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The product singular value decomposition is a factorization of two
matrices, which can be considered as a generalization of the ordinanJ
singular value decomposition, at the same level of generality as the
quotient (generalized) singular value decomposition.
A constructive proof of the product singular value decomposition is
provided, which exploits the close relation with a symmetric eigen-
value problem. Several interesting properties are established.
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The structure and the non-uniqueness properties of the so called con-
tragredient transformation, which appears as one of the factors in the
product singular value decomposition, are investigated in detail.
Finally, a geometrical interpretation of the structure is provided in
terms of principal angles between subspaces.
Keywords: (Generalized) singular value decompositions, contra-
gredient transformation.
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The ordhary singular value decomposition (OSVD) has become an impor-
tant tool in the analysis and numerical solutions of numerous problems.
Not only does it allow for an elegant problem formulation, but at the same
time it provides geometrical and algebraic insight accompanied by a nu-
merically stable implementation of the solution. Several algorithms and
applications are discussed in e.g. [5] [lo] and the references therein.
Recently, several generalizations of the singular value decomposition have
been derived and analysed. The most well known example is the so called
‘generalized’ singular value decomposition of Van Loan [l7] and Paige and
Saunders [N]. In [4], we propose to call it the quotient singular value
decomposition (QSVD), as opposed to the product singular value decom-
position (PSVD), which was introduced in its explicit form by Fernando
and Hammarling in [6] ( hw o called it the IISVD). In [18], Zha introduced
yet another generalization of the OSVD, this time for 3 matrices, which
was called the restricted singular value decompo&on (RSVD) in [4] and
PI .
In [4] we have proposed a standardized nomenclature for generalizations of
the OSVD and we shall use these in this paper.

A common feature of all these generalizations is that they are related to
the OSVD on the one hand and to generalized eigenvalue problems on the
other hand. While a lot of their properties and structure can be established
by exploiting these relationships, the explicit forms of the generalizations
themselves are important in their own right: Not only do they possess a
richer structure than their corresponding generalized eigenvalue problems,
but it is expected that their direct numerical computation is better be-
haved than the computation via transformation to a generalized eigenvalue
or OSVD problem. The reason is that, typically, generalizations of the
OSVD are related to the OSVD or to generalized eigenvalue problems
by AA’-squaring  type operations or matrix-(pseuclo)-inversions, which may
cause non-trivial losses of numerical accuracy when implemented on a finite
precision machine.

The PSVD is a generalization for 2 matrices of the OSVD. In this re-
spect, it is a kind of ‘dual’ generalization of the OSVD compared to the
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QSVD. For instance, we have shown in [3] that both the PSVD and the
QSVD play an important role in the construction of the RSVD, which is a
generalization of the OSVD for three matrices. Hence, it can be expected
that the structural and geometrical properties of both the PSVD and the
QSVD will play an important role in the future work on formulations,
numerical implementations and applications of other generalizations of the
OSVD.’

While the geometrical properties and numerical implementations of the
OSVD and QSVD are by now well understood, a similar knowledge for
the PSVD is less well developed. It is one of the goals of this paper to
provide some more insight in the structure and geometry of the PSVD.
Algorithmic ideas to actually implement the PSVD in a numerically ro-
bust way canbe  found in [6] and [ll].  Applications include the orthogonal
Procrustes problem [lo], computing balancing transformations for state
space systems [6] [14] and computing the Kalman decomposition of a linear
system [7]. The PSVD could also be applied in the computation of approx-
imate intersections between subspaces in the stochastic realization problem
[l], as an alternative for canonical correlation analysis. The main difference
between the 2 approaches lies in the fact that canonical correlation analysis
first performs a normalization of the data, hence normalizing the relevant
signal energy and the pure noise energy to the same level, while the PSVD
can be considered as a way of decomposing the cross-covariance matrix into
canonical directions, without an a priori normalisation. However, these is-
sues will not be discussed in this paper.

The main results of this paper concentrate around 2 constructive proofs

of the PSVD. The first one exploits the close relationship of the PSVD
to the OSVD and several eigenvalue problems. In the second proof, we
provide a profound analysis of the non-uniqueness properties of the so-
called contragredient transformation which appears as one of the factors
in the PSVD. Surprisingly enough, this turns out to be a considerably
complicated problem. In essence, our result is a parametrization of all con-

‘As a matter of fact, recently, Zha Hongyuang and the author have established a most
interesting result that both the PSVD and the QSVD are ‘parents’ of an infinite chain
of generalizations of the OSVD. This result will be published in due course.
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tragredient transformations for 2 symmetric nonnegative definite matrices
of the form A’A and BfB in terms of matrices that can be derived from
the OSVDs of the 2 matrices A and B.

The main results and organisation of this paper are as follows:

The constructive proof of the PSVD of 2 matrices A and B in section
2 exploits the connection between the OSVD of the matrix AB’BA’
and the eigenvalue decomposition of the matrix A’AB’B.

In sect,ion 2, we also investigat,e  the connection of the PSVD with
the QSVD and give a variational interpretation.

The structure of the so called contragredient transformation is inves-
tigated-m section 3. We summarize some known results for existence
and uniqueness of a contragredient transformation for pairs of sym-
metric matrices, where one of the matrices is positive definite and the
other is nonnegative definite. The results in sections 3.2-3.3 give a
precise account of the structure of this transformation for 2 symmet-
ric nonnegative definite matrices. It will be demonstrated that the
question of characterizing the non-uniqueness issues of the PSVD
is not an easy one. First, it will be shown in section 3.3 how a
certain ‘canonical’ PSVD can be explicitly constructed from some
OSVDs of the matrices A and B. The complete description of the
non-uniqueness is given in section 3.4.

The geometrical interpretation given in section 4 concentrates on the
relation with principal angles between certain subspaces of the 2 ma-
trices.

Notations  and Abbreviations
All matrices and vectors in this paper are real. Matrices are denoted by
capitals, vector by lower case letters other than i, j, k,l,m, n,p,q,r which
are nonnegative integers. Scalars are denoted by greek letters. The range
(column space) of a matrix A will be denoted by R(A), its row space by
R(A’),  its null space by N(A). The orthogonal projection of the column
space of a matrix B onto the column space of a matrix A is denoted by

5



&R(B).  The orthogonalization of the column space of a matrix B to the
column space of a matrix A is denoted by II;tiR(B). The subspace  that is
the intersection of the column spaces of 2 matrices A and B is denoted by
R(A)nR(B). T he direct  sum of 2 mutually orthogonal subspaces R(Ul)
and R(U2) (c’;‘Uz = 0) is denoted by R( &)$R( Us). The dimension of a sub-
space is abbreviated as dim, hence dim(R(A)) = rank(A) = dim(R(A’)).
By #b(A) = 11 we denote the number of singular values of A equal to 1.

It is assumed that, whenever a dimension indicating number becomes zero,
the corresponding matrix, block row or block column can be omitted in all
expressions where it appears. This convention allows for an elegant treat-
ment of several possible cases at once. Dimensions of identity matrices are
omitted if they are obvious from the context.

2 The product singular value decomposition
In this section, we shall first state the main theorem and provide a con-
structive proof of the PSVD, which is based on some results that relate
the OSVD of the matrix AB’BA’ to the eigenvalue decomposition of the
matrices B’BAtA and AtABfB. We shall also proof a lemma that permits
to express the PSVD of the matrix pair A, B in terms of their OSVDs
when ABt = 0.
In section 2.2, we shall provide a variational characterization of the PSVD
and investigate a relation between the PSVD and the QSVD.

