
Numerical Analysis Project
Manuscript NA-87-05

June 1987

Some History of the -Conjugate Gradient
and Lancz’os Algorithmsi 1948-1976

Gene H. Golub and Dianne P. O’Leary

Numerical Analysis Project
Computer Science Department

Stanford University
Stanford, California 94306





. &me H’iry of the co~ugafe  Gradient
and Lancso8  Algorithms 194.8-1976

Gene H. Golub
Computer Science Department

Stanford University
Stanford, CA 94305

Dianne P. O’Leary
Computer Science Department and Institute for Advanced Computer Studies

University of Maryland
College Park, MD 20742

ABSTRACT

This manuscript gives some of the history of the conjugate gradient and Lanczos algorithms and
an annotated bibliography for the period 1949-1976.

This work was supported in part by the National Science Foundation under grant DCR 84-12314
(Golub) and the Air Force Of&e  of Scientific Research under grant AFOSR 82-0078  (O’Leary).





cor4juga~  Gradient and hncros  H’ihmy 2

1. Introduction
.

The conjugate gradient and Lancaos algorithms for solving linear systems of equations and
eigenproblems represent very important computational innovations of the early 1950’s. These
methods came into wide use only in the mid-1970’s. Shortly thereafter, vector computers and
massive computer .memories made it possible to use these methods to solve problems which could
not be solved in any other way. Since that time, the algorithms have been further refined and
have become a basic tool for solving a wide variety of problems on a wide variety of computer
architectures. The conjugate gradient algorithm has also been extended to solve nonlinear sys-
tems of equations and optimization problems, and thii has had tremendous impact on the compu-
tation of unconstrained and constrained optimization problems.

The purpose of this paper is to trace some of the history of the conjugate gradient and
Lancaos  algorithms during the period from their original development to their widespread appliczl-
tion in the mid-1970’s.

It is not the purpose of this paper to give the definitive derivation of the algorithms and
their properties; for such information, the reader is referred to the references in the bibliography ’
as well as more recent treatments such as Mutni  Complrtotione by G. H. Golub and C. F. Van
Loan (The Johns Hopkins University Press, Baltimore, Maryland, 1983, Chapters 9 and 10). It is
necessary, however, to establish notation to make the differences among the variants of the algo-
rithm more clear, and this will be our East task.

The conjugate gradient algorithm can be thought of as a method for minimizing a function
l/2 (z ,Az) - (z ,b ) where A is an n X n matrix (or operator on a Hilbert space) and z and b are
vectors in the domain and range spaces respectively. The minimizer of this function satisfies the
equation AZ =-b  if A is self-adjoint and positive definite, so the algorithm provides a means for
solving linear equations. It is characterized by the property of stepping at each iteration in the
direction of the component of the gradient A -conjugate to the preceding step direction, and by
the property of finite termination under exact arithmetic. For simplicity, we will take the initial
guess ztg==O,  giving an initial residual, or negative gradient, of ro=b  , and we take this as our
East step direction p o as well. The algorithm is

% +1=-b  +a, P& #

P&+1-r& +1+/J& Pk 9

k& 7& ) bk +1Jk +1
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'

Variants of the algorithm arise from- using different choices of the inner product, computing the
residual directly from its definition as

r&+1-6 -A& +1,

and using difIerent,  but mathematically equivalent, formulas for the parameters, such as

(rrc tPk ) k& +dP& 1
ak = (P& ,AP& ) ’ ‘& - (P& ,AP& ) ’

An important variant can be derived by adding a preconditioning operator M to the formulation,
applying the algorithm to the equivalent problem of minimizing l/2 (M’/*g ,AM’/*y ) -
(M’ *g , b ), and then changing back to the variable 2 =M'/*g .

Another equivalent version of the algorithm is formed
equations above, giving the three-term recurrence relation

bY eliminating the vet tors p in the
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with the definitions 2 -1-2o and ~0.
The idea behind the Lancaos  algorithm for determining eigenvalues of a matrix can be dis-

cussed easily using the three-term recurrence relation above. Making a matrix Rk whose columns
are the firat k residual vectors normalized to length 1, we can derive the relation

where Tk is a tridiagonal matrix of dimension k whose elements can be computed from the pi
and oj values, and ck is the k-th unit vector. The residual vectors are mutually orthogonal, so a
full n steps of the algorithm yield a similarity transformation of the matrix A into tridiagonal
form if the residual does not become sero prematurely. The intermediate matrices Tk 4ave  inter-
lacing eigenvalues, however, and even for small k , some eigenvalues of A may be well approxi-
mated. Lancoos  used the recurrence relations as a convenient way of constructing characteristic
polynomials of the matrices Tk , from which approximations to eigenvalues could be computed.

The algorithm can be extended to minimization of nonquadratic functions f (2 ). In this
case we define the residual vector rk to be the negative gradient of f evaluated at 2&, and the
matrix A, the Hessian matrix for / , changes at each iteration. The alternate formulas no longer
give equivalent algorithms, and much study has been given to appropriate choices.

Our discussion does not even hint at the richness of the algorithms: acceleration procedures,
convergence properties, and the interplay among the complementary views of the quadratic algo-
rithm 2~ a minimization procedure, as a linear system solver, and as a similarity transformation.
The remainder of the paper, devoted to the history of this family of algorithms; focuses on
discoveries of these ideas and others. In Section 2, we trace the early developments at the
National Bureau of Standards. Some of the key developments involved in making the algorithms
practical are summarized in Section 3. Section 4 gives information on the organization of the
annotated bibliography, Section 5 is devoted to acknowledgements, and the bibliography and
author index follow.

2. Emly Developmenta

The original development of this family of algorithms was carried out by a core of research-
ers including Cornelius Lanczos and Magnus  Hestenes at the Institute for Numerical Analysis in
the National Applied Mathematics Laboratories at the United States National Bureau of Stan-
dards in Los Angeles, and Eduard  Stiefel of the Eidg. Technische Hochschule Zurich. The first
communication among the NBS researchers and Stiefel concerning this algorithm seems to have
been at a Symposium on Simultaneous Linear Equations and the Determination of Eigenvalues,
held at INA in August, 1951, as discussed in Stiefel (1952). Further perspective on the interplay
between the researchers at the National Bureau of Standards can be found in Forsythe, Hestenes,
and Rosser (1951),  Hestenes and Stiefel (1952),  J. Barkley Rosser  (1953),  and Todd (1975). The
National Bureau of Standards developments can be traced through internal quarterly project
reports of the National Applied Mathematics Laboratories. The following is a condensation of
some of the information in those reports. In some cases, work can be attributed to a single per-
son, in others, only to a project directed by a manager or group of managers.
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2.1. April - June, 1849

Project: Determination of Characteristic Values of Matrices

Manager: C. Lanczos

4

Lancaoa was investigating eigenvalue algorithms in this and other projects and was
preparing to write up the work.

Project: Approximate Solution of Sets of Arbitrary Simultaneous Algebraic Equations

Manager: C. Lanc2os

A “method for solving equations was investigated.” The method is steepest descent
applied to minimizing the residual. “At present the investigation is directed to the pos-
sibility of increasing the convergence of the successive reductions, by replacing A by
x-7 l+A with suitably chosen 7.”

This was the quarter in which Hestenes was hired (although in his position at the University
of CaWomia in Los Angeles since 1947 he had already had contact with the National Bureau
of Standards group), but there seems to be no explicit mention of his activities.

2.2. July,l949-June, 1961

Lancros seems to have been working on the eigenvalue algorithm and other things, and the
Lancoos (1950) manuscript was submitted and accepted for publication in the Joumef  of
Reseutch  of the Nutiond Bureuu of Stundords  in the last quarter of 1949.  Hestenes seems to
have been working on the Hestenes-Karush  project and variational problems, among other
things. Both were participating in common seminars and project meetings. There is no men-
tion of the conjugate gradient algorithm.

2.3. July - September, 1951

Project: Solution of Sets of Simultaneous Algebraic Equations and Techniques for the Inver-
sion and Iteration of Matrices

Manager: Forsythe, Hestenes, L'anc200, Motzkin, Rosser,  Stein

“Experimental work with the finite step methods described. by M. R. Hestenes in a paper
entitled ‘Iterative methods for solving linear equations’ was initiated by G. E. Forsythe
and M. L. Stein.” ‘‘Dr. E. Stiefel and Dr. M. R. Hestenes are writing a joint paper on
extensions and implications of the methods described in the papers presented by J. Bark-
ley Rosser,_  E. Stiefel and M. R. Hestenes at the Symposium on Simultaneous Linear
Equations and the Determination of Eigenvalues held August 23-25,  1951, at the INA.  . . .
For the extensive work of C. Lanc202 on the solution of linear algebraic equations, see
the description of the algorithm which he devised.”

Project: Studies in Applied Mathematics

Manager: Lanc2or3, Rosser,  van der Corput

This describes the nucleus of his “Solution of systems of linear equations by minimized
iterations” paper.

Project: Calculation of Eigenvalues, Eigenvectors, and Eigenfunctions of Linear Operators
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Experiments were conducted on applying Newton’s method to the characteristic polyno-
mial ‘obtained from using conjugate gradients (r-p version) on a symmetric positive
definite matrix.

2.4. October - December, 1961

Project: Solution of Sets of Simultaneous Algebraic Equations and Techniques for the Inver-
sion and Iteration of Matrices

Manager: Forsythe, Hestenes, Lanc202, Motokin, Rosser, Stein

“The joint exposition by E. Stiefel and M. R. Hestenes of their ‘finite iteration’ pro-
cedure is almost finished.”

Lanc2os was working on a method to solve A2 --b by finding the large eigenvalues and
corresponding eigenvectors of A’ -X-I-A, where A- is the largest eigenvalue of A .
He applied a Chebyshev iteration to eliminate components of the residual corresponding
to large eigenvalues of A , and resolved components corresponding to small eigenvalues
using the eigeninformation for A’ . The method was recommended for multiple right
hand side problems.

Project: Variational Methods

Hestenes and Stein completed a study of algorithms for minimizing (A2 4 ) W(A2 -b ).
Hayes developed convergence theorems applicable to Rayleigh-Ritz and conjugate gra-
dienb  for solving linear boundary value problems.

2.6. January - lhrch,  1962

The Lam2os  (1952) manuscript was accepted for publication in the Journal of Reaeurch of the
Nuta’onul Bureuu  of Stundutds.

2.6. Aprii  - June, 1952

Project: Solution of Sets of Simultaneous Algebraic Equations and Techniques for the Inver-
sion and Iteration of Matrices

Manager: Forsythe, Hestenes, Lancaos, Lehmer, Motakin

The Hestenes and Stiefel (1952) manuscript was completed and accepted for publication.
“It gives a full description of -a wide class of methods of ‘conjugate directions,’ which
includes as special cases both Gaussian elimination and the Hestenes-Lanczos-Stiefel
method of ‘conjugate gradients.’ The latter is a finite iterative scheme which appears
practically and theoretically to be a most attractive machine method.”

“To test the stability of the conjugate gradient method in regard to rounding-off errors,
symmetric systems of linear equations in 12 unknowns were solved on the IBM  equip
ment. In order to know the eigenvalues, an orthogonal matrix was constructed, so that
for any given set of eigenvalues a symmetric matrix could be found. The experiments
were carried out on three machines /&c/  with the following ratios of the largest to the
smallest eigenvalue: 4.9, 100, 5000. The computing machine which was used for these
experiments had a fixed decimal point and was allowed to work with 10 digits. By shift-
ing, at least seven digits were carried through the computations. For the smallest ratio
an answer with seven correct digits was reached in 11 steps. For the ratio 100 six correct
digits in the 15th step were obtained. In the third case a good answer has not yet been
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found since the shifting caused considerable difficulties.
necessity of using floating operations for this method.”

The experiments showed the

Experiments with the nonsymmetric formulas of matrices of dimension 8 gave conver-
gence in less than or equal to 8 steps, even on singular problems, using the SWAC with
8$ digits in the arithmetic, obtaining 7-8 correct digits at termination.

Hayes was finishing work on the application of the “method given by E. Stiefel and M.
R. Hestenes” to linear boundary value problems.

Lam202 was working on solution of large-scale linear systems by Chebyshev polynomials.

2.7. July - September, 1952

The conjugate gradient algorithm is often called the “Hestenes and Stiefel” algorithm in the
reports of numerical experiments and other activities.

3. Key Developmenta  Related to the Algorithma

3.1. The Early Papers
The first presentation of conjugate direction algorithms seems to be by Fox, Huskey, and

Wilkinson (1948) who considered them as direct methods, and by Forsythe, Hestenes, and Rosser
(1951),  Hestenes and Stiefel (1952),  and Rosser (1953) who discuss the NBS research. The conju-
gate gradient algorithm was described in Hestenes (1951),  Lam202 (1952), Hestenes and Stiefel
(1952),  Stiefel (1952),  Stiefel (1953),  Curtiss (1954),  Hestenes (1955),  Hestenes (1956),  and Stiefel
(1957). Hestenes, Lanc2os, and Stiefel clearly considered the algorithm to be a full tt step direct
method for certain problems, but also suggested its use as an iterative algorithm requiring fewer
than n steps for well-conditioned problems and possibly more than n steps for ill-conditioned
ones. Computational results for the conjugate gradient algorithm were presented in Stiefel (1953),
Fischbach (1956),  Stiefel (1958),  and Engeli, Ginsburg, Rutishauser and Stiefel (1959),  a4 well as
in Hestenes and Stiefel (1952). Preconditionings,  filtering, or change of inner product were con-
sidered in Fiihbach (1956),  Stiefel (1958),  and in Engeli, Ginsburg, Rutishauser, and Stiefel
(1959). Hayes (1954) and Altman (1959) discuss the conjugate gradient algorithm in Hilbert
space.

