Numerical Analysis Project
Manuscript NA-89-06

May 1989

On the Structure and Geometry of the

Product Singular Value Decomposition

by

Bart L.R. De Moor

Numerical Analysis Project
Computer Science Department
Stanford University
Stanford, California 94305

On the structure and geometry of the product singular value decomposition.*

Bart L.R. De Moor ${ }^{\dagger}$
Department of Computer Sciences
Stanford University
CA 94305 Stanford
tel: 415-723-1923
email: demoor@patience.stanford.edu
fax:(415)-725-7411

May 24, 1989

Abstract

The product singular value decomposition is a factorization of two matrices, which can be considered as a generalization of the ordinary singular value decomposition, at the same level of generality as the quotient (generalized) singular value decomposition. A constructive proof of the product singular value decomposition is provided, which exploits the close relation with a symmetric eigenvalue problem. Several interesting properties are established.

[^0]The structure and the non-uniqueness properties of the so called contragredient transformation, which appears as one of the factors in the product singular value decomposition, are investigated in detail.
Finally, a geometrical interpretation of the structure is provided in terms of principal angles between subspaces.
Keywords: (Generalized) singular value decompositions, contragredient transformation.

1 Introduction

The ordinary singular value decomposition (OSV D) has become an important tool in the analysis and numerical solutions of numerous problems. Not only does it allow for an elegant problem formulation, but at the same time it provides geometrical and algebraic insight accompanied by a numerically stable implementation of the solution. Several algorithms and applications are discussed in e.g. [5] [10] and the references therein.
Recently, several generalizations of the singular value decomposition have been derived and analysed. The most well known example is the so called 'generalized' singular value decomposition of V an Loan [17] and Paige and Saunders [16]. In [4], we propose to call it the quotient singular value decomposition (QSVD), as opposed to the product singular value decomposition (PSVD), which was introduced in its explicit form by Fernando and Hammarling in [6] (Who called it the IISV D). In [18], Zha introduced yet another generalization of the OSVD, this time for 3 matrices, which was called the restricted singular value decomposition (RSV D) in [4] and [3].
In [4] we have proposed a standardized nomenclature for generalizations of the OSV D and we shall use these in this paper.

A common feature of all these generalizations is that they are related to the OSVD on the one hand and to generalized eigenvalue problems on the other hand. While a lot of their properties and structure can be established by exploiting these relationships, the explicit forms of the generalizations themselves are important in their own right: Not only do they possess a richer structure than their corresponding generalized eigenvalue problems, but it is expected that their direct numerical computation is better behaved than the computation via transformation to a generalized eigenvalue or OSVD problem. The reason is that, typically, generalizations of the OSVD are related to the OSVD or to generalized eigenvalue problems by $A A^{t}$-squaring type operations or matrix-(pseuclo)-inversions, which may cause non-trivial losses of numerical accuracy when implemented on a finite precision machine.

The PSVD is a generalization for 2 matrices of the OSVD. In this respect, it is a kind of 'dual' generalization of the OSVD compared to the

QSV D. For instance, we have shown in [3] that both the PSV D and the QSVD play an important role in the construction of the RSVD, which is a generalization of the OSV D for three matrices. Hence, it can be expected that the structural and geometrical properties of both the PSVD and the QSVD will play an important role in the future work on formulations, numerical implementations and applications of other generalizations of the OSVD.'

While the geometrical properties and numerical implementations of the OSVD and QSVD are by now well understood, a similar knowledge for the PSVD is less well developed. It is one of the goals of this paper to provide some more insight in the structure and geometry of the PSVD. Algorithmic ideas to actually implement the PSVD in a numerically robust way can.be found in [6] and [11]. Applications include the orthogonal Procrustes problem [10], computing balancing transformations for state space systems [6][14] and computing the Kalman decomposition of a linear system [7]. The PSVD could also be applied in the computation of approximate intersections between subspaces in the stochastic realization problem [1], as an alternative for canonical correlation analysis. The main difference between the $\mathbf{2}$ approaches lies in the fact that canonical correlation analysis first performs a normalization of the data, hence normalizing the relevant signal energy and the pure noise energy to the same level, while the PSVD can be considered as a way of decomposing the cross-covariance matrix into canonical directions, without an a priori normalisation. However, these issues will not be discussed in this paper.

The main results of this paper concentrate around 2 constructive proofs of the PSVD. The first one exploits the close relationship of the PSVD to the OSVD and several eigenvalue problems. In the second proof, we provide a profound analysis of the non-uniqueness properties of the socalled contragredient transformation which appears as one of the factors in the PSVD. Surprisingly enough, this turns out to be a considerably complicated problem. In essence, our result is a parametrization of all con-

[^1]tragredient transformations for 2 symmetric nonnegative definite matrices of the form $A^{\prime} A$ and $B^{t} B$ in terms of matrices that can be derived from the OSVDs of the $\mathbf{2}$ matrices A and \ddot{B}.

The main results and organisation of this paper are as follows:

- The constructive proof of the PSVD of 2 matrices A and B in section 2 exploits the connection between the OSVD of the matrix $A B^{t} B A^{t}$ and the eigenvalue decomposition of the matrix $A^{t} A B^{t} B$.
- In section 2, we also investigate the connection of the PSVD with the QSVD and give a variational interpretation.
- The structure of the so called contragredient transformation is inves-tigated-m section 3. We summarize some known results for existence and uniqueness of a contragredient transformation for pairs of symmetric matrices, where one of the matrices is positive definite and the other is nonnegative definite. The results in sections 3.2-3.3 give a precise account of the structure of this transformation for 2 symmetric nonnegative definite matrices. It will be demonstrated that the question of characterizing the non-uniqueness issues of the PSV D is not an easy one. First, it will be shown in section 3.3 how a certain 'canonical' PSVD can be explicitly constructed from some OSVDs of the matrices A and B. The complete description of the non-uniqueness is given in section 3.4.
- The geometrical interpretation given in section 4 concentrates on the relation with principal angles between certain subspaces of the $\mathbf{2}$ matrices.

Notations and Abbreviations

All matrices and vectors in this paper are real. M atrices are denoted by capitals, vector by lower case letters other than $i, j, k, l, m, n, p, q, r$ which are nonnegative integers. Scalars are denoted by greek letters. The range (column space) of a matrix A will be denoted by $R(A)$, its row space by $R\left(A^{t}\right)$, its null space by $N(A)$. The orthogonal projection of the column space of a matrix B onto the column space of a matrix A is denoted by
$\Pi_{A} R(B)$. The orthogonalization of the column space of a matrix B to the column space of a matrix A is denoted by $\Pi_{A}^{\perp} R(B)$. The subspace that is the intersection of the column spaces of 2 matrices A and B is denoted by $R(A) \cap R(B)$. T he direct sum of 2 mutually orthogonal subspaces $R\left(U_{1}\right)$ and $R\left(U_{2}\right)\left(U_{1}^{t} U_{2}=0\right)$ is denoted by $R\left(U_{1}\right) \oplus R\left(U_{2}\right)$. The dimension of a subspace is abbreviated as dim, hence $\operatorname{dim}(R(A))=\operatorname{rank}(A)=\operatorname{dim}\left(R\left(A^{t}\right)\right)$. By $\#\{\sigma(A)=1\}$ we denote the number of singular values of A equal to 1 .

It is assumed that, whenever a dimension indicating number becomes zero, the corresponding matrix, block row or block column can be omitted in all expressions where it appears. This convention allows for an elegant treatment of several possible cases at once. Dimensions of identity matrices are omitted if they are obvious from the context.

2 The product singular value decomposition

In this section, we shall first state the main theorem and provide a constructive proof of the PSVD, which is based on some results that relate the OSV D of the matrix $A B^{t} B A^{t}$ to the eigenvalue decomposition of the matrices $B^{t} B A^{t} A$ and $A^{t} A B^{t} B$. We shall also proof a lemma that permits to express the PSVD of the matrix pair A, B in terms of their OSVDs when $A B^{t}=0$.
In section 2.2, we shall provide a variational characterization of the PSVD and investigate a relation between the PSVD and the QSVD.

2.1 A constructive proof of the PSVD

Theorem 1 The PSVD

Every pair of real matrices $A, m \times n$, and $B, p \times n$ can be factorized as:

$$
\begin{aligned}
\boldsymbol{A} & =U_{A} S_{A} X^{t} \\
\boldsymbol{B} & =U_{B} S_{B} X^{-1}
\end{aligned}
$$

All matrices are real. The matrices U_{A}, U_{B} are square orthonormal and X is square nonsingular. S_{A} and S_{B} have the following structure:

$$
\begin{aligned}
\\
\left.S_{A}=\begin{array}{l}
r_{1} \\
r_{a}-r_{1} \\
m-r_{a}
\end{array} \begin{array}{cccc}
r_{1} & r_{a}-r_{1} & r_{b}-r_{1} & n-r_{a}-r_{b}+r_{1} \\
S_{1}^{1 / 2} & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
\left.\begin{array}{l}
r_{1} \\
S_{B}=\begin{array}{r}
r_{b}-r_{1} \\
\\
\mathrm{P}-r_{b}
\end{array}\left(\begin{array}{cccc}
S_{1}^{1 / 2} & r_{a}-r_{1} & r_{b}-r_{1} & n-r_{a}-r_{b}+r_{1} \\
0 & 0 & 0 & 0 \\
0 & 0 & I & 0 \\
0
\end{array}\right)
\end{array}\right)
\end{aligned}
$$

where S_{1} is square diagonal with positive diagonal elements and $r_{1}=\operatorname{rank}\left(A B^{t}\right)$.
Before proving the theorem, let us first give the following remarks:

- While some related eigenvalue problems were discussed in [11] and [14], the explicit formulation of the PSV D as n theorem 1 , was given for the first time by Fernando and H ammarling in [6], who called it the ISVVD. ${ }^{2}$
- Throughout the paper, we shall also use the matrix Y defined as $Y=X^{-t}$.
- In [6], the factorization is presented in a slightly different form, where a QR-factorization of X is used. While this may be preferable in

[^2]analysing numerical issues related to the PSV D, such an additional factorization is not relevant for our present purpose, which is the detailed exploration of structural and geometrical properties.

- Here are some examples of possible structures of S_{A} and S_{B} in the PSVD of theorem 1:

$$
\begin{aligned}
& m=4, p=4, n=7, r_{a}=3, r_{b}=4, r_{1}=2: \\
& S_{A}=\left(\begin{array}{ccccccc}
0 & \sqrt{\sigma_{2}} & 0 & 0 & 0 & 0 & 0 \\
\sqrt{\sigma 0} & 0010 & 0 & 0 & 0 & 001000
\end{array}\right)_{0000} \\
& S_{B}=\left(\begin{array}{ccccccc}
\sqrt{\sigma_{1}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 10 & 0 & 0 \\
0 & \sqrt{\sigma_{2}} & 0 & 0 & 010 & 0
\end{array}\right) \\
& m=4, p=5, n=4, r_{a}=4, r_{b}=3, r_{1}=3: \\
& S_{A}=\left(\begin{array}{cccc}
\sqrt{\sigma_{1}} & 0 & 0 & 0 \\
0 & \sqrt{\sigma_{2}} & 0 & 0 \\
0 & 0 & \sqrt{\sigma_{3}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& S_{B}=\left(\begin{array}{cccc}
\sqrt{\sigma_{1}} & 0 & 0 & 0 \\
0 & \sqrt{\sigma_{2}} & 0 & 0 \\
0 & 0 & \sqrt{\sigma_{3}} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

- Of course, the PSVD ressembles closely the QSVD of 2 matrices, at least in appearance:

Theorem 2 The quotient (generalized) SVD (QSVD)
Every pair of real matrices $A, m \times n$, and $B, p \times n$ can be factorized as:

$$
\begin{aligned}
& \boldsymbol{A}=U_{A} S_{A} X^{-1} \\
& \boldsymbol{B}=U_{B} S_{B} X^{-1}
\end{aligned}
$$

All matrices are real. The matrix U_{a} is $m \times m$ orthonormal, U_{B} is $\boldsymbol{p} \times \boldsymbol{p}$ orthonormal, X is $n \times n$ nonsingular. With $r_{a b}=\operatorname{rank}\binom{A}{B}$, the matrices $S_{A}(m \times n)$ and $S_{B}(p \times n)$ have the following structure:

$$
\begin{aligned}
& \left.S_{B}=\begin{array}{l}
\boldsymbol{p}-r_{b} \\
r_{a}+r_{b}-r_{a b} \\
r_{a b}-r_{a b}
\end{array} \quad \begin{array}{cccc}
\boldsymbol{r}_{a b}-\boldsymbol{r}_{b} & \boldsymbol{r}_{a}+\boldsymbol{r}_{b}-\boldsymbol{r}_{a b} & \boldsymbol{r}_{a b}-\boldsymbol{r}_{a} & \boldsymbol{n}-\boldsymbol{r}_{a b} \\
0 & 0 & 0 & 0 \\
0 & \mathrm{~S} & 0 & 0 \\
0 & 0 & \boldsymbol{I} & 0
\end{array}\right)
\end{aligned}
$$

where C and S are $\left(r_{a}+r_{b}-r_{a b}\right) \times\left(r_{a}+r_{b}-r_{a b}\right)$ diagonal matrices with positive diagonal elements, satisfying:

$$
C^{2}+S^{2}=I_{r_{a}+r_{b}-r_{a b}}
$$

and $r_{a}=\operatorname{rank}(A), r_{b}=\operatorname{rank}(B)$.
For some constructive proofs based upon several OSVDs, see e.g. [10], [16]. The name QSV D is proposed in [4].

- While the structure of the PSVD and QSVD seems similar, their geometrical properties are completely different.
- We propose to call the pairs of nonzero elements of S_{A} and S_{B} in theorem 1, the product singular values pairs and their product the product singular values. Obviously, the pairs contain more structural information than the product singular values. There are 4 possibilities:

1. There are r_{1} pairs of the form ($\sqrt{\sigma_{i}}, \sqrt{\sigma_{i}}$) with corresponding product singular value $\sigma_{i}, i=1, \ldots, r_{1}$. By convention, they are ordered such that $\sigma_{i} \geq \sigma_{i+1}$.
2. There are $r_{a}-r_{1}$ pairs $(1,0)$ with corresponding product singular value 0.
3. There are $r_{b}-r_{1}$ pairs (0,1) with corresponding product singular value 0.
4. There are $n-r_{a}-r_{b}+r_{1}$ pairs $(0,0)$ which we shall call the trivial product singular value pairs, in analogy with the trivial quotient singular value pairs [4]. The corresponding product singular values are undefined.

In the constructive proof of theorem 1, we shall need the following 4 lemmas:

Lemma 1

On the general solution of a consistent linear matrix equation The set of solutions of the consistent matris equation

$$
\boldsymbol{A} \boldsymbol{X}=\boldsymbol{B}
$$

is generated by

$$
X=X_{\text {part }}+A^{\perp} T
$$

where $X_{\text {part }}$ is a particular solution satisfying $A X_{p}=B, A^{\perp}$ is a matris of maximal rank such that $A A^{\perp}=0$ and T is an arbitrary matris.
In particular, let the OSVD of A be given as:

$$
A=\left(U_{a 1} U_{a 2}\right)\left(\begin{array}{cc}
S_{a 1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{a 1}^{t}}{V_{a 2}^{t}}
$$

then

$$
X=V_{a 1} S_{a 1}^{-1} U_{a 1}^{t} B+V_{a 2} T
$$

is a solution for every matrix T.

