8). Finally, a number of examples,
illustrating the numerical performance of the various methods, are given in Section
4.

2. Evaluation  of the inner product

The success of the Stieltjes procedure, as well as the modified Chebyshev algo-
rithms, depends in part on the ability to compute the inner product <, > fast and
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accurately. In this section we show how to evaluate < p, 1 >, say for a polynomial
of degree 5 2n, under the given circumstances.

The computation of < p, 1 > can be performed effectively using the Gauss
quadrature rule corresponding to the weight function wj. In view of (1.4), we have
to generate the rules

. .

Jui
, p(z)wj(x)dx = ZJ~” ~(~~~‘)~p(x!“),  j = I, 2, . . . , N. (2 1).
i i=o

We first recall some basic facts on Gauss quadrature. We associate with the weight-
function wj the tridiagonal matrix (compare 1.2)

T(i) :=
n

x.

. . .. .. &il a$l b(i)
$3

n - l
a(,i)

Note, that pf& is, up to the factor nyzo(-bi), the characteristic polynomial of T,$“.
Hence, as is well known, the nodes Ai” of (2.1) are the eigenvalues of Z$‘. If T$)
is not symmetric, it can be symmetrized by a diagonal similarity transformation
&’:= &g( dp), &’Y”‘Y dg)), where the diagonal elements dp) are given by

d(j)
k + l  = d(;i) Jw, k=O,l,...,  n - l .

Here, dp)( # 0) is arbitrary. Thus

. . .. . .. qj2 a$l jy ,
qi, atj)

7 (2 3).

.
where By’ = Je, k=O,l,...,n-1. Wereferto@asthe(nth)  Jacobi

matrix Of Wj. The polynomials #’ corresponding to J;” are related to pf’ by
#’ = py’/d(,j). Hence, if we choose the free parameter d(b’) = Jp the resulting
polynomials $i are orthonormal with respect to wj. However, it is well known (see
e.g., Wilf[22, Ch. 2]), that the weights VI{’ in (2.1) are the first component of the
normalized eigenvector Vi(‘I of Ji” corresponding to Ai”

Jp,!j)
I = Aji),ii), (,ji))T,lj) = 1 ,  i = 0, 1 ,  .  .  .  ,  71. ( 2  4).
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In principle, we could compute A!‘), v:‘) using one of the standard methods for
calculating eigenvalues and eigenvectors (see e.g., Golub, Welsch [ll]).  Fortunately,

W lwe do not need to know them explicitly. Since Jn IS hermitian, there exist a unitary
matrix Ug’ with

(Q)-1 J$)u(j)
n = (uf?)T  Jf?@ = &,g @,A?‘,. . . ,A:) (=: C$), (2.5)

where each column viW of Q is a normalized eigenvector of Ji”. Therefore, we
have by (2.5), (2.1) and (1.4)

N

cl

uj
= &i

j=l
, dx)wj(x)dx
i

= <p,l>,

(2 6).

where eT = (l,O,...,O) denotes the first unit vector. The “method” (2.6) will be
frequently used in the following algorithms. It is not surprising, as we will see in
the next sections, that the calculation of < p, 1 > is even more effective, if p itself
fuElIs a certain recurrence relation.

3 .  Algorithms

In the following section we present a detailed description of the Stieltjes procedure
and the modified Chebyshev algorithms.

The procedures compute a system of orthogonal polynomials {+k}~=o  for the
given nonnegative weight function (compare 1.3)

N

w ( x )  : = C &i Krlj ,Uj ]tx)  wj(z>* (3 1).

j=l

More precisely, the algorithms determine the coefficients in the three-term recur-
rence relation

x$‘k(x)  = pk$k+l(x)  + ak$k(z) + 7k’bk-l(x), k = O, l, * l l 9 n - l,
(3 2).

?&l(X)  F 0, $qj(x)  = 1.
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We remark that the system {$k}~=o has all of the properties of polynomials
orthogonal on one interval, provided we consider $k orthogonal on [I, U] rather than
On Ugl Lzj, u jl- For example, the polynomials +k have all roots in [I, u], but not
necessarily in UyC1 [Zj, uj] (see Example 4.5).

However, we have not yet specified a condition that will uniquely determine
the orthogonal polynomials {+k)l;=o:’ In order to make the computational efIort
of the various methods comparable, we will devise algorithms that generate the
system of orthonomal  polynomials {&}~=o w.r.t. w. Here we have by (1.4) and

(16)
..