Computations using the Lam202 algorithm were given in Lancaos (1956)  and Rosser, Lanc-
202, Hestenes, and Karush (1951). Complete reorthogonalization was recommended by Brooker
and Sumner (1956),  Gregory (1958),  and Wilkinson (1958).

3.2. Work ‘m the 1960's

In this period, the conjugate gradient algorithm began to acquire a mixed reputation. It was
still regarded as a standard algorithm, as evidenced by its inclusion in the Handbook Series
(Ginsberg (1963)), in anthologies such as Beckman (1965),  and in review articles in control
(Paiewonsky (1965) and Westcott (1969)) chemistry (Wilde (1965)),  and pattern recognition (Nagy
(1968)).

Frank (1960) tested the algorithm on a matrix with eigenvalues related to the Chebyshev
polynomials, the hardest caSe for conjugate gradients, and reported slow convergence. Applica-
tions in structural analysis by Lively (1960) were unsuccessful, although Bother-By and Naar-
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Cohn (1962) were satisfied with their results in analysis of chemical spectra, and Feder (1962)
recommended the algorithm in lens design. Campbell (1965) studied ocean circulation and Wilson
(1966) solved optimal control problems with the aid of conjugate gradients. Pitha  and Jones
(1967) were other users of the algorithm.

Work w8;5  also being done on understanding the 8 -dimensional steepest descent algorithm,
which produces the same sequence of iterates as the conjugate gradient algorithm restarted every
8 steps; References include Khabaza (1963),  Forsythe (MS),  and Marchuk  (1968).

Ideas which would eventually lead to successful preconditioned conjugate gradient algo-
rithms were being developed. Dufour (1964) applied conjugate gradients to problems in geodesy
and discussed several important ideas, including extensions to least squares problems with equality
constraints, preconditioning, and elimination of half of the unknowns using a Schur complement.
Varga (1960) suggested a spame partial factorization of a matrix as a splitting operator for Che-
byshev acceleration, and. Dupont, Kendall and Ra&ford  (1968),  Dupont (1968),  and Stone (1968)
also considered sparse factorioations. Other ideas related to preconditioning were discussed by
Frank (1960) (polynomial filtering), Wachspress and Habetler (1960)  (diagonal scaling), Habetler
and Wachsprws  (1961) (Chebyshev acceleration of SSOR), Ehrlich (1964) (Chebyshev acceleration
of block SSOR), Gunn  (1964) (Cbeby hs ev acceleration of AD1 and AD1  on a simpler operator),
and. Evans (1968) (Chebyshev acceleration of matrix splittings).

Wachspress (1963) used AD1  as a preconditioner to conjugate gradients to obtain a very
efficient algorithm.

Antosiewicz  and Rheinboldt (1962),  Nashed (1965),  Daniel (1967),  Horwitz and Sarachik
(1968),  Hestenes (1969),  and Kawamura and Volt (1969) discussed the conjugate gradient alge
rithm in I-Elbert  space, and Kratochvil (1968) studied the algorithm for a class of operators on
Banach spaces.

.

A very important advance in the solution of nonlinear equations and optimization algc+
rithms was made in the development of methods which can solve many such problems effectively
without evaluation of the derivative matrix. The first algorithms in this class, which reduce to
conjugate gradients on quadratic functions, were presented by Feder (1962),  Powell (1962),
Fletcher and Powell (1963) building on work of Davidon (1959),  Fletcher and Reeves (1964)  Shar,
Buehler, and Kempthorne (1964),  and Broyden (1965). Polak  and Ribiere (1969),  Polyak (1969),
Zoutendijk (1960),  Sinnott and Luenberger (1967),  Pagurek and Woodside  (1968),  Luenberger
(1969),  and Miele, H&g,  and Heideman (1969) solved constrained problems using conjugate gra-
dients.

The theory of Kaniel (1966) greatly increased the understanding of the convergence proper-
ties of the conjugate gradient and Lanczos methods.

Causey and Gregory (1961),  Wilkinson (1962),  Wilkinson (1965),  and Yamamoto (1968) gave
practitioners further insight into causes of failure in the Lanczos algorithm for nonsymmetric
problems. The algorithm was used in applications problems in infrared spectra (vu  (1968)),
scattering theory (Garibotti and Vilani (1969)),  network analysis (uarshal  (1969)),  and nuclear
shell analysis (Sebe and Nachamkin (1969)).

3.3. The Early 1970%
Although it is clear from the discussion above that the conjugate gradient and Lanczos algo-

rithms were widely used in the 1960’s,  the numerical analysis community was not satisfied with
the understanding of the algorithms or with their speed. Preconditioning techniques were not
widely known (although much development had been done on splitting techniques), and it was in
the early 1970’s  that key developments were made in making preconditioned algorithms practical.

The paper of Reid (1971) drew the attention of many researchers to the potential of the
algorithm as a iterative method for sparse linear systems. It was a catalyst for much of the subse-
quent work in conjugate gradients.

The dissertation of Paige (1971),  with publications as Paige (1972 and 1976)  served the
analogous purpose for the Lanczos algorithm by providing, among other things, the first step to
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an understanding of the loss of orthogonality of the Lanczos vectors, thus giving the key to the
development of stable algorithms which did not require complete reorthogonalization. This made
the Lanczos algorithm practical for large sparse problems by reducing storage and computation
time. Developments along this line were made by Takahasi and Natori (1971-72) and Kahan and
Parlett (1976).

Preconditioning techniques, although discussed in the 1960’s,  now became widely used.
Axelsson (1972)  suggested preconditioning conjugate gradients by a scaled SSOR operator. Other
preconditionings  were discussed by Evans (1973),  Bartels and Daniel (1974),  Chandra, Eisenstat,
and Schultr (1975),  Axelsson (1976),  Concus, Golub and O’Leary (1976),  Douglas and DuPont
(1976) and by Meijerink and van der Vomt (partial fact&rations)  in work which reached journal
publication in 1977.

Paige and Saunders (1975) provided the first stable extension of the conjugate gradient algo-
rithm to indefinite matrices. Concus and Golub (1976) considered a class of nonsymmetric
matrices.

The block Lanczos algorithm was developed in Cullum and Donath (1974) and Underwood
(1975).

’ Applications of the conjugate gradient algorithm, such as those by De and Davies (1970),
Kamoshida, Kani, Sato, and Okada (1970),  Kobayashi (1970),  Powers (1973),  Wang and Treitel
(1973),  Dodson and Isaacs  (1976), and Konnert (1976) and of the Lancros algorithm, such as those
by Chang  and Wig (1970),  Emilia and Bodvarsson (1970),  Weaver and Yoshide (1971),  Appa,
Smith, and Hughes (1972), Whitehead (1972),  Harms (1974),  Hausman, Bloom, and Bender (1975),
Ibarra, Vallieres,  and Feng (1975),  Platzman  (1975),  Cline, Golub, and Plataman (1976),  and
Kaplan and Gray (1976), also continued during this period. The Lancaos algorithm was
rediscovered by Haydock, Heine, and KelIey  (1972 and 1975) and applied to determining energy
states of electrons.

3.4. Preconditioning
The ward “preconditioning” is used by Turing (1948) and by then seems to be standard ter-

minology for problem transformation in order to make solution easier. The first application of the
word to the idea of improving the convergence of an iterative method may be by Evans (1968),
and Evans (1973), and Axelsson (1974) apply it to the conjugate gradient algorithm. The idea of
preconditioning the conjugate gradient algorithm & much older than this, as noted above, being
perhaps implicit in the original conjugate gradient papers, somewhat more explicit in Hestenes
(1956), and actually used in Engeli et al (1959). Wachspress (1963) seems to be the fiEst to use an
iterative algorithm for discretired partial differential equations (ADI)  as a preconditioner  for the
conjugate gradient algorithm.

4. The Form of the Annotated Bibliography

The references are arranged alphabetically
paper is given one or more “Classification Codes”:

bY author within year of publication. Each

A applications
C conjugate direction/gradient algorithms for linear systems
E eigenproblems
L Lanctos  algorithm for eigenproblems
N nonlinear conjugate gradient algorithms
P preconditioning
S matrix splittings
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There is an author index following the bibliography.
There are several warnings that a reader should keep in mind. Because of publication

delays, alphabetization, and mixing of journal publications with technical reports and disserta-
tions, the bibliography is not completely chronological. The bibliography is not exhaustive; in
particular, the references to nonlinear versions of the algorithm represent only a sample of the
work done in this period, and references to literature in languages other than English is quite
incomplete. The annotation for each paper only gives information relevant to the conjugate gra-
dient and Lancoos  algorithms and to preconditioning, and thus may not provide a complete sum-
mary of the work.

Quotations in the annotations are excerpts from the work i&elf. In works concerning appli-
cations to partial dserential  equations, the parameter h denotes the stepsire  in the discretization.
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burg, Maryland.
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B I B L I O G R A P H Y
1948

1. /C/ Fox, L., H. D. Huskey, and J. H. Wilkinson (1948) “Notes on the Solution of Algebra-
ic Linear Simultaneous Equations,” Quurt.  J. ofA4ech.  und  Appl. Math. 1, pp. 149-173. I

Presents a “method of orthogonal vectors” as a direct method involving forming an A-
conjugate set by Gram-Schmidt orthogonalixation and expanding the solution vector in this
bti.

2. /P/ Turing, A. M. (1948) ‘Rounding-off Errors in Matrix Processes,” Quart.  .J. of Mach.
and Appl. Math. 1, pp. 287-308.

Introduces a quantitative measure  of conditioning. “There is a very large class of problems
which naturally give rise to highly ill-conditioned equations [an example being a polynomial
fit in two dimensions with data in a small region]. In such a case the equations might be
improved by a differencing procedure, but this will not necessarily be the case with all prob-
lems. Preconditioning of equations in this way will always require considerable liaison
between the experimenter and the computer, and this will limit its applicability.” (p. 299)

1960

3. /cE.IJ/ Lancto0, c. (1950) “An Iteration Method for the Solution of the Eigenvalue Prob-
lem of Linear Daerential and Integral Operators,” J. Rcs. Nut. Bur. Stundarda  45, pp. 255
282.

Gives a polynomial expansion which can be used to solve the eigenvalue problem and
develops recurrence relations for the polynomials. Notes that the recurrence is sensitive to
round-off, and develops an alternate one, based on the principle of choosing the combination
of previous vectors which makes the norm of the resulting vector as small as possible,
achieving a three-term recurrence for the polynomials. Derives a bi-orthogonalization algo-
rithm for finding eigenvalues of nonsymmetric matrices, and derives an algorithm with a
single set of vectors for symmetric matrices. Uses the vectors to generate a set of polynomi-
als which accumulate the characteristic polynomial of the original matrix. Recognires  that
fewer than n steps may be needed to obtain a subset of the eigenvalues. Presents appliczc
tions to eigenvalue problems in differentisl equations and integral operators. “The present
investigation contains the results of years of research in the fields of network analysis,
flutter problems, vibration of antennas, solution of systems of linear equations, encountered
by the author in his consulting and research work for the Boeing Airplane Co., Seattle,
Wash. The final conclusions were reached since the author’s stay with the Institute for Nu-
merical AnalysG, of the National Bureau of Standards. ” “The literature available to the au-
thor showed no evidence that the methods and results of the present investigation have been
found before. However, A.M. Ostrowski of the University of Basle and the Institute for Nu-
merical Analysis informed the author that his method parallels the earlier work of some
Russian scientists; the references given by Ostrowski are: A. Krylov, I.u. Aked. Nuuk SSSR
7, 191 to 599 (1991);  N. Lusin, Im. Akad. Nuuk SSSR 7, 903  to 958 (1991). On the basis of
the reviews of these papers in the Zentralblatt,  the author believes that the two methods
coincide only in the point of departure. The author has not, however, read these Russian
papers.”

4. /EL/ Milne, W. E. (1950) “Numerical  Determination of Characteristic Numbers,” .I. Rca.
Nat. But. Standards 45, pp. 245-254.

Approximates eigensystem of an ordinary differential equation by using a related partial
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differential equation and discretizing using finite differences. Derives a related trigonometric
expansion whose roots determine the eigenvalues of the finite difference system. Relates the
method to Lanczos (1950).

19Sl

5. /EL/  Arnoldi,  W. E. (1951) “The Principle of Minimized Iterations in the Solution of the
Matrix Eigenvalue Problem,” Qrurterfy of Appf.  Moth. 9, pp. 17-29.

Derives the nonsymmetric Lancaos  algorithm as a Gale&in  method with the left and right
vectors b&orthogonal, reducing the matrix to tridiagonal form and proposes its use as an
iterative method for n steps or fewer. Derives a new algorithm with the left and right vec-
tors equal and orthogonal, reducing the matrix to upper Hessenberg  form. Suggests using
several steps of the power method to get a star&g  vector for either algorithm:

6. /C/ Forsythe, G. E., M. R. Hestones, and J. B. Rosser  (1951) “Iterative Methods for Solv-
ing Linear Equations,” Bull. Amer. Math. Sot. 57, p. 480.

(Abstract for Summer Meeting in Minneapolis, Sept. 47, 1951, quoted in its entirety)
“Several iterative methods are given for solving _the  equations As ==b , where A is a given
matrix and b is a vector. These methods appear to be particularly adapted to high speed
computing machines. They have the property that if there were no round-off error the solu-
tion would be obtained in at most n steps where n is the rank of A . In the singular case
the least square solution is obtained. At each iteration the problem is started anew. Ac-
cordingly there is no accumulation of errors. In the hermitian case the method is based on
the following result. If A ,B >O are hermitian matrice& which commute then the system
b,Ab;-&‘b may be replaced by a set of B.-orthogonal vectors by the algorithm
20-b  9 ~l-~ra&op  ti+lBbi q-qA& +ci,lti,l. (Received July 23, 1951)”

- 7. /C/ Hestenes, Magnus  R. (1951) Iterutiue Methods for Solwing Linear Equations, NAML,
Report 52-9, July  2, 1951, National Bureau of Standards, Los Angeles, CA.

