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Abstract
An alphabetic and mnemonic system of names for several matrix

decompositions related to the singular value decomposition is pro-
posed: the OSVD, PSVD, QSVD, RSVD, SSVD, TSVD. The
main purpose of this note is to propose a standardization of the nomen-
clature and the structure of these matrix decompositions.

1 I n t r o d u c t i o n.
The ordinary singular value  decomposition (OSVD) has become an impor-
tant tool in the analysis and numerical solution of .numerous  problems. Not
only does it allow for an elegant problem formulation, but at the same time
it provides geometrical and algebraic insight together with an immediate nu-
merically robust implementation [lo]. It plays a prominent role in numerous
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applications in linear algebra, systems theory and signal processing (e.g. [5]
[lo]). Recently, several generalizations of the OSVD have been proposed
and their properties analysed.

. .

This note proposes a mnemonic system of names and abbreviations for sev-
eral matrix decompositions that are related to the OSVD of a (complex)
matrix. At the same time, for each of the factorizations, the specific struc-
ture is emphasised.
A survey, discussing more in detail the properties and connections between
these generalizations such as the relation to (generalized) eigenvalue  prob-
lems, variational characterizations, uniqueness issues and typical applica-
tions, including linear and total linear least squares, rank minimization,
generalized inverses, etc . . . , is in preparation [4].

Besides the Ordinary SVD, we briefIy discuss the Product, Quotient and
Restricted SVD, all of which are referred to as genemZ&d  SVDs (GSVD).
We also briefly consider the Structured Singular Value (SSV) arising in sys-
tem theory and the Takagi SVD (TSVD) for’ a complex symmetric matrix.

Throughout this note, matrices are denoted by capitals, vectors by lower case
letters other than i, j, k, I, m, 7~,p, Q, T, which are positive integers. Scalars
(complex) are denoted by greek letters. A (m x n), B (m x p), C (q x n) axe
given complex matrices. Their rank will be denoted by r,, rb, r,. We also
define:

rat = rank rak = rank

Tab = rank( A B ) ~1 = rank(A*B)

At is the transpose of a (possibly complex) matrix while xis the conjugate of
A and A* the complex conjugate transpose of a (complex) matrix: A* = 2.
A’” is the inverse of A*. Ik is the k.x k identity matrix. Ua (m X m), Va
(n x n), vb (p x p), UC (q x q) are unitary matrices:

P (m X m), Q (n X n) axe square non-Sing&r  matrices. Sa (m x n), Sb
(m x p), SC (q x n) are sparse matrices, with real, nonnegative elements,
the structure of which will be explored in detail in the main theorems. The
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non-zero elements are denoted by cy;, pi and 3;'. Moreover, we will adopt the
following convention for block matrices: .-Any (possibly rectangular) block of
zeros is denoted by 0, the precise dimensions being obvious from the block
dimensions. The symbol I represents a matrix block corresponding to the
square identity matrix of appropriate dimensions. Whenever a dimension
indicating integer in a block &a&ix is zero, the corresponding block row or
block column should be omitted. An equivalent formulation would be that
we allow 0 x n or 7~ x 0 (n # 0) blocks to appear in matrices. This allows
an elegant treatment of several cases at once.

2 The Ordinary Singular Value Decomposition
(OSVD)

The singular-value decomposition was introduced in its general form by Au-
tonne [l] in 1902 and an important characterization was described by Eckart
and Young in 1936 [7].

With the notations and conventions of section 1, we have the following:

Theorem 1 The Ordinary  Singular Vi&e Decomposition: The Autonne-
E&art- Young them
Every m x n matrix A can be fcrcttnized  as:

A = U&V,*

where Ua and I& are unitary matrices  and Sa
with ra = rank(A) positive  diagonal entries:

is a real m x n diagonal matrix

Sa= fRmra (3 ‘H’“)
where Da = diag(q),  ~i > 0, i = 1,. . . , To.

The CO~UIYU.LS  of Ua are the left singular vectors while the CO~URUM  of Va axe
the right singular vectors. The diagonal elements of Sa are the so&&d
singular values and by convention they are ordered in non-increasing order.
A proof of the OSVD and numerous properties can be found in e.g. [5]
[lo]. Applications include rank reduction with unitarily invariant norms,
linear and total linear least squares, computation of canonical correlations,
pseudo-inverses and canonical forms of matrices.
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3 The Product Singular Value Decomposition
(PSVD) -.

The prod& hgular value  decomposition  (PSVD) was introduced by Fer-
nando and Hammarling [9] in 1987 but it is also implicit in the work of
Heath et al. [ll] ‘[13].

With the notations and conventions of section 1, we have the following:

Theorem 2 The Product SVD
Every pair of matrices  A, m x n and B, m x p can be factorized  as:

A = P-*SaV,*
B = PS&b*

where Va,Vb  &z Unitaqj and P b square  rw?a$ingular.  Sa and Sb are real
and hav the following structure:

sb= ;i;;wrb+rl (f ‘irl ‘0
where Da = Db is quare  diagonal with positive diagonul  elements and rl=
rank(A’B).