&k(z) =  ;(k+lqk+l(x)  +  hk$k(x)+  ?k&k-l(x), k =0,1,...,‘+1,

L(x)  = 0, &(x)  =, $0 = ($EjUij))-“‘.
(3 3).

Observe that the symmetric relation in Tk forces

< q n, & n >=< $ n-1 ,  & n-l >= � l ’ =< 40, $0 >= 1,

and that & is related to $k by

&k(z) =< $k,‘bk > -‘I2 ?,bk(x).

(3 4).

(3 5).

3.1 Stieltjes procedure

An explicit expression for the coefficients of {&}t=o is easily deduced from (1.7)
and (3.5). For convenience we set Pk = 1, i.e., $k is a manic polynomial, and obtain

&k =  ak =
< z+k,$‘k >

+kr’bk>’
k=O,l,..., n - l ,

+k =
fi= (< ;k!:$:_: > >

112
k = 1,2,. . . , n.

(3 6).

In order to evaluate the inner products in (3.6) we recursively combine (3.2)
and (2.6). Therefore, let

W++I := ?h+l(J$+%
= (J(j)  - (r&?,bk( Jc))el - T&k-l  (J$))e,n

= (J(j) (9n - akI)zk - -&),
- l

Then
N

< +k+l,$k+l >= cEj$)e~~k+l( Jc’)T$k+l( .@))el

j = l

N

j=l
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Altogether, we arrive at:

Stieltjes. Given a set of weight finctions wj and the associated Jacobi matrices J!?
by (2.3) and the moments VA” by (1.6) , j = 1,2.. . , N, this algorithm computes
the recurrence coefficients of the polynomials ?,& k = 1,2,. . . , n, orthonorma.Z with
respect to 0. . .

Initialize. Set $) := el, j = 1,2,. . . , N.
0 compute &(+ (~0) by (3.6) and (2* 6)

0 compute x1(j) := til( J!?)el by (3.2) with /?o = 1

(j)==1 Jp)-aoI
>
,@, j=I,2 ,..., N.

Iterate.  Fork=1,2 ,..., n-l do
l c o mp ute & k ( ---) ok) and Tk by (1. ?I, (3.6) and (2.6)

W
l c o mp ute %k +l := +k+l(.$))el by (3 2) with Pk = 1.

W *
%k+l= n -(J(I) (i)

akI)rk
W-rkzk-1, j=1,2 ,..., N.

l compute +k(+ Yk) by (3.6)

ifk=n-I  then

End.

Remarks. 1. The algorithm requires NO((n + 1)2) flops plus n square root
computations. 2. The number of recursion coefficients that can be calculated
is bounded by the dimension of the Jacobi-matrices. In order to compute more

(8coefficients, one has to restart the computation of %k with appropiate Jacobi-
Wmatrices. 3. The last n - k elements of zk are zero. This can be used for designing

a more efficient algorithm.
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3.2 Modified Chebyshev algorithm

In this section we present two algorithms involving the modified moments

“k : = <  f&,1 >=
J

, u qk(x)‘+)‘k k=O,l,...,  2n. (3 7).
. .

Both algorithms differ from the corresponding algorithm for a single intervaI,i.e.,
N = 1, only in the computation of uk. Therefore, if the uk are known a.naIyti-
caIly, the algorithms for a single and several intervals coincide, i.e., have the same
complexity.

However, in general we have to compute the modified moments. Here, we arrive
at an efficient algorithm, if we assume that the system of poIynomiaIs {qk}& as
weII satisfies a three-term recurrence relation

zqk(X) = bkqk+l(x)  + akqk(z) + Ckqk-l(x), k = 0j1,a**2n  - l,

Q-l(Z) = 0, qo(2)  = 1. (3 8).
--.

Once more using the method (2.6) we obtain:

Modmoment( Given a set of weight functions wj and the associated Jacobi
mat &es J;” by (2.3) and the moments @ by (I.61 , j = 1,2. . . , N, and the system
of polynomials {ql} fzo by (3.81,  this algorithm computes the modified moments
uk, k = O,l,... ,2n, of w relative to {ql}f.!?o.

Initialize. Set @ := el, ~9; = 0, j = 1,2,. . . , N, co := 0.
l compute uo by (2.6)

N N

u(-) = c
Ejui”eT*V)  = C Ejuij).

j=l j=l

Iterate.  For k = 1,2,.  . . ,2n do
Wl c o mp ute %k := qk( Ji’))el  by (3 8).

