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Abstract

We study iterative methods for solving linear systems of the type arising from two-
cyclic discretizations of non-self-adjoint two-dimensional elliptic partial differential equa-
tions. A prototype is the convection-diffusion equation. The methods consist of applying
one step of cyclic reduction, resulting in a “reduced system” of half the order of the original
discrete problem, combined with a reordering and a block iterative technique for solving
the reduced system. For constant coefficient problems, we present analytic bounds on
the spectral radii of the iteration matrices in terms of cell Reynolds numbers that show
the methods to be rapidly convergent. In addition, we describe numerical experiments
that supplement the analysis and that indicate that the methods compare favorably with

. methods for solving the “unreduced” system.
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1. Introduction.

We consider iterative methods for solving the linear systems that arise from fmite
difference discretizations of non-self-adjoint elliptic problems of the form

(1.h) -V*pVu+qmA=f on 52

@lb)
. .

7-u + sun = g on 652

where 52 is a smooth domain in R*. Discretization
a linear system of equations

(12)
I

. A u =  f,

of (1.1) by finite  differences results in

where u and f now denote vectors in a finite  dimensional space. A is typically nonsym-
metric and it is often not diagonally dominant.

For five-point f’mite difference discretizations, A has Property-A [2l], i.e. its rows and
columns can be symmetrically permuted so that (after appropriate permutation of the
entries of u and b) X1.2) has the form

(13).

where D and F are diagonal matrices. The system (1.3) corresponds to a red-black ordering
of the underlying grid. With one step of cyclic reduction, the “red” points &) can be
decoupled from the “black” points UC*), producing a reduced @em

(14). [F - ED-‘+(“)  = f (*I - ED-If (+I.

The coefficient matrix

(15)
.

a
S=F-ED-%

is also sparse, so that (1.4) can be solved by some sparse iterative method. For symmet-
ric positive definite  systems arising from self&joint problems, it is known that iterative
schemes such as the Chebyshev and conjugate gradient methods converge more rapidly
when applied to (1.4) than when applied to (1.2), see [3],[11],[12].  It has also been ob-
served empirically for a large collection of nonsymmetric problems that preconditioned
iterative methods are more effective for solving (1.4) than for solving (1.2) [7],[8].

In this paper, we present a convergence analysis of some block iterative methods
for solving (1.4) based on a Nine ordering of the reduced grid. For the full system
(1.2), line methods of this type are known to be effective  in the self-adjoint case, see e.g.
[141,[203$13, and they have also been applied successfully to non-self-adjoint problems
[4],[5]. Our analysis applies to finite  difference discretizations of a constant coefficient
version of (1.1) with Dirichlet boundary conditions. We show that the coefficient  matrix
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S is symmetrizable under a wide variety of circumstances, and we use symmetrizability
to derive bounds on the convergence in terms of cell Reynolds numbers. In addition, we
present the results of numerical experiments on nonsymmetrizable and variable coefficient
problems that supplement the analysis. The results suggest that the methods considered
are highly effective for computing the numerical solution to (1.1).

We remark that the choice of finite  difference discretization affects the accuracy and
quality of the discrete solution to (l.l), see [u] and references therein. In this paper, we are
concerned with properties of the matrices arising after this choice is made. We consider two
difference schemes as examples, based on either centered differences or upwind differences
for the Srst order terms of (1.1). The analysis of the paper can also be applied to other
schemes.

An outline of the paper is as follows. In 52, we illustrate our methodology on a simple
one-dimensional example, where the algebra is more transparent than for two-dimensional
problems. In $3, we describe the discrete constant coefficient two-dimensional convection-
diffusion equation, and we present a convergence analysis of a block Jacobi method for
solving the full system (1.2). This analysis is closely related to that of [4]? which applies in
a somewhat more general setting. In 54, we present the convergence analysis for the reduced
system. We present conditions under which S is symmetrizable, and we derive bounds on
the spectral radii of iteration matrices arising from a block Jacobi splitting, where the
underlying grid is ordered by diagonals. In 55, we present some numerical experiments
that confirm the analysis of the symmetrizable case and demonstrate the effectiveness of
the reduced system in other cases. Finally, in 56 we draw conclusions.

2. A one-dimensional example.

In this section we demonstrate the use of cyclic reduction for one-dimensional prob-
lems. Such problems are not difficult from a computational point of view; we consider
them because the algebra is more transparent than for higher dimensions. Consider the
constant coefficient problem

(2 1). 4’ + 621’ = f
.

Let (2.1) be discretized by centered

on (0, l), u(0); u( 1) given.

finite differences with n interior mesh points:

u” k:
uj+1 - 2ui + U&l Ui+l - ui-1

h* 9 u’ k:
2h ’

where h = l/(n + 1). The result is a linear system of equations Au = f where A is a
tridiagonal matrix,

(2 2). A = tri [ -( 1 + y), 2, -( 1 - 7) ]

with y = ah/Z We refer to this quantity as the cell Reynokls number. Here tri [ bi, ai, c; ]
denotes the tridiagonal matrix whose i’th row contains the values bi, ai, ci on its subdi-
agonal, diagonal and sup&diagonal, respectively. The subdiagonal of the fist row and
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the superdiagonal of the last row are not defined. We omit the subscripts in the case of
constant coefficients.

Consider symmetrizing A by a diagonal similarity transformation.
LEMMA 1. For A = tri [ bi, a;, ci], there eziati a real diagonal mat& Q such that

Q-‘AQ is symmetric  if and only if bi+lci > 0 for all i. The symmetrized mat& is
tri [ (bjCi,l)“*,  Uj, (bj+lCj)“*  1.

Proof. The entries of Q are determined by the specification qr$bi+lqi = q&qi+l,
i.e. q1 is arbitrary and qi+i = (bi+l/ci)“*qi = (bi+lci)‘/*/c, i 1 1. Cl

This result implies that the tridiagonal matrix of (2.2) can be symmetrized when y* < 1.
The symmetrized matrix is

(2 3). a = Q-‘AQ = tri[ (1 - ~*)‘l’, 2, (1 - +)‘/*I.

ff is diagonally dominant whenever Q is defined.
If the unknowns {ui}a, are ordered with the odd-numbered indices first, then (2.2)

has the form (1.3) hw ere D and F have diagonal entries equal to two and C and E are
bidiagonal. After one step of cyclic reduction (and scaling by two), the reduced matrix
has the form

(2 4). S = tri [ -(l + r)*, 2(1+ r*), -(l - 7)* ]

when n is odd. S also has this form when n is even except that the last diagonal entry is
3 + 7*. Lemma 1 implies that S is symmetrizable for all 7 # 1, with symmetrized matrix

(2 51. S = tri [ f(l - r*), 2(1+ r*), f(l - r*)].

It is straightforward to show that S is diagonally dominant for all y when n is odd and for
171 5 1 when n is even. S is diagonally dominant and positive definite for all 7.

Consider an analysis of the point Jacobi method for solving linear systems with the
coefficient matrices of (2.2) - (2.5). We use the following result, which applies even if
bc < 0.

LEMMA 2. The eigenvalues of the tridiagonal matrix tri [b, a, c] of order m are { Xj =
a - 26 cos (*), j = 1,. . . , m}.

