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0. Introduction

The objective of this paper is to verify numerically the convergence of the solution to the
three-dimensional problem of a clamped plate towards the solution to the corresponding “limit”
two-dimensional problem when the thickness of the plate goes to zero.

Standard finite elements discretization of the three-dimensional problem fails to show this
convergence [6] as they lead to ill-conditioned linear systems when the discretization parameter is
of the order of the thickness. We will therefore use a spectral approximation of the solution of the
three-dimensional problem.

First, we shall review the three-dimensional and two-dimensional linear models of a clampled
plate and give the convergence results obtained by P.-G. Ciarlet and P. Destuynder [ 11,  [2].

Then we will discuss two kinds of spectral approximations: the Gale&in and Tau approxima-
tions.

Finally we give the numerical results obtained by Tau approximation.



1. The Physical Problem
1.1. The Three-dimensional Clamped Plate Model

Let w be a bounded open set in R* with Lipschitz boundary 7. The plate occupies the volume
r where s1” is defined by: R” = WX] - E, +e[. Its boundary I” is the union of the lateral boundary
ri = 7 x [+,+<I, the upper boundary I’$ = w x {+c}, and the lower boundary I”, = w x {-c},
re=r;ur;ur:.

Let a? = (zf)l<i<a  denote a generic point of the body r. and d# = &. Let 2~’ = (~s)i<i<~:
Ti’ + R3 denote the displacement field and t+ = (o&)~sQ<~: r -+ S3 the’second Piola-Kirchhiff
stress field. The plate is subjected to body forces f’ = (&<3: s1” + R3 and to surface forces
- af =(gi'f)l<i<3: l?; uF: -+ R?

mm
9 - -

We shall hereafter suppose that the applied forces are small enough to allow the use of a linear
model of elastic material. In this case the equilibrium equations are

{

-divCac = f’ in Sz” ,
e tf

q3 = gi on r; .

The condition under which the plate is clamped is expressed by:

UC = 0 on r; .

For an isotropic, homogeneous, linearly elastic material the constitutive equations on 02’ are:

&$ij + 2p et , 1 s i,j 5 3,
As=1

X and p are the Lame’s constants of the material and the Green-Saint Venant tensor efj is related
to the displacement by:

2efj = ai’u; + q&f, l<i,j<3.

The Lam& constants X and ~1 are related to the Young modulus E and Poisson ratio u by

VE
x= (1+u)(1-24

E
2p= -1+u’

2



1.2. The Two-dimensional Clamped Plate Model

With the same notation as in the first section, the Kirchhoff-Love model of a clamped plate is
given by the following partial differential equation.

3$$ A*C = Jzc fi(zf) dzj + &(2f, 21) + gi’(+ 23) in 0,
c = 8°C = 0 on 7.

where C is the vertical component of the displacement.
In order to compare the behavior of the solutions to the tw*dimensional  model and to the

three-dimensional model when the thickness (24 goes to zero, it is convenient to introduce a fixed
set St independent of <, Q = OX] - l,+l[.

1.3. The Fixed Set Q

Let R = ox]-l,+l[be
ro

a fixed domain whose boundary P is the union of the lateral boundary
= 7 x [-1, +l] and of the upper and lower boundaries I’& = w x {fl}. The relationship between

a point 2’ = (2;, 2;, 2$) E Qt’ and the corresponding-point 2 = (21,22,23) E $2 is

2; = 21) 2;: = 22, 4 = C23.

Let u(c) be the displacement field of the body occupying the volume a. Let us make the following
assumptions on the the displacement u for all 2’ c+ 2:

{

uL(29 = f%&,2), l<cw<Z
uj(2c) = 6 U3(G 2)

and on the applied forces: the horizontal components of the body and the surface forces are equal
to zero and we suppose that there exist j’s and gs independent of 23 such that for all 2’ c+ 2:

( >* f3thc> = Ef3(2) a n d  g;(z’) = 8g3(2).