- Observe that the lemma states that all solutions X can be written as the sum of a particular solution and the general solution to the homogeneous equation $A X=0$.
- The first term is nothing else than $A^{+} B$ where A^{+}is the MoorePenrose pseudo-inverse of A. It is also the unique minimum Frobenius norm solution. Recall that A^{+}is the M oore-Penrose inverse of \boldsymbol{A} if it is the unique solution $T=A^{+}$of:

$$
\begin{align*}
& \text { 1. } \quad \text { ATA }=\boldsymbol{A} \tag{1}\\
& \text { 2. } \quad \text { TAT }=T \tag{2}\\
& \text { 3. }(\boldsymbol{A T})^{\prime}=\boldsymbol{A T} \tag{3}\\
& \text { 4. }(\boldsymbol{T A})^{\prime}=\boldsymbol{T A} \tag{4}
\end{align*}
$$

In section 3, we shall also use the notion of an 1-2-3-inverse of the matrix A, which is any mat xix T satisfying (1)-(2)-(3).

Lemma 2

On the eigenvalues of $A B$, and $B A^{t}$
For any pair of $m \times n$ matrices A and B, the nonzero eigenvalues of $A B^{t}$ and $B^{t} A$ are the same.
Proof: Consider the following matrix identities:

$$
\left(\begin{array}{cc}
A B^{t} & 0 \\
B^{t} & 0
\end{array}\right)\left(\begin{array}{cc}
I_{m} & A \\
0 & I_{n}
\end{array}\right)=\left(\begin{array}{cc}
A B^{t} & A B^{t} A \\
B^{t} & B^{t} A
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
I_{m} & A \\
0 & I_{n}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
B^{t} & B^{t} A
\end{array}\right)=\left(\begin{array}{cc}
A B^{t} & A B^{t} A \\
B^{t} & B^{t} A
\end{array}\right)
$$

Since the matrix

$$
\left(\begin{array}{cc}
I_{m} & A \\
0 & I_{n}
\end{array}\right)
$$

is nonsingular, we find that:

$$
\left(\begin{array}{cc}
I_{m} & A \\
0 & I_{n}
\end{array}\right)^{-1}\left(\begin{array}{cc}
A B^{t} & 0 \\
B^{t} & 0
\end{array}\right)\left(\begin{array}{cc}
I_{m} & A \\
0 & I_{n}
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
B^{t} & B^{t} A
\end{array}\right)
$$

Hence, the matrices

$$
\left(\begin{array}{cc}
A B^{t} & 0 \\
B^{t} & 0
\end{array}\right) \quad\left(\begin{array}{cc}
0 & 0 \\
B^{t} & B^{t} A
\end{array}\right)
$$

are similar. The first matrix has as its eigenvalues the eigenvalues of $A B^{t}$ and n eigenvalues 0 . The second matrix has as its eigenvalues the eigenvalues of $B^{\prime} \boldsymbol{A}$ and m eigenvalues 0 .

An immediate consequence of lemma $\mathbf{2}$ is the following:
Corollary 1 Denote by $\lambda($.$) the nonzero eigenvalue spectrum of a matrix.$ Then:

$$
\begin{aligned}
\lambda\left(A B^{t} B A^{t}\right) & =\lambda\left(\boldsymbol{B A}^{\prime} \boldsymbol{A} \boldsymbol{B}^{\prime}\right) \\
& =\lambda\left(A^{t} A B^{t} B\right) \\
& =\lambda\left(B^{t} B A^{t} A\right)
\end{aligned}
$$

Another result we shall need concerns the PSVD of two matrices in the special case that their row spaces are orthogonal, i.e. $A B^{t}=0$

Lemma 3

PSVD of A, B if $A B^{t}=0$
Let $A, m x n$ and $B, p \times n$ be such that:

$$
A B^{t}=0
$$

Assume that A and B have OSVDs:

$$
\begin{align*}
A & =\left(\begin{array}{ll}
U_{a 1} & U_{a 2}
\end{array}\right)\left(\begin{array}{cc}
S_{a 1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{a 1}^{t}}{V_{a 2}^{t}} \tag{5}\\
B & =\left(\begin{array}{ll}
U_{b 1} & U_{b 2}
\end{array}\right)\left(\begin{array}{cc}
S_{b 1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{b 1}^{t}}{V_{b 2}^{t}} \tag{6}
\end{align*}
$$

where $S_{a 1}$ is $r_{a} x r_{a}(r,=\operatorname{rank}(A))$ and $S_{b 1}$ is $r_{b} \times r_{b}\left(r_{b}=\operatorname{rank}(B)\right)$. Assume that the common null space is generated by the columns of the orthonormal matrix $V_{a b 2}$:

$$
\binom{A}{B} V_{a b 2}=0
$$

Then, a PSVD of A, B is given by:

$$
\left.\begin{array}{r}
\boldsymbol{A}=\left(\begin{array}{ll}
U_{a 1} & U_{a 2}
\end{array}\right)\left(\begin{array}{ccc}
r_{b} n-r_{a}-r_{b} \\
I_{r_{a}} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
S_{a 1} V_{a 1}^{t} \\
S_{b 1}^{-1} V_{b 1}^{t} \\
V_{a b 2}^{t}
\end{array}\right) \\
\boldsymbol{B}=\left(\begin{array}{ll}
r_{a} & r_{b} \\
n-r_{a}-r_{b} \\
0 & I_{r_{b}}
\end{array}\right)\left(\begin{array}{c}
S_{a 1}^{-1} V_{a 1}^{t} \\
0
\end{array} 0\right.
\end{array}\right)\left(\begin{array}{c}
S_{b 1} \\
S_{b 1} V_{b 1}^{t} \\
V_{a b 2}^{t}
\end{array}\right), ~ \$
$$

We have used 'a' PSVD instead of 'the' PSVD because of the nonuniqueness of $V_{a b 2}$ (which for instance can be postmultiplied by any orthonormal matrix) and possibly of $U_{a 1}, U_{a 2}, V_{a 1}, V_{a 2}, U_{b 1}, U_{b 2}, V_{b 1}, V_{b 2}$ from the (non)-uniqueness properties of the OSVD. A detailed analysis of the non-uniqueness properties of the PSVD in general is the subject of section

3.

Proof: Observe that, because of the" orthogonality of the row spaces of A and B, it follows that:

$$
\operatorname{rank}\binom{A}{B}=r_{a}+r_{b}
$$

Hence, the dimension of the common null space is $n-r_{a}-r_{b}$. It is straightforward to find that $V_{a 2}$ and $V_{b 2}$ can be chosen as:

$$
\begin{aligned}
V_{a 2}^{t} & =\binom{V_{b 1}^{t}}{V_{a b 2}^{t}} \\
V_{b 2}^{t} & =\binom{V_{a 1}^{t}}{V_{a b 2}^{t}}
\end{aligned}
$$

The theorem then follows. The matrices $S_{a 1}{ }^{-1}$ and $S_{b 1}{ }^{-1}$ are inserted because the right hand factors of A and B must be r lated to each other as X^{-1} and X^{t} (see theorem 1).

The central idea of the proof of theorem 1 is to exploit the close connection between the OSVD of $A B^{t}$ and the eigenvalue decompositions of $B^{t} B A^{t} A$ and $A^{\prime} A B^{\prime} B$, which is the subject of the following lemma:

Lemma 4
The relation between the $O S V D$ of $A B^{t}$ and the eigenvalue decomposition of $B^{t} B A^{t} A$
Let the OSVD of $A B$ ' be given as:

$$
\begin{align*}
\boldsymbol{A} \boldsymbol{B}^{\prime} & =U D_{1} V^{t} \tag{7}\\
& =\left(\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right)\left(\begin{array}{cc}
S_{1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{1}^{t}}{V_{2}^{t}} \tag{8}
\end{align*}
$$

where S_{1} is $r_{1} \times r_{1}$ with $r_{1}=\operatorname{rank}\left(A B^{t}\right)$ and contains the nonzero singular values of $A B$. Consider the eigenvalue problem:

$$
\begin{equation*}
\left(B^{t} B A^{t} A\right) Y=Y D_{2} \tag{9}
\end{equation*}
$$

Consider also the OSVD of A as in (5). Then all possible matrices of eigenvectors Y can be written as:

$$
Y=\left(\begin{array}{lll}
Y_{1} & Y_{2} & Y_{3}
\end{array}\right)=\left(A+V_{a 2}\right)\left(\begin{array}{lll}
U_{1} & U_{3} & U_{4} \\
T_{1} & T_{3} & T_{4}
\end{array}\right)
$$

where

- $D_{2}=\left(\begin{array}{ccc}S_{1}^{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
- $T_{1}=V_{a 2}^{t} B^{t} B A^{t} U_{1} S_{1}^{-2}$
- U_{3} is any matrix such that $R(A)=R\left(U_{1}\right) \oplus R\left(U_{3}\right)$.
- U_{4} is any matrix such that $N\left(A^{t}\right)=R\left(U_{4}\right)$.
- T_{3} and T_{4} are arbitrary matrices that can be chosen to ensure that $\operatorname{rank}(Y)=n$.

Proof: First observe that from corollary 1 it follows that the nonzero eigenvalues of $A B^{t} B A^{t}$ and $B^{\prime} B A^{\prime} A$ are the same. We shall show that there exist $r_{1}=\operatorname{rank}\left(A B^{t}\right)$ eigenvectors corresponding to S_{1}^{2}. These will form the $n \times r_{1}$ matrix Y_{1}. Then we shall show that it is possible to choose a $n \times\left(r_{a}-r_{1}\right)$ matrix Y_{2} and a $n \times\left(n-r_{a}\right)$ matrix Y_{3}, both containing eigenvectors corresponding to zero eigenvalues such that the $n \times n$ matrix $\mathbf{Y}=\left(Y_{1} Y_{2} \mathrm{Y} 3\right)$ is nonsingular.

Proof for Y_{1} :
From the fact that $r_{1}=\operatorname{rank}\left(A B^{t}\right) \leq r_{a}=\operatorname{rank}(A)$, it follows that:

$$
R\left(U_{1}\right) \subset R(A)
$$

so that

$$
\begin{equation*}
A A^{+} U_{1}=U_{1} \tag{10}
\end{equation*}
$$

The matrix Y_{1} will contain eigenvectors corresponding to S_{1}^{2} if:

$$
\begin{equation*}
\left(B^{t} B A^{t} A\right) Y_{1}=Y_{1} S_{1}^{2} \tag{11}
\end{equation*}
$$

Premultiply this expression with A :

$$
\begin{equation*}
\left(A B^{t} B A^{t}\right) A Y_{1}=A Y_{1} S_{1}^{2} \tag{12}
\end{equation*}
$$

But from the OSVD (8) of $A B$, it follows then that we can put:

$$
A Y_{1}=U_{1}
$$

and using lemma 1 it follows that

$$
\begin{equation*}
Y_{1}=A^{+} U_{1}+V_{a 2} T_{1} \tag{13}
\end{equation*}
$$

The matrix T_{1} is however not arbitrary because it has to satisfy (11). Substituting (13) into (11) results in:

$$
\begin{equation*}
B^{t} B A^{t} A\left(A^{+} U_{1}+V_{a 2} T_{1}\right)=\left(A^{+} U_{1}+V_{a 2} T_{1}\right) S_{1}^{2} \tag{14}
\end{equation*}
$$

Premultiplying (14) with $V_{a 2}^{t}$ results in:

$$
\begin{equation*}
T_{1}=V_{a 2}^{t} B^{t} B A^{t} U_{1} S_{1}^{-2} \tag{15}
\end{equation*}
$$

Hence we find that:

$$
\begin{equation*}
Y_{1}=V_{a 1} S_{a 1}^{-1} U_{a 1}^{t} U_{1}+V_{a 2} V_{a 2}^{t} B^{t} B A^{t} U_{1} S_{1}^{-2} \tag{16}
\end{equation*}
$$

Let us now verify that Y_{1} as given by (16) satisfies (11). H ereto, first observe that from the OSVD of $A B^{\prime}(8)$ and the OSVD of A (5) it follows that:

$$
\begin{equation*}
V_{a 1}^{t} B^{t} B A^{t} U_{1}=S_{a 1}^{-1} U_{a 1}^{t} U_{1} S_{1}^{2} \tag{17}
\end{equation*}
$$

Together with the expression for $T_{1}(15)$, this implies the following identity:

$$
\begin{equation*}
\binom{V_{a 1}^{t}}{V_{a 2}^{t}} B^{t} B A^{t} U_{1}=\binom{V_{a 1}^{t}}{V_{a 2}^{t}}\left(V_{a 1} S_{a 1}^{-1} U_{a 1}^{t} U_{1}+V_{a 2} T_{1}\right) S_{1}^{2} \tag{18}
\end{equation*}
$$

But because ($V_{a 1} \quad V_{a 2}$) is nonsingular, it follows from (18) that:

$$
\begin{align*}
B^{t} B A^{t} U_{1} & =\left(A^{+} U_{1}+V_{a 2} T_{1}\right) S_{1}^{2} \tag{19}\\
& =Y_{1} S_{1}^{2} \tag{20}
\end{align*}
$$

It can be verified from (16) and (10) that:

$$
\begin{equation*}
U_{1}=A Y_{1} \tag{21}
\end{equation*}
$$

Substitute this in (20) to find that:

$$
\begin{equation*}
B^{t} B A^{t} A Y_{1}=Y_{1} S_{1}^{2} \tag{22}
\end{equation*}
$$

which proves that Y_{1} contains the eigenvectors corresponding to the eigenvalues that are diagonal elements of S_{1}^{2}.

Proof for Y_{2} : Observe that $R(\mathrm{~A})=R\left(U_{1}\right) \oplus R\left(U_{3}\right)$ implies that $U_{1}^{t} U_{3}=0$. Furthermore, because $R\left(U_{3}\right) \subset R(A)$, it follows that $A A^{+} U_{3}=U_{3}$. Let Y_{2} be given as: $Y_{2}=A^{+} U_{3}^{*}+V_{a 2} T_{3}$ where T_{3} is an arbitrary matrix. Then:

$$
\begin{aligned}
B^{t} B A^{t} A Y_{2} & =B^{t} B A^{t} A\left(A^{+} U_{3}+V_{a 2} T_{3}\right) \\
& =B^{t} B A^{t} U_{3} \\
& =B^{t} V_{1} S U_{1}^{t} U_{3} \\
& =0
\end{aligned}
$$

Hence, the column vectors of Y_{2} belong to the null space of $B^{t} B A^{t} A$ and $\operatorname{rank}\left(Y_{2}\right)=\operatorname{rank}\left(U_{3}\right)=r_{a}-r_{1}$.