(Superccded by Hestenes and Stiefel(l952). Reprinted in J. of Optimization  Theory and Ap-
plicotioru  11 (1973), 323-334.) “The methods presented are an outgrowth of discussions with
Forsythe, Lanczos, Paige, Rosser, Stein, and others. For the positive Hermitian case it is
convenient to separate the methods into two types. The first [the three-term recurrence
form of cohjugate gradients] ij a method which is my interpretation of the suggestions made
by Fomythe  and Roeser.  The second [the x+p version] is one which grew out of my discus-
sion of the problem with Paige. The two methods are equivalent and yield the same esti-
mates at each stage.” If the first algorithm is used, recommends threeterm  recurrence for z
with direct calculation of the residual vector. Gives alternate formulas for & and @ and re-
lates the parameters in the two methods. Shows finite termination, orthogonality of the resi-
duals, and a bound on (Y. Discusses the case A positive semi-definite and recommends nor-
mal equations for nonsymmetric problems.. Relates the algorithm to conjugate direction
methods and constructs the formula for the inverse of A . Derives the property that the
A-th iterate of the algorithm minimizes a quadratic function over a k dimensional subspace.
Gives a 4 x 4 example.

.

8. /EL/ Hestenes, Magnus  R. and William Karush (1951) “A Method of Gradients for the
Calculation of the Characteristic Roots and Vectors of a Real Symmetric Matrix,” J. Res.
Nat. Bur. Standurds 47, pp. 45-61.

Uses the iteration z,+~- zk -crp (zk  ), with p (z )-AZ -p(z )z and r(z ) the Rayleigh quo-
tient. Analyzes the method using the Lanczos polynomials and the symmetric tridiagonal
matrix similar to A .
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9.

10.

11.

12.

13.

/EL/ Hestenes, Magnus  R. and William Karush (1951) “Solutions of AZ =-XBz  ,” ,I Rea.
Nat. But. Standards 49, pp. 471-478.

Extends the Hestenes-Karush (1950) algorithm to the generalized eigenvalue problem.

/C/ Hestenes, Magnus  R. and Marvin L. Stein (1951) The Solution of Linear Equations by
Minimizution,  NAML Report 52-45, December 12, 1951, National Bureau of Standards, Los
Angeles, CA.

(Reprinted in J. of Optimizution Theory und  Applicotione 11 (1973),  335-359.)  Proposes solv-
ing AZ ==b by minimizing (b -AZ) *H(b -AZ ), where H is Hermitian positive definite. Stu-
dies iterations of the form zk +1-q  +ai pi , and derives conditions on ai and pi to guaran-
tee convergence. Notes that steepest descent, steepest descent with non-optimal oi, Gauss-
Seidel, SOR, block SOR, n -step methods such as those “investigated by Lanczos, Hestenes,
and Stiefel”, and other algorithms are special cases.

/EL/ Karush, W. (1951) “An Iterative Method for Finding Characteristic Vectors of a
Symmetric Matrix,” Pacific J. Math. 1, pp. 233-248.

Suggests an algorithm equivalent to taking 8 steps of the Lancsos algorithm, finding the
minimizing eigenvector approximation, and iterating, making reorthogonalization less criti-
cal than in the Lanczos algorithm. References Lanczos (1950), but does not really draw the
relationship.

/ELP/ Rosser, J. B., C. Lanczos, M. R. Hestenes, and W. Karush (1951) “Separation of
Close Eigenvalues of a Real Symmetric Matrix,” J. Rea. Nut. But. Standards 47, pp. 291-
297.

Solves a difficult 8~ 8 eigenvalue problem by the Lancros (1950) algorithm by a “hand com-
puter” in 100 hours (Thii  method “seems best adapted for use by a hand computer using a
desk computing machine.“) and by the Hestenes and Karush (1951) method (fixed  o) on an
IBM Card-Programmed Electronic Calculator. (“Considerable time was spent by Karush in
becoming familiar with the machine, so that it is difficult to say just how long the computa-
tion would require of an experienced operator. Probably 3 or four days would be ample “)
Suggests polynomial preconditioning to increm  the separation of the eigenvalues.

1962

/CP/ Hestenes, Magnus  R. and Eduard Stiefel (1952) “Methods of Conjugate Gradients
for Solving Linear Systems,” .T. Red. Nut. But. Stundurh 49, pp. 409-436.

“The method of conjugate gradients wss developed independently by E. Stiefel of the Insti-
tute of Applied Mathematics at Zurich and by M. R. Hestenes with the cooperation of J. B.
Rosser, G. Forsythe, and L. Paige of the Institute for Numerical Analysis, National Bureau
of Standards. The present account was prepared jointly by M. R. Hestenes and E. Stiefel
during the latter’s stay at the National Bureau of Standards. The first  papers on this
method were given by E. Stiefel [1952]  and M. R. Hestenes [1951).  Reports on this method
were given by E. Stiefel and J. B. Rosser at a Symposium on August 23-25,  1951. Recently,
C. Lanczos (19521 developed a closely related routine based on his earlier paper on eigen-
value problem. Examples and numerical tests of the method have been by R. Hayes, U.
Hochstrasser, and M. Stein.”

For A symmetric and positive definite: develops conjugate gradients as an iterative method
noting that z,,+~ is often considerably better than z, although earlier convergence may oc-
cur .  Gives  the  z - r - p  vers ion  o f  the  a lgor i thm and  note s  tha t  1 1 z--2*  1 1 a n d

1 1 z -z* I I A l/s are monotonically decreasing although the residual norm may oscillate.
Gives formulas for obtaining characteristic roots from the recurrences. Proves algebraic and
geometric properties of conjugate direction and conjugate gradient algorithms and references
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Fox et al [1948].  Gives an algorithm in which the residual norm is monotonic which
modifies the z iterates from conjugate gradients. Gives some round-off analysis and recom-
mends smoothing the initial residual. Gives an end correction procedure in case orthogonal-
ity is lost. Investigates other normalizations for the direction vectors.

For A symmetric semideflnite: notes that conjugate gradients can obtain a least squares
solution.

For general A : uses A*A -type algorithm.

Also presents the conjugate diction and conjugate gradient algorithms applied to
A&z=445 and gives the examples M-I and M-A*. Shows that conjugate directions
with unit vectors  applied to a symmetric matrix is equivalent to Gauss elimination. Gives a
conjugate direction example in which I I z-z* I I is monotonically increasing at inter-
mediate steps. Describes a duality between orthogonal polynomials and n-dimensional
geometry. Gives the 3-term recurrence relations for the residual polynomials. Notes the re-
lation to the Lanczoe (1950) algorithm for computing characteristic polynomials and that
the conjugate gradient parameters can be computed by continued fraction expansion of a ra,-

‘tie of polynomials in A.
@==-r  T Ap /p T Ap .

Recommends computational formulas o--t  ’ p /p T Ap and
Gives numerical examples &nd  notes that the largest system yet solved

involved 90 iterations on 106 difference equations.

14. /CL/ Lancaos,  Cornelius (1952) “Solution of Systems of Linear Equations by Minimized
Iterations,” J. Rea. Nat. But. Stundurde  49, pp. 33-53.

“The latest publication of Hestenes [1951] and of Stiefel[1952]  is closely related to the p ,q
algorithm of the present paper, although developed independently and from different con-
siderations.” “The present investigation is based on years of research concerning the
behavior of linear systems, starting with the author’s consulting work for the Physical
Research Unit of the Boeing Airplane Company, and continued under the sponsorship of the
National Bureau of Standards.” Applies the Lancsos (1950)  algorithm to solving nonsym-
metric systems of linear equations by generating a double set of vectors (equivalently, poly-
nomials) pk ==p,  (A )b with leading coefficient 1 so that I 1 pk I I is minimal, and
qk “qk (A )b with constant Coeficient  1 so that I 1 qk I I is minimal. Shows that the p
and p+ sequences are biorthogonal and that the q sequences (saving the vectors) can be
used to construct minimal residual solutions for the original system and others involving the
same matrix. Advocates complete reorthogonalization  or periodic restart to reduce the ac-
cumulation of error. Recommends scaling symmetric matrices to make diagonal elements 1
and nonsymmetric matrices to make column norms 1. If A has real nonnegative eigen-
values, recommends a twephase algorithm, “purifying” the right hand side by Chebyshev
polynomial iteration designed to damp out the components corresponding to large eigen-
values and then running the minimized iteration algorithm on the remainder. Notes that
this can also be used to give smooth approximate solutions to nearly +q&r  problems by
terminating the second phase when a correction vector becomes too large.

15. /CLP/ Stein, Marvin L. (1952) “Gradient Methods in the Solution of Systems of Linear
Equations,” J. Rec. Nat. But. Standarda  48, pp. 40743.

Reports on numerical experiments on a preconditioned form of steepest descent (but precon-
ditioning is not used for acceleration). Also converts linear system to an eigenvalue problem
and applies algorithm of Hestenes and Karush (1951).

16. /C/ Stiefel, Eduard (1952) “Uber  einige Methoden der Relaxationsrechnung,” &%%schrift
j<ir angcwundte Mathcmatik  rnd Phyaik  3, pp. l-33.

(A version of this paper was presented at the NBS conference in August, 1951.) Surveys
Jacobi- and Gaus&eidel-type  methods and steepest descent. Defines “simultaneous relaxa-
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17.

tion” as adding a linear combination of several vectors to the current guess. Notes that the
parameters are easy to calculate if the directions are conjugate. Defines a “n -step iters
tion” (conjugate gradients) and notes that it can also be used to solve other linear systems
with the directions already generated, to invert matrices, and to solve eigenvalue problems
as Lanczos (1950) does. Uses the 5-point operator as a model problem, and provides numeri-
cal experiments. “Note added in proof: After writing up the present work, I discovered on
a visit to the Institute for Numerical Analysis (University of California) that these results
were also developed somewhat later by a group there. An internal preliminary report for
the National Bureau of Standards was given by M. R. Hestenes in August, 1951 (N.A.M.L.
Report 52-9). ”

/C/ Stiefel, Eduard (1952/53)  “Ausgleichung ohne Aufstellung der Gaussschen Normal-
gleichungen,” Wbrenschajtlichc  Zeitschrijt dcr Technikehen  Hoehschulc  Dresden 2, pp. 441-
442.

Proposes a conjugate direction algorithm for solving least squares problems which uses A T t
as the initial direction, and keeps the directions AA ‘-conjugate. (This algorithm later be-
came known as the LSCG algorithm.)

19b3

18. /P/ Forsythe, George E. (1953) “Solving Linear Algebraic Equations Can Be Interesting,”
Bull. Amer. Math. Sac. 59, pp. 299-329.

I

“With the concept of ‘ill-conditioned’ systems AZ ==Q  goes the idea of ‘preconditioning’
them. Gauss and Jacobi made early contributions to this subject [referring to the trick of
adding an extra equation to a least squares system] . . . . A convenient means of precondition-
ing is to premultiply the system with a matrix B , so that one has to solve BAz =Bb .” (p.
318) Gives two examples: B =A T, giving the normal equations, and B being the operator
generated by Gaussian elimination, so that BA is upper triangular.

19. /ELP/ Hestenes, Magnus  R. (1953) “Determination of Eigenvalues and Eigenvectors of
Matrices,” in Simarltaneow Linear Equations and the Determination ojEigenualuce,  ed. L. J.
Paige and Olga Taussky, Applied Mathematics Series 29, National Bureau of Standards,
U.S. Government Printing Of&e,  Washington, pp. 89-94.

Surveys methods used at NBS for symmetric ‘eigenvalue computation: power algorithm,
steepest descent on the Rayleigh  quotient, two forms of a “generalization” of the Lanczos
(1950) algorithm which uses a preconditioning matrix that commutes with A to obtain the
recursion for the characteristic polynomial, and a block method. Also discusses the general-
ized eigenvalue problem. .

20. /C/ Rosser, J. Barkley (1953) “Rapidly Converging Iterative Methods for Solving Linear
Equations,” in Simultaneow Linear Eqrat<ons  and the Determination of Eigenvaftw,  ed. L.
J. Paige and Olga Taussky, Applied Mathematics Series 29, National Bureau of Standards,
U.S. Government Printing Of&e, Washington, pp. 59-64.

Describes the conjugate direction algorithm in its general form, but states that the identity
preconditioner  is convenient. “Through the use of colloquia and discussion groups, nearly all
scientific members  of the Institute have made some sort of contribution to the problem. Ac-
cordingly, it is impossible to assign complete credit for the results disclosed herein to a sin-
gle person or a few persons. However, certain members of the staff have given concentrated
attention to the problem over an extended period and are primarily responsible for the
results noted herein. In alphabetical order, these are G. E. Forsythe, M. R. Hestenes, C.
Lanczos, T. Motokin, L. J. Paige, and J. B. Rosser.”
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21.

22.

. 23.

24.

/EL/ Rutishauser, H. (1953) “Beitrige aur Kenntnis des Biorthogonalisierung
Algorithmus  von Lanczos,” Zeitschr$  jiir angewandtc Muthematik  zrnd Physik  4, pp. 35-56.