1.4. Convergence Theorem

Under the assumptions that the Lamb’s coefficients X and p are independent of CF and the applied
forces satisfy (*), P.-G. Ciarlet and P. Destuynder have shown [l], [2] that the vertical displacement
us(c) solution *of the three-dimensional problem converges toward the vertical displacement C(c)
solution to the two-dimensional problem (both of those displacements are expressed in the fixed
set a),

;i Ilus(e) - C(~)lIH�(w) = 0 l



2. Spectral Approximation
2.1. Motivation

A discretization method applied to the three-dimensional model will work well when the mesh
size is substantially smaller than the thickness of the plate. While such a method cannot therefore
be used for studying the displacement field for a very thin plate [5],  our aim is to show that a
spectral method with respect to the thickness gives good results.

2.2. Spectral Approximation

A spectral method [4] consists in seeking the solution to a boundary-value problem in terms of
a truncated series of known, smooth functions (Pi). For example, the choice of polynomials as basis
functions has been proven to be optimal in case of bending beams [7]. Let C& be the expansion of
order N of the displacement ZL?

ii$&q = 5 ui’yxf, x;)Pj(xj)
i=o

where
I& is only zf , +-dependent (2: independent)
1 Pi is only z$dependent function.

Let us now present the Gale&in and Tau approximations. First the problem to be solved will be
expressed in a more general form: the displacement u’ is the solution in a certain space V” to the
boundary-value problem:

{

LCuC = f in Q’,
DW = g”f on I’;,
UC = 0 on I&

where LC and Dt are linear partial differential operators and the associated variational formulation
of this problem is the following: find uzLc E Vc such that

B’(d, v’) = (r, vi), Vv” E V”

where the bilinear quadratic form BC(ut, tP) is symmetric and elliptic.
The Gderkin approtimatioo  is constructed as follows: The Galerkin approximation CL of

order N is the projection of the solution u’ onto the space

{

N
v= = c&?j , v+ 1 7 = 0 , i = 0 , N c V”

i=o I

with respect to the inner product associated to the quadratic form B’(u”, v’). Then, the expansion
coefficients (ui")O<j<N  are solutions of the variational problem:- -

vvj*L I7 = o ,  j=O,...,N

where (, ) is the inner product in L*( -6, +c).

4



The Tau approximation (introduced by Lanczos) is constructed as follows:

N+*
i&(x’) = c Uipt(X~, Zi)Pj(Z$) l

i=O

The N + 3 expansion coefficients (~‘9’) are determined by the N + 1 equations:

N+*

and by the two boundary-conditions

N+2

c D’uj*‘Pj(&~) = g”f.
i=o

The boundary condition on ro implies that the expansion coefficients (uivc)o<j<N+2  vanish on the- -
boundary 7.

Before giving the expression of the expansion coefficients, the operators L” and De will be
expressed in a more suitable form.

5



3. Another Expression of Equilibrium and Constitutive Equations - Variational
Formulation

Let us introduce these new notations:
6 is the vector of the first two components of any vector u.
3 is the vector whose components are a& and 0;s.
V is the gradient with respect to the first two components zi, 25,

AC is the Laplacian operator with respect to the first two components zf, a$ .

The equilibrium equations on W can be written as:

or, in a more compact form as:

I

- &GE - (A + p)QC(divL$) - A&6%4; - ajb’ = f’ in W,

- p&j - paj(div%‘) - 8+& = fi in 52”.

And the boundary conditions on I’& can be written as follows:

or, in a more compact form as:

From now on, we will drop the n and c signs above A and V operators whenever no confusion
should arise.

The problem to solve is then to find the horizontal (GC) and vertical (us) components of the
displacement such that:

c
(1 >

- pAft - (A + p)V div Girt - X&Vu; - &t3’ = p in W, .

- ~Au; - p& div 3 - &u& = f; in W.

6



with the boundary conditions:

p(v~; + &iiy = $*c on r;,
Xdiv4C+(X+2~)&uj=g3f’ onr&,
^CU = 24; = 0 on r; .

Let V” denote the separable Hilbert space Vc = {vc E (H’<sZc>)3,  v = 0 on I’;) equipped with
l/2

the inner product ((~'4')) = ~f&G,vt))alcn.,  =d the norm Ilu'llv~ = (& (("f(l2Hl(n.J .