Proof for Y_{3} : Assume that $Y_{3}=A^{+} U_{4}+V_{a 2} T_{4}=V_{a 2} T_{4}$. It follows that

$$
B^{t} B A^{t} A Y_{3}=B^{t} B A^{t} A V_{a 2} T_{4}=0
$$

This implies that the column vectors of Y_{3} belong to the null space of $B^{t} B A^{t} A$ and obviously $\operatorname{rank}(\&)=\operatorname{rank}(\&)=n-r_{a}$, if T_{4} is nonsingular.

Finally, we have to verify that with fixed U_{1}, U_{3}, U_{4} and T_{1}, we can always chose T_{3} and T_{4} to make the matrix

$$
\mathbf{Y}=\left(Y_{1} Y_{2} Y_{3}\right)=\left(A+V_{a 2}\right)\left(\begin{array}{ccc}
U_{1} & U_{3} & U_{4} \tag{23}\\
T_{1} & T_{3} & T_{4}
\end{array}\right)
$$

of full rank. Hereto, rewrite (23), using the OSVD of A (5) as:

$$
Y=\left(V_{a 1} S_{a 1}^{-1} V_{a 2}\right)\left(\begin{array}{ccc}
U_{a 1}^{t} U_{1} & U_{a 1}^{t} U_{3} & U_{a 1}^{t} U_{4} \tag{24}\\
T_{1} & T_{3} & T_{4}
\end{array}\right)
$$

The matrix \mathbf{Y} is now written as a product of $\mathbf{2}$ factors: The first factor ($V_{a 1} S_{a 1}^{-1} V_{a 2}$) is square nonsingular. Obviously, the second factor can always be made nonsingular by an appropriate choice of T_{3} and T_{4}.

An immediate consequence of lemma 4 is:

Corollary 2 Consider the eigenvahe problem for $B^{t} B A^{t} A$ as in (9):

$$
\left(B^{t} B A^{t} A\right) Y=Y D_{2}
$$

where Y is chosen as described in lemma 4. Then $X=Y^{-t}$ contains the eigenvectors of $A^{t} A B^{t} B$:

$$
\begin{equation*}
\left(A^{t} A B^{t} B\right) X=X D_{2} \tag{25}
\end{equation*}
$$

Proof: The proof follows from the nonsingularity of Y and from transposing (9).

Obviously, the column vectors of X are the left eigenvectors of $B^{\prime} \boldsymbol{B A} \boldsymbol{A}^{\prime} \boldsymbol{A}$.

We are now ready to prove theorem 1:
Proof of theorem 1:
The proof consists of $\mathbf{3}$ steps:
Step 1: First we'll show that A and B can be decomposed as:

$$
\begin{aligned}
\boldsymbol{A} & =U\left(\begin{array}{cc}
A_{11}^{\prime} & 0 \\
0 & A_{22}^{\prime}
\end{array}\right) X^{t} \\
\boldsymbol{B} & =V\left(\begin{array}{cc}
B_{11}^{\prime} & 0 \\
0 & B_{22}^{\prime}
\end{array}\right) Y^{t}
\end{aligned}
$$

with $X^{t} Y=I$.
Step 2: Then it will be shown that A_{11}^{\prime} and B_{11}^{\prime} are diagonal.
Step 3: It will be shown that $A_{22}^{\prime} B_{22}^{\prime t}=0$. This orthogonality of the row spaces of A_{22}^{\prime} and B_{22}^{\prime} allows us to apply lemma 3 to the pair $\left(A_{22}^{\prime}, B_{22}^{\prime}\right)$.

Combining step 1, 2, 3 will then prove the theorem.

Step 1:

Combining the OSVD (8) of $A B^{t}$ and the eigenvalue decomposition (9) results in:

$$
\begin{aligned}
B^{t} B A^{t} A Y & =B^{t}\left(B A^{t}\right) A Y \\
& =B^{t}\left(V D_{1}^{t} U^{t}\right) A Y \\
& =Y D_{2}
\end{aligned}
$$

Premultiplying with A results in:

$$
\begin{aligned}
A B^{t}\left(V D_{1}^{t} U^{t}\right) A Y & =A Y D_{2} \\
\left(U D_{1} V^{t}\right)\left(V D_{1}^{t} U^{t}\right) A Y & =A Y D_{2} \\
\left(D_{1} D_{1}^{t}\right)\left(U^{t} A Y\right) & =\left(U^{t} A Y\right) D_{2}
\end{aligned}
$$

or, with the block structure of D_{1} and D_{2} :

$$
\left(\begin{array}{cc}
S_{1}^{2} & 0 \\
0 & 0
\end{array}\right)\left(U^{t} A Y\right)=\left(U^{t} A Y\right)\left(\begin{array}{cc}
S_{1}^{2} & 0 \\
0 & 0
\end{array}\right)
$$

Now call $A^{\prime}=U^{\prime} A Y$ and partition A^{\prime} according to the block structure of D_{1} and D_{2} as:

$$
A^{\prime}=\begin{aligned}
& r_{1} \\
& m-r_{1}
\end{aligned}\left(\begin{array}{cc}
r_{1} & n-r_{1} \\
A_{11}^{\prime} & A_{12}^{\prime} \\
A_{21}^{\prime} & A_{22}^{\prime}
\end{array}\right)
$$

Then obviously:

$$
\left(\begin{array}{cc}
S_{1}^{2} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
A_{11}^{\prime} & A_{12}^{\prime} \\
A_{21}^{\prime} & A_{22}^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
A_{11}^{\prime} & A_{12}^{\prime} \\
A_{21}^{\prime} & A_{22}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
S_{1}^{2} & 0 \\
0 & 0
\end{array}\right)
$$

which implies that:

$$
\begin{aligned}
S_{1}^{2} A_{11}^{\prime} & =A_{11}^{\prime} S_{1}^{2} \\
A_{12}^{\prime} & =0 \\
A ; & =0
\end{aligned}
$$

Recall from lemma 4 that Y is nonsingular. Hence the matrix $A=$ $U A^{\prime} Y^{-1}$ can be written as:

$$
A=U\left(\begin{array}{cc}
A_{11}^{\prime} & 0 \tag{26}\\
0 & A_{22}^{\prime}
\end{array}\right) Y^{-1}
$$

Because U and Y are nonsingular matrices, we have that:

$$
\begin{equation*}
\operatorname{rank}\left(A_{11}^{\prime}\right)+\operatorname{rank}\left(A_{22}^{\prime}\right)=\operatorname{rank}(A) \tag{27}
\end{equation*}
$$

Using corollary 2 and applying a similar derivation to matrix $A^{t} A B^{t} B$ results in a decomposition of the matrix B as:

$$
B=V\left(\begin{array}{cc}
B_{11}^{\prime} & 0 \tag{28}\\
0 & B_{22}^{\prime}
\end{array}\right) Y^{t}
$$

where $B^{\prime}=V^{t} B Y^{-t}$ and B_{11}^{\prime} is the upper $r_{1} \times r_{1}$ block of B^{\prime}. M oreover:

$$
\begin{equation*}
\operatorname{rank}\left(B_{11}^{\prime}\right)+\operatorname{rank}\left(B_{22}^{\prime}\right)=\operatorname{rank}(B) \tag{29}
\end{equation*}
$$

Step 2:
Carrying out the multiplication $A B^{t}$ with the two factorizations (26) and (28) results in:

$$
A B^{t}=U\left(\begin{array}{cc}
A_{11}^{\prime} B_{11}^{\prime} t & 0 \tag{30}\\
0 & A^{\prime} \\
2 B_{9}^{\prime}{ }_{22}^{t}
\end{array}\right) V^{t}
$$

but from the uniqueness properties of the OSVD (8) it follows immediately that we can put:

$$
\begin{equation*}
A_{11}^{\prime} B_{11}^{\prime t}=S_{1} \tag{31}
\end{equation*}
$$

Hence, we have that:

$$
\operatorname{rank}\left(A_{11}^{\prime}\right)=\operatorname{rank}\left(B_{11}^{\prime}\right)=r_{1}
$$

so that:

$$
\begin{equation*}
B_{11}^{\prime}{ }^{t}=\left(A_{11}^{\prime}\right)^{-1} S_{1} \tag{32}
\end{equation*}
$$

When we require that $A_{11}^{\prime}=B_{11}^{\prime}$, one can always write a solution to (32) as:

$$
\begin{equation*}
A ;,=B_{11}^{\prime}=S_{1}^{1 / 2} \tag{33}
\end{equation*}
$$

In case that the elements of S_{1} are distinct, this solution is unique. If some of the elements are coinciding, the solution is unique up to block diagonal orthonormal matrices that can however be incorporated into the orthonormal matrices U and V in the factorization of $A B^{t}(30)$.

Step 3:
It follows from the (non-)uniqueness properties of the OSVD in (30) and (8) that:

$$
\begin{equation*}
A_{22}^{\prime} B_{22}^{\prime t}=0 \tag{34}
\end{equation*}
$$

M oreover, from (27) and (29), it follows that:

$$
\begin{aligned}
\operatorname{rank}\left(A_{22}^{\prime}\right) & =\operatorname{rank}(A)-r_{1}=r_{a}-r_{1} \\
\operatorname{rank}\left(B_{22}^{\prime}\right) & =\operatorname{rank}(B)-r_{1}=r_{b}-r_{1}
\end{aligned}
$$

The proof is now straightforward by applying lemma 3 to the pair $A_{22}^{\prime}, B_{22}^{\prime}$ and inserting the corresponding factorizations for A_{22}^{\prime} and B_{22}^{\prime} into (26) and (28).

2.2 A variational characterization and the relation with the QSVD

N ote that, from theorem 1, lemma 4 and corollary 2, it follows that there are 4 eigenvalue decompositions that can be related to the PSVD:

$$
\begin{aligned}
\left(A^{t} A B^{t} B\right) X & =X\left(S_{A}^{t} S_{A} S_{B}^{t} S_{B}\right) \\
\left(B^{t} B A^{t} A\right) Y & =Y\left(S_{B}^{t} S_{B} S_{A}^{t} S_{A}\right) \\
\left(A B^{t} B A^{t}\right) U_{A} & =U_{A}\left(S_{A} S_{B}^{t} S_{B} S_{A}^{t}\right) \\
\left(B A^{t} A B^{t}\right) U_{B} & =U_{B}\left(S_{B} S_{A}^{t} S_{A} S_{B}^{t}\right)
\end{aligned}
$$

The last two of them are OSVDs.
Let us now derive a variational interpretation of the PSV D. Hereto, consider the optimization problem:

Maximize over all vectors \boldsymbol{x} and \boldsymbol{y} :

$$
\begin{equation*}
\left(y^{t} A^{t} A y\right)\left(x^{t} B^{t} B x\right) \tag{35}
\end{equation*}
$$

subject to

$$
\begin{equation*}
x^{t} y=1 \tag{36}
\end{equation*}
$$

Assume that the maximum is achieved for some vectors x_{1} and y_{1}. Then, consider the following set of problems:

Find the vectors $x^{k}, y^{k}, k=2,3, \ldots$ that maximize:

$$
\begin{equation*}
\left(\left(y^{k}\right)^{t} A^{t} A y^{k}\right)\left(\left(x^{k}\right)^{t} B^{t} B x^{k}\right) \tag{37}
\end{equation*}
$$

subject to:

$$
\begin{array}{ccc}
\left(x^{k}\right)^{t} y^{k}=1 & \\
\left(x^{k}\right)^{t} y^{j}= & 0 & j=1, \ldots, k-1 \\
\left(x^{i}\right)^{t} y^{k}= & 0 & i=1, \ldots, k-1 \tag{40}
\end{array}
$$

It can be shown that the PSVD delivers the solution: The maximum of (35) is achieved for the first column vectors of X and Y and is equal to the largest product singular value. The other column vectors of X and Y provide the solutions to (37)-(40).

In order to derive a relation of the PSVD with the QSVD, we need the following lemma, relating a factorization of a matrix to its pseudo-inverse.

Lemma 5

Pseudo-inverse of a factorization
Let A of rank r_{a} be factorized as:

$$
A=P S Q^{t}=\left(\begin{array}{ll}
P_{1} & P_{2}
\end{array}\right)\left(\begin{array}{cc}
S_{1} & 0 \\
0 & 0
\end{array}\right)\binom{Q_{1}^{t}}{Q_{2}^{t}}
$$

where S_{1} is $r_{a} \times r_{a}$ non-singular diagonal and $P, Q, w h i c h$ are square nonsingular, are partitioned conformally. Then:

$$
A \quad+\quad=Q^{-*}\left(;+P^{-1}=\iota\right)^{-*} S^{-1} 0 P^{-1}
$$

if and only if:

$$
P_{1}^{t} P_{2}=0 \text { and } Q_{1}^{t} Q_{2}=0
$$

Proof: The proof follows immediately from substitution of the proposed factorization of A^{+}into the relations (1)-(4).

The lemma includes the special cases where A is of full column- and/or row rank, and the cases where P and/or Q is unitary. We are now ready to establish the connection between the PSVD and the QSVD.

Lemma 6 Let A, mxnand B, p x n have a PSVD as in theorem 1:

$$
\begin{aligned}
\boldsymbol{A} & =U_{A} S_{A}\binom{X_{1}^{t}}{X_{2}^{t}} \\
\boldsymbol{B} & =U_{B} S_{B} X^{-1}
\end{aligned}
$$

where the partitioning of X is according to the zero-nonzero diagonal structure of S_{A}. Then (up to a reordening of tows of $(X D)^{-1}$ and columns of U_{A} and U_{B} and a corresponding reorganization of $S_{A} D$ and $S_{B} D$), the QSVD of $(A+)^{〔}, B$ is given by:

$$
\begin{aligned}
(\boldsymbol{A +})^{*} & =U_{A}\left(\left(S_{A}^{+}\right)^{t} D\right)(X D)^{-1} \\
\boldsymbol{B} & =U_{B}\left(S_{B} D\right)(X D)^{-1}
\end{aligned}
$$

if \boldsymbol{A} is of full column rank or $X_{1}^{t} X_{2}=0$ where D is a non-singular diagonal matrix given by:

$$
D=\left(\begin{array}{cc}
\frac{S_{1}^{1 / 2}}{\sqrt{I_{1}+S_{1}^{2}}} & 0 \\
0 & I_{n-r_{1}}
\end{array}\right)
$$

Proof: The proof is an immediate consequence of lemma 5. The matrix D is a diagonal scaling matrix, which ensures that the sum of squares of the diagonal elements equals 1 as required by theorem 2.

3 On the structure of the contragredient transformation

In this section, we shall investigate in detail the structure of the matrix X, including its (non)-uniqueness properties. As a matter of fact, already in
lemma 4, we have provided a parametrization of possible matrices $X=Y^{-t}$ in terms of matrices U_{3}, T_{3}, U_{4} and T_{4}. In this section however, we shall make a more detailed analysis of the non-uniqueness.

First, in section 3.1., we summarize some known results on contragredient and balancing transformations of pairs of symmetric matrices, one of which is positive definite and the other nonnegative or positive definite. Then, in section 3.2. it is shown how certain submatrices of the contragredient transformation matrix X are solutions of a set of nonlinear matrix equations. A solution of these is provided in section 3.3 (a constructive derivation can be found in the appendix). These 'basic' solutions, which themselves contain a certain degree of non-uniqueness, are then used to parametrize all possible PSVDs of a pair of matrices, which is the subject of section 3.4.
In summary, the main result of this section is a complete characterization and description of the non-uniqueness properties of the PSV D, and in particular, of a contragredient transformation for 2 nonnegative definite matrices.