- ak-lI)z&  - c&l@,), j = 1,2,..  . , N.

l compute vk by (2.6)

uk = c
j=l

End.
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Remarks. 1. The algorithm requires NO((n  + 1)2) flops. 2. The number of
modified moments that can be calculated is bounded by the dimension of the Jacobi-
matrices. In order to compute more modified moments, one has to restart the

(3computation of dk with appropiate Jacobi matrices. 3. It is easy to see, that
the algorithm does not require symmetric Jacobi matrices J!$. Instead, one can
also use TP , given by (2.2). 4. The last n - k elements of zf’ are zero. This
can be used for designing a more efficient algorithm. 5. In order to start the
algorithm, one has to choose a set of polynomials {qt}&. An obvious choice is
qk -Pk 7G, i E {1,2,.. . , N}. Here (3.7) reduces to

uk =

i#i

However, we only recommend this choice for [Zi, ui] w [I, u]. Otherwise py’ would in
general produce extremly  large I&], due to the fact that pr’ has all zeros in [Zi, ui].

We no% give a short derivation of the three term relationship of & in terms of
the Gram matrix associated with ql and
Ch. 21). The Fourier-expansion of ql in

1

the inner product <, > (compare Kent [14,
terms of & reads (recall < &, & >= 1)

41(X) = c flk$k(X)

k=O
1

=
c < q&k > 4k(x)
k=O

, Z=O,l,..., n (3 9).

or vice versa

‘bk(x) = 2 akmqm(x), k=O,I ,..., n. (3.10)
m = O

The above equations define the nonsingular and lower triangular matrices R :=
[rlk]i$=o = [< ql, $k >]&o and S := [8km]g,,=o,  with R = S-l. Moreover, we
deduce from (3.9) and (3.10)

k

Tlk = < ql, !bk > = < Ql, c akmqm(x)  >

m = O

k
(3.11)

= c g k m  < q l,q m > l

m=O

Now, consider the associated Gram matrix A.4 = [< ql, qm >]tmzO. The system of
equations (3.11) is equivalent to

RT =  S M ,  o r  M  =  RRT, o r  M-l =  STS. (3.12)
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Therefore, R is the Cholesky factor of M and S is the inverse Cholesky factor of
M.

Substituting (3.10) into (3.3) (resp. (3.9) in (3.8)) and comparing the coeffi-
cients of qk+l and qk (resp. qk+i and d,) we obtain

?k+l  = bk
Skk = b A:

Tk+l ,k+l

8k+l ,k+l rk‘i;

iik =
Sk k - l

ak + bk-1 L- bk
Sk+1 ,k

8kk ak+l,k+l ’
k=o,l,..., n - l .

= ak - h-1 “k,k-1
“k-l,k-1

+ bk ‘:::‘*

(3.13)

Thus the desired coefficients +k, &k can be obtained from (3.13) in view of (3.12) by
an inverse Cholesky decomposition of M-’(resp. Cholesky decomposition of M),
where only the diagonal and subdiagonal elements of S (resp. R) are involved.

3.2.1 Fast Cholesky  decomposition

The derivation in the last paragraph leads directly to the following basic algorithm
(compare Gautschi [2, Ch. 41):

l build up the Gram matrix M by applying the recursion (3.8)
l compute the Cholesky decomposition M = RRT (resp. M-l = STS)
0 COmpUte  ?k, ii!k by (3.13).

Since the Cholesky decomposition of a (n + 1) x (n + 1) matrix takes in general
O((n + 1)3) arithmetic operations, this algorithmn does not compare favorably with
the Stieltjes procedure in terms of speed.

One way to overcome this bottleneck is a clever choice of the system of poly-
nomials {qk} which defines the modified moments Vk. Let

Tk(x) := cos( k arccos(  x)) (3.14)

denote the k-th Chebyshev polynomial of the first kind. It is well known, that

Tr(x)Tm(x) = -i (ql-ml +  Tl+m) l
(3.15).

Hence, for the setting qk f Tk, the associated Gram matrix reduces to (compare
Branders [l, Ch. 6.41)

M= [<Tl,Tm >I= f[< ql-ml+ Z+rn,l >I

1=-
2 [YIZ-ml + V+ml

= $T+R),

(3.16)
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where T is Toeplitz and X is Hankel. This special structure of M allows the con-
struction of a fast, i.e. O( (n+1)2) or 1ess, algorithm for the Cholesky decomposition
(see e.g., Gohberg, Kailath, Koltracht [lo], Heinig, Jankowski, Rost [13], Lev-Ari,
Kailath (151).