Proves that there is a starting vector for the Lanczos algorithm which generates m vectors
when the degree of the characteristic polynomial is m . Advocates a method of making the
co-diagonal elements small when the eigenvalues are real, thus improving the convergence of
algorithms to 6nd eigenvalues of the bidiagonal matrix. Gives bounds for the eigenvalues.
Relates the algorithm to a system of differential equations.

/P/ Shortley, George (1953) “Use of Tschebyscheff-Polynomial Operators in the Numerical
Solution of Boundary-Value Problems,” J. of Appt. Phy8.  24, pp. 392-396.

Uses Chebyshev acceleration of the Jacobi algorithm for solving difference approximations to
elliptic partial differential equations.

/CEL/  Stiefel, Eduard (1953) “Some Special Methods of Relaxation Technique,” in Simul-
taneow  Linear Equation8 und  the Determination of Eigenuufued, ed. L. J. Paige and Olga
Tam&y,  Applied Mathematics Series 29, National Bureau of Standards, U.S. Government
Printing OfIke, Washington, pp. 43-48.

( Presents the conjugate gradient algorithm ss a minimization procedure and gives results of
numerical experiments on Laplace’s equation on a 3x3 grid and calculation of an Airy
stress function for the profile of a dam (139 unknowns, 100  hours of computation on the Zu-
rich Relay Calculator). Notes that the residuals are orthogonal and may be used to calcu-
late eigenvalues. “The resulting procedure is similar to that suggested by Lancros[l950].”

1964

. /CP/ Curtiss, J. H. (1954) “A Generalization of the Method of Conjugate Gradients for
Solving Systems of Linear Algebraic Equations,” Math. Table8 and Aidu to Comp. 8, pp.
189-193.

Develops conjugate gradient algorithm for solving nonsymmetric systems by applying it to
BATATBT. Explains that.B=f,T=A-l  -gives the Hestenes and Stiefel (1952) algorithm,
B -=A T, T ==(A T A )” gives the Hestenes and Stiefel least square+type  algorithm, and
B ===I,  T -1 gives the Craig (1955) algorithm.

25. /C/ Forsythe, A. I. and G. E. Forsythe (1954) “Punched-Card Experiments with Ac-
celerated Gradient Methods for Linear Equations,” in Contributiona to the Solution of Sys-
tems of Linear Equation and the Determination of Eigenvalue,,  ed. Olga Taussky,  Applied
Mathematics Series 39, National Bureau of Standards, U.S. Government Printing Ofice,
Washington, pp. S-69.

Runs the Mot&in-Forsythe algorithm (steepest descent with an occasional accelerating step)
on 6X 6 examples, concluding that it is twice as fast as consistently underrelaxing  steepest
descent and much faster than steepest descent alone. Notes that the Hestenes and Stiefel
(1952) methods seem to supercede these.

26. /C/ Hayes, R. M. (1954) “Iterative Methods of Solving Linear Problems on Hilbert
Space,” in Contribtrtionu  to the $olution of System of Linear Equationa and the Determina-
tion of Eigenvaiares,  ed. Olga Tam&y,  Applied Mathematics Series 39, National Bureau of
Standards, U.S. Government Printing OtTice,  Washington, pp. 71-103.

Extends the conjugate direction algorithms to Hilbert space and proves linear convergence
for the conjugate gradient algorithm for general operators and superlinear convergence for
operators of the form I +K where K is completely continuous.
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27.

28.

29.

30.

31.

32.

33.

/W/ Young, David (1954) “On Richardson’s Method for Solving Linear Systems with Po-
sitive Definite Matrices,” .f. of Math. and Physics 32, pp. 243-255.

Gives convergence results and optimal choice of acceleration parameters for Richardson’s
method. Compares with SOR and gradient methods.

1956

/C/ Craig, Edward J. (1955) “The N-Step Iteration Procedures,” J. of Math. und Physic8
34, pp. 64-73.

Discusses a set of conjugate direction methods, including the conjugate gradient algorithm,
the algorithm built on A*A-conjugate  directions, and the (new) algorithm built on direc-
tions which are A* times a set of orthogonal vectors. Notes that the last two algorithms
can be used on symmetric or nonsymmetric matrices.

/p/ Forsythe, G. E. and E. G. Straus (1955) “On Best Conditioned Matrices,” Proceedinga
oj’the Amer. Math. Sot. 6, pp. 340-345.

‘Studies the problem of minimizing the S-norm condition number of &AT where A is Her-
mitian positive de6nite  and T is in a class of regular linear transformations. As a special
case, determines the optimal diagonal preconditioning matrix to be the one which makes the
resulting diagonal elements equal to 1.

/CEP/ Hestenes, Magnus  R. (1955) “Iterative Computational Methods,” Communications
on Pure and Applied Mathematicr  8, pp. 95-96.

Gives a description of the conjugate gradient algorithm in general form and notes that it
can be used to solve singular consistent problems. Discusses the eigenvalue problem, but
not Lanczoe’ algorithm. “The terminology ‘conjugate gradient’ was suggested by the fact
that p; is the gradient of F , apart from a scale factor, on the linear manifold conjugate to
PO#P  11 ’ l * #Pi-l, that in, orthogonal to [Ap 0, l * * pApi-  a”

/S/ Sheldon, John W. (1955) “On the Numerical Solution of Elliptic DifIerence  Eque
tions,” Math. Tables and Aids to Comp. 9, pp. 101-112.

Presents the SSOR algorithm .

/CL/ Stiefel ,  E. (1955) “Relaxationsmethoden bester Strategie zur Liiaung  linearer
Gleichungssysteme,” Comm. math. helv. 29, pp. 157-179.

Surveys a family of algorithms for solving linear systems. Views steepest descent as Euler’s
method on the descent trajectory. Establishes one-tine  correspondence between the fami-
ly of algorithms and sequences of polynomials satisfying Ri (O)=l.  Gives the Lanczos poly-
nomials and conjugate gradienti as example of such a sequence, with polynomials orthogonal
with respect to a discrete distribution function. Studies iterations based on the distribution
h”(l-h)B. Giv& numerical results for Poisson equation with constant right hand side.

1966

/EL/ Brooker, R. A. and F. H. Sumner (1956) “The Method of Lanczoe  for Calculating the
Characteristic Roots and Vectors of a Real Symmetric Matrix,” Proc.  Inst. Elect. Engre.
B.103 Suppl., pp. 114-119.

Gives expository treatment of Lancsos algorithm. Recommends Jacobi method for small
problems. Lanczos with reorthouonalization for large ones.
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34.

35.

36.

37.

38.

39.

/CEL/  Crandall,  Stephen H. (1956) Engineering lhdy8i8: A Survey of Numerical Pro-
cedure8,  McGraw-Hill, New York.

Gives textbook description of conjugate gradient and Lancoos  algorithms. “The usefulness
of these methods for actual calculation is still being evalu&ed....There  is, however, no deny-
ing the mathematical elegance of the methods.”

/ACP/ Fiihbach,  Joseph W. (1956) “Some Applications of Gradient Methods,” in
Proceeding8 dj the Sixth Symposium in Applied Mathematics (1958), McGraw-Hill, New
York, pp. 59-72.

Discusses and experiments with conjugate gradients for computing the inverse of a matrix,
for solving a two-point boundary value problem, and for solving a mildly nonlinear
diflerential equation after a close approximation to the solution is obtained. “All those who
have carried out computations by the method of conjugate gradients have observed that the
(N +l)st step is usually better than the N th and represents an improvement which over-
comes rounding-off error. Frequently 2N steps are better than N. . . . One possible way of
reducing the error growth is to change the metric (change definition of scalar product) so
that the matrix is better conditioned.” 1

‘/CP/ Hestenes, Magnus  R. (1956) “The Conjugate-Gradient Method for Solving Linear
Systems,” in Procrsdings of the Skth SymporiurC,  in Applied Mathsmatics  (l#sS),  McGraw-
Hill, New York, pp. S-102.

Derives conjugate direction and conjugate gradient algorithms in general form, minimizing a
function with an arbitrary inner product matrix, and having a preconditioning matrix.
Notes that the conjugate gradient parameters can be bounded in terma of generalized eigen-
values. Discusses the standard conjugate gradient algorithm and the minimum error norm
form. Shows that every n -step iterative method can be reproduced by a conjugate direction
method. “From a mathematical point of view [the original Hestenes and Stiefel algorithm]
represents the general case in the sense that every conjugate gradient algorithm can be re-
duced to this form by a change of variable or by a simple change of the original system to
be solved.” Notes that no essential changes are required to extend to Hilbert space.

/C/ Hestenes, Magnus  R. (1956) “Hilbert Space Methods in Variational Theory and Nu-
merical Analysis,!’ in Proceeding8 of the International  Congress of Mathematician8 145.4  3,
North-Holland Pub. Co., Amsterdam, pp. 229-236.

Studies properties of quadratic forms in Hilbert space. Describes conjugate gradients as a
minimisation  method on the error function, summarizing results of Hayes (1954).

/CEL/  Lanczos, Cornelius (1956) Applied Analy8i8,  Prentice Hall, Englewood Clif&,  New
Jersey.

Discusses use of the p ,q Lanctos  (1950) algorithm for finding eigenvalues and eigenvectors.
Notes that the large eigenvalues are approximated quickly, and the small eigenvalues could
be determined by “preliminary inversion of- the matrix”. Suggests use of Chebyshev polyno-
mial transformation of the matrix to determine eigenvalues in an intermediate range.

low
\

/C/ Stiefel, E. (1957) “Recent Developments in Relaxation Techniques,” in Proceedings
of the International Congreaa of Mathemoticions  1954 1, North-Holland Pub. Co., Amster-
dam, pp. 384-391.

Defines a “relaxation process” as one which reduces a measure of the error at each step.
Notes that for symmetric positive definite matrices, Gauss-Seidel, Gauss elimination (con-
sidered as an iteration), and gradient methods are relaxation processes. Develops the op-
timal polynomial property for conjugate gradients.
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40.

41.

42.

43.

44.

19S8

/AEL/  Gregory, R. T. (1958) “Results Using Lanczos’ Method for Finding Eigenvalues of
Arbitrary Matrices,” J. Sot. Indwtr. Appl. Math 6, pp. 182-188.

Uses Lanczos (1950) algorithm for complex non-Hermitian matrices with double precision ar-
ithmetic, scaling of vectors, and full re-orthogonaliration.

/cLP/  Lanczu6,  c . (1958) “Iterative Solution of Large-Scale Linear Systems,” J. Soe. In-
dwtr. Appl. Math 6, pp. 91-109.

Discusses the effect of ill-conditioning and right hand side measurement errors on the accu-
racy of solutions to linear systems with symmetric coefficient matrices. Analyzes nonsym-
metric ones through the symmetric system of size 2n. Estimates large&  eigenvalue by
refinement of power method, and scales the matrix by it. Then applies iteration based on
Chebyshev polynomials and matrix of dimension n +2.

/CEL/  Stiefel, Eduard L. (1958) “Kemel Polynomials in Linear Algebra and Their Nu-
merical Applications,” in Further Contributions to the Solution of Simultaneous Linear
‘Equations and the Determination of Eigenvalut?a  Applied Mathematics Series 49, National
Bureau of Standards, U.S. Government Printing Of&e, Washington, pp. l-22.

Derives relaxation algorithms by considering various sets of polynomials with value 1 at
zero. Recommends a two stage process for ill-conditioned systems: filter out error com-
ponents corresponding to a large but clustered set of eigenvalues and then apply conjugate
gradients to remove components corresponding to a few small eigenvalues. As an example,
solves Laplace’s equation with constant right hand side 6n a 10X10  grid with 11 Chebyshev
iterations on [2,8] and 2 conjugate gradient steps, getting 4 orders of magnitude reduction in
the error. Recommends solving nonlinear systems by the change of variables AA*y  =b .
Applies kernel polynomials to the problem of eigenvalue estimation, obtaining the Lanczos
(1950) algorithm, among others. “As it stands, Lanczos’ algorithm can only be successful
for low-order matrices with nicely separated eigenvalues. For larger matrices the rounding-
off errors destroy quickly the orthogonality  of the vectors. As in solving linear equations, it
is necessary to find for such matrices a suitable combination of the method8 available.”
Discusses polynomial transformations to emphasize certain ranges of the spectrum, and ap
plies the Lanctos  algorithm to the transformed matrix. Discusses the generation of orthogo-
nal polynomials by the quotient-difference algorithm, including the variant corresponding to
the Lanczos algorithm.

/AEL/  Wilkinson, J. H. (1958) “The Calculation of Eigenvectors by the Method of Lane-
sm,” Computer J. 1, pp. 148152.

Uses reorthogonalitation on symmetric Lancaos  and reorthogonalisation  plus double preci-
sion on unsymmetric Lanczos. Notes that the latter is a very powerful algorithm.

19s9

/C/ Altman,  Mieczyslaw  (1959) “On the Convergence of the Conjugate Gradient Method
for Non-Bounded Linear Operators in Hilbert Space,” in Approtimation  Methoda  in Fune-
tionol Analysis, Lecture Notes, California Institute of Technology, pp. 33-36. _

Proves convergence of conjugate gradients for a self-adjoint, positive definite linear opera-
tor, with domain a dense linear space, satisfying (Au ,u )/k (u ,u ) for some positive con-
stant k and all u in the domain.
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45.  /N/  Davidon, W. C. (1959) Vuriuble Metric Method for Minimization, Report ANL-5990,
Argonne National Laboratory, Argonne, Illinois.