3.1 Contragredient and balancing transformations.

In order to introduce the notion of a contragredient transformation, observe that it follows from theorem 1 that:

$$
\begin{aligned}
& \boldsymbol{A}^{\prime} \boldsymbol{A}=X\left(S_{A}^{t} S_{A}\right) X^{t} \\
& \boldsymbol{B}^{\prime} \boldsymbol{B}=X^{-t}\left(S_{B}^{t} S_{B}\right) X^{-1}
\end{aligned}
$$

or that:

$$
\begin{aligned}
X^{-1} A^{t} A X^{-t} & =\left(S_{A}^{t} S_{A}\right) \\
\boldsymbol{X}^{\prime} \boldsymbol{B}, \boldsymbol{B} \boldsymbol{X} & =\left(S_{B}^{t} S_{B}\right)
\end{aligned}
$$

Hence X^{-1} diagonalizes the matrix $A^{t} A$ while X^{t} diagonalizes the matrix B'B. A double congruence transformation of this kind for a pair of matrices is called contragredient[14].

Definition 1 Contragredient transformation
The nonsingular $n \times n$ matrix T is a contragredient transformation for a pair of matrices F, G if:

$$
\begin{aligned}
T^{-1} F T^{-t} & =\text { real diagonal } \\
T^{\prime} G T & =\text { real diagonal }
\end{aligned}
$$

If both diagonal matrices are equal, we have:
Definition 2 Balancing contragredient transformation A contragredient transformation T is called balancing if:

$$
T^{-1} F T^{-t}=T^{t} G T=\text { real diagonal }
$$

Applications of (balancing) contragredient transformations can be found in system and control theory (open loop balancing of stable plants [6] [14][15] and unstable systems [13] and closed loop balancing [12], model reduction [9] and H_{∞} controller design [8]).

An immediate consequence of definition 2 is of course that balancedness can only occur if F and G have the same inertia because T is a congruence transformation on F and G, which preserves inertia.
Obviously, a necessary condition for existence of a contragredient transformation for the pair F, G is that the product $F G$ must be similar to a real diagonal matrix. An example of a pair F, G for which no contragredient transformation exists is:

$$
F=\left(\begin{array}{rr}
3 & 1 \\
1 & -1
\end{array}\right) \quad G=\left(\begin{array}{rr}
2 & -2 \\
-2 & 0
\end{array}\right)
$$

The eigenvalues of $F G$ are $1 \pm j \sqrt{15}$, hence $F G$ is not similar to a real diagonal matrix.

In case F and G are nonnegative (NND) and/or positive definite (PD), a contragredient transformation always exists. This is shown in lemma 7 where F and G are both PD and in lemma 8, where F is PD and G is NND. The case where both F and G are NND is analysed in detail in sections 3.2

These conditions of positive and nonnegative definiteness are sufficient but not necessary. As an example, consider:

$$
F=\left(\begin{array}{ll}
2 & 2 \\
2 & 1
\end{array}\right) \quad G=\left(\begin{array}{rr}
-1 & -1 \\
-1 & 1
\end{array}\right)
$$

Both F and \mathbf{G} are indefinite. It is easy to check that:

$$
T=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

is a contragredient transformation.

Lemma 7
Existence of a contragredient transformation for positive definite matrices
Suppose $F=F^{t}$ and $G=G^{t}$ are both positive definite. Let F and G have Cholesky factorization $F=L_{F} L_{F}^{t}$ and $G=L_{G} L_{G}^{t}$. Let $L_{G}^{t} L_{F}$ have singular value decomposition $L_{G}^{t} L_{F}=U \Sigma V^{t}$. Then $T=L_{F} V \Sigma^{-1 / 2}$ is a contragredient balancing transformation.Also $T^{-1}=\Sigma^{-1 / 2} U^{t} L_{G}^{t}$.

Proof: [14], theorem 1.
The next theorem addresses the case where one of F and G is nonnegative definite, say G. In this case, the contragredient transformation can not be balancing because F and G do not have the same inertia.

Lemma 8

Existence of a contragredient transformation for positive definite F, nonnegative definite G
Let $F=F^{t}$ be positive definite and $G=G^{t}$ be nonnegative definite. Let F have Cholesky factorization $F=L_{F} L_{F}^{t}$ and $G=L_{G} L_{G}^{t}$ be a Cholesky-like factorization where L_{G} is $n x r_{G}$ with $r_{G}=\operatorname{rank}(G)$. Let the OSVD of $L_{F}^{t} L_{G}$ be $L_{F}^{t} L_{G}=U \Sigma V^{t}$. Then $T=L_{F} U$ is a contragredient transformation.

Proof: [14].
Observe that a contragredient transformation can only be unique up to a diagonal matrix, because if \boldsymbol{T} is contragredient, $\boldsymbol{T D}$ where D is nonsingular diagonal, will also be contragredient. In case F and G are positive definite, a balancing contragredient transformation is essentially unique if the eigenvalues of $\boldsymbol{F G}$ are distinct. In case 2 or more eigenvalues of $F G$ are repeated, their corresponding eigenvectors can be rotated arbitrarily in the corresponding eigenspace. In case F is positive definite and G nonnegative definite, similar statements apply.

If however, both \boldsymbol{F} and \mathbf{G} are nonnegative definite, non-uniqueness for balancing contragredient transformations arises even in the distinct eigenvalue case, as is evident from the following example, borrowed from [14].

$$
F=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \quad G=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Then

$$
\boldsymbol{F} \quad \boldsymbol{G}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

has distinct eigenvalues at 1 and 0 . But the transformation

$$
T=\left(\begin{array}{ll}
\beta & 0 \\
\beta & \gamma
\end{array}\right)
$$

is contragredient for any non-zero β and γ and balancing if $\beta=1$ and γ nonzero.

From theorem 1, it can be seen that the PSVD provides a contragredient transformation for the matrix pair $A^{t} A$ and $B^{t} B$ and the conditions for this transformation to be balancing are obvious from the structure of the matrices S_{A} and S_{B} in theorem 1.

The rest of this paper is devoted to a detailed analysis of the case of nonnegative definite F and G , in casu $F=A^{t} A$ and $\mathrm{G}=B^{t} B$. When for instance both the matrices A and B have more columns than rows, both $A^{t} A$ and $B^{t} B$ are nonnegative definite. In particular, we shall analyse in detail all
possible causes of the non-uniqueness of the contragredient transformation X that occurs in the PSV D of theorem 1. Obviously, the results will also apply to the case where F and G are'nonnegative definite, but not given explicitly as $F=A^{\prime} A$ and $G=B^{\prime} B$ for some A and B. A suitable A and B can always be obtained from for instance a Cholesky-like factorization as in lemma 8. The results of this section can then be applied to the Cholesky factors.

3.2 Expressing the PSVD via OSVDs

First, we shall show how to deflate a common null space of the matrices A and B. This will allow us to assume without loss of generality that A and B do not have a common null space. Then we shall relate the PSVD of the matrix pair A, B to several OSVDs in sections 3.2.2. and 3.2.3. This leads to a set of nonlinear equations, which will be solved in section 3.3.

3.2.1 Deflating the common null space

Assume that the OSVD of the concatenation of A and B is given by:

$$
\binom{A}{B}=\left(\begin{array}{ll}
U_{a b 1} & U_{a b 2}
\end{array}\right)\left(\begin{array}{cc}
S_{a b 1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{a b 1}^{t}}{V_{a b 2}^{t}}
$$

where $S_{a b 1}$ is $r_{a b} \times r_{a b}$ diagonal and $r_{a b}=\operatorname{rank}\binom{A}{B}$. The common null space of A and B is then generated by the column vectors of the $\mathrm{n} \times\left(\mathrm{n}-r_{a b}\right)$ matrix $V_{a b 2}$. Define the matrices $A_{0}, \mathrm{~m} \times r$ and $B_{0}, p \times r$ as:

$$
\binom{A}{B} V_{a b}=\left(\begin{array}{cc}
A_{0} & 0 \\
B_{0} & 0
\end{array}\right)
$$

with

$$
V_{a b}=\left(V_{a b 1} V_{a b 2}\right)
$$

Obviously, A_{0} and B_{0} don't have a common null space. Now assume that a PSVD of the pair A_{0}, B_{0} is given as:

$$
\begin{aligned}
& A_{0}=U_{A_{0}} S_{A_{0}} X_{0}^{t} \\
& B_{0}=U_{B_{0}} S_{B_{0}} X_{0}^{-1}
\end{aligned}
$$

where $S_{A_{0}}$ is $m \times r_{a b}, S_{B_{0}}$ is $\mathrm{p} \times r_{a b}$ and X_{0} is $r_{a b} \times r_{a b}$. It follows immediately that a PSVD of the pair A, B is given by:

$$
\begin{align*}
\boldsymbol{A} & =U_{A_{0}}\left(S_{A_{0}} 0_{m \times\left(n-r_{a b}\right)}\right)\left(\begin{array}{cc}
X_{0}^{t} & 0 \\
0 & W_{1}^{t}
\end{array}\right) V_{a b}^{t} \tag{41}\\
\boldsymbol{B} & =U_{B_{0}}\left(S_{B_{0}} 0_{p \times\left(n-r_{a b}\right)}\right)\left(\begin{array}{cc}
X_{0}^{-1} & 0 \\
0 & W_{1}^{-1}
\end{array}\right) V_{a b}^{t} \tag{42}
\end{align*}
$$

where W_{1} is an arbitrary but nonsingular $\left(n-r_{a b}\right) \times\left(n-r_{a b}\right)$ matrix. This matrix represents the first source of possible non-uniqueness of the contragredien t transformation.

We assume from now on throughout the rest of section 3.2 and 3.3 without loss of generality, that the matrices A and B do not have a common null space and that:

$$
r_{a b}=\operatorname{rank}\binom{A}{B}=n
$$

Only in section 3.4 and 4 we shall again consider the possibility of A and B having a common null space.

3.2.2 The OSVD of the product

Let the OSVDs of $A, m \times r_{a b}$, and $B, p \times r_{a b}$, be

$$
\begin{align*}
\boldsymbol{A} & =\left(\begin{array}{ll}
U_{a 1} & U_{a 2}
\end{array}\right)\left(\begin{array}{cc}
S_{a 1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{a 1}^{t}}{V_{a 2}^{t}} \tag{43}\\
\boldsymbol{B} & =\left(\begin{array}{ll}
U_{b 1} & U_{b 2}
\end{array}\right)\left(\begin{array}{cc}
S_{b 1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{b 1}^{t}}{V_{b 2}^{t}} \tag{44}
\end{align*}
$$

with $r_{a}=\operatorname{rank}(A), r_{b}=\operatorname{rank}(B)$ and $S_{a 1}$ is $r_{a} \times r_{a}$ and $S_{b 1}$ is $r_{b} \times r_{b}$ diagonal, the matrices of left and right singular vectors being partitioned accordingly. Then the product can be written as:

$$
A B^{t}=\left(\begin{array}{ll}
U_{a 1} & U_{a 2}
\end{array}\right)\left(\begin{array}{cc}
S_{a 1} V_{a 1}^{t} V_{b 1} S_{b 1} & 0 \\
0 & 0
\end{array}\right)\binom{U_{b 1}^{t}}{U_{b 2}^{t}}
$$

Consider the OSVD of the $r_{a} \times r_{b}$ matrix:

$$
S_{a 1} V_{a 1}^{t} V_{b 1} S_{b 1}=\left(\begin{array}{ll}
P_{1} & P_{2}
\end{array}\right)\left(\begin{array}{cc}
S_{1} & 0 \tag{45}\\
0 & 0
\end{array}\right)\binom{Q_{1}^{t}}{Q_{2}^{t}}
$$

with $r_{1}=\operatorname{rank}\left(A B^{t}\right)$ and S_{1} is $r_{1} \times r_{1}$ diagonal with the non-zero singular values of $A B^{t}$. A gain, the matrices of left and right singular vectors are partitioned in an obvious way, e.g. P_{2} is an $r_{a} \times\left(r_{a}-r_{1}\right)$ matrix. The OSVD of $A B^{t}$ can then be written as:

$$
A \boldsymbol{B}^{\prime}=\left(\begin{array}{lll}
U_{a 1} P_{1} & U_{a 1} P_{2} & U_{a 2}
\end{array}\right)\left(\begin{array}{ccc}
S_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
Q_{1}^{t} U_{b 1}^{t} \\
Q_{2}^{t} U_{b 2}^{t} \\
U_{b 2}^{t}
\end{array}\right)\left(\begin{array}{lll}
1 & 4 & 6
\end{array}\right)
$$

Obviously, $r_{1} \leq \min \left(r_{a}, r_{b}\right)$. Observe that if $S_{a 1}=I_{r_{a}}$ and $S_{b 1}=I_{r_{b}}$, the OSVD of $V_{a 1}^{t} V_{b 1}$ is nothing else than performing a canonical correlation analysis between the row spaces of the matrices A and B [2]. In other words, the OSVD of $S_{a 1} V_{a 1}^{t} V_{b 1} S_{b 1}$ could be considered as a weighted canonical correlation analysis.

Let $A, m \times \underset{a b}{ }$ and $B, p \times r_{a b}$, be matrices with no common null space. Referring to (46) and the PSV D -theorem of section 2, introduce two nonsingular $r_{a b} \times r_{a b}$ matrices X and Y and rewrite A and B as:

$$
\begin{align*}
\boldsymbol{A} & =\left(\begin{array}{lll}
U_{a 1} P_{1} & U_{a 1} P_{2} & U_{a 2}
\end{array}\right)\left(\begin{array}{ccc}
S_{1}^{1 / 2} & 0 & 0 \\
0 & I_{r_{a}-r_{1}} & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
X_{1}^{t} \\
X_{2}^{t} \\
X_{3}^{t}
\end{array}\right) \tag{47}\\
\boldsymbol{B} & =\left(\begin{array}{lll}
U_{b 1} Q_{1} & U_{b 1} Q_{2} & U_{b 2}
\end{array}\right)\left(\begin{array}{ccc}
S_{1}^{1 / 2} & 0 & 0 \\
0 & 0 & I_{r_{b}-r_{1}} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
Y_{1}^{t} \\
Y_{2}^{t} \\
Y_{3}^{t}
\end{array}\right) \tag{48}
\end{align*}
$$

where Xi is $r_{a b} \times r_{1}, X_{2}$ is $r_{a b} \times\left(r_{a}-r_{1}\right), X_{3}$ is $r_{a b} \times\left(r_{a b}-r_{a}\right)$ and Y_{1} is $r_{a b} \times r_{1}, Y_{2} r_{a b} \times\left(r_{b}-r_{1}\right)$ and Y_{3} is $r_{a b} \times\left(r_{a b}-r_{b}\right)$.