The variational formulation of (1’) is:

uL E vc ,
l(2 > B’(tP, vc) = (f e, vc) + Jr;ur, gr*ve , Vu” E V”

where BL denotes the bilinear form:

B” =/b(vii,v6)+(A+p)(divQ,dive)- qwU3,q  + P(VU3,  W) + @A a3q

+  p(Vus,Vv3)  - ~(wwU3)  +  /@3w7v3)  +  (A +  2P)(&U3,63V3)

and (u, v) = SO, uv.
It is easy to prove that Be is continuous on Vt x V” and, using Korn inequality [3], that B” is

coercive on V”, therefore the problem (29 has a unique solution.



4. Galerkin Approximation
4.1. Convergence Theorem

In this section we shall follow [7] to give an estimate of IIuc - E&II where 6& is the Gherkin
approximation of order N of the solution u’ of (2’). To simplify the computation we will assume
that fj = gg- = 0, and the generalization becomes straightforward.

(a) Definition of Vfi
For any integer jo ,the following Neumann system of equations define the sequence of linearly

independent elements of (H’(-l,l))*,  (ST, PT) up to a constant in (Q$, P,$):

Forany-lsisjo- 1, and any z E H*(-1, +l),

with Qzr, P$ = 0.
We shall therefore define the approximation space Vh c V” as:

N
vi = 1 (c

~2j p+(r23)ir~j(zf, 2~)

j=O >Qf(e23)v;*j(4,2;)  ’
+j = d,j

V3 =O,on7,Osj<N .
1

(b) Estimate of IId - Q&II
If the data gi+ is smooth enough we can, for any N 2 0, choose w$, E Vfi as:

tU+
Pj+(cz3)V(-A)+*g;+
Q? (‘x3)( -A)j-*gi+

Because of the properties of the operator B’ and of the definition of G& as the projection of uE
onto VI;, it follows that there exists a constant C (independent of N and c) such that:

II U” - G&llva ,< c wi”Efy, 11~’ - w’llve 5 C IIu” - w;vllv. 5 C B’(u’ - w;v, uc - w;v)l/* .

We shall compute B”( ., .) in the fixed set 52. The variational formulation of (1’) in the fixed
set Q is:

(2)
{

u E V = {V E (a’(Q))3’,  v = 0 0n ro}

B(u, v) = 8 Jr+ &3(+1) 9 vu E v

B(u, v) = c’p(V 3, V 6) + c4(X + &(div ti, div 6) - E2x(a3vu3,  G) + c2p(Vu3,  6436)  + c2j493Q,  836)

+ e*c((vU3,  vV3)  - XC*@,  &vV3)  + C*c((&c,  vu,) + (A + 2&(d3U3,  a3V3)

and (u, v) = jo uv.
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Therefore, for any z E (H1(Q))3  we get that:

B(u - W&z) = c4
/

r+ g$z(+l) - Bb’N, z,

and because of the property of WN,

B(u - wN,%) = 62N+4 {p(P$;,& 2’) - ~(Q+,;,&i) + p(Q$+,t^, 2’)) + c*~+*(A + 2P)(&$+&,~;)

with t3 = (-A)N-lg$, i = Vt,.
Then, there exists a constant CN independent of E such that:

IB(U - WN, %)I s cNc2N+211zIIV

and the final estimate is obtained as:

II U” - iikllva 5 c JBt(uC - w;v, UC - wb)l s CCN<2N+(3’2) .