2.1 A constructive proof of the PSVD
Theorem 1 The PSVD
Every pair of real matrices A, m x n, and B, p x n can be factorized as:

A = U/&XL
B = U&X -1
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All matrices are real. The matrices UA, UB are square orthonormal  and X
is Jquare  nonsingular.  SA and SB have the following structure:

T1 T, - Tl Tb - Tl n - T, - Tb + Tl

Tl 0 0 0
SA = T,-Tl I 0 0

m - r, 0 0 0

rl ra - rl rb - rl n - ra - Tb +  Tl

Tl sy2 0 0 0
& = Tb - Tl 0 0 I 0

P - ‘-b 0 0 0 0

where S1 is square diagonal with positive diagonal elements and r1 = rank(AB’).

Before proving the theorem, let us first give the following remarks:

l M’hile  some related eigemalue  problems were discussed in [ll]  and
[14],  the explicit formulation of the PSVD as n theorem 1, was  given
for the first time by Fernando and Hammarling in [6], who called it
the IISVD.2

l Throughout the paper, we shall also use the matrix Y defined as
y = x-f.

l In [6], the factorization is presented in a slightly different form, where
a QR-factorization of X is used. While this may be preferable in

21n  [6] also  a constructive  proof  was provided.  It is however  based on a lemma (lemma
1 in [6]), the proof of which is not correct. To give a counterexample  to the proof,  consider
the pair of matrices:

1 0 0 0 0
0 2 0 0 0
3 0 1 0 0
0 0 0 1 0
0 0 0 0 1

This  pair of matrices  satisfies the condition  required  by the lemma in [6] that AB’ is
diagonal. With the notations  of [S], we have that i = 1, j = 1, k = 2, r = 5. While the
proof  of the lemma states that f - i - j = k, this is not true in general, because for our
example k < (r - i - j). Hence,  the proof  of lemma 1 in [6] is not correct.

7



analysing numerical issues related to the PSVD, such an additional
factorization is not relevant for-. our present purpose, which is the
detailed exploration of structural and geometrical properties.

l Here are some examples of possible structures of SA and SB in the
PSVD of theorem 1:

m = 4,p = 4,72 = 7,T, = 3,Tb = ‘i,Tl = 2:

SA =
( Ja7- 0 0

0 ~00000
0 0 0 00000 0 1 0 0 0 0 0 0 0 0 1

fi’0 0 0 0 0 0
--_

sg =

( 0
0

~00000  1
0 0 0 0 01

0 0 0 0 10 0,

m =4,p=5,n=4,T,=4,fb=3,T1=3:

SB =

l Of course, the PSVD ressembles closely the QSVD of 2 matrices,
at least in appearance:

Theorem 2 The quotient (generalized) SVD (QSVD)
Every pair of real matrices A, m x n, and B, p x n can be factorized
as :

A = UASAX
-1

B = UBSBX
-1
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All matriced are real. The matriz  U,, is m x m orthonormal, I/‘B is

p x p orthonormal, X is n x n nonsingular. With rab = rank
A

( 1
B ,

the matrices SA (m x n> and SB (p x n> have the following structure:

rab - rb ra + Tb - Tab Tab - ra 9-8 - Tab

rab - Tb I 0 0 0
SA = ra + rb - rab 0 c 0 0

m - r, 0 0 0 0

Tab - rb fa + Tb - Tab rob - ra n - Tab

p-rb 0 0 0 0
SB = ra +  rb - Tab 0 S 0 0

Tab - ra 0 0 I 0

where c and S are (ra + rb - rat,) X (r, + rb - tab) diagonal matrices
with positive diagonal elementi, satisfying:

c2 + s2 = L,+rb-r&

and r, = rank(A),rb  = rank(B).

For some constructive proofs based upon several OSVDs,  see e.g.
[lo], [16]. The name QSVD is proposed in [4].

l While the structure of the PSVD and QSVD seems similar, their
geometrical properties are completely different.

l We propose to call the pairs of nonzero elements of SA and SB in
theorem 1, the product singular values pairs and their product the
product aingular values. Obviously, the pairs contain more structural
information than the product singular values. There are 4 possibili-
ties:

I. There are r1 pairs of the form (fi, fi) with corresponding
product singular value u;, i = 1,. . . , rl. By convention, they are
ordered such that u; 2 g;+r.

2. There are r, - r1 pairs (1,O) with corresponding product singular
value 0.
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3. There are rb- q pairs (0,l) with corresponding product singular
value 0.

4. There are n - ra - rb + rl pairs (0,O) which we shall call the
trivial product singular value pairs, in analogy with the trivial
quotient singular value pairs [4]. The corresponding product
singular values are undefined.

In the constructive proof of theorem 1, we shall need the following 4 lemmas:
Lemma 1
On the general solution of a consistent linear matrix equation
The set of solutions of the consistent matris equation

A X = B

is generated by-w.
X = Xpart  + A*T

where Xpart is a particular solution satisfying A&., = B, A’ is a matris of
maximal rank such that AAL = 0 and T is an arbitrary matris.
In particular, let the OSVD of A be given as:

A = ( V,l uO2 ) (% i)($)

then
X = V’ls,-,‘U~lB + Va,T

is a solution for every matriz  T.

l Observe that the lemma  states that all solutions X can be written
as the sum of a particular solution and the general solution to the
homogeneous equation AX = 0.

l The first term is nothing else than A+ B where A+ is the Moore-
Penrose pseudo-inverse of A. It is also the unique minimum Frobenius
norm solution. Recall that A+ is the Moore-Penrose inverse of A if it
is the unique solution T = A+ of:

1. ATA = A (1)
2. TAT = T (2)
3. (AT)’ = AT (3)
4. (TA)’ = TA (4)
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In section 3, we shall also use the notion of an 102-3-inverse of the matrix
A, which is any mat xix T satisfying (1)-(2)-( 3).

Lemma 2
On the eigenvalues of AB’ and BAt
For any pair of m x n matrices A and B, the nonzero  eigenvalues of ABt
and B’A are the same.

Proof: Consider the following matrix identities:

(Tt i)(k f)=(Tt $7:)

and

Since the matrix

is nonsingular, we find that:

(t ;)-‘(yt i)(? 14,)=(jt :A)

Hence, the matrices

are similar. The first matrix has as its eigenvalues the eigenvalues of ABt
and n eigenvalues 0. The second matrix has as its eigenvalues the eigenlal-
ues of B’A and m eigenvalues 0. 0

An immediate consequence of lemma 2 is the following:

Corollary 1 Denote by X(.) th e nonzero  eigenvalue spectrum of a matriz.
Then:

X(AB’BA’) = A( BA’AB’)
= X(AtAB’B)
= X(BtBAtA)

11



Another result we shall need concerns the PSVD of two matrices in the
special case that their row spaces are.orthogond, i.e. AB’ = 0

Lemma 3
PSVD of A,B if AB’ = 0
Let A, m x n and B, p x n be such that:

ABf=O

Assume that A and B have OSVDs:

A = (v,, v,, > (% i)(z)

--. B = ( &I ub2 > ( ‘; ; ) ( 2 )

(5)

I (6)

where Sal is r, x T, (r, = rank(A)) and Sbl is rb X rb (ra = rank(B)).
Aswme that the common null space is generated by the columns of the
orthonormal matrix V&:

Then, a PSVD of A, B is given by:

r, rb n - ra - rb

A = (Ual  v,, >

ra rb n - ra - rb

B = ( ubl ub2 ) “0

We have used ‘a’ PSVD instead of ‘the’ PSVD because of the non-
uniqueness of V&Z (which for instance can be postmultiplied by any or-
t honormal  matrix) and possibly of Ual, Uaz 9 Va, , V,, , Ubl , Ubs, Vb,, Vbz from
the (non)-uniqueness properties of the OSVD. A detailed analysis of the
non-uniqueness properties of the PSVD in general is the subject of section
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3.