Proof. This can be verified directly. The eigenvector corresponding to Xi is u(j) where
vk(j) = (blc)k/2 sin @I, k = 1,. . . ,m.

COROLLARY 1. The spectral radiw of the point Jacobi iteration mat& for (2.2) .and
for (2.3) when 171 5 1 k I(1 - r*)‘/*l cos (nh). For odd n and y # 1, the spectral radiw of
the point Jacobi iteration matriz for both (2.2) and (2.3) id upprotimutely 1 !&I cos (27rh).

Proof. The Jacobi matrix for (2.2) is tri [ -( 1+7)/2, 0, -(l-7)/2],  and its eigenvalues
are determined as in Lemma 2. The analysis for the other three matrices is identical. Cl
Thus, one step of cyclic reduction produces a matrix that has good numerical properties.
In contrast to the full system, the reduced system is symmetrizable for all y # 1. For the
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full system, the point Jacobi iteration is convergent only for 7 5 2, whereas for the reduced
system it is convergent for y # 1; in addition, the spectral radius is always smaller for the
reduced system. We remark that by expanding the reduced operator

-Cl+ Y)*Ui-2 + 2(1+ T*)Uj  - (1 - y)*Uj+*

in a Taylor series centered at ui [19], we find--that  this difference scheme can be viewed as
second order approximation to the differential operator

o*h*
- 1+4( > u” + ml’.

. .

A heuristic explanation for the good algebraic properties of the reduced matrix is that it
corresponds to a perturbation of (2.1) in which “artificial viscosity” is added (see [IS]).

Many of the observations made above carry over to the variable coefficient case, e.g.
where the differential operator is -u” + Q(z)u’. The coefficient matrix is then

A = tri [ -(I+ Ti), 2, -(l - Tj)]

where 7; = a(xi)h/Z The symmetrized form

'= tri[((l+Ti)(l  -@/i~1))~'*, 2, ((I+ ri+l)(l-  7;))‘/*],

is well-defined if ITjl < 1 for all i. The reduced matrix is (for odd n)

' = tri [ -Cl + 'yzi)(l + T*i-I), 4 - (1 + T*j)(l - y*j-1) - (1 - 7*j)(l  + “Yzj+l),
- Cl - Y*i)(l - YZi+l)],

where 1 5 i 5 Ln/2J. If the conditions

Sjj > 0, C1 + T*i)( 1+ y2i-1) > 0, Cl - @Y*i)(l - T*i+l) > 0

hold, then S is diagonally dominant. If, in addition

t1 - @Y*i-*)(I + 72 j)( 1 - r,'j-1)  > 0,

then S is symmetrizable by a real diagonal similarity transformation. These conditions all
hold if ]ril < 1 for all i, and they also  hold for large {vi} whenever U(X) does not have
large derivatives in regions where it changes sign. Both sets of conditions are trivially true
for constant 0.

Finally, returning to the constant coefficient  case, note that the equation of (2.1) can
be written in self-adjoint form

-(eO”u’) = Pf.

Consider the symmetrizing matrices Q discussed above. If the first entry satisfies q1 = 1,
then qi = [(l + $/(l - $]‘-l for the full system, and qi = [(l + 7)/Q - $]*(‘-‘1  for the
reduced system. In either case, the entries of Q are very large for many values of 7. (For
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example, for 0 c y < 1, the limiting value as n --$ 00 of the last entry of Q is eb, for both
systems.) In this sense, the symmetrizing operator behaves like the integrating factor ebt.
For large 0, both are difficult to implement in floating point arithmetic.

3. The two-dimensional convection-diffusion equation.

Consider the constant coefficient convection-diEirsion  equation

(3 1). -Au+uu,+rut= f

on the unit square 0 = (0,l) x (0, l), with Dirichlet boundary conditions u = g on da. We
discretize (3.1) on a uniform n x n grid, using standard second order differences [20],[21]

Auk:
Ui+l,j - 2Uij + Ui-1,j  + Ui,j+l  - 2Uij + Ui,j-1

h* h*

for the Laplacian, where h = l/(n+l). We examine two choices of finite difference schemes
for the first derivative terms:

1. centered difkrences: uz = fLi+l,j - fli-l,j
2h 9 up =

Uij - Ui-1,j2. upwind differences: uz = h ,

where the latter is applicable when u 2 0, T 2 0.

uy m

U&j+1  - Ui,j-1

2h ’
Uij - Ui,j-1

h ’

Suppose the grid points are ordered using the rowwise  natural ordering, i.e. the vector
u is ordered lexicographically as (ur,r,  uz,r, . . . , u,&*. Then, for both discretizations of
the fkst derivative terms, the coefficient matrix has the form

(3 2). A = tri [ Aj,j-l, Ajj, Aj,j+l ]

where

a

(3 3)
. A..N-1 = bI, Ajj = tri[c, U, d), A..193+1 = eI,

I is the identity matrix, and all blocks are of order n. After scaling by h*, the matrix
entries are given by

(3 4). 0 = 4, b = -(1+ 6); c = -(1+ y),
d - -(1 - y), c = -(l - a),

for the centered difference scheme, where the cell Reynolds numbers are y = ah/2 and
6 = rh/2; and

(3 5). a = 4 + 2(7 + S), b = -(I+ 24, c = -(I + 24,
d=-1, e=-1,
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for the upwind scheme.
First, assume that cd > 0. This is true for the centered difference scheme (cd = 1 -T*)

when 171 < 1, and it always holds for the upwind scheme (cd = 1+2~). Consider the block
Jacobi splitting

(3 6). A=D-C,

where D is the block diagonal matrix diag(All,  A**, . . . , A,,,,). For our analysis, it will be
useful to define several auxiliary matrices. In particular, by Lemma 1, each Ajj can be
symmetrized by a real diagonal similarity transformation Qj. The choice of the first entry
qi” of each Qj is arbitrary; for the moment we 6x this choice to be one. The symmetrized
matrix is

djj = Qy’AjjQj = tri [&Z, a;, &J].

By Lemma 2, the eigenvalues of ffjj are {Xk E a: - 2a cos( krh) 11 5 k 5 n}. Let
Vj be an orthonormal matrix whose columns are the corresponding.eigenvectors  of Ajj.
Let Q = diag(Ql,Q2,. . . , Q,,) and V = diag(V1, V2, . . . , Vn). Finally, let P denote the
permutation matrix that transforms the rowwise natural ordering into the columnwise
natural ordering, i.e”PTAP  has the form of (3.2) - (3.3), except that the roles of b and c
are interchanged and the roles of d and e are-interchanged.

Consider the similarity transformation A = (QVP)“A(QVP).  This transformation
first symmetrizes the block diagonal of A, then diagonalizes the resulting interior tridi-
agonal matrix, and then-reorders to produce a- bloEk diagon$ matrix with tridiagonal
blocks. The splitting of A analogous to (3.6) is D - C where D = (QVP)-‘D(QVP) and
5 = (QVP)“C(QVP).  But 5% = (QVP)“D”C(QVP),  so that the eigenvalues of
D-W are the same as those of 6% Moreover, Zij is a diagonal matrix all of whose

(9nonzero entries are Xi, and the choice q1 = 1 implies that Z;i is the block diagonal matris
tri [b, 0, e] for all j. Hence, B-‘e is a block diagonal matrix whose j’th diagonal block is

[E-'E]j = tri [ b/Xj, 0, e/xi].