,

Derives a method (the DFP method, further developed in Fletcher and Powell (1965)) meant
to “improve the speed and accuracy with which the minima of functions can be evaluated
numerically” compared to such methods as conjugate gradients, steepest descent, and
NewtonRaphson.  F%opuses guessing the inverse Hessian matrix (symmetric and positive
definite), and generating a search direction equal to this matrix times the negative gradient.
Uses either this direction plus an orthogonal correction, or a line search along this direction,
to determine the next iterate. Then modifies the inverse Hessian approximation according
to the Quaai-Newton condition using a rank-one or rank-two update. Discusses the initial
Hessian approximation and the incorporation of linear constraints. Discusses in an appendix
a implied rank-one updating procedure.

46. /ACP/ Engeli, M., Th. Ginsburg, H. Rutishauser, and E. Stiefel (1959) Refined Iterative
Methode for Comprtation  of the Solution and the Eigenvafuee  of SelfiAdjoint Boundary Value
Problems, Birkhauser Verlag, Basel/Stuttgart.

Stiefel: Solves self-adjoint partial differential equations by variational formulation, not by
( difllerential  equation itself.

Rutishauser: Surveys gradient methods (Richardson one and two, steepest descent, Frankel
(second order Richardson), Chebychev, hypergeometric relaxation, conjugate gradients, con-
jugate residual. Considers “combined methods”, including:

1. conjugate gradients with Chebyshev (attributed to Lanczos(l952)):  smooth the resi-
dual with Chebyshev polynomial over range of high eigenvalues, then apply conjugate
gradients. It is noted that the high eigenvalues are “reactivated” by conjugate gra-
dients, and the method is not recommended.

2. “Replace the system given by another system with the same solution but with a
coefficient matrix A of smaller P-condition number.” (P-condition number = condition
number in the l-norm.) Polynomial conditioning is explicitly considered, and is attri-
buted to Stiefel(l958) in the case of eigencomputation. The iterations are called
“inner” for the polynomial and “outer” for conjugate gradients, and Chebyshev-
conjugate gradients is recommended.

Notes that Richardson, Frankel, etc. can also be used for eigencomputations. Gives the con-
jugate gradient tridiagonal matrix in non-symmetric 3-term  form. Notes round-off
difliculties,  and recommends proceeding more or less than n steps, as long as the residual
remains small. Recommends comparing the approximations from two tridiagonal matrices
(same initial vector, different number of steps, or different initial vector) to determine con-
vergence. Also diiusses  determining the eigenvalues of the original matrix from the conju-
gate gradientChebyshev  method.

Ginsburg: Gives results of numerical experiments. For a finite diflerence  problem with 70
variables, needs approximately 10 conjugate gradient iterations with preconditioning by a
10th order Chebyshev polynomial. Compares with steepest descent, conjugate gradient, and
other methods on this and other examples.

Engeli: Surveys relaxation methods.

Conclusions: For moderate condition problems, use relaxation. For bad conditioning, use
conjugate gradients or conjugate gradients-Chebyshev with recursive. residuals. Recom-
mends conjugate gradients over conjugate gradients-Chebyshev unless some low eigenvalues
are needed.
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47.

48.

49.

50.

51.

52.

53.

/AC/  LZuchli,  P e t e r  ( 1 9 5 9 ) “Iterative Lijsung  und Fehlerabschiitzung in der Aus-
gleichsrechnung,” Zeitaehtc’f fiir angcwandtc Mathcmatik  und Physik  10, pp. 245-280.

Develops conjugate gradients and other relaxation methods for overdetermined linear sys-
tems. Notes that finding the point in an n-dimensional subspace of R A) (spanned by the
columns of C ) which is closest to a point 1 is equivalent to solving CT CZ =C T 1, but that
the problem can also be formulated in terms of a basis B for the null space of C T ,
representing x implicitly as B T z +b -9 (for some vector 6 ) and avoiding normal equa-
tions. Uses Synge’s  method of the hypercircle to find upper and lower bounds on the sum of
squared residuals. Notes that the inverse  matrix can be constructed by an update at each
conjugate gradient step. Provides numerical examples.

1960

/C/ Beckman, F. S. (1960) “The Solution of Linear Equations by the Conjugate Gradient
Method,” in A4athematical  Methods for Digital Conaputeru,  ed. Anthony Ralston and Herbert
S. Wilf,  Wiley, New York.

‘Derives conjugate gradients as a conjugate direction method including flow chart, comments
on error analysis, etc.

/GP/  Frank, Werner L. (1960) “Solution of Linear Systems by Richardson’s Method,” J.
Aseoc.  Comprt. Mach. 7, pp. 274286.

Follows Stiefel (1958) in using Ghebyshev  acceleration on a partial interval; then applies
conjugate gradients. Tests the algorithm on a 50x50 matrix tri(-1,2,-l) with (1,l) element
modified to 1. Needs 29 conjugate gradient iterations (instead of the theoretical termination
in 5) to get 5 digits of accuracy; requires the full 50 if conjugate gradients is used alone..
Required 46 conjugate gradient iterations to solve 5 point difference equations for n -361.

/P/ Householder, A. S. and F. L. Bauer (1960) “On Certain Iterative Methods for Solving
Linear Systems,” Numer. Math. 2, pp. 55-59.

Discusses “methods of projection” which iterate z -z + Yp , where the columns of Y span a
subspace and p is chosen so that the error decreases. Notes that steepest descent and relax-
ation techniques both fit into this framework, but does not mention conjugate gradients.

/AC/ Livejley,  R. K. (1960)  “The Analysis of Large Structural Systems,” Computer J. 3,
pp. 34-39.

Tries to apply conjugate gradients to an ill-conditioned system in structural analysis. Finds
conjugate gradients ineffective because it requires n matrix multiplications and thus n tape
scans, and “rounding errors show a tendency to build up to such an extent that the solution
after N steps is often a worse approximation to the correct solution than the starting
point. ” “The method was therefore abandoned in favour of an elimination process.”

/EP/ Osborne, E. E. (1960) “On Pre-Conditioning  of Matrices,” J. Assoc.  Comput. Mach.
7, pp. 338-345.

Constructs a sequence of diagonal similarity transformations to scale an irreducible matrix
to increase the smallest eigenvalue relative to the matrix norm so that the eigensystem can
be more easily determined.

/PS/ Varga, Richard S. (1960) “Factorization and Normalized Iterative Methods,” in
Boundary Ptoblcmu in Difletential  Equations, ed. Rudolph E. Langer, University of Wiscon-
sin Press, Madison, pp. 121-142.

“The main purpose of this article is to introduce a class of iterative methods which depend
upon the direct solution of matrix equations involving matrices more general than tridiago-
nal matrices.” Assumes that A is Stieltjes. Introduces the idea of regular splitting. Given a
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54.

55.

56.

57.

58.

59.

60.

61.

regular splitting, accelerates by overrelaxation, Chebyshev semi-iteration, Peaceman-
Rachford (1955) algorithm, or Douglas-Rachford (1956) algorithm. Suggests normalizing
factors to have unit diagonal for computational efficiency. Discusses effectiveness of succes-
sive line overrelaxation.  Proposes approximate factorization of A, keeping the factors as
sparse as A (the algorithm that has come to be known as incomplete Cholesky factorization
with no extra diagonals). Shows that this yields a regular splitting for the &point  operator.

/PS/  Wachspress, E. L. and G. J. Habetler (1960) “An Alternating-Direction-Implicit
Iteration Technique,” J. Sot. Indwtr.  Appi. Math. 8, pp. 403-424.

“Conditions” a matrix by diagonal scaling before applying ADI.

/CN/  Zoutendijk, G. (1960) Methods of Feasible Directionr,  Elsevier,  Amsterdam.

Uses conjugate directions to construct a finitely terminating quadratic programming algo-
rithm.

1961

I
fAEL/ Causey, R. L. and R. T. Gregory (1961) “On Lanczos’ Algorithm for Tridiagonaliz-
ing Matrices,” SUM Rev. 3, pp. 322-328. -

Discusses biorthogonal reduction to tridiagonal form. Distinguishes between fatal and non-
fatal instances when the inner product between the left and right vectors vanish.

/S/ D’Yakonov, E .  G . VW “An Iteration Method for Solving Systems of Finite
DifIerence  Equations,” Soviet Math. Do& 2, pp. 647-650.

(Doki.  Akad. Nauk SSSR 188, b?l-W”.)  Analyres  the iteration Mz~+~=Mz~  -w(Az, -b )
where A is a finite tierence  approximation to an elliptic operator over the unit square and
M represents several iterations of the AD1  operator for the Laplacian. Gives a work esti-
mate of 0 (n ln2n”/a)  lnr to solve the problem with precision c.

/PS/  Golub, Gene H. and Richard S. Varga (1961) “Chebyshev Semi-Iterative Methods,
Successive Overrelaxation Iterative Methods, and Second Order Richardson Iterative
Methods, Parts I and II,” Numer. Math. 3, pp. 147-156, 157-168.

Compares the rates of convergence of the three iterative methods of the title. Proposes ap-
plying Chebyshev acceleration to two-cyclic matrices resulting from block preconditionings,
such as those derived from the block SOR splitting of Arms, Gates, and Zondek ( SlAM  J.
4, 1956, 22&229).  Gives applications to partial difference equations.

/PS/ Habetler, G. J. and E. L. Wachspress (1961) “Symmetric Successive Overrelaxation
in Solving Diiusion Difference Equations,” Math. of Comp. 15, pp. 356-362.

Uses Chebyshev acceleration on Sheldon’s SSOR algorithm ( J. ACM 6, 1959, 494505).
Shows SSOR not effective in diffusion calculations in nuclear reactor theory if the grids are
too irregular. Gives algorithm to estimate parameters.

/C/ Martin, D. W. and G. J. Tee (1961) “Iterative Methods for Linear Equations with
Symmetric Positive Definite Matrix,” Computer J. 4, pp. 242-254.

Surveys stationary iterative methods, steepest descent, and conjugate gradients including
previous numerical results. Concludes that “no single method is to be recommended for
universal applications.” ’

/S/ Oliphant,  Thomas A. (1961) “An Implicit, Numerical Method for Solving Two-
Dimensional Time-Dependent Diffusion Problems,” Quarterly of Appl. Math. 19, pp. 221-239.

Proposes an iterative method for ninepoint finite difllerence  approximations, using a partial
factorization of the difference matrix as a splitting. Applies the algorithm to linear and non-
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62.

63.

64.

65.

66.

67.

68.

69.

70.
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linear problems.

/EL/ Rollett, J. S. and J. H. Wilkinson (1961) “An Efficient Scheme for the Ce
diagonalization of a Symmetric Matrix by Give&  Method in a Computer with a Two-level
Store,” Computer J. 4, pp. 177-180.

Notes that the resulting bidiagonal matrix for their algorithm is the same as that from the
Lanczos (1950) algorithm.

/EL/ Strachey, C. and J. G. F. Francis (1961) “The Reduction of a Matrix to Codiagonal
Form by Eliminations,” Computer J. 4, pp. 16&176.

Notes that the Lanczos (1950) method is equivalent to an elimination method for reduction
of a Hessenberg matrix to tridiagonal form.

1962

/C/ Antosiewicz,  Henry A. and Werner C. Rheinboldt (1962) “Numerical Analysis and
Functional Analysis,” in Survey of Numerical AnafyG, ed. John Todd, McGraw-Hill, New
‘York, pp. 485-517 (Chapter 14).

Presents conjugate directions for linear self-adjoint positive definite operators on Hilbert
space and proves a convergence rate.

/AC/ Bothner-By, Aksel’ A. and C. Naar-Colin (1962) “The Proton Magnetic Resonance
Spectra of 2,3=Dizubstituted  n-Butanes,”  J. o/the ACS 84, pp. 743-747.

Analyzes chemical spectra by solving a least squares problem with conjugate gradients.

/ACN/ Feder, Donald P. (1962) “Automatic Lens Design with a High-Speed Computer,”
.J. of the Optical Sot. ojAmet.  52, pp. 177-183.

Suggests conjugate gradients or DFP methods, among others, to minimize a merit function
in lens design.

/S/ Oliphant, Thomas A. (1962) “An Extrapolation Procedure for Solving Linear Sys-
tems,” Quarterly ojAppl.  Math. 20, pp. 257-265.‘

Generalizes the method of Oliphant (1961) to five-point operators, and allows partial factori-
oations of a modified difference matrix.

/C/ Petryshyn,  W. V. (1962) “Direct and Iterative Methods for the Solution of Linear
Operator Equations in Hilbert Space,” Trane.  AMS 105, pp. 136-175..

Derives minimum error method and, from it, other algorithms. Does not use the extra ma-
trices for preconditioning.

/N/  Powell, M. J. D. (1962) - “An Iterative Method for Finding Stationary Values of a
Function of Several Variables,” Computer i 5, pp. 147-151.

Proposes a method which, given a starting point 20,  finds a minimizer in one direction, z 1,
then minimizes in the n -1 dimensional hyperplane through z I orthogonal to the first direc-
tion, giving 22. Then the minimizer is on the line between z. and 22. The method is “not
unlike the conjugate gradient method of Hestenes and Stiefel (1952).”

/EL/ Wilkinson, J. H. (1962) “Instability of the Elimination Method of Reducing a Ma-
trix to T&Diagonal Form,” Computer J. 5, pp. 61-70.

Relates the Lanczos (1950) algorithm to Hessenberg’s method (1941 Ph.D. thesis) applied to
a lower Hessenberg matrix, reducing it to tridiagonal form.

1963
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71.

72.

73.

74.

75.

76.

77.

/CEL/  Faddeev, D. K. and V. N. Faddeeva (1963) Computotionol  Mcthodu  of Linear Afgc-
bra, W. H. Freeman and Co., San Francisco, CA.