Proof: Observe that, because of the”orthogonality of the row spaces of
A and B, it follows that:

rank = ra + rb

Hence, the dimension of the common null space is n - ra - rb. It is straight-
forward to find that V’z and v&?  can be chosen as:

v,: =

The theorem then follows. The matrices Sal-’ and Sblwl are inserted be-
cause the right hand factors of A and B must be r Aated to each other as
A? and Xt (see theorem 1). Cl

The central idea of the proof of theorem 1 is to exploit the close connection
between the OSVD of AB’ and the eigen\alue  decompositions of BtB,4tA
and A’AB’B, which is the subject of the following lemma:

Lemma 4
The relation between the OSVD of ABt and the eigenvalue de-
composition of B’BA’A
Let the OSVD of AB’ be given as:

AB’ = UDJ’ (7)

where S1 is rl x r1 with rl = rank(AB’) and contains the nonzero  singular
values of AB’. Consider the eigenvalue problem:

(B’BA’A)Y  = YDz (9)
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Consider also  the OSVD of A as in (5). Then all possible matrices of
eigenvectors Y can be written as:

Y = (Yl I; Y3) = (A+ Vaz)

where

l D2=
s; 0 0
0 00
0 00

l TI = -2Va$B’BA’UISI
l U3 is any matrix such that R(A) = R(&) $ R(U3).

l U4 is any matrix such that X(.47 = R(U4).-w.
a T3 and T4 are arbitrary matrices that can be chosen to ennsure  that

rank(Y) = 71.

Proof: First observe that from corollary 1 it follows that the nonzero
eigenvalues of ABtBA’ and B’BA’A are the same. We shall show that
there exist r1 = rank(AB*)  eigenvectors corresponding to S& These will
form the n x rl matrix Yl. Then we shall show that it is possible to choose
a n X (ra - r1) matrix Yz and a n x (n - pa) matrix Y3, both containing
eigenvectors corresponding to zero eigenvalues such that the n x n matrix
Y = (1’1 Yz Y3) is nonsingular.

Proof for II,:
From the fact that rl = rank(AB’)  < r, = rank(A), it follows that:

R(h) c R(.4)

so that
AA+& = UI (10)

The matrix YI will contain eigenvectors corresponding to Sf if:

(B’BAtA)K = y,S,2

Premultiply this expression with A:

(11)

(AB’BA’)A& = A&S,2 (12)
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But from the OSVD (8) of AB’, it follows then that we can put:

and using lemma 1 it follows that

Yl = A’V, + VasTI (13)

The matrix Tl is however not arbitrary because it has to satisfy (11).
Substituting (13) into (11) results in:

B*BA’A(A+Ul + VazTl) = (A+Ul + VazTl)Sf (14)
Premultiplying (14) with I’,: results in:

Tl = V,:BtBAtU1S,2 (15)

Hence we find that:

E; = 17a1S~~v,‘,LJ~  + l~~V~~‘BtBAtLT~S~2 (16)

Let us now verify that Yr as given by (16) satisfies (11). Hereto, first
observe that from the OSVD of AB’ (8) and the OSVD of A (5) it
follows that :

V’ B’BA’Ual 1 =s-‘ut us2al al 1 1 (17)

Together with the expression for Tl (9, this implies the following
identity:

B*BA’& = (‘E:&W;lUl  + K2Z)S: (18)

But because (\‘(lr Va2) is nonsingular, it follows from (18) that:

B*BA*& = (A+ul + voZG)Sf 09)
= KS; ( 0)2

It can be verified from (16) and (10) that:

Ul = AYl (21)
Substitute this in (20) to find that:

B’BA’AYl = Y,S,2 (2 >2

which proves that Y1 contains the eigenvectors corresponding to the
eigenlalues  that are diagonal elements of Sf .
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Proof for Yz: Observe that R(A) = R(&)$ R(U3) implies that UiU3 = 0.
Furthermore, because R(U3) c R(A), it follows that AA+U3 = V,.
Let Y2 be given as: Ys = As& + Va,T3 where T3 is an arbitrary
matrix. Then:

B*BA*AY2 = B’BA’A(A+Ua  + VazT3)
= B*BA*U3
= B*I/;SU*U1 3

= 0

Hence, the column vectors of Yz belong to the null space of BfBA*.4
and rank(Yz)  = rank(&) = ra - rl.

Proof for Y3: Assume that Y3 = A+V, + VazT4 = VazT4. It follows that--_

B*BA*A~~ = B*BA*A1/‘,2T4  = 0

This implies that the column vectors of Y3 belong to the null space
of B*BA’A and obviously rank(&) = rank(&) = n - ra, if T4 is
nonsingular.

Finally, we have to verify that with fked Ul , U3, U4 and Tl , we can always
chose T3 and T4 to make the matrix

Y = (Yl Yz Y3) = (A+ Vas)

of full rank. Hereto, rewrite (23), using the OSVD of A (5) as:

Y = (Kls,-,’ Va2)
u:* Ul u:,u3 u:* u4
T

1 T3 T4

( 3)2

(24)

The matrix Y is now written as a product of 2 factors: The first factor
(Va1 Slll Vap) is square nonsingular. Obviously, the second factor can always
be made nonsingular by an appropriate choice of T3 and T4. Cl

An immediate consequence of lemma 4 is:
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Corollary 2 Consider the eigenvahe problem for B’BA’A as in (9):

(B’BA’A)Y  = YDz

where Y is chosen as dexribed in lemma 4. Then X = Y-’ contains the
eigenvectors of A’AB’B:

(At,4B’B)X = XDz ( 5)2

Proof: The proof follows from the nonsingularity of Y and from transpos-
ing (9). cl

Obviously, the column vectors of X are the left eigenvectors of B’BA’A.

We are now ready to prove theorem 1:

Proof of theorem 1:
The proof consists of 3 steps:

Step 1: First we’ll show that A and B can be decomposed as:

A  =  U( ‘jl Aq,,)X’

B  =  V( 21 Bq,,)Y’

with XtY = I.

Step 2: Then it will be shown that AL, and Bi, are diagonal.

Step 3: It will be shown that Ai2Bbgt = 0. This orthogonality of the
row spaces of Ai2 and BJ2 allows us to apply lemma 3 to the pair
(42~ %)’

Combining step 1, 2, 3 will then prove the theorem.
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Step 1:
Combining the OSVD (8) of ABt and the eigenvalue decomposition. .
(9) results in:

BtBA’AY = B’(BA’)AY
= B*(VD;U’)AY
= YDz

Premultiplying with A results in:

ABt(VD;U’)AY = AYDz
(UDJ’)(VD;U’)AY  = AYDz

(DID;)(UtAY)  = (UtAY)Dz

or, with the block structure of D1 and Dz:--.

(U’AY) = (U’AY)

Now call A’ = U’AY and partition A’ according to the block structure
of D1 and Ds as:

rl n - rl

Then obviously:

which implies that:

S*A’1

A’::
= A;#
= 0

A;, = 0

Recall from lemma 4 that Y is nonsingular. Hence the matrix A =
UA’Yml can be written as:

A=,( ‘jl Aq,,)Y-’ (26)

18



Because U and 1’ are nonsingular matrices, we have that:

rank(Ai,) + rank(AL2) = rank(A) ( 7)2

Using corollary 2 and applying a similar derivation to matrix AtABtB
results in a decomposition of the matrix B as:

B = V (  ‘jl i2)Yt (28)

where B’ = V’BY-’ and Bi, is the upper rl x r1 block of B’. More-
over:

rank(Bi,) + rank(Bb2)  = rank(B) (29)

Step 2: --.
Carrying out the multiplication AB* with the two factorizations  (26)
and (28) results in:

AB’ = U
A;,BI,’ 0

o A, B, t
22 22

but from the uniqueness properties of the OSVD (8) it follows im-
mediately that we can put:

Hence, we have that:

rank@:,) = rank(Bil) = rl

so that:
B il* = (A;,)-*S, (3 >2

When we require that Ai, = Bi,, one can always write a solution to
(3 >2 as:

A;, = B;, = S;‘* (33)
In case that the elements of Si are distinct, this solution is unique. If
some of the elements are coinciding, the solution is unique up to block
diagonal orthonormal matrices that can however be incorporated into
the orthonormal matrices U and V in the factorization of ABt (30).
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Step 3:
It follows from
and (8) that:

the (non-)uniqueness  properties of the OSVD in (30). .