* Applying Lemma 2 again, we have that the eigenvalues of Zi-f e are

-2&&os(k?rh)
a - 2&h( j?rh) ’

The maximum such value occurs when j = k = 1.
Note that this analysis imposes no condition on b and e. If IA? > 0 (161 c 1 for centered

differences and always for upwind differences), then an identical analysis could be applied
to the columnwise ordered version of A. Hence, we have the following result.

THEOREM 1. If cd > 0, then the spectral radiw of the block Jacobi  iteration matrix
for the rowwise ordered full system G

2&cos(nh)
a - 2&&os(?rh)’
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If be > 0, then the spectral radius of the block Jacobi iteration matrix for the columnwise
ordered fir11 system is

2&&os(nh)
a - 2&cos(ah)’

The bounds for the difference schemes under consideration are derived by substituting
the values of a-e from (3.4) and (3.5) into the results of Theorem 1. These bounds also
follow from the more general analysis given in [4].

COROLLARY 2. For centered diflerences,  if 171 < 1 then the spectral radius of the block
Jacobi iteration matrix for the rowbe ordered full system is

tacos
2 - ,/mcos(Irh)’

If ISI < 1, then the spectral radius of the block Jacobi iteration matrix for the columnwise
ordered full system is

--. .

For upwind differences, the spectral radii are

j/mcos(ah)
2 + (7 + 6) - Jmcos(rh)

and ,/+&os(xh)
2 + (y + 6) - d-co+)

for the rowwise and columnwise orderings,

Comparison of these asymptotic bounds as

respectively.

h + 0 shows that for centered differences when
both 171 < 1 and (61 < 1, the rowwise  bound is smaller if 171 < 161 and the columnwise
bound is smaller if Ial < 171. For upwind differences, the rowwise bound is smaller if S < 7
and the columnwise bound is smaller if 7 < S

1 in the discussion above was arbitrary. Ina Finally, recall that the choice 4:‘) =
particular, if both cd > 0 and be > 0, then for qi’+‘) = (b/e)‘/*qij), Q-‘AQ is symmetric.
The analysis of the Jacobi splittings is unaf&cted.  Hence, we have the following result.

THEOREM 2. If both 171 c 1 wad Ial < 1, then the coeficient mat& for the centered
difference scheme is symmetrizable by a real diagonal similarity transf6rnaation.  For all
7 > 0 and 6 > 0, the coeficient matriz for the upwind scheme is symmetrizable.
We remark that these symmetrizing operations have been discussed in [6].

4. The two-dimensional reduced system.

In this section, we discuss the construction of the two-dimensional reduced matrix S
of (LS), and we present an analysis, based on symmetrizing the reduced matrix, of a block-
Jacobi iteration for solving the reduced system. We remark that only the analysis depends
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on symmetrizability; the solution methods considered here do not require the construction
of a symmetrizing operator.

4.1. Construction of the reduced matrix.

The nonzero  structure of S can be determined from the connection between the graph
of 8 matrix and Gaussian elimination. It is weIl  known that applying one step of Gaussian
elimination to a linear system introduces edges into the corresponding graph of the matrix
[15].  If u is a node corresponding to an eliminated unknown and u and w are nodes
such that (u, u) and (u, w) are edges in the graph prior to eliminating U, then the edge
(u, w) is introduced after elimination. In the present setting, the original matrix A is a
five-point operator whose graph is a rectangular grid. The left side of Fig. 4.1 shows the
computational molecule for A, 8nd the center of the figure shows a portion of the graph
of A relevant to the construction of the reduced system. For the reduction, the points
numbered 3, 6, 8 and 11 (the “red points”) are eliminated, producing the computational
molecule on the right. Thus, the reduced matrix is a skewed nine-point operator.

e
I

c -a-d
I
b

Fig. 4.1: The computational molecule of the full system, and construction of the compu-
tational molecule of the reduced system.

. To see the entries of the reduced matrix, consider the submatrix of A consisting of
the rows for points 3,6, 7,8 and 11, and the columns for all the points of the graph in the
center of Fig. 4.1.

. Column Index:
3

Row 6
Index: 8

11
7

Eliminating points 3, 6, 8 a~

3 6 8 11 7 1 2 4 5 9 10 12 13
'a e bed

a d b c e

a C b d
a b C i e

,b c d e a

1 11 is equivalent to decoupling the first four rows of this
matrix by Gaussian elimination. This modifies and produces fill-in in the last row. The
computations performed for the elimination are shown in the following table. The new
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entries of the last row are obtained by summing the columns.

L

Column: 7 1 2 .,4 5 9 10 12 13

Eliminate 3: -a:,, -h-lb -&J”c -ba’ld
Eliminate 6: -ca” d -ccc1 c ca” e
Eliminate 8: -da-l c -da” b -da-l d -da” e
Eliminate 11: -ea”b . . -ea”c -ea”d -ea”e

Thus, the typical diagonal value in the reduced matrix is . .

(4 1). a - 2ba-’ e - 2caw1d,

which occurs at all interior grid points. For grid points next to the boundary (see Fig. 4.3
below), some elimination steps are not required. For example, for a point next to the right
boundary, it is not necessary to eliminate d. The diagonal values for mesh points next to
the boundary are

a - 2ba-‘e - ca-‘d for points with one horizontal and two vertical neighbors
(4 2). a - ba-’ e - 2ca-‘d for points with one vertical and two horizontal neighbors

a - &-‘e - &-Id for points with just two neighbors.

After scaling by a, the computational molecule at an interior point for the reduced system
is shown in Fig. 4.2.

-2ce
-e2

I -2de

-c2 \2le-fd -cP

 
-2bc -2bd

-b2
Fig. 4.2: The computational molecule for the reduced system.

4.2. Symmetrizing the reduced matrix and the block Jacobi splitting.

Suppose the reduced grid is ordered by diagonal lines oriented in the NW - SE direc-
tion. An example of such an ordering derived from a 6 x 6 grid is shown in Fig. 4.3.
The reduced matrix S then has block tridiagonal form

Sll s12

s21 s22 s23
. . .

s-1 ,I

Q-1 Sll
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⌧7 l x3 l Xl l

. X8 l ⌧4  l X2

Xl3 l ⌧g l x5 l

. x14  l x10 . x(j

Xl7 l x15  l
. . x11 l

. Xl8 l X16 l X l 2

Fig. 4.3: The reduced grid derived from an 6 x 6 grid, with ordering by diagonals.

wherel= n-l is the number of diagonal lines. The diagonal matrices {Sjj} are tridiagona&

(4 3). s- =tri[ -2ce,  *, -2M 1,31

where 5” is deed ELS in (4.1) and (4.2) (SC&~  by a). The subdiagonal  blocks {Sj,j-1)
have nonzero structure
(4. 4)

dz
2de 62 --.
e2 2de .

e2 . 8
. 2de

e2

‘2de d3
e2 2de d2

. .

d2
e2 2de

e2 2de d2
e2 2de dz

7
ez 2ile tii

for 2 5 j < 112 + 1, j = 112 + 1 (I even), and Z/2 + 1 c j, respectively. The corresponding
-superdiagonals { Sj- 1 ,j } are

(4 . 5)

c2 2bc b2
2 2bc b2

-9
i 2ic bi

‘2bc b2
c? 2bc b2

. . .

r b2
2bc b2
2 2bc .

c? . b2
b2

c2 2bc

The following result gives circumstances under which S is symmetrizable.  This result
ah follows from the analysis of [16].