Then obviously X will be a contragredient transformation if:

$$
X^{t} Y=\left(\begin{array}{c}
X_{1}^{t} \tag{49}\\
X_{2}^{t} \\
X_{3}^{t}
\end{array}\right)\left(\begin{array}{lll}
Y_{1} & Y_{2} & Y_{3}
\end{array}\right)=I_{r}
$$

From the expressions (43) and (47) for A and (44) and (48) for B it is obvious that:

$$
\begin{align*}
& X_{1}^{t}=S_{1}^{-1 / 2} P_{1}^{t} S_{a 1} V_{a 1}^{t} \tag{50}\\
& X_{2}^{t}=P_{2}^{t} S_{a 1} V_{a 1}^{t} \tag{51}
\end{align*}
$$

and

$$
\begin{align*}
& Y_{1}^{t}=S_{1}^{-1 / 2} Q_{1}^{t} S_{b 1} V_{b 1}^{t} \tag{52}\\
& Y_{3}^{t}=Q_{2}^{t} S_{b 1} V_{b 1}^{t} \tag{53}
\end{align*}
$$

Obviously, $\operatorname{rank}\left(X_{1}\right)=r_{1}=\operatorname{rank}\left(Y_{1}\right), \operatorname{rank}\left(X_{2}\right)=r_{a}-r_{1}$ and $\operatorname{rank}\left(Y_{3}\right)=$ $r_{b}-r_{1}$. M oreover, it follows immediately that :

$$
\begin{align*}
X_{1}^{t} Y_{1} & =I_{r_{1}} \tag{54}\\
X_{2}^{t} Y_{1} & =0 \tag{55}\\
X_{1}^{t} Y_{3} & =0 \tag{56}\\
X_{2}^{t} Y_{3} & =0 \tag{57}
\end{align*}
$$

Because P_{2} and Q_{2}, containing singular vectors corresponding to nondistinct zero singular values, are not unique, X_{2} and Y_{3} are non-unique. Hence, they are only determined up to orthonormal matrices W_{2} and W_{3} as:

$$
\begin{align*}
X_{2} & =V_{a 1} S_{a 1} P_{2} W_{2} \tag{58}\\
Y 3 & =V_{b 1} S_{b 1} Q_{2} W_{3} \tag{59}
\end{align*}
$$

with, $\cdot \frac{\pi}{2}{ }_{2}^{t} V_{2}^{T}=I_{r_{a}-r_{1}}=W_{2} W_{2}^{t}$ and $W_{3}{ }^{t} V_{3} \equiv I_{r_{b}-r_{1}}=W_{3} W_{3}^{t}$. The fact that W_{2} and W_{3} must be orthonormal also follows from (47) and (48): If $X_{2}^{t}\left(Y_{3}^{t}\right)$ is premultiplied there with $W_{2}^{t}\left(W_{3}^{t}\right)$, then $U_{a 1} P_{2}\left(U_{b 2} Q_{2}\right)$ must be postmultiplied by $W_{2}^{-t}\left(W_{3}^{-t}\right)$ but must remain orthonormal. In what follows, we shall choose $W_{2}=I_{r_{a}-r_{1}}$ and $W_{3}=I_{r_{b}-r_{1}}$, until section 3.4, where we discuss in detail non-uniqueness issues.

3.2.3 Refinement of the block structure.

Let's now have a closer look at the dimensions of the blocks of the matrix product $X^{\prime} Y$:

$$
\begin{array}{cccc}
r_{1} & r_{a b}-r_{b} r_{b}-r_{1} & \\
X_{1}^{t} Y_{1} & X_{1}^{t} Y_{2} & X_{1}^{t} Y_{3} & r_{1} \\
X_{2}^{t} Y_{1} & X_{2}^{t} Y_{2} & X_{2}^{t} Y_{3} & r_{a}-r_{1} \\
X_{3}^{\prime} Y_{1} & X_{3}^{t} Y_{2} & X_{3}^{t} Y_{3} & r_{a b}-r_{a}
\end{array}
$$

The requirement that this product must be equal to the identity matrix, imposes the following structure:

- Since we know already that $X_{2}^{t} Y_{3}=$ it follows that:

$$
r_{a b}-r_{a} \geq r_{b}-r_{1}
$$

or

$$
\begin{equation*}
r_{a b} \geq\left(r_{a}+r_{b}-r_{1}\right) \tag{60}
\end{equation*}
$$

This follows also from $X_{2}^{t} Y_{1}=0$.

- The lower $\left(r_{b}-r_{1}\right) \times\left(r b-r_{1}\right)$ matrix of $X_{3}^{t} Y_{3}$ is the identity matrix $I_{r_{b}-r_{1}}$.
- The left $\left(r_{a}-r_{1}\right)$ part of $X_{2}^{t} Y_{2}$ equals $I_{r_{a}-r_{1}}$.
- The upper right corner of $X_{3}^{t} Y_{2}$ equals $I_{r_{a b}-r_{a}-r_{b}+r_{1}}$.

According to these requirements, the block structure is refined as:

$$
X^{t} Y=\left(\begin{array}{c}
X_{1}^{t} \tag{61}\\
X_{2}^{t} \\
X_{31}^{t} \\
X_{32}^{t}
\end{array}\right)\left(\begin{array}{llll}
Y_{1} & Y_{21} & Y_{22} & Y_{3}
\end{array}\right)=I_{r_{a b}}
$$

Here, X_{31} is $r_{a b} \times\left(r_{a b}-r_{a}-r b+r_{1}\right), X_{32 \text { rob } \times\left(r_{b}-r_{1}\right), Y_{21} r_{a b} \times\left(r_{a}-r_{1}\right), ~}^{\text {a }}$ and $Y_{22} r_{a b} \times\left(r_{a b}-r_{a}-r_{b}+r_{1}\right)$.

This leads to the following refinement of the structure of the matrices S_{A}
and S_{B} in (47) and (48) (Recall that, for the time being, there is no common null space):

$$
\begin{align*}
& D_{A}=\begin{array}{l}
r_{1} \\
r_{a}-r_{1} \\
m-r_{a}
\end{array}\left(\begin{array}{cccc}
r_{1}-r_{1} & r_{a b}-r_{a}-r_{b}+r_{1} & r_{b}-r_{1} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
r_{1} & 0 & 0
\end{array}\right) \tag{62}\\
& D_{B}=\begin{array}{l}
r_{1} \\
r_{b}-r_{1} \\
p-r_{b}
\end{array}\left(\begin{array}{cccc}
r_{1} & r_{a}-r_{1} & r_{a b}-r_{a}-r_{b}+r_{1} & r_{b}-r_{1} \\
S_{1}^{1 / 2} & 0 & 0 & 0 \\
0 & 0 & 0 & I \\
0 & 0 & 0 & 0
\end{array}\right) \tag{63}
\end{align*}
$$

It. follows from the refined block structure (61) that the matrices $X_{31}, X_{32}, Y_{21}, Y_{22}$ will be solutions to the following set of nonlinear matrix equations:

$$
\begin{align*}
\binom{Y_{1}^{t}}{Y_{3}^{t}}\left(\begin{array}{ll}
X_{31} & X_{32}
\end{array}\right) & =\left(\begin{array}{cc}
0 & 0 \\
0 & I_{r_{b}-r_{1}}
\end{array}\right) \tag{64}\\
\binom{X_{1}^{t}}{X_{2}^{t}}\left(\begin{array}{ll}
Y_{21} & Y_{22}
\end{array}\right) & =\left(\begin{array}{cc}
0 & 0 \\
I_{r_{a}-r_{1}} & 0
\end{array}\right) \tag{65}
\end{align*}
$$

subject to the orthogonality constraints:

$$
\binom{X_{31}^{t}}{X_{32}^{t}}\left(\begin{array}{ll}
Y_{21} & Y_{22}
\end{array}\right)=\left(\begin{array}{cc}
0 & I_{r-r_{a}-r_{b}+r_{1}} \tag{66}\\
0 & 0
\end{array}\right)
$$

where the matrices $\mathbf{X i}, X_{2}, Y_{1}, Y_{3}$ are given by (50), (51), (52), (53).
A solution for the set of equations (64)-(66) will be obtained in the next section.

3.3 A solution to the set of nonlinear matrix equations.

In this section, we present a solution of the set of nonlinear matrix equations (64)-(66). For a constructive derivation, the interested reader is referred to the appendix.

In order to simplify our expressions below, we shall first introduce some new not ations.
Recall the expressions (50)-(53) for $X_{1}, X_{2}, Y_{1}, Y_{3}$. Define the new matrices:

$$
\begin{align*}
& \bar{X}_{1}=V_{a 1} S_{a 1}^{-1} P_{1} S_{1}^{1 / 2} \tag{67}\\
& \bar{X}_{2}=V_{a 1} S_{a 1}^{-1} P_{2} \tag{68}\\
& \bar{Y}_{1}=V_{b 1} S_{b 1}^{-1} Q_{1} S_{1}^{1 / 2} \tag{69}\\
& \bar{Y}_{3}=V_{b 1} S_{b 1}^{-1} Q_{2} \tag{70}
\end{align*}
$$

Then, we have the following properties:
Lemma 9
Properties of $\bar{X}_{1}, \bar{X}_{2}, \bar{Y}_{1}, \bar{Y}_{3}$

- The matrices $\bar{X}_{1}, \bar{X}_{2}, \bar{Y}_{1}, \bar{Y}_{3}$ are 1-2-3-inverses of the matrices $X_{1}^{t}, X_{2}^{t}, Y_{1}^{t}, Y_{3}^{t}$. They are all of full column rank.
- They satisfy the following properties:

$$
\begin{align*}
X_{1}^{t} \bar{X}_{1} & =I_{r_{1}} \tag{71}\\
X_{2}^{t} \bar{X}_{2} & =I_{r_{a}-r_{1}} \tag{72}\\
Y_{1}^{t} \bar{Y}_{1} & =I_{r_{1}} \tag{73}\\
Y_{3}^{t} \bar{Y}_{3} & =I_{r_{b}-r_{1}} \tag{74}
\end{align*}
$$

- There are also the orthogonality relations:

$$
\begin{align*}
X_{1}^{t} \bar{X}_{2} & =0 \tag{75}\\
X_{2}^{t} \bar{X}_{1} & =0 \tag{76}\\
Y_{1}^{t} \bar{Y}_{3} & =0 \tag{77}\\
Y_{3}^{t} \bar{Y}_{1} & =0 \tag{78}
\end{align*}
$$

Because each of the matrices involved is of full column rank, these relations express the fact that the corresponding column spaces are complementary, e.g. the columns of \bar{X}_{2} generate the kernel of X_{1}^{t}.

Proof: Use the OSVDs (43), (44) and (45) to show that \bar{X}_{1} is a solution $T=\bar{X}_{1}$ to $X_{1}^{t} T X_{1}^{t}=X_{1}^{t}, T X_{1}^{t} T=T,\left(X_{1}^{t} T\right)^{t}=X_{1}^{t} T$, which are the defining relations for a 1-2-3-inverse. The same argument applies for $X_{2}^{t}, Y_{1}^{t}, Y_{3}^{t}$. From the OSVDs (43)-(45), properties (71)-(74) follow immediately. The ort hogonality relations (75)-(78) follow from the OSVD (45).

We shall now show how a PSVD can be constructed from the OSVDs (43)-(45) and the 1-2-3-inverses of $\mathrm{X}_{1}, \mathrm{X}_{2}, Y_{1}, Y_{3}$ as in (67)-(70).

Theorem 3
An explicit construction of the PSVD
Assume that A and B do not have a common null space and let their OSVDs be:

$$
\begin{aligned}
\therefore A & =\left(\begin{array}{ll}
U_{a 1} & U_{a 2}
\end{array}\right)\left(\begin{array}{cc}
S_{a 1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{a 1}^{t}}{V_{a 2}^{t}} \\
\boldsymbol{B} & =\left(\begin{array}{ll}
U_{b 1} & U_{b 2}
\end{array}\right)\left(\begin{array}{cc}
S_{b 1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{b 1}^{t}}{V_{b 2}^{t}}
\end{aligned}
$$

Define a 'weighted canonical correlation' OSVD as:

$$
\mathbf{s}_{a 1} V_{a 1}^{t} V_{b 1} \mathbf{s}_{b 1}=\left(P_{1} P_{2}\right)\left(\begin{array}{cc}
S_{1} & 0 \\
0 & 0
\end{array}\right)\binom{Q_{1}^{t}}{Q_{2}^{t}}
$$

and a canonical correlation OSVD as:

$$
V_{a 2}^{t} V_{b 2}=\left(\begin{array}{ll}
P_{3} & P_{4}
\end{array}\right)\left(\begin{array}{cc}
S_{3} & 0 \\
0 & 0
\end{array}\right)\binom{Q_{3}^{t}}{Q_{4}^{t}}
$$

Furthermore, consider the 1-2-3-inverses as in (67)-(70).
Then, a PSVD of A and B is given by:

$$
\begin{align*}
\boldsymbol{A} & =\left(\begin{array}{lll}
U_{a 1} P_{1} & U_{a 1} P_{2} & U_{a 2}
\end{array}\right)\left(\begin{array}{ccc}
S_{1}^{1 / 2} & 0 & 0 \\
0 \\
0 & \boldsymbol{I}_{r_{a}-r_{1}} & 0 \\
0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
X_{1}^{t} \\
X_{2}^{t} \\
X_{31}^{t} \\
X_{32}^{t}
\end{array}\right) \tag{79}\\
\boldsymbol{B} & =\left(\begin{array}{lll}
U_{b 1} Q_{1} & U_{b 2} Q_{2} & U_{b 2}
\end{array}\right)\left(\begin{array}{cccc}
S_{1}^{1 / 2} & 0 & 0 & 0 \\
0 & 0 & 0 & I_{r_{b}-r_{1}} \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
Y_{1}^{t} \\
Y_{21}^{t} \\
Y_{22}^{t} \\
Y_{3}^{t}
\end{array}\right) \tag{80}
\end{align*}
$$

where the submatrices of X and Y are given by:

$$
\begin{aligned}
X_{1} & =V_{a 1} S_{a 1} P_{1} S_{1}^{-1 / 2} \\
X_{2} & =V_{a 1} S_{a 1} P_{2} \\
X_{31} & =V_{b 2} Q_{3} S_{3}^{-1 / 2} \\
X_{32} & =\bar{Y}_{3}+V_{b 2} V_{b 2}^{t}\left(X_{1}\left(\bar{Y}_{1}^{t} \bar{Y}_{1}\right)^{-1} \bar{Y}_{1}^{t} \bar{Y}_{3}+X_{2} W_{5}\right) \\
& =X_{1}\left(\bar{Y}_{1}^{t} \bar{Y}_{1}\right)^{-1} \bar{Y}_{1}^{t} \bar{Y}_{3}+X_{2} W_{5}+V_{a 2} P_{4} P_{4}^{t} V_{a 2}^{t} \bar{Y}_{3} \\
Y_{1} & =V_{b 1} S_{b 1} Q_{1} S_{1}^{-1 / 2} \\
Y_{21} & =\bar{X}_{2}+V_{a 2} V_{a 2}^{t}\left(Y_{1}\left(\bar{X}_{1}^{t} \bar{X}_{1}\right)^{-1} \bar{X}_{1}^{t} \bar{X}_{2}+Y_{3} W_{6}\right) \\
& =Y_{1}\left(\bar{X}_{1}^{t} \bar{X}_{1}\right)^{-1} \bar{X}_{1}^{t} \bar{X}_{2}+Y_{3} W_{6}+V_{b 2} Q_{4} Q_{4}^{t} V_{b 2}^{t} \bar{X}_{2} \\
Y_{22} & =V_{a 2} P_{3} S_{3}^{-1 / 2} \\
Y \overline{3} & =V_{b 1} S_{b 1} Q_{2}
\end{aligned}
$$

The matrix W_{5} is $\left(r_{a}-r_{1}\right) x\left(r_{b}-r_{1}\right)$ while W_{6} is $\left(r_{b}-r_{1}\right) \times\left(r_{a}-r_{1}\right)$. Both are arbitrary except for the constraint:

$$
\begin{equation*}
W_{5}^{t}+W_{6}^{\prime}=\bar{Y}_{3}^{t} \bar{Y}_{1}\left(\bar{Y}_{1}^{t} \bar{Y}_{1}\right)^{-1}\left(\bar{X}_{1}^{t} \bar{X}_{1}\right)^{-1} \bar{X}_{1}^{t} \bar{X}_{2} \tag{81}
\end{equation*}
$$

Proof: The only fact to be proved is that the matrices X and Y satisfy $X^{t} Y=I_{r_{a b}}$, which is straightforward by exploiting the properties of lemma 9 and (81).