4.2. Galerkin Equations

The Gale&n expansion

- /A C AG’*‘(Pi, Pj) -
i=l

= (i', pi)

coefficients ui are given by the following equations:

(X + /4) 5 V div Cc*i(Pj, Pj) - X 5 VUj”(Pi, Pj) - (he’, Pj)
irl irl

onw,O<j_<N

cc $ div 4c’i(P:,  Pj) - (&U&, Pj) = (f;, Pj) , onw,O5jsN
i=l

and utvi = 0 on 7 , 0 5 i 5 IV:
An integration by parts gives for any 1 5 j 5 IV:

- (bs’, Pj) = (6’9 P,!) - [~‘+Pj(~) - a’-Pj(-c)]

= /4 2 VUg’j(Pj,  I$) + /b 5 Geti(Pi, Pi) - [#‘+Pj(E) - B’-Pj(-c)]
i=l i=l

and

-(&U&, Pj) = AC diV dLti(Pj, Pj) + (A + 2c() 5 U2i(Pi, Pj’> - [gg+Pj(C) - gg-Pj(-Cr)] .
is1 i=l

9



Thus, the Gale&in equations become

I

-lr ~Ao.~‘(Pi,  Pj)  - (A + c() 5 V diV fcvi(Pi, Pj) + (A + P) $ VU~‘i(pi, pj’>

i=O i=O i=O

+ /4 C titpi(P$ Pj’) - X C VU;“[PiPj]C,,
isO i=O

= (r^t,Pj) + [fi’+pj(c) - ~c-Pj(oC)], On W, 0 s j 5 N

-~~Au~i(P,,P,)+(x+l)~ diVB(.‘(Pi,P:)+(X+~~)~y;.‘(P:,P:)
i=O ix0 i=O

N
- /d C diV G”*i[PiPj]t,

\ onw,O~jgv

and uzi = Qqi = 0 on y, 0 5 i 5 N.

4.3. Choice of Approximation Functions

For computational purposes we chose polyoomials a8 approximation functions (Pi):

Pa(t) = 1

Jt
Pj(t) = Lj(t) dt where Lj is the jth Legendre polynomial on (-6, +E), j 2 2.

-S

The matrix (Pi, Pj) is pentadiagonal;
for example, the matrix of order 5 is

1 0 -l/3 0 0

0 l/3 0 -l/15 0 .2c -l/3 0 2/15 0 l/105
0 -l/15 0 2/105 0
0 0 -l/105 0 21315)

The matrix (Pi, P,!) is tridiagonal;
for example, the matrix of order 5 is

0 1 0 0 0
\ 0 0 +1/3 0 0

0 -l/3 0 +1/15 0
0 0 -l/15 0 +1/35
0 0 0 -l/35 0

10



The matrix (Pi’, P,!> is diagonal;

and the diagonal elements are of the form $ (- >2SL1 with (Pi, Pi) = 0.

The values of Pi(&c) and of P/( AC) are given by:
Po(&c) = 1, Pr(=t~) = &l, Pi(Ac) = 0, i 1 2, Psk+l(O) = 0, k 1 0.

The quantities [Pi Pj]td = Pi(C)Pj(C) - Pi(-C)Pj(-C) vanish for i or j 2 2, and [POPO]‘,,  = 0,
[m3l’-L = 0, [POP&,  = [PI Po]c_L = 2.

Remark. With this choice of polynomials we observe that the 3(N+ 1) equations split into 2 sets of
equations; the first one with the unknowns {Cc~2k, t$2k+’} and the second one with the unknowns
{g,2k+2,  u$2k}e

since &k+l(o) = 0, the displacement in the middle surface 23 = 0 depends only on the even
coefficients uap2k. Because we are primarily interested in the vertical displacement on the middle
surface, we will use the second set of equations (giving iCc*2k+1 and $““).

To simplify the study of the convergence when the thickness goes to zero we shall rewrite the
Gale&in equations in the fixed set 0 with the following notations:

N

G&7 = c26N,&,  2) = 2 ~(~2)intti/2)~ipi = ~2{4pil + v:Pl + (2v~P2 + 2v;pa + . . .}
i=O

N

‘k,3(“)  = ‘UN,3(‘,‘)  = ~C(C2)iar(i’2’V~Pi = ~{1)30&  + v:Pl  + <2vzP2  + r2vip3  + , . l 1
is0

where int (2) is the integer part of x and

F;d = (fi, Pj) + [&+Pj(e) - Sj-Pi( = C’ Fi .