The fast algorithm we used for our computations, is based on the following. .
(general) observation. Let M be a symmetric and positive definite matrix , e.g., M
is a Gram matrix. Notice that the Cholesky decomposition M = RRT is neated,
i.e.,

MA, = R&, k=O,I ,..., n, (3.17)

where Mk = [mij]F,j=o  (resp. Rk = [rij]f,j=o ) denotes the k-th leading principal
submatrix of M (resp. R). Since the inversion of a lower triangular matrix is
also nested, we have from (3.17), that the inverse Cholesky decomposition M-l =
(R-l)TR-l  = STS is "semi-nested", i.e.,

ML’ = $-Sk. (3.18)

Here ML1 = [u~,“j’]~,j=o is the inverse of Mk and Sk = [Si,j]f,j=o denotes the k-
th leading principal submatrix of S. Assume we have already computed Sk-l,
then we obtain Sk by appending one row $A: := (sko, 8k1,. . . , skk) and one column

(07”‘Y 0, 8k.)T to Sk-l. In view of (3.18), the new elements 8kj are uniquely
determined by 8kj8kk = US!), that is

skj j = 0, 1, . . . , k. (3.19)

Hence, 8: is up to a factor the last column of ML’.  Therefore,we  obtain the inverse
Cholesky factor

(3.20)

by solving the linear systems

0

Mku(kk) = :00
, k=O,l,..., n,

1

(3.21)
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where up’ = (urL,uiki,.  . . ,uP~>‘.
, , ,

Again, the solution of this n + 1 linear systems requires in general o((n + 1)3)
arithmetic operations. However, if M is Toeplitz + Hankel, there exists 0( (n + Q2)
algorithms for the solution of (3.21). They are based on the fact, that the solution
of two adjoining sections Mk-1 and Mk are recursively connected. For details we
refer to Heinig, Jankowsky and Rost -et [13, pp. 671-6741.

Observe, that we only need to compute the first 2n + 1 modified moments,
in order to built up the Gram matrix M = i[YII-ml+ vl+m]. Once we have com-
puted the modified moments and the inverse Cholesky decomposition the desired
coefficients are given by (3.13):

ModChebCholesky.  Given a set of weight firnctions  wj and the associated Jacobi
mat rices Jij’ by (2.3) and the moments v.(j) by (1.6) , j = 1,2.. . , N, this itlgo-
rithm computes the recurrence coef&ients  of the polynomia.?s  Gk, k = 1,2,. . . , n,
orthonorrmal  with respect to w.

Initialize/Set b-l = so,-1 = 0.
l compute the modified moments ~1 relative to Tl, 1 = 0,l.. . ,2n, by

Modmoment
l compute the inverse Cholesky

Iterate.  For k = O,l,. . . , n - 1 do
0 Compute &k, ++I by (3.13)

hk = ak +

factor S = [8;i]Ej=O by (3.20) and (3.21)

8k k - lbk-1) - bk
Bk+l,k

dk,k sk+l,k+l

?k+l = bk
skk

ak+l,k+l

End.

Remarks. 1. The algorithm requires NO((n + 1)2) flops plus n square root
computations. 2. We only need the diagonal and subdiagonal elements of S for the
computation of the recursion coefficients. However, the recursion formulae for the
solutions of (3.21) involve (unfortunately) the whole vector utk).

We conclude this section with a more theoretical result. Let M = [mij]Fj=o  =

I< Qi9  qj >lTj=O denote once more the Gram matrix associated with {ql} and let
& be the k-th leading principal submatrix of M. Furthermore let & := det(&)

+ Equations (5.6) and (5.8) in [13] are misprinted: @zrn should read Pzrn  = ( f2m+1 )Txm+l -
COS VT, &m = Am+1 / Gym - Am/CYm-1) respectively.
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designate the k-th principal minor of M, while

Bk := det

moo
ml0

...

rnol .*. mO,k-2 mOk

ml1 ... ml,k-2 mlk
. . . (3.22). . .. . .

is obtained by deleting
Cramers rule to (3.21)
D-1 = 1, i& = 0,

&k = ak -uk-l- T uk-
h-1 . Dk

j/Eziz
k=O,l,..., n - l .

?k+l  = bk
Dk

(3.23)

\mk-1,O mk-1,l  ... mk-l,k-2 mk-1,k  1

the last row and (k - l)-th column “of .&“.  By applying
we easily deduce from (3.19) and (3.13), with the setting

For the special case of ordinary moments q&r) 5 xk, i.e., bk = 1, ak = ck = 0, we
recover the well known relationship

-w. A Bk fik+l- P
=  Dk-1  +  Dk

.,: j/w
k = 0, 1, . . . , n - 1. (3.24)

=
Dk

In other words, the computation of &k, yk+i, using the equation (3.23), is nothing
else than an (expensive) implementation of a modified Chebyshev algorithm.