THEOREM 3. The reduced mat& S can be symmetrized with a real diagonal similarity
tramformation if and only if the product bcde k positive.

PTOO~. we seek 8 mhiX Q = diag(Q1,. . . , Qr) where Qj iS 8 d di8gOd m&k

of the same order 88 Sjj, such that Q-‘S Q is symmetric. Let Qj = diag(& . . . , #).
First consider the diagonal block (4.3): QT’SjjQj is symmetric if and O~Y if

(4 6).
,!A !i>

-ebd = -k&e,
q!‘) 2SjSrj,

Q*r-l :
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where qf j’ may be arbitrary. Thus, the diagonal blocks can be symmetrized provided

(4 7). q!j)  = bd _a ( >
ce 1/2qij)l,

and this recurrence is well-defined if and only if ce/(bd) = bcde/(bd)2 is positive. The
(equal) quantities (4.6) axe the (i, i - 1) and (i - 1, i) entries of the j’th diagonal block of
the symmetrized matrix.

For the offdiagonal  blocks, we require

(4 8). QT’Sj,j-1 Qj-1 = (QTIISj-l,iQj)T*

There are three cases, corresponding to the three sets of indices 2 5 j < l/2 +l, j = l/2 +l
(1 even), and l/2 + 1 < j (see (4.4) - (4.5)). When 2 s j < 112 + 1, relation (4.8) holds if
and only if the following scalar relations hold:

(4 9).

(4.10)

(4.11)

q(j-l)
1= -d2,
,!i)

a

q!fl

,&ll
q!j-l)

-k = Lde, o r  q$ = (c) i
!I!$)1

de 1/2q(j-l). 7
t

(8
%+2 2

q!i-l)
-b = +e2, o r  qit2 =  (J) i
q!j-l) e2 1'2P-1) .

1 Qi+2

Since {qi’)} are arbitrary, (4.9) can be used to define {qi”}, 2 5 j < l/2 +l (where qil) is
arbitrary). Once this choice is made, however, (4.7) completely determines {Qj}.  Thus, it
is necessary to show that (4.9) - (4.11) are consistent with (4.7). But {q!“) and {qjjwl))
both satisfy (4.7), so that (4.9) is consistent. Moreover, applying (4.7) and (4.9) gives

aad 8pplyiI& (4.7) twice followed by (4.9) &es.

That is, (4.10) and (4.11) fo11ow directly from (4.7) and (4.9). The square root in (4.10)
is well-defined provided de/(&) = &de/( bc)2 is positive.

For the other two cases, the analogues of (4.9) - (4.11)  are

q!i) =
a ( >

d e  l/2 (j-l), q,+l = e2 1/2q(j-lI,
c Qi

!i>
( >F i

q(j) = 8 1’2q!:;1)
i ( >3 ' '

11



for 2 even and j = l/2 + 1, and

q!j) = e2
I ( >

‘/2qfj-l),
F i

q(jl =
i ,

for l/2 + 1 c j. Here qij) is defined  using the first expression of these relations. Proofs
that these are consistent with (4.7) are essentially identical to the argument above. 0

Let D = diag(S11,. . . , $1) denote  the block diagonal of S, and let S = D - C denote
the block Jacobi splitting of S. Let S denote the symmetrized matrix Q-‘SQ (when it
e_xists), and let S = fi - & denote the block Jacobi splitting. Here B = QWIDQ and
C = Q”CQ. Also, note that S and S are irreducible.

COROLLARY 3. If both be > 0 and cd > 0, then S is symmetrizable by a real diag-
onal similarity  transformation Q. If the diagonal entries of S are positive, then S is an
irreducibly diagonally dominant M-mat& provided

(4.12) a2 1 (14 + ICI + IdI + lel)2,

and 3 is an irreducibly diagonally dqminant M-matriz provided

a2 2 4(&+ AZ)‘.

Proof. The existence of the symmetrizing matrix Q follows immediately from Theorem
3. The off-diagonal entries of S are negative, and the corresponding off-diagonal entries of
S are negative if the positive square root is used in the recurrences defining Q. Diagonal
dominance is established by direct computation. For rows of S corresponding to interior
mesh points, diagonal dominance holds if and only if

a2 - 2be - 2cd 2 b2 + c2 + 8 + e2 + 2(lbcl+ lbdl + IceI + Idel),

. which is equivalent to (4.12). For mesh points next to the boundary, the diagonal values .
are greater than those for the interior points (see (4.2)),  so that strict diagonal dominance
applies. The argument for diagonal dominance in S is the same. That S and S are
M-matrices follows from Corollary 1, p. 85, of Varga [20]. 0

- Let the nonzero  off-diagonal entries of S and S be identified as the north, south, east,
west, and northeast, northwest, southeast and southwest values, according to their location
in the computational molecule. (See Fig. 4.3.) D and B consist of the center, northwest
and southeast entries.

COROLLARY 4. If both be c 0 and cd < 0, then S is symmetrizabk  by a real di-
agonal similarity transfownation Q. Depending on the choice of Q, any of the following
distributions of sigrrJ can occur in 3:

(a) the northwest and southeast values are positive and all other off-diagonal values
are negative;
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(b) all nonzero off-diagonal entries of S are positive;
(c) the northwest, southeast, northeast and southwest values are negative, and the

north, south, east and west values are positive;
(d) the northwest, southeast, north, south, east and west values are negative, and the

northeast and southwest values are positive.
In cases (c) and (d), b is a diagonally dominant M-mat&.

Proof The existence of the symmetrizing matrix Q follows immediately from Theorem
3. The signs of the square rtots defining  the entries of Q, which are arbitrary, de&rmine
the distributions of signs in S. Without loss of generality, assume that b < 0 and c < 0, so
that the hypotheses imply d > 0 and e > 0. The arguments for other combinations of signs
are identical. If all entries of Q have the same sign (i.e. the positive square root is used
throughout), then S is as in (a). If all entries of Q within any of its blocks have the same
sign (i.e. the positive square root is used in (4.7)),  but neighboring blocks have the opposite
sign (e.g. the negative square root is used in (4.9) when this expression d&es qii)) , then
the distribution of signs in S is as in (b). On the other hand, if the signs within the blocks
of Q alternate, then the northwest and southeast entries (the off-diagonal entries of 6) are
negative, and the signs in the off-diagonal blocks of S vary by diagonal. Distributions (c)
and (d) are specified by choosing appropriate signs for the first entries of each block; the
choice of sign does-not obey a simple fixed rule, but instead varies with the index j of the
block Qj. In the latter two cases, each block of Z, is irreducibly diagonally dominant with
non-positive off-diagonal entries (see Fig. 44, so that B is an M-matrix. 0

-be
-2&z -2&Te

\ 
- c d  /2be -y - c d

-2&x -2JW

.
-be

Fig. 4.4: A computational molecule for the symmetrized reduced system.