A detailed derivation of the expressions for the submatrices of X and Y can be found in the appendix.

3.4 Non-uniqueness properties of the PSVD

In case A and B do have a common null space, it is straightforward to combine the result of theorem 3 with the result of section 3.2.1.
A PSVD of any matrix pair A, B is given by:

$$
\boldsymbol{A}=\left(U_{A 1} U_{A 2} U_{A 3}\right)\left(\begin{array}{ccccc}
S_{1}^{1 / 2} & 0 & 0 & 0 & 0 \tag{82}\\
0 & I_{r_{a}-r_{1}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
X_{1}^{t} \\
X_{2}^{t} \\
X_{31}^{t} \\
X_{32}^{t} \\
X_{4}^{t}
\end{array}\right)
$$

$$
B=\left(U_{B 1} U_{B 2} U_{B 3}\right)\left(\begin{array}{ccccc}
S_{1}^{1 / 2} & 0 & 0 & 0 & 0 \tag{83}\\
0 & 0 & 0 & I_{r_{b}-r_{1}} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
Y_{1}^{t} \\
Y_{21}^{t} \\
Y_{22}^{t} \\
Y_{3}^{t} \\
Y_{4}^{t}
\end{array}\right)
$$

The matrices $U_{A 1}, U_{A 2}, U_{A 3}, U_{B 1}, U_{B 2}, U_{B 3}$ can be identified from (80) and the expressions for the submatrices of X and Y are given in theorem 3. The matrices X_{4} and Y_{4} are such that:

$$
\begin{equation*}
\binom{A}{B} X_{4}=\binom{A}{B} Y_{4}=0 \quad X_{4}^{t} Y_{4}=I_{n-r_{a b}} \tag{84}
\end{equation*}
$$

The question of non-uniqueness can now be analysed as follows: Insert nonsingular square matrices R, T, W, Z into the above PSV D (83) as:

$$
\begin{align*}
& A=U_{A} W D_{A} T^{t} X^{t} \tag{85}\\
& B=U_{B} Z D_{B} R^{t} Y^{t} \tag{86}
\end{align*}
$$

with appropriate partitionings of the matrices W, T, Z, R corresponding to the block structure of S_{A} and S_{B}.
This will correspond to another valid P SVD if the following conditions are satisfied:

- The matrix $U_{A} W$ is orthonormal, hence W should be orthonormal.
- The matrix $U_{B} Z$ is orthonormal, hence Z should be orthonormal.
- $W D_{A} T^{t}=D_{A}$ and $Z D_{B} R^{t}=D_{B}$.
\bullet

$$
\begin{equation*}
T^{\prime} R=I \tag{87}
\end{equation*}
$$

Let us analyse these requirements in more detail:

- From equations (50) and (52) it follows that X_{1} and Y_{1} are essentially unique (i.e. apart from (non-generic) non-uniqueness arising from non-distinct non-zero singular values in one of the OSVDs (43), (44) and (45)).
- The non-uniqueness for X_{2} and Y_{3} is described in (58) and (59). They are unique up to orthonormal matrices W_{2} and W_{3}.
- The common null space of A and B is also uniquely determined. The non-uniqueness of the choice of basis is characterized by the nonsingular matrix W_{1} in (41) and (42).

Combining these observations, it turns out that we can impose the following block structure to the matrices T, R, W and Z :

$$
\begin{aligned}
& \begin{array}{c}
r_{1} \\
r_{a}-r_{1} \\
r_{a b}-r_{a}-r_{b} \\
r_{b}-r_{1} \\
n-r_{a b}
\end{array}+r_{r}\left(\begin{array}{ccccc}
r_{1} & r_{a}-r_{1} & r_{a b}-r_{a}-r_{b}+r_{1} & r_{b}-r_{1} & n-r_{a b} \\
I & R_{12} & R_{13} & 0 & 0 \\
0 & R_{22} & R_{23} & 0 & 0 \\
0 & R_{32} & R_{33} & 0 & 0 \\
0 & R_{42} & R_{43} & R_{44} & 0 \\
0 & 0 & 0 & 0 & R_{55}
\end{array}\right)
\end{aligned}
$$

where $T_{22}=W_{2}$ (see equation (58)) and $R_{44}=W_{3}$ (see equation (59)) are arbitrary but orthonormal.
Similarly, the matrices W and Z have the following structure:

$$
\begin{align*}
& W=\underset{m-r_{a}}{r_{1}-r} \begin{array}{c}
r_{1} r_{a}-r_{1} m-r_{a} \\
I_{r} \\
0
\end{array} T_{22} \quad 0 \quad 0 \quad\binom{0}{0} \tag{88}\\
& Z=\begin{array}{l}
r_{1} \\
r_{b}-r_{1} \\
p-r_{b}
\end{array}\left(\begin{array}{ccc}
r_{1} & r_{b}-r_{1} p-r_{b} \\
I_{r_{1}} & 0 & 0 \\
0 & R_{44} & 0 \\
0 & 0 & Z_{33}
\end{array}\right) \tag{89}
\end{align*}
$$

where W_{33} and Z_{33} are arbitrary but orthonormal.
From condition (87), it is straightforward to show that $T_{13}, T_{14}, T_{43}, R_{12}, R_{13}, R_{23}$
must all be zero and that T_{33} and T_{55} are nonsingular. Hence:

$$
T=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \tag{90}\\
0 & T_{22} & T_{23} & T_{24} & 0 \\
0 & 0 & T_{33} & T_{34} & 0 \\
0 & 0 & 0 & T_{44} & 0 \\
0 & 0 & 0 & 0 & T_{55}
\end{array}\right)
$$

and from $R=T^{-t}$ it follows that:

$$
\left.\boldsymbol{R}=\left\lvert\, \begin{array}{lllll}
\boldsymbol{I} & 0 & 0 & 0 & 0 \tag{91}\\
0 & T_{22} & 0 & 0 & 0 \\
0 & -T_{33}^{-t} T_{23}^{t} T_{22}^{-t} & T_{33}^{t} & 0 & 0 \\
0 & -T_{44}^{4}\left(T_{24}^{t}-T_{34}^{t} T_{33}^{-t} T_{23}^{t}\right) T_{22}^{-t} & -T_{44}^{-t} T_{34}^{t} T_{33}^{-t} & T_{44} & 0 \\
0 & 0 & 0 & 0 & T_{55}^{-t}
\end{array}\right.\right)
$$

The conclusion is summarized in the following:
Theorem 4
On the non-uniqueness of the PSVD
If a PSVD of A, B is given by:

$$
\begin{align*}
& \boldsymbol{A}=\left(\begin{array}{lll}
U_{A 1} & U_{A 2} & U_{A 3}
\end{array}\right)\left(\begin{array}{ccccc}
S_{1}^{1 / 2} & 0 & 0 & 0 & 0 \\
0 & I & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
X_{1}^{t} \\
X_{2}^{t} \\
X_{31}^{t} \\
X_{32}^{t} \\
X_{4}^{t}
\end{array}\right) \tag{92}\\
& \boldsymbol{B}=\left(\begin{array}{lll}
U_{B 1} & U_{B 2} & U_{B 3}
\end{array}\right)\left(\begin{array}{ccccc}
S_{1}^{1 / 2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & I & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
Y_{1}^{t} \\
Y_{21}^{t} \\
Y_{22}^{t} \\
Y_{3}^{t} \\
Y_{4}^{t}
\end{array}\right) \tag{93}
\end{align*}
$$

then the following is also a PSVD:

$$
\boldsymbol{A}=\left(\begin{array}{lll}
U_{a 1} & U_{a 2} T_{22} & U_{A 3} W_{33}
\end{array}\right)\left(\begin{array}{ccccc}
S_{1}^{1 / 2} & 0 & 0 & 0 & 0 \\
0 & I & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{r}
X_{1}^{t} \\
T_{2}^{t} X_{2}^{t} \\
T_{23}^{t} X_{2}^{t}+T_{33}^{t} X_{31}^{t} \\
T_{24}^{t} X_{2}^{t}+T_{34}^{t} X_{31}^{t}+T_{44}^{t} X_{32}^{t} \\
T_{55}^{t} X_{4}^{t}
\end{array}\right)
$$

$$
\boldsymbol{B}=\left(\begin{array}{lll}
U_{B 1} & U_{B 2} T_{44} & U_{B 3} Z_{33}
\end{array}\right)\left(\begin{array}{ccccc}
S_{1}^{1 / 2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & I & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
Y_{1}^{t} \\
R_{22}^{t} Y_{21}^{t}+R_{23}^{t} Y_{22}^{t}+R_{24}^{t} Y_{3}^{t} \\
R_{33}^{t} Y_{22}^{t}+R_{34}^{t} Y_{3}^{t} \\
R_{44}^{t} Y_{3}^{t} \\
T_{55}^{4} Y_{4}^{t}
\end{array}\right)
$$

The blocks $T_{i j}$ are arbitrary except for T_{22} and T_{44} which should be orthonormal and T_{33} and T_{55} which should be nonsingular. The blocks $R_{i j}$ are determined by (87) and are given in (91). The matrices W_{33} and Z_{33} are arbitraryorthonormal.

In order to conclude this section, observe that we have characterized the non-uniqueness of the PSVD on a double level:

- In theorem 3, we have derived an explicit 'construction of the PSVD from 4 OSVDs that could be obtained from the matrices \boldsymbol{A} and B. Together with the observation of section 3.2.1 about a common null space, it became clear that the matrices X and Y are partitioned in 5 submatrices. Even here there is already some non-uniqueness parametrized by the matrices W_{5} and W_{6}, which are arbitrary apart from the constraint (81).
- In theorem 4, it is shown that, once a PSVD is known with the corresponding partitioning in 5 submatrices for X and Y, all other PSVDs for the matrix pair can be obtained by inserting some matrices W, Z, T and \boldsymbol{R}. The matrices W and Z have a block diagonal structure as in (88) and (89). The mat rices T and R have the block triangular structure of (90) and (91). This block triangular structure will be important in the geometrical interpretation of the submatrices of X and Y in theorem 4. It is an interesting exercise to show that the matrices $X T$ and $Y R$, where T and R have the required block structure from theorem 4, solve the set of nonlinear equations (64)(66). Hence, theorem 4 also gives all solutions to this set of equations whereas theorem 3 only described one particular solution.

4 Geometrical interpretation of the structure.

In this section, we shall relate the structure of the contragredient transformation as derived in the previous section, to the geometry of subspaces related to A and B.

Let $r_{a}=\operatorname{rank}(A), r_{b}=\operatorname{rank}(B)$ and the OSVD of A and B be as in (43) and (44). let $r_{a b}$ be defined as:

$$
r_{a b}=\operatorname{rank}\binom{A}{B}
$$

Then, it is well known that:

$$
\begin{equation*}
r_{a b}=r_{a}+r_{b}-\operatorname{dim}\left(R\left(A^{t}\right) \bigcap R\left(B^{\prime}\right)\right) \tag{94}
\end{equation*}
$$

Let r_{1} be defined as in (45):

$$
r_{1}=\operatorname{rank}\left(S_{a 1} V_{a 1}^{t} V_{b 1} S_{b 1}\right)=\operatorname{rank}\left(V_{a 1}^{t} V_{b 1}\right)
$$

where the second equality follows from the nonsingularity of S_{a} and S_{b}. From the definition of angles between subspace as e.g. in [2], it follows immediately that r_{1} is the number of canonical angles different from 90°, between the row spaces of A and B :

$$
\begin{equation*}
r_{1}=\operatorname{dim}\left(\Pi_{A^{t}} R\left(B^{t}\right)\right)=\operatorname{dim}\left(\Pi_{B^{t}} R\left(A^{t}\right)\right) \tag{95}
\end{equation*}
$$

Hence $r_{1}=0$ only if the row spaces of A and B are orthogonal as was the case in lemma 3. A ssume that $r_{c 1}$ of these canonical angles are zero while the $r_{c 2}=r_{1}-r_{c 1}$ others are not. O bviously:

$$
r_{c 1}=\operatorname{dim}\left(R\left(A^{t}\right) \bigcap R\left(B^{t}\right)\right)
$$

Hence:

$$
r_{a b}=r_{a}+r_{b}-r_{c 1}
$$

and

$$
r_{a b} \geq r_{a}+r_{b}-r_{1}
$$

This is nothing else than inequality (60), which was derived from a structural requirement, whereas the derivation here is based on a geometrical argument.
Because $r_{c 2}$ is the number of non-zero canonical angles, different from 90°, between the row spaces of A and B, it is also the number of non-zero canonical angles different from 90° between the ranges of $V_{a 2}, V_{b 2}$. Hence:

$$
r_{c 2}=r_{1}-r_{c 1}=r_{1}+r_{a b}-r_{a}-r_{b}=\#\left\{0<\sigma\left(V_{a 2}^{t} V_{b 2}\right)<1\right\}
$$

Now consider the partitioning of X and Y as derived in section 3, which is repeated here for convenience:

$$
\begin{aligned}
& X=\left(\begin{array}{ccccc}
r_{1} & r_{a}-r_{1} & r_{a b}-r_{a}-r_{b}+r_{1} & r_{b}-r_{1} & n-r_{a b} \\
X_{1} & X_{2} & X_{31} & X_{32} & X_{4}
\end{array}\right) \\
& Y=\left(\begin{array}{ccccc}
r_{1} & r_{a}-r_{1} & r_{a b}-r_{a}-r_{b}+r_{1} & r_{b}-r_{1} & n-r_{a b} \\
Y_{1} & Y_{21} & Y_{22} & Y_{3} & Y_{4}
\end{array}\right)
\end{aligned}
$$

With an obvious partitioning of the orthonormal matrices U_{A} and U_{B} as in theorem 4, it is straightforward to derive the following
generalized dyadic decomposition

$$
\begin{align*}
A & =U_{A 1} S_{1}^{/ 2} X_{1}^{t}+U_{A 2} X_{2}^{t} \tag{96}\\
B & =U_{B 1} S_{1}^{1 / 2} Y_{1}^{t}+U_{B 3} Y_{3}^{t} \tag{97}
\end{align*}
$$

which can be written out as a sum of rank one terms.
From the fact that $X^{t} Y=Y^{\prime} X=I_{n}$, it follows that:

$$
\left.\begin{array}{c}
A\left(\begin{array}{lllll}
Y_{1} & Y_{21} & Y_{22} & Y_{3} & Y_{4}
\end{array}\right)=\left(\begin{array}{lllll}
U_{A 1} S_{1}^{1 / 2} & U_{A 2} & 0 & 0 & 0
\end{array}\right) \\
B\left(X_{1} X_{2} \times 31 \times 32 \times 4\right.
\end{array}\right)=\left(\begin{array}{lllll}
U_{B 1} S_{1}^{1 / 2} & 0 & 0 & U_{B 3} & 0 \tag{99}
\end{array}\right) .
$$

From these, the following geometrical characterizations can be derived.