However, since the condition number of M depends in part on the polynomial
system { ql}, a clever choice of this system will improve a test, based on (3.24),
for the validation of Gaussian quadrature formulae, proposed by Gautschi [5,pp.
214-2151.

3.2.2 Updating the mixed moment matrix

The next (fast) algorithm computes the desired coefficients in terms of the Cholesky
factor R, which is essential a “mixed moment” matrix (compare 3.9)

R =  [rlk] =  [< q,, $k >I* (3.25)

Instead of explicitly computing the Cholesky decomposition, we update R contin-
ually as the process unfolds (compare Gautschi [8, Ch. 5.41, Sack, Donovan [18],
Wheeler [20]). The key equation is easily obtained from the two recurrence relations
(3.3) and (3.8)

rlk =< f&&k >

1
= G < ?h$k-1  > -&k-l  fl,k-1 - +k-1  rl,k-2

> (3.26)
1=-

?k
(h+l,k-1 + (al - bk-l)qk-1  + cm-l,k-1  - +k-lrl,k-2) .
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This equation combined with (3.13) almost furnish the algorithm. Since $ is
defined in terms of rkk we slightly have to change (3.26) for 1 = k and finally
obtain:
ModChebUpdate(q,)  Given a set of weight functions wj and the associated .la-
cobi matrices Jn(‘I by (2.31, the moments z$’ by (1.6) , j = 1,2 . . . , N, and the
system of polynomials { ql }& by (3;8), this algorithm computes the recurrence
coefficients of the polynomials &, k = 1,2,. . . , n, orthonormal with mspect  to w.

Initialize. Set $ = 0 and rl,-l = 0, I= 1,. . . ,2n - 1.
0 compute the modified moments ~1 relative to ql, 1 = O,l,. . . ,212,  by

0

0

Modmoment
compute & by (3.3)

$0 = (~~j~~“)-1’2,

j=l

compute rlo by (3.25)

0

Iterate.
0

--.
TlO =<ql,& >=&)vl, I=0 ,..., 2n

compute ~50 by (3.13)
t&-J =

no
a0 +&Too.

Fork=l,2,...,ndo
compute rkk by (3.26) and (3.13)

Tkk = ( rk-l,k-1

h-1
[bkrk+l,k-1 + (ak - kk-l)Tk,k-1

+ Ckrk-l,k-1 - ?k-l”k,k-21)
l/2

.

0 compute +k by (3.13)
?‘k = bk-1 “kk

rk-l,k-1  ’

ifk<nthenforl=k+l,k+2,...,2n-kdo
l compute rlk by (3.26)

1
rlk = G (h+l,k-1  + (al - hk-l)Tl,k-1

l compute &k by (3.13)

End.

6!k = ak - bk-1 fk,k-1

rk-l,k-1

Remarks. 1. The algorithm requires NO((n + 1)2) flops plus n square root
computations. 2. It is well known (see e.g. Gautschi [9]), that the choice of the
system (q1) affects the condition of the nonlinear map from the modified moments
to the recursion coefficients.

+ Clrl-l,k-1 - Ejlk-l”l,k-2).

rk+lk
+bkd

rkk ’
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4. Examples

The purpose of this section is to illustrate the numerical performance of the three
algorithms. All computations were carried out on a SUN 3/50 in double precision.

As we will see, due to roundoff errors, the algorithms don’t produce in any
case the same numbers. How do we decide which numbers are the right ones?
The most obvious test - using the associate Gauss quadrature rule for checking the
orthonormality of the computed polynomials - is not without difficulties (compare
Gautschi [5]). There oref we transcribed one algorithm also into MATHEMATICA
and used high precision arithmetic.

In all examples we have computed the orthonormal polynomials, more precisely
the three term recurrence coefficients, up to degree 50. For every algorithm we
have compared the FORTRAN double precision results with MATHEMATICA
high precision results. In the corresponding tables we have listed the maximal
polynomial degree for which the relative deviation of this two results is less than
10-14. We only consider the case of two intervals, since the extension to more
intervals does not produce any additional difficulties.

Example 4.1. Let WI(X) := +,u~](x),  wz(x) := X~~z,uz~(x) and

wCx) := WI(X) + w2(2). (4 1).