Fig. 4.4 shows a computational molecule for the symmetrized reduced system. The
figure is valid for both Corollaries 3 and 4. When b, c, d and e are as in Corollary 3,
all &diagonal  entries are negative. When b, c, d and e are as in Corollary 4, the signs
correspond to case (c). For the choices of difference schemes that we are considering,
Corollary 3 applies to the centered difference scheme for small 171 and 161 (less than one),
and to the upwind scheme. Corollary 4 applies to the centered difference  scheme for large
171 and 161. The of 11owing result summarizes the analysis above for the two difference
schemes.

COROLLARY 5. If A is constructed wing centered differences, then S is symmetritable
via a real diagonal matris Q if and only if either 171 < 1 and 161 < 1 both hold, or 171 > 1

13



and (S( > 1 both hold. If 171 < 1 and ISI < 1, then S ti an irreducibly diagonally dominant
M-matriz and Q can be chosen 30 that 3 in an irreducibly diagonally dominant M-mat&
Xf 171 > 1 and ISI > 1, then Q can be chosen 80 that b is a diagonally dominant M-matris.
If A b con&ucted wing upwind differences, then ,S is symmetrizable for ail y 1 0 and
6 2 0, and S and (for appropriately chosen Q) S are irreducibly diagonally dominant
M-matrices.

Proof For centered differences with IT] < 1 and ]a] < 1 and for upwind differences, the
assertions follow from Corollary 3. Diagod dominance follows from direct computation.
For centered differences with ]r] > 1 and ]a] > 1, the result corresponds to cases (c) or (d)
of Corollary 4. II

4.3. Bounds for solving the convection-diffusion equation.

We now derive bounds for the spectral radius of the iteration matrix B = D-W based
on the block Jacobi splitting of S, in the case where S is symmetrizable. Note that

(4.13) B = Q&‘CQ-‘,

i.e. B is similar to @ = b-l&. Hence, we can restrict our attention to B. The analysis is
essentially based on the result

(4.14) p(B-‘e) 5 Ip-‘(I*IIc~~* = x y;) 5
min

where the equality follows from the symmetry of fi and & Explicit bounds are obtained
by replacing b by a matrix with constant diagonal values (cf. (4.2)). There are two cases,
corresponding to Corollary 3 (be > 0 and cd > 0) and Corollary 4 (be < 0 and cd < 0).
We assume for the second case that Q is chos:n so that D is an M-matrix (e.g. with the
sign distribution (c)). Hen!e, in both cases, D is symmetric positive-definite and can be
factored symmetrically as D = LLT. Consequently,

- ( 4 . 1 5 ) LTB-‘&-T = L-I&-T,

That is, B and therefore B are similar to a symmetric matrix, and their eigenvalues are
real.

- Suppose that be > 0 and cd > 0. fi has block diagonal form diag(T1,. . . , Tl), where
each block Tj is a tridiagonal matrix.  Them&ore,  Q(B) = Uj a(Tj), and

(4.16) X,in(b) = min Ami,(
i

Let T denote one of the tridiagonal blocks Tj of Ij, of order r. T has the form P+ P where
f = tri [ -&, 6, -b] and P = diag(pl, 0,. . . ,O,p,). Here, 2r = a* - 2be - 2cd, & = 2dm.
The perturbations pl and pr each have the form cube + /3cd where o and p are zero or one
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and at least one of cr, p is nonzero, see (4.1), (4.2). Hence, the perturbations are positive.
Consequently,

(4.17) Amin = +(v,Tv) =*[(V,i(o)+(V,PV)]  zs(V,fV)=Xmin(Ts1).

By Lemma 2, o(p) = (xk E ii - 2he s}. The minimum value of XI, is
. .

(4.18) Amin = 6-28CoS91.

The smallest such minimim  (over all choices of T = Tj from D) occurs with r = n. Thus,
(4.16), (4.17) and (4.18) imply

(4.19) Am,(B) 16 - S&cm(sh).

In terms of the entries of A, this expression is

ti - 2s + 2&l - cm(rh)) = a* - 2(x&+ a)* + &h&(1 - ms(nh)).
-m.

?‘he spectral radius of & is bounded by Gerschgorin’s theorem [20]:

p(8) 5 d&Z+ 2be + 2cd = 2(&+ I/Z)‘.

Hence, from (4.14) we have the following result:

THEOREM 4. If be > 0 and cd > 0, then the spectral radius of the block Jacobi iteration
mat& for the reduced system satisfies

P(B) 5
2(&+ t/q*

a* - 2(4iG+ a)* + 41&Z(l-  cm(ah))’

When k < 0 and cd c 0, the perturbations pl and pr are negative. Consequently,
- the inequality of (4.17) is not valid and (4.14) cannot be used directly. For an alternative

approach, let & = &(a) + e(b) where e(a) is the part of & corresponding to the northeast
and southwest neighbors in the computational molecule and &*) is the part of c corre-
sponding to the north, south, east and west neighbors. Assume that Q is chosen so that
c&se (c) of Corollary 4 holds. Then &) 1 0 and 8*) 5 0. (See Fig. 4.4.) This implies
that the splittings

(4.20) @a) = fi _ &4, (jlw = fi _ [-&C’)]

are regular splittings [2O].  Moreover, s6) is an irreducibly diagonally dominant M-matrix,
and W is an irreducibly diagonally dominant M matrix provided

(4.21) a*/2 + (JZZ- &iE)* - 2&Z 10.
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In the following discussion, we assume this inequality holds, so that @)-l > 0 and
$Wl > 0.

The similarity transformations (4.13) and (4.15) imply that

. .

We bound the last two quantities of this expression using (4.20). Let B = 5 + P, where fi
is a block diagonal matrix each-of whose blocks is a constant co&cient tridiagonal matrix
of the form of f above, and P is block diaenal with blocks of the form P above. The
nonzero entries of F are now negative. Let C(‘) = &(a) - F ad e(b) = &(a) + Fe Then
the alternative splittings

are also regular splittings, and the inequalities &) >, &), -8) 2 -Et’) hold. Varga’s
theorem on regular splittings ([20], Theorem 3.15)  implies that

Therefore, from (4.22), we have

p(B) 5 p(zj-‘8)) + p(zi-‘W) 5 p~~*(lla”‘~~*  + Ilaa’l12)
= p( 5-l )( p( 8”‘) + p( E(b,>).

The spectral radius of 6-l is bounded as in (4.10)  above; the denominator is now

a2 + 2(&7-  &ii,,  + 4a (I- cos(?rh)).

The spectral radii of 8’) and C-(b) are bounded by Gerschgorin’s  theorem:

.
p(W) 5 max (4&X,  2&K+ Ibel, 2&E + Iail, lbel + Iall),

p(P) 2 2(lbel + lull).