Moreover, from (27) and (29), it follows that:

rank(A&) = rank(A) - rl = r, - Tl

rank(Bi,) = rank(B) - fl = rb - rl

The proof is now straightforward by applying lemma 3 to the pair AiZ, Bi2
and inserting the corresponding factorizations  for A& and Bb2 into (26) and
(28) . cl

--_

2.2 A variational  characterization  and the relation
with the QSVD

Note that, from theorem 1, lemma 4 and corollary 2, it follows that there
are 4 eigen\alue  decompositions that can be related to the PSVD:

(A*AB*B)X = X(S~S&s,)
(B*BA*A)Y = Y(SfJS&S~)

(AB*BAt)UA = U&&S&)
(BA*AB*)UB  = UB(SBSfqS,&)

The last two of them are OSVDs.

Let us now derive a variational interpretation of the PSVD. Hereto, con-
sider the optimization problem:

Maximize over all vectors x and y:

(y’A’Ay)(x’B’Bx) (35)

subject  to
xty = 1 (36)
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Assume that the maximum is achieved for some vectors xl and yl. Then,
consider the following set of problems: . .

Find the vectors xk , yk, k = 2,3,. . . that masimize:

((yk)*A’Ayk)((xk)‘B*Bxk)

subject to:

(xkyyk  =  1 (38)
(xk)*yj =  0  j=l,...,k-1 (39)
(xi)*yk =  0  i=l,...,k-1 (40)

It can be shoxn  that the PSVD delivers the solution: The maximum of
(35) is achieved for the first column vectors of X and Y and is equal to
the largest product singular value. The other column vectors of X and Y
provide the solutions to (37)-(40).

In order to derive a relation of the PSVD with the QSVD, we need the
following lemma, relating a factorization of a matrix to its pseudo-inverse.

Lemma 5
Pseudo-inverse of a factorization
Let A of rank r, be factorized as:

A = PSQ’ = (PI P3) (: g(g)

where S1 is ra x r, non-singular diagonal and P, Q, which aTe square non-
singular,  are partitioned conformally. Then:

A +  = Q-*S+p-’ = Q-8  ‘;’ ; p-1

( 1

if and only if:

p”p2 = 0 and QiQz = 0
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Proof: The proof follows immediately from substitution of the proposed
factorization of A+ into the relations (l)-(4). cl

The lemma includes the special cases where A is of full column- and/or
row rank, and the cases where P and/or Q is unitary.
We are now ready to establish the connection between the PSVD and the
QSVD.

Lemma 6 Let A, m x n and B, p x n have a PSVD as in theorem 1:

A =

B = U&X-’

where the par$itioning  of x is according to the zero-nonzero diagonal struc-
ture of SA. Then (up to a reordening  of TOWS of (ATO)-’ and columns of UA
and UB and a corresponding reorganization of SAD and SBD), the QSVD
of (A+)‘, B is given by:

(A+)* = u~((s,‘)‘D)(xD)-’

B = u~(s,D)(xD)-’

if A is of full column rank OT A’,‘&  = 0 where D is a non-singular diagonal
matrix given by:

Proof: The proof is an immediate consequence of lemma 5. The matrix D
is a diagonal scaling matrix, which ensures that the sum of squares of the
diagonal elements equals 1 as required by theorem 2. 0

3 On the structure of the contragredient  trans-
format ion

In this section, we shall investigate in detail the structure of the matrix X,
including its (non)-uniqueness properties. As a matter of fact, already in
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lemma 4, we have provided a parametrization of possible matrices X = Y-’
in terms of matrices U3, T3, U4 and T4. In this section however, we shall. .
make a more detailed analysis of the non-uniqueness.

First, in section 3.1., we summarize some known results on contragredi-
ent and balancing transformations of pairs of symmetric matrices, one of
which is positive definite and the other nonnegative or positive definite.
Then, in section 3.2. it is shown how certain submatrices of the contragre-
dient transformation matrix X are solutions of a set of nonlinear matrix
equations. A solution of these is provided in section 3.3 (a constructive
derivation can be found in the appendix). These ‘basic’ solutions, which
themselves contain a certain degree of non-uniqueness, are then used to
parametrize all possible PSVDs  of a pair of matrices, which is the subject
of section 3.4.,,
In summary, the main result of this section is a complete characteriza-
tion and description of the non-uniqueness properties of the PSVD, and
in particular, of a contragredient transformation for 2 nonnegative definite
matrices.

3 .1  Contragredient and balancing transformations.
In order to introduce the notion of a contragredient transformation, observe
that it follows from theorem 1 that:

A’A = x(Sf4sA)xt
B’B = x-*( s$,)~~-’

. or that:

X-‘A’AX-’ = (@A)

X ’B ’B X = (s$B)

Hence X- ’ diagonalizes the matrix A’ A while Xt diagonalizes the matrix
B’B. A double congruence transformation of this kind for a pair of matri-
ces is called contragredient [14].
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Definition 1 Contragredient transformation
The nonsingular n x n matriz  T is a contragredient transformation for a
pair of matrices F, G if: . .

T-‘FT-’ = real  diagonal
T ’G T  = real diagonal

If both diagonal matrices are equal, we have:

Definition 2 Balancing contragredient transformation
A contragredient transformation T is called balancing if:

T-‘FT-’ = T’GT = real diagonal

--.
Applications of (balancing) contragredient transformations can be found in
system and control theory (open loop balancing of stable plants [6] [14] [15]
and unstable systems (131 and closed loop balancing [ 121, model reduction
[9] and &, controller design [8]).

An immediate consequence of definition 2 is of course that balancedness
can only occur if F and G have the same inertia because T is a congruence
transformation on F and G, which preserves inertia.
Obviously, a necessary condition for existence of a contragredient transfor-
mation for the pair F, G is that the product FG must be similar to a real
diagonal matrix. An example of a pair F,G for which no contragredient
transformation exists is:

The eigenvalues of FG are 1 & j&, hence FG is not similar to a real
diagonal matrix.

In case F and G are nonnegative (NND) and/or positive definite  (PD),
a contragredient transformation always exists. This is shown in lemma 7
where F and G are both PD and in lemma 8, where F is PD and G is NND.
The case where both F and G are NND is analysed in detail in sections 3.2
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- 3.4.

These conditions of positive and nonnegative definiteness are sufficient  but
not necessary. As an example, consider:

F=(; ;) G=(I: -;)

Both F and G are indefinite. It is easy to check that:

is a contragredient transformation.

Lemma 7
Existence of a contragredient transformation for positive definite
matrices
Suppose F = Ft and G = G’ are both positive definite. Let F and G
have Cholesky factorization F = LFL> and G = LGL&. Let L&LF  have
singular value decomposition L&LF  = UCV’. Then T = Le~VC-‘12  is a
contragredient balancing transformation.  Also T-’ = C-‘/2U t Lb.

Proof: [14],  theorem 1.

.

The next theorem addresses the case where one of F and G is nonneg-
ative definite, say G. In this case, the contragredient transformation can
not be balancing because F and G do not have the same inertia.

Lemma 8
Existence of a contragredient transformation for positive definite
F, nonnegative definite G
Let F = F’ be positive definite and G = G’ be nonnegative definite. Let F
have Cholesky factorization F = LFL; and G = LcLL be a Cholesky-like
factorization where Lc is n x rG with rG = rank(G). Let the OSVD of
L~LG be L~LG = UCV’. Then T = LFU is a contragredient tranaforma-
tion.
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Proof: [14].