The orthogonal polynomials pt’, pg) w.r.t. ~1, wp are the suitable translated Leg-
endre polynomials.  The modified moments are based on the Legendre polynomial
L, and on the Chebyshev polynomial of the first kind Tn w.r.t. the whole interval
[I, u] = [-l,l].

I I
I -1.0 I 1.0 I

. I

-1.0 I 1.0 I >50 I >50 I >50 I >50 I

Table 4.1. Performance of the Stieltjes algorithm
and the modified Chebyshev algorithms for w given by (4.1)
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The Stieltjes algorithm works extremely well in all cases. So do the modified Cheby-
shev algorithms as long as the two intervals have at least one point in common. If
there is a gap between the intervals the latter algorithms become severely unstable,
compare also Gautschi [4, Example 4.71. As suggested by Gautschi [8, Example
5.51 one might use in this cases modified moments defined by orthogonal polyno-
mials w.r.t. a weight function which has the same support as w. Therefore we
introduce the following weight functions, which may be viewed as a generalisation
of the ordinary Chebyshev weight function onto two intervals,

w”‘(x) =

i

w’z(x) =
--. i

I Ul - 4J(r 1- for 2 UZ)(Ul - x)(12 E [II, w] [12,u2]- 4(u2 - 4

0 otherwise,
(4 . 2)

12 2 -  4

l/v
for 2 E [II, W] U [12, U2]

1- X)(Ul - 2)(12 - 4(‘1L2 - 2)

0 otherwise.

The associated orthogonal polynomials p,“‘, P2 were studied by
In particular he derived a recurrence relation for the three term
cients.  Using this polynomials we obtain:

Peherstorfer [16].
recurrence coeffi-

modC;heb
11 Ul 12 u2 St. Ch. U.(Pi’) U4~~ 1

-1.0 -0.1 0.2 1.0 >50 27 >50 >50I
t -1.0 I

I I n I I I

-0.4 1 0.6 1 1.0 1 >50 1 8 I >50 I 42 I
-1.0 -0.8 0.9 1.0 >50 4 11 37
-1.0 0.8 0.9 1.0 >50 46 >50 >50

Table 4.2. Performance of the Stieltjes algorithm
and the modified Chebyshev algorithms for w given by (4.1)

Now the performance of modChebUpdate  is indead better, but in general not as
good as Stieltjes.

The next computations are based on a different representation of w. For Ii <
ul < 12 < u2 we have

w(x) = x,,l,Ul,(X>  + +2,u,]w

= x[J,,u2](2> - 4~1 ,1,](x). (4 3).

Using the second representation (4.3) of w we obtain:
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I modCheb I
4 Ul 12 212 St. Ch. U*(L) U.(PEl) u4pz >

I

L
-1.0 -0.1 0.2 1.0 24 27 25 27 27
-1.0 -0.4 0.6 1.0 6 8 7 9 9
-1.0 -0.8 0.9 1.0 2 3 4 3 3
-1.0 0.8 0.9 1.0 34 35 36 38 38 4

Table 4.3. Performance of the Stieltjes algorithm
and the modified Chebyshev algorithms for w given by (4.3)

As one might expect, here are all algorithms tend to be unstable. It seems that
this approach is only of academic interest.

Example 4.2. Let cl := (11 + u1)/2 and dl := (ul - 11)/2. Define the weight
functions WI(X) := [G - (x - c~)~]-~/~~II~,~~I(x),  We := XI~2,u21(x),  and

w(x) = w(z) +02(x). (4 4).
--

.pi” is now a suitable scaled Chebyshev polynomial of the first kind. Although 01
and w2 have a “different nature”, the algorithms have the same qualitative behavior
as in example 4.1, compare also Gautschi [4, Example 4.91.

I modCheb I
11 Ul 12 u2 St. Ch. U.(L) u.(P;‘) wp!? 1

-1.0 -0.1 0.2 1.0 >50 34 25 >50 >50
-1.0 -0.4 0.6 1.0 >50 7 9 >50 31
-1.0 -0.8 0.9 1.0 >50 4 3 27 5
-1.0 0.8 0.9 1.0 >50 >50 >50 >50 >50
-1.0 -0.3 -0.3 1.0 >50 >50 >50 - -
-1.0 -0.3 -0.5 1.0 >50 >50 >50 - -
-1.0 0.5 -0.7 1.0 >50 >50 >50
-1.0 1.0 0.8 0.9 >50 >50 >50 - -
-1.0 1.0 -0.7 0.5 >50 >50 >50 - -
-1.0 1.0 -1.0 0.8 NO >50 >50 - -
-1.0 1.0 -1.0 1.0 >50 >50 >50 -