- We summa&e this discussion as foIlows:
THEOREM 5. If be < 0, cd c 0, and inequulity (4.21) holda, then the spectrcrl radius

of the block Jacobi iteration mat& for the reduced system satisfies

P(B) 5
max (46& 2a + Ibel, 2m + IdI, lkl + IdI) + 2( lbel + (cdl)

a2 + 2(4+ dm)2 + 4&@1 --(Ah)) ’

Substitution of the expressions of (3.4) and (3.5) into the results of Theorems 4 and
5 gives bounds for the specific difference schemes. Inequality (4.21) permits us to replace
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B with (the constant diagonal) 6, but the inequality is not valid for arbitrary matrices.
In terms of the cell Reynolds numbers, a sufficient condition
for (4.21) to 5 4. We simplify the expression derived from
Theorem 5 using the notation

p(y,6)  E max (4 r2 - l)(az - l), 2 y2 - l)(P - 1) + r? - 1,
2&Z - l)(P -I) +.62  - 1, y2 - 1 + J2 - 1).

Depending on the values of y and 6, any of the quantities defining  p can determine its
value.

COROLLARY 6. For the centend diference scheme, if 171 < 1 ond 161 < 1, then the
8pectrcrl radiw of the block Jacobi iteration mat& for the reduced system is bounded by

8 - (J1-f I/-)~ + 2,/(1-  r2)(1 - 62)(1- cos(rh))’

If 171 > 1, 161  > 1 Qnd ,/(r2 - l)(a2 - 1) s 4, then the spectral radiw b bounded by

$/.&a) +  y2-1  +  az-1
8 + (,/v - dm)2  + 2d(yZ  - l)(ii2 - 1) (1 - ws(ah)) l

For the upwind difference scheme, the spectral radiw is bounded by

(JTF+ dRm2
2(2 + 7 + a)3 - (Jm + m)2 + 24 1+ 27)(1+ 24 (1  - c +h)) l

See 94.5 for comparisons of these asymptotic bounds with those for the full system (Corol-
lary 2).

- 4.4. Fourier analysis.

As we will show in $5, the bounds of $4.3 agree with the results of numerical compu-
tations when be > 0 and cd > 0, but they are pessimistic when be < 0 and cd < 0. We
now present a Fourier analysis of a variant of the symmetrized reduced operator using the
methodology of [2]. Consider the discrete nine-point operator of Fig. 4.5. This operator
is based on the version  of 3 of Fig. 4.4, except that it is defined  on a rectilinear grid with
periodic boundary conditions. The horizontal lines of the rectilinear grid correspond to the -
lines oriented in the NW - SE direction of the skewed grid. (In the figure, the orientation
of the skewed grid is indicated in parentheses.) We refer to this operator as the rectilinear
periodic reduced operator.

The Fourier analysis is defined as follows, see [2] for a more detailed description.
Suppose the rectilinear grid is contained in a square domain with n interior points in each
direction and periodic boundary conditions. Let 3~ denote the operator defined by the
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I‘P) (NE) w
-be

W) (SW) (9
Fig. 4.5: A computational molecule for the rectilinear periodic reduced operator.

computational molecule of Fig. 4.5. That is, if u is a mesh function with value Vjk at the
(j, k) mesh point, 1 5 j, k ,< n, then

(spv)jk E (a2 - 2be - 2cd) vjk - 2&X vj-l,k - 2&Z vj+l,k

--. - bi? vj-l,k+l - 2G vj,k+l - Cd vj+l,k+l

- cd vj-l,ki-1  - 2G vj,k-1 - be vj+l,)-1.

The analogue of the line Jacobi splitting considered above is

% =ap-ep,

where fip corresponds to the horizontal connections of Fig. 4.5 (indices (j - 1, k), (j, k)
and (j, k + l)), and & corresponds to the other connections. Let v = ~(~9’) have values
(4 =

‘jk eijea eik#t, where 0, = Drsh, dt = 2nth 1 5 s, t 5 n, and h = l/(n + 1). It is
straightforward to show by direct substitution that

(sPv)jk =Avjk, (fiPV)jk = $'vjk, (6pV)jk = Pvjk 9

where
* = *rt = a2 -2be-2d-4diELd,,

jb = p,t = 4A&zk5 fpt + 2cdco6 (0, + qQ + 2be co8 (9, - #t),

and X = $ - cc. The quantities p and $ are the eigenvalues of Ijp and & respectively,
c&responding to the (shared) eigenvector v. The analogous eigenvalue of &‘& is

(4.23)
4~~c~~t+2cd~os(e,+~t)+2be~~(e,  -b)

a~-2be-2cd-4&&s8,
.

The maximal value of this expression over all 8,, &, 1 5 S, t 5 n, is a heuristic bound
for the maximal eigenvalue  for the analogous Dirichlet  operator. In the following, we will
be concerned with asymptotic bounds as h + 0 (for fied y and 6). For simplicity we
examine (4.23) for all 8,, dt E [0,27r]. Thrl s ignores some O(h2) effects that are significant
only when y = 6 = 0.
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LEMMA 3. FOT be > 0 and cd > 0, the ma&mum Fourier eigenvalue (4.23) &

(4.24) 2(&+I/32
a2 -2(&F+  da)2’

For be < 0 and cd < 0, the maximum Foutier eigenvalue b

(4.25)

Proof. When k > 0 and cd > 0, the numerator of (4.23) is maxim&d when co8 & = 1,
co@, + 4t) = 1, and cos(B, + #t) = 1. The denominator is minimized  when co&, = 1.
These conditions are all satisfied when 8, = 4t = 0, which results in (4.24).

When be < 0 and cd < 0, it is not possible to maximize the numerator and minimize
the denominator simultaneously. Expression (4.25) corresponds to the values 0 = x and
q5 = 0. To see that (4.25) is maximal, consider the change of variables z = m and
y = m. Then we wish to establish the inequality

--

2~ycos~-s2cos(e+~)-y2c~(~-~) (3: + Y12
a2/2+z2+ y2 -2xyc0se ’ a212  + (3 + y)2 ’

for x > 0, y > 0 and 8, 4 E [0,27r]. This is equivalent to showing that

(x+y)2-2xyCos~+x2Cos(e+qb)+y2cos(e-~)~(1+Cose)2xy (x + Y12
a212 + (3 + y)2 w

Since (x + y)2/(a2/2 + (x + Y)~) < 1, it suffices to show that +

x2+y2+x2cos(8+~)+  y2cos(e-~)-2xy(cose+cos~)  20.

* Foranyfixedy$andq5(providedco@+q5)  # -l),‘tf  11i 0 ows from elementary calculus that
(considered 88 a function of x) the expression on the left of this inequality has minimum
value

which is identically zero. The case COB (6 + 4) = -1 is covused by minimizing with respect
to y in an analogous way. 0

Substitution of the values of b, c, d and c from the two difkrence  schemes yields the
following result.

THEOREM 6. Fourier analysis of the rectilinear periodic educed operator yields the
following asymptotic  boun& on the Jacobi iteration matrix.
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Fig. 4.6: Values of y, 6 where the fiAl system bounds are smaller than the reduced system
bounds, for centered differences and small cell Reynolds numbers.