- $R\left(A^{t}\right)$ is generated by the columns of X_{1} and X_{2}. Hence, the row space of the matrix A can be split into 2 subspaces:
$-R\left(X_{2}\right)$ forms a subspace of $R\left(A^{t}\right)$, which is orthogonal to $R\left(B^{t}\right)$. It can be verified that

$$
\begin{equation*}
\operatorname{rank}\left(X_{2}\right)=r_{a}-r_{1}=\#\left\{\sigma\left(V_{b 2}^{t} V_{a 1}\right)=1\right\} \tag{100}
\end{equation*}
$$

$-R\left(X_{1}\right)$ forms a subspace of the row space of A, which is not orthogonal to the row space of B. Its dimension is r_{1} as follows also from (95):

$$
\begin{equation*}
r_{1}=\#\left\{\sigma\left(V_{a 1}^{t} V_{b 1}\right)>0\right\} \tag{101}
\end{equation*}
$$

- $\mathbf{N}(B)$ is generated by the columns of X_{2}, X_{31}, X_{4}. Hence, the null space of B can be decomposed into three subspaces:
$-R\left(X_{2}\right)$ is a subspace of $R\left(A^{t}\right)$.
$-R\left(X_{31}\right)$ is orthogonal to $R\left(B^{t}\right)$, hence a subspace of $N(B)$, but is not contained in $R\left(A^{t}\right)$. H ence:

$$
\begin{equation*}
r_{a b}-r_{a}-r_{b}+r_{1}=\#\left\{0<\sigma\left(V_{a 1}^{t} V_{b 2}\right)<1\right\} \tag{102}
\end{equation*}
$$

$-R\left(X_{4}\right)$ is the common null space of A and B. Obviously:

$$
\begin{equation*}
n-r_{a b}=\#\left\{\sigma\left(V_{a 2}^{t} V_{b 2}\right)=1\right\} \tag{103}
\end{equation*}
$$

Also, it follows immediately that:

$$
\begin{align*}
& X_{4}^{t} X_{1}=0 \tag{104}\\
& X_{4}^{t} X_{2}=0 \tag{105}
\end{align*}
$$

- $R\left(B^{t}\right)$ is generated by the columns of Y_{1} and Y_{3}. Hence, the row space of the matrix B can be split into 2 subspaces:
- $R\left(Y_{1}\right)$ forms a subspace of $R\left(B^{t}\right)$, which is not orthogonal to $R\left(A^{t}\right)$. Its dimension is r_{1}.
- $\boldsymbol{R}\left(Y_{3}\right)$ forms a subspace of $\boldsymbol{R}\left(B^{t}\right)$, which is orthogonal to $R\left(A^{\prime}\right)$. It can be verified that:

$$
\begin{equation*}
\operatorname{rank}(\&)=r_{b}-r_{1}=\#\left\{\sigma\left(V_{a 2}^{t} V_{b 1}\right)=1\right\} \tag{106}
\end{equation*}
$$

- $N(A)$, the null space of A, is generated by the columns of Y_{22}, Y_{3}, Y_{4}.
- $R\left(Y_{22}\right)$ is orthogonal to $R\left(A^{t}\right)$ but not contained in $\boldsymbol{R}\left(B^{t}\right)$. Hence:

$$
\begin{equation*}
r_{a b}-r_{a}-r_{b}+r_{1}=\#\left\{0<\sigma\left(V_{a 2}^{t} V_{b 1}\right)<1\right\} \tag{107}
\end{equation*}
$$

- $\boldsymbol{R}(Y 3)$ is orthogonal to $R\left(A^{t}\right)$ and also a subspace of $R\left(B^{t}\right)$.
$-R\left(Y_{4}\right)$ is the common null space of A and B. Hence:

$$
\begin{align*}
& Y_{4}^{t} Y_{1}=0 \tag{108}\\
& Y_{4}^{t} Y_{3}=0 \tag{109}
\end{align*}
$$

M oreover:

$$
\begin{equation*}
R\left(X_{4}\right)=R\left(Y_{4}\right) \tag{110}
\end{equation*}
$$

It can be verified that these geometrical results are independent of the non-uniqueness of the matrices X and Y as described in theorem 4. The reason for this independency is precisely the block triangular structure of the matrices T (90) and R (91).
In order to appreciate this observation, compare the structure of the matrix X to that of the matrix $X T$ in theorem 4. Take for instance the matrix X_{31}. The matrix X_{31} undergoes an affine transformation of the form $X_{31} \rightarrow$ $X_{31} T_{33}+X_{2} T_{23}$. It is easy to check from $Y^{t} X=I$, that $R\left(X_{31} T_{33}+X_{2} T_{23}\right)$ is orthogonal to $R\left(B^{t}\right)$. Moreover, because T_{33} is nonsingular, $X_{31} T_{33}+X_{2} T_{23}$ will never be contained in the row space of A because X_{31} isn't neither. In summary, all statements for X_{31} remain true for $X_{31} T_{33}+X_{2} T_{23}$. The same applies for the other submatrices of X and Y.

5 Conclusions

In this paper, we have investigated the structural properties of the product singular value decomposition (PSV D) of 2 matrices \boldsymbol{A} and B.
First, we have derived a constructive proof, which exploits the close relation of the PSVD with the OSVD of $A B^{t} B A^{t}$ and the eigenvalue decompositions of $A A^{t} B B^{t}$ and $B B^{t} A A^{t}$. We have also investigated the connection with the QSVD and discussed several interesting properties and special cases.
Next, we have provided a detailed analysis of the structural and geometrical properties of the so called contragredient transformation of the 2 symmetric
matrices $A^{t} A$ and $B^{t} B$, both of which are nonnegative and/or positive definite. A complete characterization and description of the non-uniqueness was obtained.
The geometry of the structure was interpreted in terms of principal angles between subspaces.

In a future publication, we shall show how the PSVD and the QSVD lie at the basis of an infinite number of generalizations of the OSVD. One of these, the RSV D, has already been analysed in detail in [3] and [18].

Acknowledgement

I would like to thank professor Gene G olub of the Department of Computer Science and professor Thomas Kailath of the Department of Electrical Engineering (Information Systems Lab) for the opportunity they gave me to spend a wonderful year at Stanford University.

References

[1] Arun K.S., Kung S.Y ., Generalized principal component analysis and its application in approximate stochastic realization, in Modelling and application of stochastic processes, (U.B. Desai ed.), Kluwer A cademic Publishers, 1986, pp.75-104.
[2] Bjorck A., G olub G ., Numerical methods for computing angles between linear subspaces, Mathematics of computation, Vol.27, no.123, pp.579594 (1973).
[3] De Moor B., G olub G.H., The restricted singular value decomposition: Properties and Applications, N umerical A nalysis Project Report 8903, Department of Computer Science, Stanford University, April 1989.
[4] De Moor B., G olub G. H., G eneralized singular value decompositions: A proposal for a standardized nomenclature, Numerical Analysis Project Report 89-04, D epartment of Computer Science, Stanford University, April 1989.
[5] Deprettere E. (editor), SVD and Signal Processing: Algorithms, Applications and Architectures, North Holland, 1988.
[6] Fernando K.V., H ammarling S.J., A Product Induced Singular V alue Decomposition for two matrices and balanced realisation, NAG Technical Report, TR8/87, 1987.
[7] Fernando K.V.,The Kalman Reachability/Observability Canonical Form and the ISVD, NAG Technical Report TR9/87, July 1987.
[8] Francis B. A course in H_{∞} control theory, Lecture Notes in Control and Information Sciences (Eds. M. Thoma and A. Wynes), Springer Verlag, Berlin, 1987.
[9] G lover K.. All optimal H ankel norm approximations of linear multivariable sys terns and their L_{∞} error bounds, Int. J. Control, V 01.39, no.6, pp.1115-1193 (1984).
[10] G olub G .H ., Van Loan C.F., M atrix Computations, N orth Oxford Academic, Oxford, 1983.
[11] Heath MT., Laub A. J., Paige C.C., Ward R.C., Computing the singular value decomposition of a product of two matrices, SIAM J. Sci. Stat. Comput., Vol.7, no.4, (1986).
[12] Jonckheere E., Silverman L., A new set of invariants for linear systems, applications to reduced order compensator design, IEEE Trans. Aut. Control, Vol.AC-28, no.1, (1983).
[13] Kenney C., Hewer G., Necessary and sufficient conditions for balancing unstable systems, IEEE Trans. Aut. Control, Vol.AC-32, no.2, (1987).
[14] Laub A. J., Heath M.T., Paige C.C ., Ward R.C., Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms, IEEE Trans. Aut. Control, Vol.AC-32, no.2, (1987).
[15] M oore B.C., Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Trans. Aut. Control., Vol.AC-26, no.1, pp.17-32, (1981).
[16] Paige C.C., Saunders MA., Towards a generalized singular value decomposition, SIAM J. Numer. Anal., 18, pp.398-405, (1981).
[17] Van Loan C.F., Generalizing the singular value decomposition, SIAM J. Numer. Anal., 13, pp.76083, (1976).
[18] Zha H., Restricted SVD for matrix triplets and rank determination of matrices, Scientific Report 89-2, ZIB, Berlin.

Appendix: A solution of the nonlinear matrix equations that define the contragredient transformation

Observe that the linear equations (64)-(65) form an underdetermined set. With the fac torizations of $\mathrm{Xi}, X_{2}, Y_{1}$ and $Y_{3}(50)$-(53) one can apply lemma 1 to obtain the general solution to the underdetermined equations as:

$$
\begin{align*}
& \left(X_{31} X_{32}\right)=V_{b 1} S_{b 1}^{-1}\left(Q_{1} S_{1}^{-1 / 2} Q_{2}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & I_{r_{b}-r_{1}}
\end{array}\right)+V_{b 2}\left(Z_{1}^{x} Z_{2}^{x}\right) \tag{111}\\
& \left(\begin{array}{ll}
Y_{21} & Y_{22}
\end{array}\right)=V_{a 1} S_{a 1}^{-1}\left(P_{1} S_{1}^{-1 / 2} P_{2}\right)\left(\begin{array}{cc}
0 & 0 \\
I_{r_{a}-r_{1}} & 0
\end{array}\right)+V_{a 2}\left(Z_{1}^{y} Z_{2}^{y}\right) \tag{112}
\end{align*}
$$

where $Z_{1}^{x}, Z_{2}^{x}, Z_{1}^{y}, Z_{2}^{y}$ are arbitrary matrices of appropriate dimensions. The first term in (111) and (112) is a particular solution while the second term is the general solution to the homogeneous equations obtained from (64) and (65).
The determination of X_{31}, X32, Y_{21} and Y_{22} reduces to the determination of $Z_{1}^{x}, Z_{2}^{x}, Z_{1}^{y}, Z_{2}^{y}$ in:

$$
\begin{align*}
X_{31} & =V_{b 2} Z_{1}^{x} \tag{113}\\
X_{32} & =V_{b 1} S_{b 1}^{-1} Q_{2}+V_{b 2} Z_{2}^{x} \tag{114}\\
Y_{21} & =V_{a 1} S_{a 1}^{-1} P_{2}+V_{a 2} Z_{1}^{y} \tag{115}\\
Y_{22} & =V_{a 2} Z_{2}^{y} \tag{116}
\end{align*}
$$

subject to the conditions:

$$
\begin{align*}
& X_{31}^{t} Y_{21}=0 \tag{117}\\
& X_{32}^{t} Y_{21}=0 \tag{118}\\
& X_{32}^{t} Y_{22}=0 \tag{119}\\
& X_{31}^{t} Y_{22}=I_{r_{a b}-r_{a}-r_{b}+r_{1}} \tag{120}
\end{align*}
$$

Observe that this is a set of non-linear equations in the unknown matrices $Z_{1}^{x}, Z_{2}^{x}, Z_{1}^{y}, Z_{2}^{y}$.

Determination of X_{31} and Y_{22} : Canonical correlation!
Substituting the expressions for X_{31} (113) and Y_{22} (116) into the last constraint (120), results in:

$$
\begin{equation*}
\left(Z_{1}^{x}\right)^{t} V_{b 2}^{t} V_{a 2} Z_{2}^{y}=I_{r-r_{a}-r_{b}+r_{1}} \tag{121}
\end{equation*}
$$

Since both $V_{a 2}$ and $V_{b 2}$ are orthonormal matrices, the OSVD of the product $V_{a 2}^{t} V_{b 2}$ corresponds to a canonical correlation analysis between the kernels of the matrices \boldsymbol{A} and \boldsymbol{B}. It can be shown that the number of non-zero singular values of $V_{a 2}^{t} V_{b 2}$ must be equal to $r_{a b}-r_{a}-r_{b}+r_{1}$ because the number of non-zero singular values of $V_{a 1}^{t} V_{b 1}$ is equal to r_{1}. Hence, Z_{1}^{x} and Z_{2}^{y} can be determined from the OSVD of $V_{a 2}^{t} V_{b 2}$:

$$
V_{a 2}^{t} V_{b 2}=\left(\begin{array}{ll}
P_{3} & P_{4}
\end{array}\right)\left(\begin{array}{cc}
S_{3} & 0 \tag{122}\\
0 & 0
\end{array}\right)\binom{Q_{3}^{t}}{Q_{4}^{t}}
$$

where S_{3} is a $\left(r_{a b}-r_{a}-r_{b}+r_{1}\right) \mathrm{X}\left(r_{a b}-r_{a}-r_{b}+r_{1}\right)$ non-singular diagonal matrix and the matrices of left and right singular vectors are partitioned accordingly. One possible solution for X_{31} and Y_{22} follows immediately from this OSVD as:

$$
\begin{align*}
X_{31} & =V_{b 2} Q_{3} S_{3}^{-1 / 2} \tag{123}\\
Y_{22} & =V_{a 2} P_{3} S_{3}^{-1 / 2} \tag{124}
\end{align*}
$$

Observe that this is not the most general solution to (113)-(116)-(120) but only a specific one.

The determination of X32 and Y_{21}
Having determined expressions for X_{31} (123) and Y_{22} (124) from a canonical correlation analysis between the kernels of A and B, the orthogonality conditions (117)-(120) permit to derive two other equations for X32 and Y_{21}.