Table 4.4. Performance of the Stieltjes algorithm
and the modified Chebyshev algorithms for w given by (4.4)

Example 4.3. Let ci := (1; + ui)/2, d; := (ui - Q/2, and wi(z) := [e - (x -
Cj)2]-1/2X[Zi,Ui](x)9 i = 0,l. The polynomials +,, that are orthogonal in [II, ul] U
[22, uz] with respect to the weight function

W(X) = w(x)  + a(x). (4 5).
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were studied by Saad [17], for 21 < ur < 22 < ‘~12,  in connection with the solution of
indefinite linear systems. He derived a method for computing this polynomials by
exploiting the properties of Chebyshev polynomials.

Note, that the orthogonal polynomials & are also of interest in Gaussian
quadrature. Here, one has now the possibility to deal in a closed form with functions
having a singularity in the interior of a given interval [Z,u], e.g., I = 21 < ~1 = 22 <
u2 = u.

Again, the Stieltjes algorithm as well as the modified Chebyshev algorithms
behave like in the previous examples.

modCheb
11 Ul 12 212 St. Ch. U*(L)I u.(P;l) U*P$ >

-1.0 -0.1 0.2 1.0 >50 35 29 >50 >50
-1.0 -0.4 0.6 1.0 >50 8 9 >50 >50
-1.0 -0.8 0.9 1.0 >50 4 4 15 7
-1.0 0.8 0.9 1.0 >50 >50 >50 >50 >50
-1.0 -0.3 -0.3 1.0 >50 >50 >50 - -
-1.0 -0.3 -0.5 1.0 >50 >50 >50 - -
-1.0 0.5 -0.7 1.0 >50 >50 >50 - -
-1.0 1.0 0.8 0.9 >50 >50 >50 - -
-1.0 1.0 -0.7 0.5 >50 >50 >50 - -
-1.0 1.0 -1.0 0.8 >50 >50 >50 - -
-1.0 1.0 -1.0 1.0 >50 >50 >50 - -

Table 4.5. Performance of the Stieltjes algorithm
and the modified Chebyshev algorithms for w given by (4.5)

Example 4.4. In this example we consider the weight function w(x) := wQ(x) +
w’z(x), where w”’ and w’s are defined by (4.2). We have

w(x) = (
Ix - (Ul + 12)/2(

2&l - x)(w  - x)(12  - x)(u2  - 2)
for x E [Lull  u [22,u2]

(4 6).

0 otherwise

The symmetric case I1 = -u2 and ur = -12 is of interest in the diatomic linear
chain (Wheeler [21]). This special case has been studied also by Gautschi [6]. He
computed the three term recurrence coefficients in a closed form.

However, for the general case we obtain:
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modCheb
11 ‘111 12 u2 St. Ch. U.(L) u.(P;‘) ww

-1.0 -0.1 0.2 1.0 >50 35 33 >50 >50
-1.0 -0.4 0.6 1.0 >50 10 9 >50 >50
-1.0 -0.8 0.9 1.0 11 4 4 11 11
-1.0 0.8 0.9 1.0 w >50 >50 >50 >50

Table 4.6. Performance of the Stieltjes algorithm
and the modified Chebyshev algorithms for w given by (4.6)

As long as the gap between the two intervals is not too big the Stieltjes algo-
rithm and the modified Chebyshev algorithm based on the orthogonal polynomials
w.r.t. wul and w12 perform very well.

Example 4.5. Let

42) := 44 + w2(x) = { ; ~h~r~;;l*o~ -0.41 u [Oe6, leoI . (4 7).
The following figure shows the corresponding orthonormal polynomials of degree 2
(dotted curve), 3 (continous curve), 4 (dashed curve), and 5 (dash-dotted curve).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4.7. Orthonormal polynomials of degree 2,3,4,5
with respect to w given by (4.7)



20 Bemd Fischer and Gene H. Golub

Here, the orthonormal polynomial of degree 3 has a zero in the gap [-O.4,0.6].
However, it is easy to show that orthogonal polynomials on two disjoint intervals
have at most one zero in the gap (see e.g. Szegij [19, p.501).

Conclusions

The Stieltjes algorithm seems to be the method of choice for generating or-
thogonal polynomials over several intervals under the given circumstances. It is
stable in almost every case and, unlike in the usual situation, the computation of
the inner products is relatively simple. But, if the map from the modified moments
to the recurrence coefficients is well conditioned one may also choose one of the
modified moment based algorithms. They are in particular attractive, when the
required modified moments are known analytically. In this case the complexity of
these algorithms does not depend on the number of underlying intervals.