For centered diferences with 171 < 1, (a( < 1:

For centered di’erences with 171 > 1, IS( > 1:

FOT upwind differences:

(Jrny+ m)2
2(2 + y  + a )2 - ( & q  + A/ m2 l

Note that the Brst and third of these bounds agree with the analogous asymptotic results
. from Corollary 6. The second bound does not depend on any restrictions on y and 6.

4.5. Comparison of bounds.

We compare the asymptotic bounds (as h 3 0) on the spectral radii for the block
Jacobi operators from the full system (Corollary 2) and the traduced system (Corollary 6
and Theorem 6). For the full system, we consider the minimum of the bounds for the
rowwise  and columnwise ordered matrices. We do not have analytic results that cover all
cell Reynolds numbers. Instead, we make a numerical comparison. In each of three cases,
we graph the bounds on four cross-sections of a square region in the (~,6) plane. These
cross-sections correspond to the four choices 6 fi: 0, 6 = y, 6 # its maximal value on the
region, and 6 k: its midpoint on the region. The bounds are symmetric with respect to y
and 6 (since we are using the minimum of the two full system bounds), so that the graphs
of Figs. 4.7 - 4.9 below also compare the results with the roles of 7 and 6 interchanged.

20



1. Centered differences, y < 1 and 6 < 1. In this case, neither bound is uniformly
better for all choices of 7 and S. In Fig. 4.6, the shaded region shows the values of y and
6 where the full system bounds are smaller than the reduced system bounds? Fig. 4.7
compares the bounds on four cross-sections corresponding to 6 = .02, 6 = y, 6 = .98 and
6= .48. A significant part of the bottom left picture corresponds to the shaded region
of Fig. 4.6. Taken together, these figures show that the reduced system bound is smaller
for most values of y and 6, and the two bounds are very cloee  (and small) when the full
system bound is better.

Delta=.02

0.2 -

Gamma
Reduced system

Fig. 4.7: Asymptotic bounds for the block Jacobi iteration matrices on four cross sections
of the (y, 6) plane, for centered differences and small cell Reynolds numbers.

2. Centered di’erences, 7 > 1 and 6 > 1. For this case, we consider both the rigorous
reduced system bound from 54.3 and the bound of the Fourier analysis from $4.4. In our

1 These regions were determined by first approximately identifying the shaded region
using a mesh of size .02, and then using a fine mesh in [0, l] x [.97,1], with horizontal length
.Ol and vertical length .0005. The bounding curve at the top of the figure is a plot of values
(~,6) on the fine mesh such that 6 is the largest value for each y where the reduced system
bound is lower. The curve on the right comes from symmetry of the bounds.
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Fig. 4.8: Asymptotic bounds for the block Jacobi iteration matrices on four cross sections
of the (7,6) plane, for centered differences and large cell Reynolds numbers.

,

examples, the restrictions on 7 and 6 in Corollary 6 are satisfied whenever the bounds
are less than one. As we show in 55, the Fourier bounds are closer to the spectral radii
observed in experiments. The figure shows the bounds on four cross sections in the region
1 < 7,6 c 3. The figure clearly shows that the bounds for the reduced system are smaller
than those for the full system. For most large 7 and 6, the latter bounds (which are

* tight) are greater than one, so that the block Jacobi iteration applied to the full system is
divergent.

3. Upwind difercncea.  In numerical comparisons for 0 < 7,6 c 5 (using ninety-nine
mesh points in each direction), we observed that the bounds for the reduced system are
dformly smaller than those for the full system. Fig. 4.9 graphs the bounds on four
cross-sections of 0 < 7,6 < 3.

Note that although we only consider positive 7 and 6 here, the results for centered
differences apply in general when absolute values are used. The analysis does not apply -
in cases where one of 171, ]a] is greater than one and the other is less than one; numerical
experiments for cases of this type are described in $5.

We conclude with some remarks concerning acceleration, using either block SOR or
the conjugate gradient method (CG) [lo] with preconditioning by the block diagonal. In
the symmetrizable cases, the eigenvalues of the block Jacobi matrices are real. Hence,
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Fig. 4.9: Asymptotic bounds for the block Jacobi iteration matrices on four cross sections
of the (~,6) plane, for upwind differences.

Young’s SOR analysis [ZO,21]  applies, i.e. the optimal SOR iteration parameter can be
obtained from the spectral radius of the block Jacobi matrix. Symmetrization is needed
only for the analysis; the actual computations can be performed with the nonsymmetric
matrices. In contrast, CG requires either the explicit computation of the symmetrized

. matrices 3 and B, or (what is equivalent), a change in the in&r product used in the CG .
iteration. Both schemes require the explicit use of the symmetrizing operator 8. But, as
in the one-dimensional case, the entries of Q may be very large. (For example, if 0 < y < 1
and 6 = 0, then (4.7) is identical to the recurrence for one dimension) As a result, CG
isnot always viable in floating point arithmetic. Finally, we note that for the full system,
itis shown in [4] that SOR iteration may be convergent for values of 7 and 6 where the
block Jacobi method is divergent, as well as for values where our analysis does not apply.

5. Numerical Experiments

In this section, we present the results of numerical experiments that con&m and
supplement the analysis of 54. In all cases, we present our results for the block Gauss-
Seidel splitting S = [D-t] - U, where L and U are the the lower and upper triangles of C,
respectively. (Since S has block Property-A, p( (D - L)" U) = [p(D” C)12.) In particular,
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we compare the bounds of Corollary 6 with computed values for several different mesh sizes,
and we also examine the effectiveness of the block Gauss-Seidel method in cases where the
analysis is not applicable (e.g. for the centered difference discretization where 17 > 11 and
16 < 11). In addition, we present numerical results for constant coefficient problems where
Dirichlet boundary conditions are replaced by outflow boundary conditions on portions of
the boundary, and for several variable coefficient  problems. All experiments were performed
on a VAX-8600 in double precision Fortran. The reduced matrices were computed using
PCGPAK [17]. The spectral radii p((D--L)%) were determined using the QZ algorithm
in EISPACK [9], [lo].

Table 5.1 shows computed values of the spectral radii of the block Gauss-Seidel itera-
tion matrices derived from the centered difference discretization of (3.1),  for r = 0 (so that
6 = 0). For y < 1, the table also shows the asymptotic bound for these quantities derived
by squaring the first expression of Corollary 6, with A = 0. The value for 7 = 1 is the limit
as 7 + 1. Numerical experiments with 7 = 0 and varying 6 produced the same spectral
radii; since the bounds of Corollary 6 are symmetric with respect to y and 6, Table 5.1
also applies for the case y = 0 and 6 taking on the values in the first column. The results
for y < 1 show that the limiting values of the spectral radii tend to the the bounding value
as h --) 0 (for y fixed).  The analytic bounds for the values of h in the table are closer to
the asymptotic bounds than to the computed spectral radii. The results also show that
the method is highly effective for 7 > 1, where S is not symmetrizable and our analysis
does not apply. In this case, some computed eigenvalues of each Gauss-Seidel matrix are
complex.