4.4. Galerkin Approximation of Order 2: The Direct System

In the fixed set Q the displacement of order 2 is sought in the following form:

ii&z) =
z2 - 1

v” + v123 + c2v2 3
2

and therefore the vertical displacement on the middle surface 23 = 0 is equal to vi - c2 2.
The.expansion coefficients S1, *v3, vz are solutions to the homogeneous Dirichlet problem:

and 6’ = vg = vz = 0 on 7.
In this section we shall study the existence and uniqueness of the solution to this system.

11



(a) Existence and Uniqueness of the Solution.
The system (I) can be written in the following equivalent form:

-c(gAe1-(x+~)fVdiv81+~Vv~-(X+~)SVu3+~i)'=0  i n w ,

(11)
F0-~A~~+~dive’+~v~=~~~+~~sL in 0,

-~~Av,l+~divv'+(X+2~()~,2=~~+~~ in 0.

Let V denote the Sobolev space V = {v = (6l,v& vi), v E (H~(w))‘~ equipped with the usual
inner product, and A denote the bilinear form associated with the variational formulation of system
(II). Then A is continuous on V x V and satisfies Gtiding inequality [5], A(v, v) >, ~(VV(~ - ,0]v12
where a! and /3 are positive constants and where ] ] is the norm (L2(w))‘. Therefore, if 0 is not an
eigenvalue of the previous system, we can conclude that this system has a unique solution in V .

(b) Asymptotic Behavior of the Solution.

The system (I) is singular when c = 0. (The second equation is the divergence of the first one.)
In order to avoid this singularity we eliminate the horizontal component C1 in two equations and
we obtain the following system (III) of higher order:

with boundary conditions

{

6’ = ?I$ = v!j = 0 on 79
di~iP+A~~-&h+-$-~ ony.

When c = 0 this system has a unique solution Cl*, vi”, vi’ such that:

A2vi* = #(l- u”)e in w,
Au!* = ,v. $* in 0,
61. = -vvo*3 in w.

and the boundary conditions are obtained by continuity:

{

vi* = * = 0 on y,
61’ = 63’ = () o n y .

Then, v$* is the solution to the two-dimensional problem and we observe that the condition Av$* =
qE vi* = 0 on 7 introduces boundary layers.

In the next section we will study the modified system (III).

12



4.5. Galerkin Approximation of Order 2: The Modified System

(a) Existence and Uniqueness of the Solution.

We can rearrange system (III) as:
If 53 = vt - e2v$, the vector (6153, vz) is solution to the system (Iv),

I

-~~A~1-(X+~)pVdi~81+~V~3-~Vv~+~61=0  inw,

WI A27J3  - A& Avi = ,37%&J  -
tsAg

344 in w,

-~Av~+~v,~-A~,=~F~+~~~~ in w.
with the boundary conditions

{

6l = 53 = vz = 0 on 7,

div8’+AF3=-&~ on 7.
Let V denote the space

V'= {V = (M3,2)32), 61 E (H,'(w))~, 53 E L’(W), AT3 E L’(w), 173 = 0 on y, viHt(w)}
equipped with the inner product

(w)v = @I, ~l)tp(w) + (~3,~3)~qtu) + @x3, A~~)L+) + (~3, v;)H+)

and A denote the bilinear form associated with the variational formulation of system (IV). Then
A is continuous on V x V, and satisfies G&ding inequa,hy:

A((9',~3,v,0),(e1,s,o,0))  2 +~'I2 + lAv312 + lVv,212)  - ,!?(lij112 + lal2 + lv,'12)

and 4% v) 1 443y - Plv12, where o and p are positive constants and where I 1 is the norm in
-L2(w).  Therefore if 0 is not an eigenvalue  of system (Iv) we can conclude that this system has a

unique solution in V, interpreting form&y the boundary conditions.

(b) Computation of the Solution

System (IV) can be solved by an iterative ‘%xed-point” algorithm:

1. Computation of ti3k+1) as the solution of the bihar/ihar monk equation:

d3k+l)  = 0 on 7,
A+3k+1) = -Gv #‘) _ &

According to the special type of boundary conditions this computation can be done simply by
the use of a Poisson solver.