The Stieltjes algorithm as well as the algorithm for computing the modified
moments is-straight forward to parallelize.

Acknowledgement
We would like to thank George Cybenko for providing us his MATLAB program
for the Cholesky decomposition of a Toeplitz plus Hankel Matrix. The first author
would like to thank Mark Kent for several helpful discussions.

References

1. M. Branders, Application of Chebyshev polynomials in numerical integration
(Flemish), Dissertation, Catholic University of Leuven, Leuven, 1976.

2. W. Gautschi, On the construction of Gaussian quadrature rules from modified
moments, Math. Comp. , 24 (1970),  pp. 245-260.

3. W. Gautschi, A survey of Gauss-Christoffel quadrature formulae, in E. B.
Christoffel: The influence of his work in mathematics and the physical sci-
ences; International Christoffel symposium; A collection of articles in honour
of Christoffel on the 150th anniversary of his birth, P. L. Butzer  and F. Fehkr,
eds., Birkhauser, Base1 (1981), pp. 72-147.

4. W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Stat. Com-
put., 3 (1982), pp. 289-317.

5. W. Gautschi, How and how not to check Gaussian quadrature formulae, BIT
23 (1983),  pp. 209-216.

6. W. Gautschi, On some orthogonal polynomials of interest in theoretical chem-
istry, BIT 24 (1984),  pp. 473-483.



Orthogonal Polynomials 21

7. W. Gautschi, Orthogonal polynomials - Constructive theory and applications,
J. Comput. Appl. Math. , 12 & 13 (1985), pp. 61-76.

8. W. Gautschi, Questions of numerical condition related to polynomials, in Stud-
ies in Numerical Analysis, G.H. Golub, ed., Math. Assoc. America, Washington,
DC (1985), pp. 140-177.

9. W. Gautschi, On the sensitivity of orthogonal polynomials to perturbations in
the moments, Numer. Math. , 48 (1986),  pp. 369-382.

10. I. Gohberg, T. Kailath, and I. Koltracht, Efficient solution of linear systems of
equations with recursive structure, Linear Alg. Appl. , 80 (1986), pp. 81-113.

11. G.H. Golub and J.H. Welsch, Calculation of Gauss quadrature rules, Math.
Comp. , 23 (1969),  pp. 221-230.

12. G.H. Golub and C.F. Van Loan, Matrix computations, 2nd ed., Johns Hopkins,
Baltimore, 1989.

13. G. Heinig, P. Jankowski, and K. Rost, Fast inversion of Toeplitz-plus-Hankel
matrices, Numer. Math. , 52 (1988),  pp. 665-682.

14. M.D. Kent, Chebyshev, Krylov, Lanczos: Matrix relationships and computa-
tions, PhD thesis, Stanford, 1989.

15. H. Lev-Ari and T. Kailath, Triangular factorization of structured hermitian
matrices, in I. Schur methods in operator theory and signal processing, Oper-
ator Theory: Advances and Application, vol. 18, I. Gohberg, ed., Birkh&user,
Base1 (1986),  pp. 301-323.

16. F. Peherstorfer, Extremalpolynome in der L1- und L2- Norm auf zwei dis-
junkten Intervallen, in Approximation Theory and Functional Analysis, P.L.
Butzer, R.L. Stens, and B. Sz.-Nagy, eds., Procedings,  Conf. Math. Res. Inst.
Oberwolfach, 1983, ISNM. 65, Birkhgueser, Basel, 1984, pp. 269-280.

17. Y. Saad, Iterative solution of indefinite symmetric linear systems by methods
using orthogonal polynomials over two disjoint intervalsSIAM  J. Numer. Anal.,
20 (1983),  pp. 784-811.

18. R.A. Sack and A.F. Donovan, An algorithm for Gaussian quadrature given
modified moments, Numer. Math. , 18 (1971/72),  pp. 465-478.

19. G. Szegij, Orthogonal polynomials, AMS Colloquium publications, Vol. 23,3rd
ed., Providence, RI, 1967.

20. J.C. Wheeler, Modified moments and Gaussian quadrature, Rocky Mt. J.
Math. , 4 (1974), pp. 287-296.

21. J.C. Wheeler, Modified moments and continued fraction coefficients for the
diatomic linear chain, J. Chem. Phys. 80 (1984), pp. 472-476.

22. H. Wilf, Mathematics for the physical sciences, Wiley, New York, 1962.