.2 .50 .79 .89

.4 .40 .62 .69

.6 .26 A0 A5

.8 .13 .19 .21
1.0 .Ol .02 .052
1.2 .03 .03 .04
1.4 .04 .05 .06
1.6 .08 .08 .08
1.8 .lO .lO .ll
2.0 .lO .lO .15

h = l/8 h = l/16 h = l/32 Asymptotic
Bound

.92

.72
A6
.22
.02

Table 5.1: Spectral radii and bounds for the Gauss-Seidel iteration matrices, centered
diiszenca,  6 = 0.

Table 5.2 shows the computed spectral radii of the block Gauss-Seidel iteration ma-
trices for the centered differencediscretization  and 7 = 6. This table contains both the
rigorous bounds from Corollary 6 and the bounds of Theorem 6 derived using Fourier anal-
ysis. The two bounds agree when 7 < 1 and 6 < 1. The rigorous bounds are pessimistic

‘We suspect that when 7 = 1, the Gauss-Seidel matrix has nonlinear elementary
divisors and that this is why this computed spectral radius exceeds the asymptotic bound.
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when y > 1 and 6 > 1, and the Fourier results agree with experimental results. We believe
the source of the pessimism is the inequality of (4.22),  which prevents any cancellations due
to the opposite signs of &) and 6(*) from being put to use. The Fourier analysis does not
require an analogous inequality. Note that in both Tables 5.1 and 5.2, for moderate values
of y, the more highly nonsymmetric problems are easier to solve than the nearly symmetric
problems. (For the discrete Laplacian, the asymptotic bound derived from Corollary 6 for
the spectral radius of the Gauss-Seidel matrix is approximately 1 - 2r2h2.)

Y h = l/S h = l/16 h = l/32 Asymptotic Fourier
Bound

.2 A6 .73 .82 .85 .85

.4 .30 A6 .51 .52 .52

.6 .13 .19 .21 l 22 .22

.8 .03 .04 .05 .05 .05
1.0 0 0 0 0 0
1.2 .02 .03 .03 .05 .03
1.4 .07 .lO .lO .23 .ll
1.6 .14 .18 .19 .61 .19
1.8 .21 .26 .27 1.25 .28
2.0 .27 .33 .35 2.25 .36

Table 5.2: Spectral radii and bounds for the Gauss-Seidel iteration matrices, centered
differences, 7 = 6.

Our analysis applies only for discretizations of problems with Dirichlet boundary con-
ditions. However, it is known that the discrete solutions are more meaningful physically
when outflow boundary conditions

US =Oifa>O, u,=Oifr>O,

are used [4],[13]. (In particular, for centered difference discretizations, when 7 > 1 or
6 > 1, Dir&let  boundary conditions result in oscillatory discrete solutions at boundary
layers, whereas outflow boundary conditions result in smooth solutions.) In Table 5.3,.
we compare the spectral radii for the block Gauss-Seidel iteration matrices arising from
Dirichlet problems with those arising from outflow boundary conditions. The left side of
the table is for the case 6 = 0 (i.e. r = 0 in (3.1)),  and the right hand side is for 6 = y
( = 7). The data is for mesh size h = l/32.  The outflow boundary conditions were
dzcretized by first order differences [13]

uz(l,  Yj)  =
Un,j  - fLn-1,j

h ’

t(l(= j, 1) e Qn -huj*n-l.

The results show that the behavior for outflow boundary conditions is nearly identical to
that for Dirichlet conditions.

Finally, we describe some results for problems with variable coefficients,  of the form

-Au + f(q Y)UE + !h Y)%
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Y Dirichlet outflow

.2 .888 .892

.4 .694 .695

.6 447 4-8

.8 .214 .214
1.0 .053 .053
1.2 .036 .036
1.4 .056 .056
1.6 .081 .OSl
1.8 .112 .109
2.0 .147 .141

ii=0

Y
.2

.4

.6

.8
1.0
1.2
1.4
1.6
1.8
2.0

B=y

Dirichlet outflow

.820 .826

.506 .507

.214 .215
AM7 .047

0 0
.032 .032
.103 .103
.188 .188
.273 .273
.353 .353

1

Table 5.3: Comparison of spectral radii of the Gauss-Seidel iteration matrices derived
from centered differences and either Dirichlet or outflow boundary conditions, h = l/35.

on Q = (0,l) x (0, l), u =
[1],[19]:  --'

g on do. We consider four problems, which are taken from

1. - Au + ux2uz + qx2uo = 0,

2. - Au + gu(l + x2)u,  + IOOU,  = o,
3. - Au + ux2u, = 0,
4. - Au + o( 1 - 2x)u, + a( 1 - 2y)zl,  = 0,

with u = 0 on X2. As in [1],[19], we discretized each problem using centered differences
and mesh size h = l/20. The spectral radii of the Gauss-Seidel iteration matrices are
shown in Table 5.4. For reference, the table also reports 7 = ah/Z. For Problems 1 and
3, y represents the maximum cell Reynolds number on the mesh, the minimum being 0.
For Problem 2, it represents the maximum cell Reynolds number for the x-coordinate;

- the minimum is r/2, and the y-coordinate has constant value 6 = 5. For Problem 4, the
coefficients  change sign in n; the cell Reynolds numbers in each coordinate vary between
-y and y.

Although it is difficult to make definitive statements about these results, they appear
to;be consistent with the analysis of the constant coefficient case. In particular, for moder-
ate u (the three smaller values), the spectral radii are bounded well below one for all four
problems. For Problems 1, 3, and 4, performance improves as 171 increases from 0; and for
Problem 2 (where 6 = 5) it is very good for moderate y. Performance declines when y gets
very large; in these cases finer meshes will improve both performance of the iterative solver
and accuracy of the discrete solution. We remark that for Problem 2 with 0 ,< 10, the
Gauss-Seidel matrices have complex eigenvalues close in modulus to their spectral radii.
In many of the other cases (e.g. all instances of Problem 1), some computed eigenvalues
contain small imaginary parts, of order at most 10B2.
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u

1
10

100
1000

10000

7 =oh 2 Problem 1 Problem 2 Problem 3 Problem 4

.03 .91 .23 .91 .90

.26 .91 .23 .92 .80
2.6 .78 .40 .83 .18
26 .96 .94 .89 .95

263 .998 .999 .994 .999._

Table 5.4: Spectral radii for the Gauss-Seidel iteration matrices of four problems with
variable coefficients, centered differences, h = l/20.

6. Conclusions

We have performed an analytic and experimental study of a block iterative method
for solving the reduced system derived from a class of discrete non-self-adjoint elliptic
problems. The analysis provides rigorous justification for the effectiveness of the reduced
system methodology previously observed empirically, and it shows that the use of the
reduced system often results in faster convergence than if the full system is solved by anal-
ogous iterative methods. The experimental results show that the method is also effective
for problems where the analysis does not apply. We close with the observation that the
computations under consideration are naturally divided into individual subtasks  (corre-
sponding to tridiagonal subblocks), so that they can be implemented very efficiently on
parallel computers.

Acknowledgement: The authors wish to thank Clyde Kruskal for help with the
proof of Lemma 3.
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