Hereto, first observe that from (43) and (44), and from (122), it follows that:

$$
\begin{align*}
& Q_{3}^{t} V_{b 2}^{t}\left(\begin{array}{ll}
V_{b 1} & \left.V_{b 2} Q_{4}\right)=0 \\
P_{3}^{t} V_{a 2}^{t}\left(\begin{array}{ll}
V_{a 1} & \left.V_{a 2} P_{4}\right)=0
\end{array}\right)=0
\end{array}\right)=0 \tag{125}
\end{align*}
$$

From equations (123) and (118) it follows that:

$$
\begin{equation*}
X_{31}^{t} Y_{21}=S_{3}^{-1 / 2} Q_{3}^{t} V_{b 2}^{t} Y_{21}=0 \tag{127}
\end{equation*}
$$

while from (124) and (119) it follows that:

$$
\begin{equation*}
Y_{22}^{t} X_{32}=S_{3}^{-1 / 2} P_{3}^{t} V_{a 2}^{t} X_{32}=0 \tag{128}
\end{equation*}
$$

The combination of equations (125) together with (127) permits to conclude via lemma 1 that there must exist matrices Z_{3}^{y}, Z_{4}^{y} of appropriate size, such that:

$$
\begin{equation*}
Y_{21}=V_{b 1} Z_{3}^{y}+V_{b 2} Q_{4} Z_{4}^{y} \tag{129}
\end{equation*}
$$

Similarly, it follows from (126) and (128) that:

$$
\begin{equation*}
X_{32}=V_{a 1} Z_{3}^{x}+V_{a 2} P_{4} Z_{4}^{x} \tag{130}
\end{equation*}
$$

Hence, there are 2 equations for X32, namely (114) and (130) and 2 equations for $Y_{21},(115)$ and (129). These are now repeated for convenience:

$$
\begin{align*}
Y_{21} & =V_{a 1} S_{a 1}^{-1} P_{2}+V_{a 2} Z_{1}^{y} \tag{131}\\
& =V_{b 1} Z_{3}^{y}+V_{b 2} Q_{4} Z_{4}^{y} \tag{132}
\end{align*}
$$

and

$$
\begin{align*}
X_{32} & =V_{b 1} S_{b 1}^{-1} Q_{2}+V_{b 2} Z_{2}^{x} \tag{133}\\
& =V_{a 1} Z_{3}^{x}+V_{a 2} P_{4} Z_{4}^{x} \tag{134}
\end{align*}
$$

From these 4 equations, we shall eliminate all unknown matrices in 4 steps:
Step 1: Elimination of Z_{1}^{y} and Z_{4}^{y} :
Recall the OSVD of $V_{a 2}^{t} V_{b 2}$ (122). Premultiplication of the expressions for Y_{21} (131)-(132)

- with $V_{a 2}^{t}$ results in:

$$
\begin{equation*}
Z_{1}^{y}=V_{a 2}^{t} V_{b 1} Z_{3}^{y} \tag{135}
\end{equation*}
$$

- with $Q_{4}^{t} V_{b 2}^{t}$ results in:

$$
\begin{equation*}
Z_{4}^{y}=Q_{4}^{t} V_{b 2}^{t} V_{a 1} S_{a 1}^{-1} P_{2} \tag{136}
\end{equation*}
$$

Upon substitution in (131) and (132), this gives:

$$
\begin{align*}
Y_{21} & =V_{a 1} S_{a 1}^{-1} P_{2}+V_{a 2} V_{a 2}^{t} V_{b 1} Z_{3}^{y} \tag{137}\\
& =V_{b 1} Z_{3}^{y}+V_{b 2} Q_{4} Q_{4}^{t} V_{b 2} V_{a 1} S_{a 1}^{-1} P_{2} \tag{138}
\end{align*}
$$

If these expressions are premultiplied with $V_{b 1}^{t}$ we get a set of linear equations for Z_{3}^{y} :

$$
\left(I_{r_{b}}-V_{b 1}^{t} V_{a 2} V_{a 2}^{t} V_{b 1}\right) Z_{3}^{y}=V_{b 1}^{t} V_{a 1} S_{a 1}^{-1} P_{2}
$$

Observe. that the left hand side expression can be rewritten as:

$$
\begin{aligned}
\left(I_{r_{b}}-V_{b 1}^{t} V_{a 2} V_{a 2}^{t} V_{b 1}\right) & =V_{b 1}^{t}\left(I_{r}-V_{a 2} V_{a 2}^{t}\right) V_{b 1} \\
& =V_{b 1}^{t} V_{a 1} V_{c}^{\prime} V_{b 1}
\end{aligned}
$$

Hence, the equation for Z_{3}^{y} reads:

$$
\begin{equation*}
V_{b 1}^{t} V_{a 1} V_{a 1}^{t} V_{b 1} Z_{3}^{y}=V_{b 1}^{t} V_{a 1} S_{a 1}^{-1} P_{2} \tag{139}
\end{equation*}
$$

Step 2: Elimination of Z_{2}^{x} and Z_{4}^{x}.

In a similar manner, one can derive the following set of linear equations for $Z_{3}^{\boldsymbol{x}}$:

$$
\begin{equation*}
V_{a 1}^{t} \mathrm{v}_{b 1} V_{b 1}^{t} v_{a 1} Z_{3^{2}}^{x}=V_{a 1}^{t} V_{b 1} S_{b 1}^{-1} Q_{2} \tag{140}
\end{equation*}
$$

Step 3: A general solution for Z_{3}^{x} and Z_{3}^{y}
Rewrite equation (139) for Z_{3}^{y}, using the 0 SVD of $S_{a 1} V_{a 1}^{t} V_{b 1} S_{b 1}=$ $P_{1} S_{1} Q_{1}^{t}$ (45), as:

$$
S_{b 1}^{-1} Q_{1} S_{1} P_{1}^{t} S_{a 1}^{-2} P_{1} S_{1} Q_{1}^{t} S_{b 1}^{-1} Z_{3}^{y}=S_{b 1}^{-1} Q_{1} S_{1} P_{1}^{t} S_{a 1}^{-1} P_{2}
$$

Using the 1-2-3-inverses, defined in lemma 9, this can be rewritten more compactly as:

$$
\begin{equation*}
\left(\bar{X}_{1}^{t} \bar{X}_{1}\right) \bar{Y}_{1}^{t} V_{b 1} Z_{3}^{y}=\bar{X}_{1}^{t} \bar{X}_{2} \tag{141}
\end{equation*}
$$

The following observations are crucial:

1. The matrix $\left(\bar{X}_{1}^{t} \bar{X}_{1}\right)$ is square non-singular.
2. The columns of the matrix Y_{3} are complementary to and orthogonal to the columns of the matrix \bar{Y}_{1} (equation (77)).
3. Recall the relation $\bar{Y}_{1}^{t} Y_{1}=I_{r_{1}}$ (equation (73)).

It follows from lemma 1 that the general solution for $V_{b 1} Z_{3}^{y}$ is given by:

$$
\begin{equation*}
V_{b 1} Z_{3}^{y}=Y_{1}\left(\bar{X}_{1}^{t} \bar{X}_{1}\right)^{-1} \bar{X}_{1}^{t} \bar{X}_{2}+Y_{3} W_{6} \tag{142}
\end{equation*}
$$

where W_{6} is an arbitrary $\left(r_{b}-r_{1}\right) \times\left(r_{a}-r_{1}\right)$ matrix. The first term is a particular solution while the second term is the general solution to the homogeneous equation.

In a completely similar way, one obtains the general solution for $V_{a 1} Z_{3}^{x}$ from (140) as:

$$
\begin{equation*}
V_{a 1} Z_{3}^{x}=X_{1}\left(\bar{Y}_{1}^{l} \bar{Y}_{1}\right)^{-1} \bar{Y}_{1}^{T} \bar{Y}_{3}+X_{2} W_{5} \tag{143}
\end{equation*}
$$

where W_{5} is an arbitray $\left(r_{a}-I_{1}\right) \times\left(r_{b}-r_{1}\right)$ matrix.
However, as will now be shown, that matrices W_{5} and W_{6} are not independent of each other, because of the orthogonality condition $X_{32}^{t} Y_{21}=0$ (118).
Hereto, we shall need the following properties:
Using the properties (71)-(78), itis straightforward to show from (142) and (143) that:

$$
\begin{align*}
\bar{X}_{2}^{t} V_{a 1} Z_{3}^{x} & =W_{5} \tag{144}\\
\bar{Y}_{3}^{t} V_{b 1} Z_{3}^{y} & =W_{6} \tag{145}
\end{align*}
$$

Also, from multiplying (142) with (143) and using the orthogonality conditions (75)-(78), it follows that:

$$
\begin{equation*}
\left(Z_{3}^{x}\right)^{t} V_{a 1}^{t} V_{b 1} Z_{3}^{y}=\bar{Y}_{3}^{t} \bar{Y}_{1}\left({\overline{Y_{1}}}_{1} \bar{Y}_{1}\right)^{-1}\left(\overline{X_{1}} \overline{X_{1}}\right)^{-1} \bar{X}_{1}^{t} \bar{X}_{2} \tag{146}
\end{equation*}
$$

Step 4: The remaining orthogonality condition
So far, we have obtained a general expression for $V_{a 1} Z_{3}^{x}$ (143) and
$V_{b 1} Z_{3}^{y}$ (142). The expressions for $X_{32}(133)-(134)$ and $Y_{21}(131)-(132)$ can be rewritten as:

$$
\begin{align*}
X_{32} & =V_{a 1} Z_{3}^{x}+\left(V_{a 2} P_{4}\right)\left(P_{4}^{t} V_{a 2}^{t}\right) \bar{Y}_{3} \tag{147}\\
& =\bar{Y}_{3}+V_{b 2} V_{b 2}^{t}\left(V_{a 1} Z_{3}^{x}\right) \tag{148}\\
Y_{21} & =V_{b 1} Z_{3}^{y}+\left(V_{b 2} Q_{4}\right)\left(Q_{4}^{t} V_{b 2}^{t}\right) \bar{X}_{2} \tag{149}\\
& =\bar{X}_{2}+V_{a 2} V_{a 2}^{t}\left(V_{b 1} Z_{3}^{y}\right) \tag{150}
\end{align*}
$$

The expressions for $V_{a 1} Z_{3}^{x}$ and $V_{b 1} Z_{3}^{y}$ contain two arbitrary matrices W_{5} and W_{6}. However, it will now be derived how the only remaining ort hogonalit y requirement:

$$
X_{32}^{t} Y_{21}=0
$$

induces a constraint between W_{5} and W_{6}. Hereto, we shall substitute the expressions for X32 and Y_{21} into the orthogonality condition:

Equation (147) x equation (149) results in:

$$
\begin{equation*}
\left(Z_{3}^{x}\right)^{t} V_{a 1}^{t} V_{b 1} Z_{3}^{y}+\left(Z_{3}^{x}\right)^{t} V_{a 1}^{t}\left(V_{b 2} Q_{4}\right)\left(Q_{4}^{t} V_{b 2}^{t}\right) \bar{X}_{2}+\bar{Y}_{3}^{t}\left(V_{a 2} P_{4}\right)\left(P_{4}^{t} V_{a 2}^{t}\right) V_{b 1} Z_{3}^{y}=0 \tag{151}
\end{equation*}
$$

Equation (148) x equation (149) results in:

$$
\begin{equation*}
\bar{Y}_{3}^{t} V_{b 1} Z_{3}^{y}+\left(Z_{3}^{x}\right)^{t} V_{a 1}^{t}\left(V_{b 2} Q_{4}\right)\left(Q_{4}^{t} V_{b 2}^{t}\right) \bar{X}_{2}=0 \tag{152}
\end{equation*}
$$

Equation (147) \times equation (150) results in:

$$
\begin{equation*}
\left(Z_{3}^{x}\right)^{t} V_{a 1}^{t} \bar{X}_{2}+\bar{Y}_{3}^{t}\left(V_{a 2} P_{4}\right)\left(P_{4}^{t} V_{a 2}^{t}\right) V_{b 1} Z_{3}^{y}=0 \tag{153}
\end{equation*}
$$

Equations (152) and (153) permit to simplify equation (151) as:

$$
\begin{equation*}
\left(Z_{3}^{x}\right)^{t} V_{a 1}^{t} V_{b 1} Z_{3}^{y}-\bar{Y}_{3}^{t} V_{b 1} Z_{3}^{y}-\left(Z_{3}^{x}\right)^{t} V_{a 1}^{t} \bar{X}_{2}=0 \tag{154}
\end{equation*}
$$

Now use equation (144) and (145) to get:

$$
\begin{equation*}
\left(Z_{3}^{x}\right)^{t} V_{a 1}^{t} V_{b 1} Z_{3}^{y}=W_{5}^{t}+W_{6} \tag{155}
\end{equation*}
$$

It follows then from equation (146) that:

$$
\begin{equation*}
W_{5}^{t}+W_{6}=\bar{Y}_{3}^{t} \bar{Y}_{1}\left(\bar{Y}_{1}^{t} \bar{Y}_{1}\right)^{-1}\left(\bar{X}_{1}^{t} \bar{X}_{1}\right)^{-1} \bar{X}_{1}^{t} \bar{X}_{2} \tag{156}
\end{equation*}
$$

This is the constraint between W_{5} and W_{6} that ensures the orthogonality between X32 and Y_{21}.

Observe that the sum $W_{5}^{t}+W_{6}$ is the product of the least squares solutions to:

$$
\begin{aligned}
\bar{X}_{1} x & =\bar{X}_{2} \\
\bar{Y}_{1} z & =\bar{Y}_{3}
\end{aligned}
$$

[^0]: *Research supported in part by the US-Army under contract DAAL03-87-K-0095
 ${ }^{\dagger}$ Dr. De Moor is on leave from the Katholieke Universiteit Leuven, Belgium. He is now with the Department of Computer Sciences and with the Information Systems Lab, Department of Electrical Engineering, Stanford University. He is supported partially by an Advanced Research Fellowship in Science and Technology of the NATO Science Fellowships Programme and a grant from IBM.

[^1]: ${ }^{1}$ As a matter of fact, recently, Zha Hongyuang and the author have established a most interesting result that both the PSVD and the QSVD are 'parents' of an infinite chain of generalizations of the OSVD. This result will be published in due course.

[^2]: ${ }^{2}$ In [6] also a constructive proof was provided. It is however based on a lemma (lemma 1 in [6]), the proof of which is not correct. To give a counterexample to the proof, consider the pair of matrices:

 $$
 \begin{aligned}
 A & =\left(\begin{array}{lllll}
 1 & 0 & 0 & 0 & 0 \\
 0 & 2 & 0 & 0 & 0
 \end{array}\right) \\
 B & =\left(\begin{array}{lllll}
 3 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 1
 \end{array}\right)
 \end{aligned}
 $$

 This pair of matrices satisfies the condition required by the lemma in [6] that $A B^{t}$ is diagonal. With the notations of $[6]$, we have that $i=1, j=1, k=2, r=5$. While the proof of the lemma states that $r-i-j=k$, this is not true in general, because for our example $\mathrm{k}<(r-i-j)$. Hence, the proof of lemma 1 in [6] is not correct.