(Translated by Robert C. Williams from 1960 publication of State Publishing House for
‘Physico-Mathematical  Literature, Moscow) Discusses in Chapter 4 the “method of orthogo-
nalisation of successive iterations” for finding eigenvalues of matrices, which, in the sym-
metric case, is the Lanczos (1950) algorithm. Discusses in Chapter 6 how to continue the al-
gorithm for symmetric and nonsymmetric matrices in case it terminates in fewer than n
steps. Discusses the use of the “A-minimal iteration algorithm,” the “A-biorthogonal  algo-
rithm”, steepest descent, 8 -dimensional steepest descent, and conjugate direction algorithms
for solving linear systems.

/N/ Fletcher, R. and M. J. D. Powell (1963) “A Rapidly Convergent Descent Method for
Minimization,” Computer J. 6, pp. 163-168.

Derives the Davidon-Fletcher-Powell (DFP) algorithm for minimiaing non-quadratic func-
tions and accumulating an approximate Hessian matrix. References Hestenes and Stiefel
(1952).

,/CL/  Fridman, V. M. (1963)  “The Method of Minimum Iterations with Minimum Errors
for a System of Linear Algebraic Equations with a Symmetric Matrix,” USSR Comp. Math.
and Math. Phyu. 2, pp. 362-363.

Derives a conjugate gradient method (from the Lanczos perspective) which minimizes the 2-
norm of the error over the subspace At (‘),A ‘r (‘1, l * l .

/C/ Ginsburg, Theo (1963) “The Conjugate Gradient Method,” Numct. Muth. 5, pp. 191-
200.

(the Handbook Se&s Linear Algebra conjugate gradient algorithm) Uses the &term re-
currence version of the conjugate gradient algorithm.

/C/ Khaha,  I. M. (1963) “An Iterative Lea&Square Method Suitable for Solving Large
Sparse Matrices,” Computer J. 6, pp. 202-206.

Proposes the 8 -dimensional steepest descent algorithm applied to minimization of the norm
of the residual for solving linear systems. Does not recompute the parameters in subsequent
iterations unless the residual begins to increase. Notes superiority to conjugate gradients
and SOR on some test problems.

/ACPS/  Wachspress, Eugene L. (1963) “Extended Application of Alternating Direction
Implicit Iteration Model Problem Theory,” J. Sac. Industr. A&. Math. 11, pp. 9941016.

Uses AD1 applied to the model problem as a preconditioner for conjugate gradients applied
to more general problems. Gives some discussion of convergence rate 8s a function of mesh
spacing. References Lanczos (1952) rather than Hestenes and Stiefel. References Engeli et
al (1959) for other examples of “-Compound iteration.” .

1964

/ACT/  Dufour, H. M. (1964) “Resolution des Systemes Lineaires par la Methode des
Residus Conjugues,” Bulletin Ge’ode’siqrc  71, pp. 65-87.

Derives the minimum residual and conjugate gradient algorithms and proposes their use for
symmetric positive definite systems, for linear least squares problems, for lesst  squares sub-
ject to equality constraints, and for systems resulting from block elimination of a 2x2 block
matrix, leading to a Schur complement of the form C-B*A”B as the matrix in the prob-
lem. Discusses preconditioning when an approximate inverse is available. Applies the
method to problems in geodesy.

,
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78.

79.

80.

81.

- 82.

83.

84.

85.

86.

/PS/  E h r l i c h ,  Lbuis  W .  ( 1 9 6 4 ) “The Block Symmetric Successive Overrelaxation
Method,” J. Sot. Industt. Appi. Math. 12, pp. 807-826.

Uses Chebyshev acceleration on block SSOR. Estimates rate of convergence and gives nu-
merical results.

/N/ Fletcher, R. and C. M. Reeves (1964) “Function Minimization by Conjugate Gra-
dients,” Computer J. 7, pp. 149-154.

General&s  conjugate gradients to nonquadratic functions by adding line searches and by
taking the current gradient to be the current residual. Quadratic termination is obtained
without evaluating or approximating the Hessian matrix.

/S/ Gunn, James E. (1964) “The Numerical Solution of v.cr VU == f by a Semi-Explicit
Alternating-Direction Iterative Technique,” Numct. Muth. 6, pp. 181-184.

Proposes and analyzes the iteration Mz,,+~ =Mz,, -w(At, -b ) where M is one step of the
PeacemanRachford  AD1 iteration for the discretization of the desired operator ~7.4 v and
the domain is rectangular. Obtains a work estimate of 0 (A-*logh-‘loge”)  to reduce the er-
ror by c.

/S/ Gunn, James E. (1964) “The Solution of Elliptic Difference Equations by Semi-
Explicit Iterative Techniques,” SL4M J. Numct. Anal. B-2, pp. 24-45.

Proposes and analyses the iteration Mz,,+~-Mz,,  -o(As,, -b ) where M is one step of the
PeacemanRachford  AD1 iteration (variable w) for the discrete Laplacian operator (i.e., not
the matrix A ), the elliptic operator is not necessarily symmetric, and the domain is rec-
tangular. Uses Chebyshev acceleration and second-order Richardson and obtains an im-
proved convergence result over Gunn (1964). Applies the algorithm to mildly nonlinear
problems.

/CEL/  Householder, Alston S. (1964) The Theory of Matricee  in Numerical Analyaia,
Blaisdell Publishing Co..

“The Lancaos algorithm is well known in the theory of orthogonal polynomials, but Lancaos
(1959) seems to have been the first to apply it to the reduction of matrices (p.28, Dover edi-
tion)” Develops Lanctos  tridiagonalization  in matrix form; discusses Lanczos polynomials.

/EL/ Parlett, Beresford (1964) “The Development and Use of Methods of LR type,” SIAM
Reu. 6, pp. 275-295.

Notes that Hen&i  observed that the first diagonal of the QD scheme can be found by the
Lancsos (1950) algorithm; thus, QD links the power method to Lanczos’ method.

/CN/  Powell, M. J. D. (1964) “An Efficient Method for Finding the Minimum of a Func-
tion of Several Variables Without Calculating Derivatives,” Computer J. 7, pp. 155-162.

Proposes an algorithm which uses n line searches per iteration to generate a new direction.
Shows that, for a quadratic function, the directions are conjugate. Proposes a modification
in case the n line search directions become linearly dependent. Gives numerical examples.

/C/ Pyle, L. Duane (1964) “Generalized Inverse Computations Using the Gradient Projec-
tion Method,” J. Assoc.  Comput. Mach. 11, pp. 422428.

Notes that a Gram-Schmidt-based algorithm for computing generalized inverses is a conju-
gate direction method if the matrix is square.

/N/ Shah, B. V., R. J. Buehler, and 0. Kempthome (1964) “Some Algorithms for Minim-
izing a Function of Several Variables,” J. Sot. Induetr. Appl. Math. 12, pp. 7492.

Introduces Partan, a method with quadratic termination in 2n -1 steps or fewer, which gen-
erates conjugate directions. Includes preconditioning matrix in the formulation.
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87.

88.

89.

90.

- 91.

92.

93.

94.

95.

1985

/CN/  Broyden, C. G. (1965) “A Class of Methods for Solving Nonlinear Simultaneous
Equations,” Math. of Comp. 19, pp. 577-593.

Develops a family of algorithms based on satisfying the quasi-Newton condition and using
rank-one or rank-two updates to the approximate derivative matrix at each iteration. Pro-
poses three update formulas. Proposes either a step-size of one, or using the norm of the
residual in a criterion for termination of the line search. Gives numerical results on ten test
problems.

/AC/ Campbell, William J. (1965) “The Wind-Driven Circulation of Ice and Water in a
Polar Ocean,” J. of Geophysical Rwearch 70, pp. 3279-3301.

Solves nonlinear equations with 780 variables using conjugate gradients on a linear system
at each iteration.

/CN/ Fletcher, R. (1965)  “Function Minimization without Evaluating Derivatives - A Re-
view,” Computer J. 8, pp. 33-41.

Reviews conjugate direction methods of Smith (1962)’ Powell (1964) and Davies, Swarm, and
campey (1964).

/L/ Golub, G. and W. Kahan  (1965) “Calculating the Singular Values and Pseudo-Inverse
of a Matrix,” SlAM  J. Numer. Anal. 2, Series B, pp. 205-224.

Uses Lanczos’ observation that the singular values of a matrix are the eigenvalues of a ma-
trix of dimension n +m with zeroes on the block diagonal and A and A* off the diagonal.
Generates the bidiagonal form from Householder transformations or from the Lanczos
(1950) algorithm. -

/CN/ Nashed,  M. 2. (1965) “On General Iterative Methods for the Solutions of a Class of
Nonlinear Operator Equations,” Math. of Comp. 19, pp. 1424.

Gives a class of iterative methods for operators in Hilbert space and shows that conjugate
gradients and others are first  order approximations to these methods.

/AN/ Paiewonsky, Bernard (1965) “Optimal Control: A Review of Theory and Practice,”
AL&4 J. 3, pp. 19854006.

Surveys control problems and nonlinear optimization methods.

/AN/ Wilde, D. J. (1965) “A Review of Optimioation  Theory,” Indust. and Eng. Chem.
57 no. 8, pp. lS31.

Mentions conjugate gradients and other methods.

/CEL/  Wilkinson, J. H. (1965) The Algebraic Eigenvaluc Problem, Clarendon  Press, Ox-
ford.

Advocates use of Lanczos (1950) algorithm with double precision arithmetic and complete
reorthogonalization. Restarts with different initial vectors if the size of the new vector
deteriorates in the nonsymmetric c83e.

1966

/EN/ Bradbury, W. W. and R. Fletcher (1966) “New Iterative Methods for Solution of the
Eigenproblem,” Numcr. Math. 9, pp. 259-267.

Uses conjugate gradient and DFP algorithms to solve the generalized symmetric eigenprob-
lem by minimizing the Rayleigh quotient. Notes that the line searches can be performed ex-

,
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96.

97.

98.

99.

100.

101.

actly. Renormalizes at each step to keep the infinity norm of the iterate equal to one. Re-
ports faster convergence with conjugate gradients except on very ill-conditioned problems,
but both methods are slower than QR if many eigenvalues are desired.

/F%/ D’Yakonov, Ye. G. (1966) “The Construction of Iterative Methods Based on the Use
of Spectrally Equivalent Operators,” USSR Comp. Math. and Math. Phya. 6, No. 1, pp. 14-
46.

(Zh. v&zhisl.  Mat. mat. Fix. 6, No. 1, pp. 1 b9/) Uses spectrally equivalent operators in a
Richardson iterative algorithm and analyzes convergence.

/CELP/  Kaniel, Shmuel (1966) “Estimates for Some Computational Techniques in Linear
Algebra,” Math. of Camp. 95, pp. 369-378.

Develops convergence bounds for conjugate gradients in terms of Chebyshev polynomials
and the condition number of the matrix. Develops bounds for Lancros (1950) method eigen-
values in terms of condition number and separations. Notes that results extend to Hilbert
space. Results corrected in Belford and Kaufman (1974).

/EL/ Lehmann, N. J. (1966) “Zer Verwendung optimaler Eigenwerteingrenzungen bei der
L&ung symmetrischer Matrioenaufgaben,” Ntrmer.  Math. 8, pp. 42-55..

Develops a previous idea of using a set of Rayleigh quotients to estimate eigenvalues to the
special case where the test vectors are those from the Lanczos (1950) recursion and deter-
mines inclusion intervals for the largest. Applies the algorithm to tri (-1,2,-l) for n ~30.
Gets good estimates for 4 eigenvalues after 8 iterations.

/N/ Mitter, S., L. S. Lasdon, and A. D. Waren  (1966) “The Method of Conjugate Gra-
dients for Optimal Control Problems,” Proc.  IEEE 54, pp. 904-905.

Notes that the FletcherCReeves  (1964) method also applies in function space.

/AN/ Pitha,  J. and R. Norman Jones (1966) “A Comparison of Optimization Methods for
Fitting Curves  to Infrared Band Envelopes,” Canadian J. of Chemistry  44, pp. 3031-3050.

Concludes that DFP is more effective than a nonlinear conjugate gradient method.

/CEP/ Wachspress, Eugene L. (1966) Iterative Solution of Elliptic Systems and Applica-
tions to the Neutron Difliwion Equations of Reactor PhyGcs,  Prentice-Hall, Englewood Cliffs,
N.J..

In Chapter 5, derives the Lancsos (1959) algorithm and “combined” algorithms (e.g.,
Lanczos-Chebyshev)  in a way similar to Engeli et al (1959). Notes that the algorithms can
be applied to a product of two symmetric matrices. Derives the Chebyshev algorithm for
real eigenvalues and for eigenvalues bounded by an ellipse in the complex plane. Discusses
Lanczos’ eigenvalue algorithm with initial filtering and with a polynomial in A as the
operator. In Chapter 6, discusses premultiplication of the linear system by a matrix, and
applying the Lanczos or Chebyshev algorithm to the transformed system. Uses ADI  precon-
ditioning as an example. Gives g rate of convergence estimate for the model problem ADI
preconditioned algorithm. In Chapter 9, derives a multigrid algorithm, relating the idea of
contracting the basis to Lancoos  projection, and performs numerical experiments indicating
improvement over the Golub-Varga  two-cyclic version of the Chebyshev algorithm and over
SOR.

102. /AN/ Wilson, Robert (1966) “Computation of Optimal Controls,” J. of Math. Anal. and
Applies.  14, pp. 77-82.

Changes a constrained optimization problem to an unconstrained dual problem, decomposes
it into subproblems, and applies conjugate gradients.
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103. /AN/ Young, P. C. (1966) “Parameter Estimation and the Method of Conjugate Gra-
dients,” Ptoc. LEEE 54, pp. 1965-1967.