A constructive proof based on the OSVDs of A and B, can be found in [2],
where also all possible sources of non-uniqueness are explored.
The name PSVD originates in the fact that the OSVD bf the product A*B
is a direct consequence of the PSVD of the pair A, B. The matrix Df = Di
contains the nonzero singular values of A*B. The column vectors of P are
the eigenvectors of the eigenvalue problem (BB*AA*)P = PA. The. column
v&ots of Va are the eigenvectors of (A*BB*A)Va  = VaA while those of Vb
are the eigenvectors in (B*AA*B)Vb = &A. The pairs of diagonal elements
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of Sa and sb are called the product singular value pairs while their products
are called  the p4uct  singular values. By convention, the diagonal elements
of Sa and Sb are ordered such that the product singular values are non-
increasing.
Applications will be surveyed in [2], including the orthogonal Procrustes
problem, balancing of state space models and computing the Kalman de-
composition.

4 The Quotient Singular Value Decomposition
The quotient singular v&e decomposition was introduced by Van Loan in
[16] (’ the BSVD ‘) in 1976 although the idea had been around for a number
of years, albeit implicitly (disguised as a generalized eigenvalue problem).
Paige and Saunders extended Van Loan’s idea in order to handle all possible
cases [14] (they called it the generalized SVD).

With the notations and conventions of section 1, we have the following:

Theorem 3 The Quotient SVD
Every  pair of matrices A, m x n and B, m x p can be factorized as:

A & P-*SaV,+
B = P-*&v;

Where  Va and Vb are UTbhWy  and P b Squafw  ?WrUkgular.  The matrices Sa
and Sb an?  real and have the fobuhg structum:

Tab  - rb ra + rb - Tab 12 - Ta

f’ab - f’b

Sa=
?a + Tb - rub
Tab - ?a

m - Tab (

I 0 0
0 Da 0
0 0 0
0 0 0 i

P-Tb  Ta-trb-rab  Tab--a.

Tab  - rb 0 0

sb =
ra i- rb - Tab Db 0
%b-ra 0 I
m - Tab 0 0
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where Da arrd Db am square diagonal matrices with positive diagonal ek-
ments,  sat&&@:

0,” + 0; = I;a+rb-ror

There are 4 different kinds of pairs of diagonal elements of Sa and Sb:

0 r& - rb pairs (ai, pi) = (1,o)

l r a  + r b  - Ta b  p a ir s (a ;, p i) with  CQ # 0 a nd p i # 0.

l Tab - h Pai= (%, pi) = (0~1)

0 m - rob pairs (oi, pi) = (0,O)

The first three kinds of pairs are called non&iv&al  while the zero pairs are
called trivial quotient 8ingular  value pairs.
The quotient-singular values are defined as the ratios of elements of these
pairs. Hence, there are zero, non-zero, infinite and arbitrary (or undefined)
quotient singular values. By convention, the non-trivial quotient singular
value pairs are ordered such that the quotient singular values are non-
increasing.
The name QSVD originates in the fact that under certain conditions [a],
the QSVD provides the OSVD of A+B, which could be considered as a
matrix quotient. Moreover, in most applications, the quotient singular val-
ues are relevant (not the diagonal elements of Sa and Sb as such). A typical l

example is the prewhitening of data (Mahalanobis transformation) when the
(possibly sing&r) ( qs uare root of the) noise covariance matrix is known.
The column vectors of P are the eigenvectors of the generalized eigenvalue
problem AA*P = BB*PA.
Applications include rank reductions of the form A + BD with minimiza-
tion of any unitarily invariant norm of D, least squares (with constraints)
and total least squares (with exact columns), signal processing and system
identification, etc . ..[4] [5] [lo] [14] [16].

.

5 The Restricted Singular Value Decomposition
(RSVD).

The idea of a generalization of the OSVD for three matrices is implicit in
the S, T-singular value decomposition of Van Loan [16] via its relation to a
generalized eigenvalue problem. An explicit formulation and derivation of
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the restricted singular value decomposition was introduced by Zha in 1988
[17]. Constructive proofs and a 16t of applications are discussed in [3].. .

With the notations and conventions of section 1, we have the following:

Theorem 4 The Restricted SVD
Every triplet of matrices A (m x n), B (m x p) and C (q x n) can be factorized
US:

A = P-‘s,Q-’
B = P-*&v;
c = G&Q-’

where P (m x m) and Q (n x n) are square nonaingular,  Vb (p x p) and UC
(q x q) are unihwp sa (m x n), sb (m x p) and SC (q x n) are real  mattices
with nonnegdtive  elements and the following structure:

So=  “,

5
6

1 2 3 4 5 6
‘Sl 0 0 0 0 0
0I0000
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

~ 0 0 0 0 0 0

1
2
3

sb= 4

5
6

1

1 2 3  4
‘I 0 0 0
0 0 0  0
010 0
0 0 0  0
0 0 0 s2

,o 0 0 0 1
2 3 4 5  6
000 0 0
100 0 0
000 0 0
0 0 0 s3 0

The block dimensions of the matrices Say Sb, SC are:

.
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Blockcolumns of Sa ad SC:

1. ~abc+~a-%~-%b

2. Tab + rc - r0bc

3. T&-Tb-T&

4. r& - rb - rc

5. Tat - Ta
6. n - rat

Blockcolumns of Sb:

1. T&c + Ta - %c - Tab

2. r&- rb - r&c
3. p - rb

Block rows of Sa and Sb:

1. %bc+TO-Gb-TO~

2. rd+r,-rh

3. rat + rb - robe

40 To& - rb - %

5. rob - To

6. m-r&
Block rows of S,:

1. T&+To-T,b-&

2. Tab +  Tc -  rok

3. q - Tb

40 rat-ta

The matrices &, S2, S3 are square nonsingular  diagonal.

The restricted singular value’ triplets are the following triplets of numbers:
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’ “obc + ‘-0 - rob - To, triplets of the form (ai, 1,l) with CY~ > 0.

l Pob + rc - r,k triplets of the form (l,O, 1).

l roC + rb - r,h triplets of the form (1, 1,O).

l r o k  - r b  - rC triplets of the

0 9-d. r. triplets of the form

l f-o c  - r. triplets of the form

form (l,O,O).

(0, pi, O), pj > 0 (elements of $4).

(0, 0,7i), 7k: > 0 (elements of S3).

l min(m - r o b , n - Tee)  trivial triplets (O,O, 0).

Formally, the restricted singular values ase the numbers:

Hence, there are zero, infinite, nonzero  and undefined  (arbitrary, trivial)
restricted singular values.
A constructive proof, based upon the OSVD-PSVD or OSVD-QSVD is
derived in [3]. It is not too difficult to show that the OSVD, PSVD and
QSVD are special cases of the RSVD (see theorem 5 in [3]).
The name RSVD originates in some of its applications. A typical one is
finding the matrix D of minimal (unitarily invariant) norm that reduces the
rank of A+ BDC where A, B and C are given. Hence, one attempts reducing
the rank of A by restricting the medications to the column space of B and
the row space of C. A detailed analysis and many other applications can be
found in [3], including the analysis .of the extended shorted operator, unitar-
ily invariant norm minimization with rank constraints, rank minimization
in matrix balls, the analysis and solution of linear matrix equations, rank
minimization of a partitioned matrix and the connection with generalized
Schur complements, constrained linear and total linear least squares prob-
lems with mixed exact and noisy data, including a generalized Gauss-Markov
estimation scheme.

6 The Structured Singular Value (SSV)
The concept of structured singular zloltce was introduced by Doyle in 1982
[6] as a tool for analysis and synthesis of feedback systems with structured
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uncertainties.
Consider a block partition of a matrix fe as:

and a matrix AA, partitioned in the same way as A, consisting of zero and
nonzero blocks AAij, with possibly solhe constraints AAij = A&.

Definition 1 The structured singular value
Tk structured singular value assv is defined as:

wsv = minllAAllb such that rank(A+  AA) < rank(A)

where ll.l16 is- the lavest singular value of a matrix.

Applications are mainly in Ho. control theory. and some characterizations
and algorithms may be found in [S]. For instance, it can be shown that
it suSces to investigate matrices AA that are block diagonal. For some
structures of the matrix AA, the solution can also be found via the P-Q-R
SVD [4].

7 The Takagi Singular Value Decomposition (TSVD)
A (possibly complex) matrix A is symmetric whenever A = At. If A =
A, + iAi, then A is symmetric if and only if both A, and Ai are real sym-
metric. Every complex symmetric matrix has the property that all the
eigenvalues of A’JI = AA* are nonnegative. This leads to the so called Tak-
agi factorization, which is a special singular value decomposition for complex
symmetric matrices and was derived by Taka@ in 1925 (151.

Theorem 6 T&gi’s factorization .
If A ie symmetric, there tits a unitary  U and a d nonnegative diagqnal
matrix  C = diag(ul,  . . . ,u,J such that A = UCU’. The coiumrw  of U am
an orthonomaal  set of eigenvectors  for Ax and the coweqwndkg  diagonal
entries of C are the nonnegative square mats  of the cowqwnding  eigenvalues
of A;a.

The original proof can be found in [X3].  Further properties are described
in[ 121.
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8 Conclusions and summary
In this note, we have proposed a standardized nomenclature for some gen-
eralizations and special cases of the singular value decomposition. Summa-
rizing, we propose the following set of names and abbreviations:

OSVD: Ordinary Singular Value Decomposition (theorem 1)’

PSVD: Product Singular Value Decomposition (theorem 2)

QSVD: Quotient Singular Value Decomposition (theorem 3)

RSVD: Restricted Singular Value Decomposition (theorem 4)

The last three cases can be considered as Generalized Singular Value De-
composition-s, (GSVD). The RSVD contains the others as special cases and
hence is the most general. F’urthermore,  we have also mentioned:

SSV: The Structured Singular Value

TSVD: The Takagi Singular Value Decomposition
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