2. Computation of t~$‘*+~) as the solution to the Laplace equation:
-$f A#‘+‘) + ,y v$*+‘) = -A$+‘) + $$ e + $.$f 8fi in w,
p+‘) =

u3 0 on 7.

3. Computation of elk+‘) as the solution to the Laplace system:
-,, f A#‘+‘) - (A + p) f V &V +l(*+‘) + pcl(*+‘) = -pVe’) _ &$ Vvi(‘+l) in w,

6,’(k+l) = o on 7.

13



5. Tau Approximation
5.1. Tau Equations

The Tau expansion coefficients are given by two kinds of equations: The first set of equations
is of the same kind as the one obtained by Gale&in approximation:

N+2 N+2
-/A C AB’I’(Pi, Pj) - (A + /L) C V di

i=O
N+2

N+3
V Ut’i(Pi,  Pj) - (A + /L)  C VGi’i(P:9  Pj)

is0 ir0

- p C f’*‘(Pr,  Pj) = (BE) Pj) 9 0 5 j 5 N
ir0

N+2 N+2
m/r C Au~‘(Pi~  Pj) - (A + p) C

N+3
diV 6e*i(Pi, Pj) - (A + 2/d) C t&~“(P~,  Pj)

i=O
=(fi,Pj),  0s j<l?

isO

The second set is given by the boundary conditions: -

N+3 N+2
jd C VUj"Pi(fC)+j4 C iLt’iP~(h6)  = PC*

is0 i=O
N+3 N+2

A C div GcviPi( kc) + (A + 2/b) C Ui" Pi( &6) = gif
is0 is0

and the coefficients P*’ and t@ vanish on the boundary 7.

5.2. Choice of Approximation Functions

(P)
In the case of Tau approximation we used Legendre polynomials as approximation functions

i l

We have also the following useful properties:

The matrix (Pi, Pj) is diagonal;
and the diagonal elements are of the form:

The matrix (Pi’, Pj) is lower triangular;
for example, the matrix of order 5 is:

2 (

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0 .
1 0 01 0
0 1 10 0 1

14



The matrix (Pi”, Pj) is lower triangular;
for example, the matrix of order 5 is:-( 2 c

10 1
00000 30000. 05000 00000

0 7 0 0

The values of Pi(fc) and of Pi( kc) are given by:

I Pi( +C) = 1 9 Pi(-6) = (-1)’ , i>O
Pi=O, P,l(&) = f(-1)“’ v, i 2 1.

The same remark and notations as for the Gale&in approximation can be done and used.

5.3. Tau Approximation of Order 2

In the fixed set 0 the displacement of order 2 is sought under the following form:

ii&c) = v” + 21123 + Pv2 3x3 - 1
2

and the vertical displacement on the middle surface x3 = 0 is then equal to vg - e2 $. The
_ expansion coefficients 5’, vi, vi are solutions to the homogeneous Dirichlet problem:

-pAvt - (A + p) div 6’ - 3(x + 2&,2 = f fi in w,
vu! + r2VvZ + 6l = 0 in w,

A &v 8’ + 3(X + 2/4)4 = c2 g3+ ;gF in 0.

and81=v~=v~=Oon7.
For c = 0 the solution to this system does not verify the equations of the two-dimensional

clamped plate. We shall then examine the approximation of order 3.

5.4. Tau Approximation of Order 3: The Complete System

In the fixed set Q the displacemint of order 3 is sought under the following form:

ii3(c, 2) = v”+v1x3+E2v23x
3-l
2

+c2v35x~;323~

Therefore the vertical displacement on the middle surface x3 = 0 is equal to vg - c2 $. The
expansion coefficients +‘, e3, vi, vz are solutions to the homogeneous Dirichlet problem:

(I)

-pAv,o - (A + &(a14’ +~2div63)-3(X+2c()v~  = 9 in w,
-pj’- qQ7divit’-(A+c()v4-5p63=0 in w,
p(Vv$j + i2Vv,1) + p8’ = 0 in w,
X(div 5’ + c2 div C3) + 3(X + 2~~)v32  = 0 in 0.
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and 61 = c3 = vi = vi on 7.
From the structure of system (I) we see that we can express Sf and C3 directly in terms of vi

and v$, making this substitution we therefore obtain the following reduced system (II).

and assuming that the third equation of system (I) can be continued on the boundary we get the
necessary boundary conditions:

1 &v~+e2&v~ = 0  any,
v!j = v; = 0 on 7.