Uses Mitter,  Lasdon, Waren  (1966) version of FletcheeReeves  (1964) algorithm for real-time
process parameter estimation. “Unfortunately, the excellent characteristics of the conjugate
gradients approach...are not maintained ss the level of additive noise is increased. Consider-
able data averaging or ‘smoothing’ becomes necessary even for low noise levels, and this
tends to destroy the real-time nature of the algorithm.”

1967

104. /CNP/  Daniel, J. W. (1967) “The Conjugate Gradient Method for Linear and Nonlinear
Operator Equations,” SUM J. Numer. Anal. 4, pp. 10-26.

Presents convergence rates for the conjugate gradient iteration for bounded linear operators
with bounded inverse. Discusses conjugate gradients in full generality, with preconditioning
matrix and inner product matrix. Suggests using Laplacian operator to precondition
second-order linear elliptic partial differential equations. Nonlinear results corrected in
Daniel (1970) and Cohen (1972).

105. /N/ Daniel, James W. (1967) .“Convergence-  of the Conjugate Gradient Method with
Computationally Convenient Modifications,” Numer. Math. 10, pp. 1251131.

Proves convergence and correct asymptotic rate constant for nonlinear conjugate gradients
with inexact line searches. Replaces direction vector parameter by formula which do not
involve the second derivative matrix. Nonlinear results corrected in Daniel (1970) and
Cohen (1972).

106.  /C/ Forsythe, George E. (1967) “Today’s Computational Methods of Linear Algebra,”
SL4iU Rev. 9, pp. 489-515..

Gives conjugate gradients credit to Lanczos (1950) and Hestenes and Stiefel (1952). Notes
that in 1953, the stability of conjugate gradients was much better understood than that of
Gauss elimination.

107. /N/ Lasdon, L. S., S. K. Mitter, and A. D. Waren (1967) “The Conjugate Gradient
Method for Optimal Control Problems,” IEEE Trans. on Auto. Control AGl2,  pp. 132-138.

Derives a function space version of the nonlinear conjugate gradient method. Proves con-
vergence if function is bounded below, continuously Frechet differentiable, and the second
Frechet derivative is bounded.

108. /AN/ Pitha,  J. and R. Norman Jones (1967) “An Evaluation of Mathematical Functions
to Fit Infrared Band Envelopes,” Canadian J. of Chemistry 45, pp. 2347-2352.

Solves nonlinear least squares problems by Levenberg-Marquardt with conjugate gradients.

109. /AN/ Sinnott, Jr., J. F. and D. G. Luenberger (1967) “Solution of Optimal Control Prob-
lems by the Method of Conjugate Gradients,” in 1967 Joint Automatic Control Conference,
Preprints of Papere,  Lewis Winner, New York, pp. 566-574.

Develops the conjugate gradient algorithm for minimization subject to linear
straints and applies it to control problems, obtaining superlinear convergence.

equality con-

110. /CN/  Zangwill, Willard I. (1967) ‘Minimizing a Function Without Calculating Deriva-
tives,” Computer J. 10, pp. 293-296.

Modifies the algorithm of Powell (1964) to handle the case where the directions fail to be
linearly independent and proves convergence for strictly convex functions. Proposes an al-
ternate method.
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1968

111.

112.

113.

114.

115.

116.

117.

118.

/PS/ DuPont, T o d d  ( 1 9 6 8 ) “A Factorization Procedure for the Solution of Elliptic
Difference Equations,” SLAM J. Numer. Anal. 5, pp. 753-782.

Extends the Dupont, Kendall, Rachford (1968) results to different boundary conditions and
mildly nonlinear problems, obtaining a work estimate of 0 (h”-‘~210gc’L)  for d -dimensional
problems to reduce the error by t.

/PS/ Dupont, Todd, Richard P. Kendall, and H. H. Rachford, Jr. (1968) “An Approxi-
mate Factorization Procedure for Solving Self-Adjoint Elliptic Difference Equations,” SIAM
J. Numer. Anal. 5, pp. 559-573.

. .Analyres  the iteration Mz,,+l-Mz, --u(Az,, -b ) when A is a dnite difference approximation
to an elliptic operator, and the domain is rectangular. Uses the splitting matrix M =LL T ,
where L +L T has the same sparsity structure as A and the coefficients are chosen based on
the differential operator. Gives a work estimate of 0 (hb%&) in two dimensions to
reduce the error by Q, using a Chebyshev sequence of o’s or 0 (h ?oge-‘)  for certain fixed
W’S.

/AEL/  Eu, B. E. (1968) ‘Method of Moments in Collision Theory,” J. Chem. Phys. 48,
pp. 5611-5622.

Uses Lanczos algorithm to compute eigensystem of model of twc&ody collisions.

/F5/  Evans, D. J. (1968) “The Use of Pre-conditioning in Iterative Methods for Solving
Linear Equations with Symmetric Positive Definite Matrices,” J. ht. Maths. Appla’ca.  4, pp.
295-314.

(Note: The date “1967” on the first page of the article is a misprint.) Considers first order
methods (Gauss-Seidel, etc.) and second order methods (Richardson, etc.). “Any attempt to
improve these basic fundamental methods must clearly apply some form of pre-conditioning
to the original equations, in order to minimize the P-condition number and hence increase
the rate of convergence.” Considers preconditioner M ==(I-wL )(I-wL T ) and applies it to
the model problem with ones on the diagonal. Uses Chebyshev acceleration.

/C/ Forsythe, George E. (1968) “On the Asymptotic Directions of the 8 -Dimensional Op-
timum Gradient Method,” Numer, Math. 11, pp. 57-76.

Studies the directions from which the iterates approach their limit for the 8 -dimensional
steepest descent algorithm, equivalent to conjugate gradients restarted every 8 iterations.
Shows that either termination occurs in one restart cycle, or convergence is no faster than
linear.

/ACP/ Fox, R. L. and E. L:Stanton  (1968) **Developments in Structural Analysis by
Direct Energy Minimization,” A&U J. 6, pp. 1036-1042.

Preconditions the stiffness matrix by the diagonal. Reports that conjugate gradients and
DFP are then effective.

/N/ Horwitz, Lawrence B. and Philip E. Sarachik (1968) “Davidon’s Method in Hilbert
Space,” SZAM J. Appf.  Math. 16, pp. 676-695.

Uses the same techniques that were applied to the Hestenes-Stiefel (1952) and Fletcher-
Reeves (1964) algorithms to generalize algorithm to Hilbert space.

/AN/ Klimpel, Richard and Emmet  Phillips (1968) **Extrapolation of Thermal Functions
to 0’ K Using Unconstrained Nonlinear Optimization,” J. of Chemical and Engineering Data
13, pp. 97-101.

Uses DFP.
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119. /N/ Kratochvil, Alexander (1968) “La Me’thode  des Gradients Conjugents pour les
Equations Non Lin&ires  das L’Espace  de Banach,” Commentationcs  Mathcmaticac Vniver-
8itatM Carolinae 9, pp. 659-676.

Studies convergence of the conjugate gradient
between a reflexive Banach space and its dual.

method for monotone nonlinear operators

120. /N/ Lynch, R. T. and K. A. Fegley (1968) “The Davidon Method for Optimal Control
Problems,” Proc.  LE’ 56, pp. 1253-1254.

E&tends DFP method to finite dimensional function space.

121. /P/ March&,  G I. and Ju. A. Kuznecov (1968) “On Optimal Iteration Processes,” Soviet
Math. Dokf.  9, No. 4, pp. 1041-1045.

(DON.  Akad. Nauk SSSR 181, No. 6, 1968) Studies the convergence of an iterative method
with polynomial preconditioning, and shows it equivalent to the u dimensional steepest des-
cent algorithm for certain choices of the coeffkients. Discusses the 8 step conjugate gra-
dient algorithm with preconditioning.

122. /CN/  Myers, Geraldine E. (1968) “Properties of the Conjugate-Gradient and Davidon
‘Methods,” J. of Optimization Titeory and Applicationa  2, pp. 209-219.

Shows that the algorithms produce directions
under perfect line searches, identical iterates.

that are scalar multiples of each other and,

123. /AN/ Nagy, George (1968) “Classification Algorithms in Pattern Recognition,” IEEE
Tranu. on Audio and Electroacosstics  AU-16, pp. 203-212.

Notes that conjugate gradients can be used in classification according to the Anderson-
Bahadur criterion (see Nagy (19688)).

124. /AN/ Nagy, George (1968) “State of the Art in Pattern Recognition,” Proc.  IEEE 56, pp.
836-862.

Discusses the use of conjugate gradients in optimizing  using the “minimax  decision rule” of
Anderson and Bahadur, which equalizes the probability of type 1 and type 2 classification
errors.

125. /N/ Pagurek, B. and C. M. Woodside (1968) “The Conjugate Gradient Method for Op I
timal  Control Problems with Bounded Variables,” Automatica 4, pp. 337-349.

Modifies the Fletcher-Reeves (1964) and Lasdon  (second derivative) methods to truncate the
step in the presence of constraints.

126. /PS/ Stone, Herbert L. (1968) “Iterative Solution of Implicit Approximations of Multidi-
mensional Partial Differential Equations,” SIAM J. Numcr. Anal. 5, pp. 530-558.

Pmposes  the iteration Mz,,  +1 ===A&,  -w(Aq, -b ), where A is a finite difference approximation
to an elliptic operator, and the domain is rectangular. Uses the preconditioning matrix
M==LLT , where L +L T has the same sparsity structure as A and the coeffkients are
chosen based on the differential operator. Proposes cycling from top to bottom and bottom
to top on alternate iterations for the application of the preconditioner.

127. /AN/ Wallach, Yehuda (1968) “Gradient ‘Methods for Load-Flow Problems,” IEEE Trans.
on Power Apparatus and Systema PAS-87, pp. 13141318.

Formulates load flow
conjugate gradients.

problem asan optimization problem and applies steepest descent and

128. /L/ Yamamoto, Tetsuro (1968) “On Lanczos’ Algorithm for Tri-Diagonalization,” .I. Sci.
Hiroshima Univ. Ser A-I 32, pp. 259-284.
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Extends the results of Causey and Gregory (1961) on continuing the Lanczos biorthogonal
reduction algorithm to the csse in which both vectors, not just one, vanish. Gives a
geometric interpretation.

I 1989

129.  /AN/ Bierson, B.  L. (1969) - “A Discrete-Variable Approximation to Optimal Flight
Paths,” Astronartica  Aeta 14, pp. 157-169. .
Uses Fletcher-Reeves (1964) to solve a sequence of unconstrained problems.

130. /AN/ Birta, Louis G. and Peter J. Truzhel  (1969) “A Comparative Study of Four Imple-
mentations of a Dynamic Optimization Scheme,” Simulation 13, No. 2, pp. 89-97.

Concludes that DFP is faster than Fletcher and .Reeves  (1964) conjugate gradients on a set
of optimal control problems.

131. /CN/ Cantrell, Joel W. (1969) “Relation between the Memory Gradient Method and the
,FletchelcReeves Method,” ..T. of Optimization Theory and Appficationr  4, pp. 67-71.

Notes that memory gradient and Fletcher-Reevesare the same on quadratic functions.

132. /EN/ Fox, R. L. and M. P. Kapoor (1989)  “A Minimization Method for the Solution of the
Eigenproblem Arising in Structural Dynamics,” in Proceeding8 of the Second Conference on
Mat& Methods in Structural Mechanics, td. L. Berke,  R. M. Bader, W. J. Mykytow, J. S.
Przemieniecki, M. H. Shirk, Wright-Patterson Air Force Base, Ohio AlTDL-TR-B&150, pp.
271-306.

Finds several small eigenvalues of a generalized eigenproblem by using the Bradbury-
Fletcher (1966) idea of minimizing the Raleigh quotient using the conjugate gradient alge
rithm, and the idea of orthogonalioing against the eigenvectors previously determined.
Gives numerical examples.

133. /AC/ Fried, Isaac (1969) “More on Gradient Iterative Methods in Finite-Element
Analysis,” ALU J. 7, pp. 565-567.

Uses conjugate gradients to construct the explicit inverse of a finite-element matrix, and
discusses storage management on tape units, keeping the original matrix unassembled.
Discusses modifications to the matrix in csse it is rank deficient.

134. /AEL/  Garibotti, C. R. and M. Villani (lQ69)  “Continuation in the Coupling Constant for
the Total K and T Matrices,” Zl Nuovo Cimento 59, pp. 107-123.

Uses the Lanczoe (1950) algorithm for finding the eigensystem of a problem in nonrelativistic
scattering theory.

135. /CP/ Godunov, S. K. and G. P. Prokopov (1969) “Solution of the Laplace  Difference
Equation,” USSR Comp. Math. and Math. Phy8. 9, No. 2, pp. 285-292.

(Zh.  v$chisf. Mat. mat. Fit. 9, No. & 46&468) For the model problem, obtains an algorithm
with number of iterations independent of mesh size by combining AD1 with a Rayleigh-Ritz
criteria for the parameters.

136. /CN/  Goldfarb, Donald (1969) “Extension of Davidon’s Variable Metric Method to Max-
imization under Linear Inequality and Equality Constraints,” SIAM J. Appl. Math. 17, pp.
739-764.

Proposes a stable gradient projection approach updating the full Hessian approximation.
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137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

/N/ Hestenes, Magnus  R. (1969) “Multiplier and Gradient Methods,” J. of Optimization
Theory and Appfieations  4, pp. 303-320.

Discusses conjugate direction and conjugate gradients in terms of the Rayleigh-Ritz method
on Hilbert space with applications to minimizing a function subject to nonlinear constraints
by the augmented Lagrangian method.

/N/ Kawamura, K. and R. A. Volz (1969) “On the Convergence of the Conjugate Gra-
dient Method in Hilbert Space,” IEEE Trans. on Aarto.  Control AC-14, pp. 296-297.