Observe that a contragredient transformation can only be unique up to
a diagonal matrix, because if T is contragredient, TD where D is nonsin-
gular diagonal, will also be contragredient. In case F and G are positive
definite, a balancing contragredient transformation is essentially unique if
the eigenlalues  of FG are distinct. In case 2 or more eigenvalues of FG are
repeated, their corresponding eigenvectors can be rotated arbitrarily in the
corresponding eigenspace. In case F is positive definite  and G nonnegative
definite, similar stat,ements  apply.

If however, both F and G are nonnegative definite, non-uniqueness for bal-
ancing contragredient transformations arises even in the distinct eigenvalue
case, as is evident from the following example, borrowed from 1141.

F=(; ;) G=(; ;)

Then
F G =  :;

( )
has distinct eigenvalues at 1 and 0. But the transformation

T =

is contragredient for any non-zero ,0 and y and balancing if /? = 1 and y
nonzero.

From theorem 1, it can be seen that the PSVD provides a contragredi-
ent transformation for the matrix pair A’A and B’B and the conditions for
this transformation to be balancing are obvious from the structure of the
matrices SA and SB in theorem 1.

The rest of this paper is devoted to a detailed analysis of the case of nonneg-
ative definite F and G, in casu  F = A’A and G = B’B. When for instance
both the matrices A and B have more columns than rows, both AtA and
BtB are nonnegative definite. In particular, we shall analyse in detail all
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possible causes of the non-uniqueness of the contragredient transformation
X that occurs in the PSVD of theorem 1. Obviously, the results will also
apply to the case where F and G are’nonnegative definite, but not given
explicitly as F = A’A and G = B’B for some A and B. A suitable -4 and
B can always be obtained from for instance a Cholesky-like factorization as
in lemma 8. The results of this section can then be applied to the Cholesky
factors.

3.2 Expressing the PSVD via OSVDs
First, we shall show how to deflate a common null space of the matrices A
and B. This will allow us to assume without loss of generalit,y  that A and
B do not have a common null space. Then we shall relate the PSVD of
the matrix pa.r A, B to several OSVDs in sections 3.2.2. and 3.2.3. This
leads to a set of nonlinear equations, which will be solved in section 3.3.

3.2.1 Deflating the common null space

Assume that the OSVD of the concatenation of A and B is given by:

where SabI is r,b x r,b diagonal and f,b = rank
A( )B ’

The comrnon null

space of A and B is then generat.ed  by the column vectors of the n x (n -r,b)

matrix ‘IT&.  Define the matrices Ao, m x T and Bo, p x T as:

. .

Kb = (Kbl Kb2)

Obviously, A0 and B. don’t have a common null space. Now assume that
a PSVD of the pair Ao, B. is given as:



where SAO  is m X T,,b,  Se0 is p X rab  and X0 is t’,b X l’& It follows immediately
that a PSVD of the pair A, B is given by:. .

A = VA, ( SAO OmX(n--r,t,)
)(

7 i; v,6
)

B = v,, ( SBo Opx(n--r,b)
)(

x;1 $1 vo6

(41)

(42)
where I& is an arbitrary but nonsingular  (n - rab) X (n - rob) matrix. This
matfrix  represents the first source of possible non-uniqueness of the contra-
gredien t transformation.

We assume from now on throughout the rest of section 3.2 and 3.3 without
loss of generality, that the matrices A and B do not have a common null
space and that:

rat, = rank

Only in section 3.4 and 4 we shall again consider the possibility of A and
B having a common null space.

3.2.2 The OSVD of the product

Let the OSVDs of A, m x r&,,  and B, p x r& be

A= v,,( ua2)(  ‘;l i)( $)

B = ( LTbl  ub2)( 2 ;) (2)

(43)

(44)
with ra = rank(A), rb = rank(B) and SaI is ra x ra and Sbr is rb x rb
diagonal, the matrices of left and right singular vectors being partitioned
accordingly. Then the product can be written as:

ABt = ( V,l ua2 >
Sal vi1  &I sbl 0

0 0

Consider the OSVD of the r, x rb matrix:
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with rl = rank(ABt)  and Si is ri x rl diagonal with the non-zero singular
values of AB’. Again, the matrices of left and right singular vectors are
partitioned in an obvious way, e.g. Pi is an ra x (r. - fi) matrix. The
OSVD of AB’ can then be written as:

AB’ = ( V,lPl  ualp2 ua? ) (T i i)($$)  ( 4 6 )

Obviously, r1 5 min(r,,  rb).  Observe that if Sal = &, and sbi = I,,,
the OSVD of v&v&  is nothing else than performing a canonical corre-
lation analysis between the row spaces of the matrices A and B [?I. In
other words, the OSVD of Sa~V~~&~Sbl could be considered as a weighted
canonical correlation analysis.

Let A, m x fib and B, p x r,b, be matrices with no common null space.
Referring to (46) and the PSVD-theorem of section 2, introduce two non-
singular Tab x Tab matrices X and Y and rewrite A and B as:

A = ( V,lpl V,lP2 Ua2 ) ( sr IT+ i) ( 2) (47)

B = ( UblQl Ub&?z ub2 )

where Xi is ‘l’,b  x rl , Xp is rat, X (r, - rl ), Xs is rat, X (rat,  - I’,) and Yi is
Tab X n, 172  Gb X (rb - r1) and Y3 is rab  X ( rab  - rb).

Then obviously X will be a contragredient transformation if:

(49)

From the expressions (43) and (47) for A and (44) and (48) for B it is
obvious that:

X: = S,“2 P,“Sal Vi1 (50)
x’: = p:s,I v:1 (51)
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and

Y; = s~‘l‘;2Q~s,lv,: (5 >2
y3’ = Q:Sbl I$; (53)

Obviously, rank(X1)  = rl = rank(Y& rank(X2)  = r, - rl and rank(Y3)  =
rb - rl. Moreover, it follows immediately that :

A-p,; = Irl
X’:Yl = 0
XT13 = 0
x;1; = 0

Because P2 and Q2, containing singular vectors corresponding to non-.distinct zero singular values, are not unique, X2 and Ys are non-unique.
Hence, they are only determined up to orthonormal matrices 115 and W3
as:

(54)
(55)
(56)
(57)

x’;! = Val Sal P2 II72 (58)

Y3 = vb, sbl & 2 u73 (59)

with TY’W = I
that Jr722  aid IV3  ‘zzst

=  TV IV a n d  WiTV =  I = VV3Tll,‘.  The fact
be o2rth20normal  alsi follo%rom  (47) and (48): If

Xi (Y/3t) is premultiplied there with II?; (T17i), then Ual P2 (ub2Q2)  must
be postmultiplied by IVTt (IV<‘) but must remain orthonormal. In what
follows, we shall choose TV2  = I,,,,, and W3 = lrb-T1,  until section 3.4,
where we discuss in detail non-uniqueness issues.

3 .2 .3 Refinement of the block structure.

Let’s now have a closer look at the dimensions of the blocks of the matrix
product X’Y:
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n rob - rb rb - n

X ’Y3 1 x;zf2 x;y3

r a - n

rob - ra

The requirement that this product must be equal to the identity matrix,
imposes the following structure:

l Since we know already that Xl& = 0, it follows that:

-w. rob - ro 2 rb - rl

or
rob 2 (7’0 + rb-rl)

This follows also from Xi& = 0.
(60)

l The lower (rb - rl) X (rb - rl) matrix of XiY3  is the identity matrix
I‘b-‘1 *

l The left (r, - rl) part of Xi& equals Irawrl.

l The upper right corner of XkY2  equals Ir,b-r,--rb+rl.

According to these requirements, the block structure is refined as:

He% x31  is Tab x (rob - To - r b  +  rl),  &2 r o b  X  (rb - rl),  &I rab  X  (ra - rl)

and y22 rob X (rob - ra - rb i- rl).