The values of 6’ and G3 are then obtained using the second and third equations of system (I).
But in this case the boundary condition & = 0 on 7 is satisfied only on the middle surface.

The same remarks as for Gale&in approximation can be done: the solution vi*, vi* of sys-
tem (II) is such that:

A2i)30* = 3 >q Au:’ = 3 &$$ r;;) = p (1 - $)@ in 0,
vi* = & vi* = 0 on 7.

Therefore vz* is a solution to the two-dimensional problem and we observe that the condition
-A@ = W;bl vie = 0 on 7 introduces boundary layers.

The next section will study the reduced system (II).

5.5. Tau Approximation of Order 3: The Reduced System

(a) Existence and Uniqueness of the Solution.

We can rewrite the system (II) in the following form:
If53 = vi + c2v& the vector (~3, vi) is solution to the system (III).

(111)

20+24A2jj3
15 - (8 iw + Fv) A$ = -fl in w,

-j4AV3 + c2pAG + aq pv; = +f r;;) . in 0.

and
33 = $$=O on7,

4 = o on 7.

Let V = [Hz(w)] x [H,‘(w)], and A the bilinear form associated with the variational formulation
of system (III). Then A is continuous on V x V and satisfies the G&ding inequality:

44((539&,(53,4))  2 4A5312 + IVv,212)-  ,#12,

where cy and p are positive constants, then (Az,t) 1 allzll$ - ,f3]z12.  Therefore if 0 is not an
eigenvalue of ‘system (III), we can conclude that this system has a unique solution ~3 E Hi ( w ),
vi E H,‘(w).
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(b) Computation of the Solution.

System (III) is written in a more appropriate form for the computation:if

G3 = vi - c‘,#gi 39v2 then the vector @a, vi)is solution to the system:

A2G3 = ;$&e - $(l + mi)Afl in w,

-~&&AU: + 3(9&32 - Aa ” P in w.=z 3

with the boundary conditions:

{
e3 = vi = 0 on 79
&4j3+~2(1+9&$$Q&v~=0  any.

This system is then computed using a “fixed-point”algorithm:

1. Computation of Fg+l as the solution to the biharmonic equation:

A2$+l) &l + &&&)Ae in w,
-(k+U = 0
U3 on 79
6 -(k+l) =
w3 -c2( 1+ &$&$(” on 7.

2. Computation of v$*+l) as the solution to Laplace equation

3~~~2P)v$L+1)  = ~G$k+l) + 6~in w
9

on 7.

5.6 . Tau Approximation of Order 3: Numerical Results.

In order to estimate the error introduced by a Tau approximation of order 3 we chose the shape
of the plate and the applied forces so that an tiplicit  solution to the two-dimensional problem is
known.

The middle surface of the plate is a square of length 1, w =]0, l[ x10, l[. The Young modulus
E = 21 105, and Poisson ration u = ,0.3 correspond to the parameters of a steel material.

The horizontal components of the body force and the surface forces are equal to zero, fa = 0,
l<a!<3,gi=O,l<i<3.

The vertical component of the body force is such that the solution to the two-dimensional
problem is [x(x - l)y(y - 1)12.

The following table gives the relative error in H 1 norm between the solutions of the three-
dimensional and two-dimensional problems on the middle surface as a function of the thickness of
the plate (24.
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thickness (2~)

0.002 0.02
0.004 0.04
0.006 0.08
0.008 0.15
0.010 0.24
0.012 0.35
0.014 0.47
0.016 0.61
0.018 0.77
0.020 0.95
0.040 3.55
0.060 7.26

relative error in H' norm
%

Computations have been made with a regular mesh size of & in both directions of the plate,
and have been performed on the ALLIANT CONCENTRIX using the-ARGONNE library routines (FISH-
PACK and BIHAR).
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