This leads to the following refinement of the structure of the matrices SA
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and SB in (47) and (48) (Recall that, for the time being, there is no common
null space): . .

rl r. - rl rob - r. - rb + rl rb - rl

r1 p/2

DA = ra - r1 b
0 0 0
I 0 0 (62)

m - r, 0 0 0 0

rl r. - rl rob - r. - rb+ rl rb - rl
0 0 0

DB = rb - r1 0 0 I (63)
0 0 0

It. follows from the refined block structure (61) that the matrices X31, X32, I&, Y22
will be solutions to the following set of nonlinear matrix equations:

(64)

(65)

subject to the orthogonality  constraints:

( Ef21 y22 ) = : rrwrairb+rl (66)

where the matrices Xi, X2, E’& Y3 are given by (50), (51), (52), (53).

A solut,ion  for the set of equations (64)-(66) will be obtained in the next
section.

3.3 A solution to the set of nonlinear matrix equa-
tions.

In this section, we present a solution of the set of nonlinear matrix equations
(64)-(66). For a constructive derivation, the interested reader is referred to
the appendix.
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In order to simplify our expressions l@ow, we shall first introduce some
new not ations.
Recall the expressions (50)-(53) for Xi,X2,Yi,Y3.  Define the new matrices:

Then, we have the following properties:

Lemma 9
Properties 0.f Tl, X2,71, Y3

l The matrices x’1, Xr2, Y1, F3 are l-2-3-inverses  of the matrices X;‘, Xi, Y:, Y$
They are all of full column rank.

l They satisfy the following properties:

l There are also the orthogonality relations:

x32 = 0 (75)
x:x’* = 0 (76)
Y:y, = 0 (77)
Y;& = 0 (78)

Because each of the matrices involved is of full column rank, these relations
express the fact that the corresponding column spaces are complementary,
e.g. the columns of x2 generate the kernel of Xi.
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Proof: Use the OSVDs (43), (44) and (45) to show that x’r is a solution
T = x1 to X;TX; = X;,TX;‘T = T,(X;T)’ = XiT, which are the defining
relations for a l-2-3-inverse.  The same argument applies for Xi, Y$ I’$
From the OSVDs (43)-(45),  properties (7l)-(74)  follow immediately. The
ort hogonality relations (75)-(  78) follow from the OSVD (45). cl

We shall now show how a PSVD can be constructed from the OSVDs
(43)-(45) and the l-2-3-inverses of X1, X2, &, 1% as in (67)-(70).

Theorem 3
An explicit construction of the PSVD
Assume that A and B do not have a common null space and let their
OSVDs be:

--_ A = ( v,l  v,2 > (% i)(z)

B = ( ubl  ub2 > (TT i>(a)

Define a ‘weighted canonical correlation’ OSVD as:

s VW sal al bl bl = ( Pl p2 >

and a canonical correlation OSVD as:

Furthermore, consider the 1-2-3-inverses  as in (67)(70).
Then, a PSVD of A and B is given by:

A = ( v,, Pl v,l p2 u 1 i
l/2Sl

a2 0
0

0
Ita-rl

0

0
0
0

(79)

s1’2
( Ub&?l  Ubd?z  ub2 )

1 0 0 0
B = 0 0 0 I,b-,, (so)

0 0 0 0
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where the submatrices of X7 and Y are given by:

x’* = Vo, Sal PI S,1’2 ..
x2 = Klsolp2

x31
-l/2

= l/bZQ3S3

X32 = y3 + vb2~~~(xl(‘pI~l)-1~l~3  + x2wS)

= x,(~lL,)-1~73  + x2w5  + l/o2p,p;v;2~3

Yl = ~‘i1Sbd?1S;1’2
I;* = 72 + Tl,,v,:(Y~(~~~~)-‘x’;x’2  + EjWG)

= l’;(X:Tl)-‘Xr;T2 + EjTI’, + 1$2Q4Q:VbtZY2

yz2 = ‘1/,2  P3S,1’2--.
Y3 = &I sbl Q2

The matrix IIT5  is (r, - rl) x (rb - rl) while rj7e is (rb - rl) x (r, - rl). Both
are arbitrary except for the constraint:

71’; + TTr, = r”3rJ;(~~~)-‘(~l~~)-l~~~2 (81)

Proof: The only fact t.o be proved is that the matrices X and Y satisfy
,x?Y = Irob, which is straightforward by exploiting the properties of lemma
9 and (81). cl

A detailed derivation of the expressions for the submatrices of X and Y
can be found in the appendix.

. 3.4 Non-uniqueness  properties  of the PSVD
In case A and B do have a common null space, it is straightforward to
combine the result of theorem 3 with the result of section 3.2.1.

. A PSVD of any matrix pair A, B is given by:

xs1’2
’

0 0 0 0 x
A = (uA1 VA2 uA3) Ira--rl 0 0 0 xi1

0 0 0 0 0 xi2
Xi
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sy2 0 0 0 0
B = (UBl uB2 uB3) 0 “0 0 Irb,,, 0

0 0 0 0 0

The matrices UAl, uA2, uA3, UB~,  uB& uB3 can be identified from (80) and
the expressions for the submatrices of X and Y are given in theorem 3.
The matrices X4 and Y4 are such that:

( ;)x4= ( ;)Y4=o x:Y4=Lab

The question of non-uniqueness can now be analysed as follows:
Insert nonsingular square matrices R, T, W, Z into the above PSVD (83)
as:

A = UAWDAT’X’ (85)
B = UBZDBR’Y’ (86)

with appropriate partitionings of the matrices W, T, 2, R corresponding to
the block structure of SA and Sg.
This will correspond to another valid P SVD if the following conditions are
satisfied:

l The matrix UAM’ is orthonormal, hence IV should be orthonormal.

l The matrix V,Z is orthonormal, hence 2 should be orthonormal.

l WDAT’ = DA and ZDBR’ = Dg.

0

T’R = I (87)

Let us analyse these requirements in more detail:

l From equations (50) and (52) it follows that Xi and Yi are essentially
unique (i.e. apart from (non-generic) non-uniqueness arising from
non-distinct non-zero singular values in one of the OSVDs  (43),  (44)
and (45)).
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l The non-uniqueness for X2 and Ya is described in (58) and (59). They
are unique up to orthonormal matrices W2 and W3.. .

l The common null space of A and B is also uniquely determined.
The non-uniqueness of the choice of basis is characterized by the
nonsingular matrix IIf, in (41) and (42).

Combining these observations, it turns out that we can impose the following
block structure to the matrices T, R, W and 2:

r1

rl ra - rl rob - r. - rb + rl rb - rl n - Tab

I 0 T13 Z4 0
0 T22 T23 q4 0
0 0 T33 T 0
0 0 T43 TZ 0
0 0 0 0 T55

ra - r1
T = Tab - ra -rb+r

rb - ‘1

n - Tab

rl r, - rl rob - r, - rb + r1 rb - rl n - rob

rl

ra - rl

I R12 R13 0 0
0 R22 R23 0 0

R = Tab-r0 - rb+ r1 0 R32 R33 0 0
rb - r1

i
0 R42 R43 R44 0

n - rob 0 0 0 0 R55

where T22 = W2 (see equation (58)) and Rq4 = IV3  (see equation (59)) are
arbitrary but orthonormal.
Similarly, the matrices TV and 2 have the following structure:

rl r. - r1 772 - r,

r1 I 0

TV = T, - rl 6

0
T22 0 (88)

m - r. ( 0 0 w33 i

r1 rb - r1 p - rb

f-1

(

I 0r1 0
2 = rb -rl 0 R44 0

1

(89)
p-rb 0 0 233

where W33 and 233 are arbitrary but orthonormal.
From condition (87),  it is straightforward to show that Tl3, Tl4, T43, Rl2, R13,  R23

37



must all be zero and that T33 and T55 are nonsingular. Hence:

I O 0 0 0
0 T,2 %3 G4 0

T = 0 0 Ts TM 0
0 0 0 T44 0
0 0 0 0 Ts5

and from R = T-’ it follows that:

R =

I 0 0 0 0
0 T22 0 0 0

0 -T,-,‘T:,T,-,’ T -t
-3+;t

0 0
0 -cw4 - Ti4Tc$ Ti3)T$ T,‘,T,-,’ T44 0

3 O 0 0 TGt

The conclusion is summarized in the following:

Theorem 4
On the non-uniqueness of the PSVD
If a PSVD of A, B is given by:

A = ( v,, VA2

s’/2
1
0
0

0
I
0

0
0
0

0
0
0

s”21 0 0 0 0
B = v,, 0 0 0 I 0

0 0 0 0 0

then the following is also a PSVD:

$I2 0 0 0 0
A = ( uol uoZT22  uA3w33 ) 0 IO00

0 0000

(91)

(9 >2

(93)
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B = ( uB1 u~zT44  uB3z33  >

y:
R:PY:I +Ri3Y$ + IifL4Yi

Ri3Y& + Ri412

G4Y3t
T-‘Y’55 4

The blocks Tij are arbitrary except for T2, and T44 which should be or-
thonormal and T33 and Ts5 which should be nonsingular. The blocks R;j are
determined by (87) and are given in (91). The matrices 1353  and 233 are
arbitrary orthonormal.

In order to conclude this section, observe that we have characterized the
non-uniqueness of the PSVD on a double level:

--
l In theorem 3, we have derived an explicit ‘construction of the PSVD

from 4 OSVDs that could be obtained from the matrices A and B.
Together with the observation of section 3.2.1 about a common null
space, it became clear that the matrices X and Y are partitioned
in 5 submatrices. Even here there is already some non-uniqueness
parametrized by the matrices IV5 and We, which are arbitrary apart
from the constraint (81).

l In theorem 4, it is shown that, once a PSVD is known with the
corresponding partitioning in 5 submatrices for X and Y, all other
PSVDs for the matrix pair can be obtained by inserting some ma-
trices IV, Z,T and R. The matrices TV and Z have a block diagonal
structure as in (88) and (89). The mat rices T and R have the block
triangular structure of (90) and (91). This block triangular structure
will be important in the geometrical interpretation of the submatrices
of X and Y in theorem 4. It is an interesting exercise to show that
the matrices XT and YR, where T and R have the required block
structure from theorem 4, solve the set of nonlinear equations (64)-
(66). Hence, theorem 4 also gives all solutions to this set of equations
whereas theorem 3 only described one particular solution.
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4 Geometrical interpretation of the struc-
ture. -.

In this section, we shall relate the structure of the cont,ragredient  trans-
formation as derived in the previous section, to the geometry of subspaces
related to A and B.

Let T, = rank@),  rb = rank(B) and the OSVD of A and B be as in
(43) and (44). let r,b be defined as:

Then, it is well known that:

Tab = To + rb - dim( R( A’) n R( B’)) (94)

Let r1 be defined as in (45):

Tl = 7X7&(  Sal l/r,‘,Vbl  Sbl) = rank(  Vi1 Vb,)

where the second equality follows from the nonsingularity of Sa and Sb.
From the definition of angles between subspace  as e.g. in [z], it follows
immediately that r1 is the number of canonical angles different from 90°,
between the row spaces of A and B:

rl = dim(II,.pR(B’))  = dim(IIpR(A’)) (95)

Hence rl = 0 only if the row spaces of A and B are orthogonal as was the
case in lemma 3. Assume that r,l of these canonical angles are zero while
the rc2 = rl - rcl others are not. Obviously:

rcl = dim(R(A’) n R(B’))

Hence:

and
Tab = ra + rb - rcl

Tab 2 ra + rb - n
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This is nothing else than inequality (60), which was derived from a struc-
tural requirement, whereas the derivation here is based on a geometrical. .
argument.
Because rc2 is the number of non-zero canonical angles, different from 90°,
between the row spaces of A and B, it is also the number of non-zero
canonical angles different from 90’ between the ranges of Va2 7 l-$,2.  Hence:

rc2 = rl - rc1 = T1 + rab - f’a - rb = #{o < c( v;$‘&)  < 1)

Now consider the partitioning of X and Y as derived in section 3, which is
repeated here for convenience:

rl r, - rl rab - ra - rb + rl rb - rl n - Tab

x = x1 x2 x31 x32
,-

x >4
--.

r1 r, - rl rab - r, - rb + rl rb - r1 n - Tab

\j’ith an obvious partitioning of the orthonormal  matrices & and UB as in
theorem 4, it is straightforward to derive the following

generalized dyadic decomposition

A = l/2 7t
VA1 s1 -& + uA2x:

B = l/2 t
u&l yl + uB3&!

(96)
(97)

. which can be written out as a sum of rank one terms.

From the fact that XtY = Y’X = In, it follows that:

A( K &I y22 y3 y4) = (UJ&‘~ VA2 0 0 0) (98)

B(XI X2 X 3 1  X 3 2  X 4 )  = (  UB~$‘~ 0 0 uB3 0) (99)

From these, the following geometrical characterizations can be derived.

l R(A’) is generated by the columns of Xr and X2. Hence, the row
space of the matrix A can be split into 2 subspaces:
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- R(X2)  forms a subspace  of R(A’),  which is orthogonal to R(B’).
It can be verified that -.

rank(&) = ra - rl = #{cJ(vb:Kl)  = 1) (100)

- R(&) forms a subspace  of the row space of A, which is not
orthogonal to the row space of B. Its dimension is ri as follows
also from (95):

fl = #(bK!lvbl)  > 01 (101)

l N(B) is generated by the columns of X2, X31,&.  Hence, the null
space of B can be decomposed into three subspaces:

- R(X2)  is a subspace  of R(At).

- R(-X31)  is orthogonal to R(B’), hence a subspace  of N(B), but
is not contained in R(A’).  Hence:

Tab - ra - rb + rl = #{o < u(V,‘,Vb2)  < 1)

- R(X,) is the common null space of A and B. Obviously:

92 - rab = #{ u(vi2vbz) = l)

(102)

(103)
Also, it follows immediately that:

x:X’1 = 0 004)
x:X’2 = 0 (105)

l R(B’) is generated by the columns of Yr and 1;. Hence, the row space
of the matrix B can be split into 2 subspaces:

- R(Yl) forms a subspace  of R(B’), which is not orthogonal to
R(A’).  Its dimension is rl.

- R( Ys) forms a subspace  of R( B’), which is orthogonal to R( A’).
It can be verified that:

rank(&) = rb - rl = #{~(v,:vbl)  = 11 006)
l N(A), the null space of A, is generated by the columns of Y&, Ys, Y4 .
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- R(Y22)  is orthogonal to R(A’) but not contained in R( B’). Hence:

Tab - Ta - rb + rl‘= #{o < +‘$~‘bl) < 1) (107)

- R(Y3) is orthogonal to R(A’) and also a subspace  of R(B’).
- R(Y4) is the common null space of A and B. Hence:

Y,‘Yl = 0 W)
Y4tY3 = 0 (109)

Moreover:

It can be verified that these geometrical results are independent of the
non-uniqueness of the matrices X and Y as described in theorem 4. The
reason for this independency is precisely the block triangular structure of
the matrices T (90) and R (91).
In order to appreciate this observation, compare the ;tructure  of the matrix
X to that of the matrix XT in theorem 4. Take for instance the matrix
Xsl. The matrix X31 undergoes an affine transformation of the form X31 +
X31T33+XzT23.  It is easy to check from Y’X = I,, that R(X31T33+XsT23) is
orthogonal to R(B’). hl oreover,  because T33 is nonsingular, X31T33 + X;T23
will never be contained in the row space of A because X31  isn’t neither. In
summary, all statements for X3i remain true for X3lT33 + X2T23.  The same
applies for the other submatrices of X and Y.

5 Conclusions
In this paper, we have investigated the structural properties of the product
singular value decomposition (PSVD) of 2 matrices A and B.
First, we have derived a constructive proof, which exploits the close relation
of the PSVD with the OSVD of ABtBAt and the eigenvalue decomposi-
tions of AA’BB’ and BB’AA’. We have also investigated the connection
with the QSVD and discussed several interesting properties and special
CaSeS.

Next, we have provided a detailed analysis of the structural and geometrical
properties of the so called contragredient transformation of the 2 symmetric
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matrices A’A and B’B, both of which are nonnegative and/or positive def-
inite. A complete characterization and description of the non-uniqueness. .
was obtained.
The geometry of the structure was interpreted in terms  of principal angles
between subspaces.

In a future publication, we shall show how the PSVD and the QSVD
lie at the basis of an infinite number of generalizations of the OSVD. One
of these, the RSVD, has already been analysed in detail in [3] and [ 181.
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Appendix: A solution of the nonlinear matrix equa-
tions that define the contragredient  transformation
Observe that the linear equations (64)-(65) form an underdetermined set.
With the fat torizations of Xi, X2, Yr and Y3 (5O)-( 53) one can apply lemma
1 to obtain the general solution to the underdetermined equations as:

( x31  xf32 ) = vbl s,-,‘( QIS,“~ + vb2(  z,t 2; ) (111)

+ T-I,;!( 2: 2; ) (112)

where Z& Z;, Zy, Z! are arbitrary matrices of appropriate dimensions. The
first term in (111) and (112) is a particular solution while the second term
is the general solution to the homogeneous equations obtained from (64)
and (65).
The determinat.ion  of X31, X32, Y2r  and 1 $2 reduces to the determination
of Z& Z& Z,Y, Z,Y  in:

.
x31  = tfb2z,z (113)

x32 = v,l s,-,’ Q2 + v,2 2; 014)
El = KIS~lpZ  + KZZ,” (115)

Y22 = VaZzZy (116)

subject to the conditions:

J&Y& =  0
x3421 =  0
X&Y& =  0
Zly22 = L,b-r,--rb+rl

(117)
(118)
(119)
020)
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Observe that this is a set of non-linear equations in the unknown matrices
z;, z;, q, 2;. ._

Determination of X31 and Y22: Canonical correlation !

Substituting the expressions for X31 (113) and Yz2 (116) into the last con-
straint (120),  results in:

Since both r/,2 and ‘I/b2 are orthonormal  matrices, the OSVD of the product
viZ&2  corresponds to a canonical correlation analysis between the kernels
of the matrices A and B. It can be shown that the number of non-zero
singular values of viZvb2  must be equal to rab - 1‘0 - rb + rl because the
number of non-zero singular values of v~&i  is equal to rl. Hence, 2: and
2: can be determined from the OSVD of v&v&:

Vat2Vb2  = (fi fi)(?  FJ:g (122)

where s3 is a (rat,  - ‘I‘, - rb + rl ) X (Tab  - T’, - rb + rl ) non-singular diagonal
matrix and the matrices of left and right singular vectors are partitioned
accordingly. One possible solution for XF31  and 252 follows immediately from
this OSVD as:

x31
-l/2

= Vbd?& (123)

y32 = Va2 P3S,1’2 (124)

Observe that this is not the most general solution to (113)-(116)-(120)  but
only a specific one.

The determination of X32 and Y2l

Having determined expressions for X3i (123) and Y22 (124) from a canonical
correlation analysis between the kernels of A and B, the orthogonality
conditions (117)-(120)  permit to derive two other equations for X32 and
yzl.
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Hereto, first observe that from (43) and (44)) and from (122)) it follows
that: . .

Q;V,:( v,l Vb2Q4 ) = 0 025)

PiV&( V,* Vk!h ) = 0 (126)

From equations (123) and (118) it follows that:

X;lY2l  = S;1’2Q;V,t,Y2,  = 0

while from (124) and (119) it follows that:

y;2x32  = s3-‘I2 PiVi2X32 = 0

(127)

(128)

The combination of equations (125) together with (127) permits to conclude
via lemma  1 that there must exist matrices Z:, 2: of appropriate size, such
that:

y21 = vblz: + Vb&Z:
Similarly, it follows from (126) and (128) that:

(129)

Hence, there are 2 equations for X32, namely (114) and (130) and 2 equa-
tions for 1,’21, (115) and (129). These are now repeated for convenience:

Y21  = Va* s,i’PZ  + K2zY (131)

= h,z,” + &d&Z: (132)
.

and

From these 4 equations, we shall eliminate all unknown matrices in 4 steps:

Step 1: Elimination of 2: and 2::
Recall the OSVD of v&&,2  (122). P remultiplication of the expres-
sions for Ysl (131)-(132)

48



- 

l with Vat2  results in:
z,y = v,‘,&,,  z,y. .

l with Q:V&  results in:

Z,Y = Q:V&Val  S,i’&

(135)

(136)

Upon substitution in (131) and (132),  this gives:

If these expressions are premultiplied with V’l we get a set of linear
equations for Z,Y:

Observe. that the left hand side expression can be rewritten as:

Hence, the equation for 2: reads:

V’ V V’ V 2’ - lfbtlValS~~‘Pbl al al bl 3 - 2 (139)
Step 2: Elimination of 2; and Z,Z.

In a similar manner, one can derive the following set of linear equa-
tions for 2;:

vt v  v’ v  2”al b* bl al 3 = v,:Vbd’;*Q2 (140)

Step 3: A general solution for 2; and 2:
Rewrite equation (139) for Z.& using the 0 SVD of Sal V,i Vb, Sbl =
P&Q: (45),  as:

S;1Q1S1P,‘S,-;2PlSlQ;S;1Z;  = S,-,1Q1SlP3;1P2

Using the l-2-3-inverses,  defined in lemma 9, this can be rewritten
more compactly as:

(~~l)~&&  = XT2
(141)

The following observations are crucial:
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1.

2.

3.

The matrix (Fix,) is square non-singular.
The columns of the matrix Y3 are complementary to and orthog-
onal to the columns of the matrix Fi (equation (77)).

Recall the relation ViYi  = Irl (equation (73)).

It follows from lemma 1 that the general solution for &,J3y  is given
by:

(142)

where ‘1& is an arbitrary (fb - q) x (r, - rl) matrix. The first term
is a particular solution while the second term is the general solution
to the homogeneous equation.

In a completely similar way, one obtains the general solution for V,,Z;
from (140) as:

where It’s is an arbitrag  (r, - I 1) X (rb - rl) matrix.

However, as will now be shown, that matrices IV5  and Tlr, are not
independent of each other, because of the orthogonality condition
x’;,Y21 = 0 (118).
Hereto, we shall need the following properties:
Using the properties (il)-( 78), ‘t1 is straightforward to show from
(142) and (143) that:

Also, from multiplying (142) with (143) and using the orthogonality
conditions (75)-( 78), it follows that:

Step 4: The remaining orthogonality condition
So far, we have obtained a general expression for V’,Z,t (143) and
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vbIzl (142). The expressions for X32 (133)-(134)  and & (131)-(132)
can be rewritten as:

The expressions for V,& and I$& contain two arbitrary matrices
PI’, and W6. However, it will now be derived how the only remaining
ort hogonalit y requirement:

induces%  constraint between IV5 and WG.  Hereto, we shall substitute
the expressions for X32 and Y21  into the orthogona1it.y  condition:

Equation (147) x equation (149) results in:

Equation (148) x equation (149) results in:

Equation (147) x equation (150)  results in:

(152)

Equations (152) and (153) permit to simplify equation (151) as:

Now use equation (144) and (145) to get:

(155)
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It follows then from equation ( 146) that:

This is the constraint between Ws and 1%/-G  that ensures the orthogo-
nality between X32 and E’&.

Observe that the sum IV; + WC is the product of the least squares
solutions to:
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