Extends conjugate gradients to Hilbert spaces using uniform continuity of the gradient in-
stead of bounded second Frechet  derivatives as do Mitter, Lasdon, and Waren  (1986).

/AC/ Luenberger,  David G. (1969) “Hyperbolic Pairs in the Method of Conjugate Gra-
dients,” SIAM J. Appf. Math. 17, pp. 1263-1267.

Applies conjugate gradients to the indefinite matrix system corresponding to minimizing a
quadratic subject to linear equality constraints. Derives a double step algorithm to over-
come breakdown when the direction vector satisfies (p ,Ap )=O.

/AL/ Marshall, Jr., Thomas G. (1969) “Synthesis of RLC  Ladder Networks by Matrix
‘Tridiagonalization,” IZGZE  Trane.  Circuit Theory CT-16, pp. 39-46.

Reduces cyclic matrices to tridiagonal form by an algorithm which has the Lanczos method
as a special case.

/CN/ Mehra, Raman K. (1969) “Computation of the Inverse Hessian Matrix Using Conju-
gate Gradient Methods,” Proc.  IEEE 57, pp. 225-226. .

Constructs the Hessian inverse from the search directions.

/N/  Miele, A, H. Y. Huang,  and J. C. Heideman (1969) “Sequential Gradient-Restoration
Algorithm for the Minimization of Constrained Functions - Ordinary and Conjugate Gra-
dient Versions,” J. of Optimization Theory and Appfkah’ons 4, pp. 213-243.

Gives an extension of the conjugate gradient algorithm to minimization of nonlinear func-
tions subject to nonlinear equality constraints by alternating conjugate gradient steps on the
augmented Lagrangian function with steps back to the constraints.

/ACN/ Pearson, J. D. (1969)  ‘Variable Metric Methods of Minimisation,” Computer J.
12, pp. 171-178.

Concludes that conjugate gradients is generally better than DFP for well-conditioned prob-
lems and worse for ill-conditioned.

/N/ Polak, E. and G. Ribiere (1969) “Note sur la Convergence de Methodes de Directions
Conjugees,” Revue Francaise  d’kformatiqre  et de Recherche Opcrationneffe 3, pp. 35-43.

Modifies the update to the direction vector in the Fletcher-Reeves (1964)  algorithm.

/CN/  P o l y a k ,  B .  T .  (1969) -“The Conjugate Gradient Method in Extremal Problems,”
USSR Comp. Math. and Math. Phye. 9, No. 4, pp. Q4-112.

(Zh. eehisl. Mat. mat. Fiz. 9, No. 4, 80%8el)  Proves convergence of a conjugate gradient
method for nonquadratic functions and for quadratic functions with upper and lower bounds
on the variables. Advocates saving the direction vectors and using them for a change of
basis.

/AEL/ Sebe, T. and J. Nachamkin (1969) “Variational Buildup of Nuclear Shell Model
Bases,”  Anna& ofPhy8ica  51, pp. 100-123.

Uses the Lanczos algorithm with very few steps to find eigenvalues corresponding to low ly-
ing states belonging to nuclear spins in a shell model.
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147. /CN/ Sorenson, H. W. (1969) “Comparison of Some Conjugate Direction Procedures for
Function Minimization,” J. of the Franklin Institute 288, pp. 421-441.

Shows that DFP, conjugate gradients, and Partan are identical on quadratic functions.
Derives other properties. Proposes a new definition for the @ parameter: Ag T g /Ag T p .

148. /AN/ Westcott, J. H. (1969) “Numerical Computational Methods of Optimisation in Con-
trol,” Automatica 5, pp. 831-843.

Gives survey of methods, including conjugate gradients.

1970

149. /CN/ Broyden, C. G. (1970)  “The Convergence of a Class of Double-rank Minimization
Algorithms 1. General Considerations,” .J. Inut.  Mathe. Appfiea.  6, pp. 76-90.

Analyzes error vectors sr, -z* in the Broyden (1967) family of Quasi-Newton algorithms
when applied to the minimization of a quadratic function. Uses the observations to gain in-
sight into the algorithms’ behavior on non-quadratic functions.

150. /AL/ Chang, F. Y. and Omar Wing (1970) “Multilayer RC Distributed Networks,” IEEE
Trans. on Circuit Theory CT-17, pp. 3240.

matrix with positive entries, related to theUses Lanczos algorithm to
physical parameters in the

generate
required

a tridiagonal
network.

151.  /CN/ Daniel, James W. (1970) The Approximate Minimization of Fune tionafe, Prentice-
Hall Inc., Englewood Clif%, NJ.

Discusses the conjugate gradient algorithm in Hilbert space, including conjugate
on quadratics, conjugate gradients on quadratics, and general conjugate gradients.

directions

152. /CN/  Daniel, James W. (1970) ‘A Correction Concerning the Convergence Rate for the
Conjugate Gradient Method,” SIAM J. Numer. Anal. 7, pp. 277-280.

Gives correction to Daniel (1967) result for nonlinear equations.

153. /AC/ De, S. and A. C. Davies (1970) “Convergence of Adaptive Equaliser for Data
Transmission,” Efcctronics  Lettera  6, pp. 858861.

Proposes conjugate gradients for solving a least squares problem.

154. /AL/ Emilia, David A. and Gunnar  Bodvmn  (1970) “More on the Direct Interpretation
of Magnetic Anomalies,” Earth and Planetary Science Letter8  8, pp. 320-321.

Relates the convergence theory for their 1969 algorithm to that of the Lanczos minimized
iterations algorithm.

155. /AC/ George, 6. Alan (1970) -The Vae of-Direct Method8 for the Solution of the Discrete
Pobon Equation on Non-Rectangular Regions, STAN-CS-7O=ISQ,  Computer Science
Department, Stanford University.

Suggests solving the Poisson equation on domains that are unions or differences of rectangles
by taking advantage of fast solvers for rectangular regions. Suggests using a capacitance
matrix method of Hackney  or applying the Sherman-Morrison-Woodbury formula, recogniz-
ing that the desired equation involves a matrix which is a low rank modification of one that
can be handled by fast solvers. Proposes solving the resulting systems by direct methods or
iterative methods. Proposes SOR or conjugate gradients for the capacitan$e matrix algo-
rithm, since the matrix may not be explicitly available. Proposes a termination criterion for
the iterative methods. Presents numerical experiments using the SOR algorithm.
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156.

157.

158.

159.

160.

161.

162.

163.

164.

/EL/ Godunov, S. K. and G. P. Prokopov (1970) “A Method of Minimal Iterations for
Evaluating the Eigenvalues of an Elliptic Operator,” USSR Comp. Math. and Math. Phya.
10, No. 5, pp. 141.154.

(Zh. @h&f. Mat. mat. Fiz. 10, No. 5, pp. lf80-1190)  Uses the Lanczos (1950) algorithm to
reduce the matrix of a difference operator to tridiagonal form, and computes the frequencies
of a piezo-electric  resonator. Recomputes the eigenvalues for increasing number of Lanczos
steps until there is little change. Notes that taking more than n steps causes extra copies
of the eigenvalues to appear and converge.

/CN/  Huang, H. Y. (1970) “Unified Approach to Quadratically Convergent Algorithms
for Function Minimization,” J. of Optimization Theory and Appfications  5, pp. 405-423.

Derives a class of algorithms with one-dimensional line searches, quadratic termination,
function and gradient evaluation only, and using only that information available at current
and previous step. Notes that variable metric algorithms and conjugate gradient algorithms
are special cases.

/ACP/ Kamoshida, Mototaka, Kenji Kani, Kozo Sato, and Takashi Okada (1970) “Heat
Transfer Analysis of Beam-Lead Transistor Chip,” LE’ Tranr. on Efectron.  Devices ED-
I?, pp. 863470.

Uses conjugate gradients with scaling to make the diagonal of the matrix equal to 1.

/N/ Kelley, H. J. and J. L. Speyer (1970) “Accelerated Gradient Projection,” in Symposi-
urn on Optimization, ed. A. V. Balakrishnan, M. Contensori, B. F. de Veubeke, P. Kree, J.
L. Lions and N. N. Moiseev, Lecture Notes in Mathematics 132, Springer, New York, pp.
151-158.

Develops the DFP algorithm for nonlinear constraints.

/AC/ Kobayashi,  Hisashi (1970) “Iterative Synthesis Methods for a Seismic Array Proces-
sor,” LEEE Trans. on Geoscience Efectronice  GE8, pp. 169178.

Uses a few steps of the conjugate gradient algorithm with projection to minimize a quadrat-
ic function subject to a constraint.

/ACP/ Luenberger,  David G. (1970) “The Conjugate Residual Method for Constrained
Minimization Problems,” SIAM J. Numcr. Anal. 7, pp. 3W-398.

Constructs a method with residuals A -conjugate and directions A ‘-conjugate and applies it
to quadratic minimization with linear equality constraints.

/N/ Mieie, A. and J. W. Cant&l  (1970) “‘Memory Gradient Method for the Minimization
of Functions,” in Symposium  on Optimization, ed. A. V. Balakrishnan, M. Contensori, B. F.
de Veubeke, P. Kree,  J. L. Lions and N. N. Moiseev, Lecture Notes in Mathematics 132,
Springer, New York, pp. 252-263.

Develops a method  for nonquadratic  functions which takes steps of the form -erg +j?pdr ,
minimizing at each step over o and @. Reduces to the conjugate gradient method in the
case of quadratic functions.

/ACE/ bjalvo, I. U. and M. Newman (1970) “Vibration Modes of Large Structures by an
Automatic Matrix-Reduction Method,” ALAA  J. 8, pp. 12341239.

Solves the generalized eigenvalue problem with the Lanczos algorithm using a small number
of steps (credited to Crandall  (1956)) and the Causey-Gregory (lQ61) stabilization method.

/N/ Ortega, James M. and Werner C. Rheinboldt (1970) “Local and Global Convergence
of Generalized Linear Iterations,” in Studt’es  in Numerical Anafyais 2: Numerical Solution6
of Nonlinear Pro6femq  ed. J. M. Ortega and W. C. Rheinboldt, SIAM,  Philadelphia.

,
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Gives convergence results for conjugate gradients under conditions such 85 that the function
is twice continuously diierentiable and smallest eigenvalue of the Hessian is bounded below
by a number greater than zero on all of R ’ .

165. /EL/ Paige, C. C. (1970) “Practical Use of the Symmetric Lanczos Process with Re-
Orthogonalization,” BIT 10, pp. 183-195.

Gives rounding error analysis and stopping criterion for finding several extreme eigenvalues
and corresponding eigenvectors  using complete re-orthogonalization. Notes that eigenesti-
mates may be accurate despite loss of orthogonality.

166. /AEL/  Peters, G. and J. H. Wilkinson (1970) “AZ ==XBz  and the Generalized Eigenprob-
lem,” SL4M  J. Numer.  Anaf. 7, pp. 47Q-492.

Applies Lanczos algorithm with complete reorthogonalization to L “ALeT where B -LL T .
Discusses an idea of Golub for complete reorthogonalization without saving the vectors.

167. /N/ Powell, M. J. D. (1970) “A Survey of Numerical Methods for Unconstrained Optimi-
zation,” SlAMRev. 12, pp. 79-97.

‘Surveys nonlinear conjugate gradients and conjugate direction methods, including s-step
gradient, Zoutendijk’s (1960) method, Fletcher-R_eeves  (1964),  Powell, and DFP.

168. /AN/ Smith, Otto J. M (1970) “Power System State Estimation,” IEEE Trans. on Power
Apparatw and Syutemr  PAS-89, pp. 375-380.

Uses DFP in solving a least squares problem related to power distribution.

169. /AN/ Straeter, Terry A. and John E. Hogge  (1970) “A. Comparison of Gradient Dependent
Techniques for the Minimization of an Unconstrained Function of Several Variables,” AlAA
J. 8, pp. 2226-2229.

Compares DFP and Fletcher-Reeves (1964) algorithm to other methods on problems related
to. optimal control.

170. /N/  Tripathi, S. S. and K. S. Narendra (1970) “Optimization Using Conjugate Gradient
Methods,” IEEE Trunu.  on Auto. Control AG15, pp. 268-269.

Uses DFP on optimal control problems. Contrasts with Lynch and Fegley (1988) in that the
method is applied to the original problem, not a discretized version.. .

1971

171. /ACN/  Fong, T. S. and R. A. Birgenheier (1971) “Method of Conjugate Gradients for An-
tenna Pattern Synthesis,” Radio Science 6, pp. 1123-1130.

Uses conjugate gradients to minimize an error function with Frechet  derivative.

172. /AENP/  Geradin, M. (1971) “The Computational Efficiency of a New Minimization Algo-
rithm for Eigenvalue Analysis,” J. of Sound and Vibration 19, pp. 319-331.

Uses diagonal scaling and the local Hessian in the computation of conjugate gradient
eters for minimizing the Rayleigh quotient for eigenvalues of a plate problem.

param-

173. /AN/ Goldberg, Saul and Allen Durling (1971) “A Computational Algorithm for the
Identification of Nonlinear Systems,” .l of the FranWin Institute 291, pp. 427-447.

Solves a nonlinear control problem using conjugate gradients.

174. /N/ Kelley, H. J. and G. E. Myers (1971) “Conjugate Direction Methods for Parameter
Optimization,” Aatronautica Aeta 16, pp. 45-51.

Compares five methods and finds conjugate gradients better than Davidon.
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175. /AN/ Kobayashi, Hisashi (1971) “Simultaneous Adaptive Estimation and Decision Algo-
rithm for Carrier Modulated Data Transmission Systems,” LEEE Truns.  on Commun. Tech.
COM-19, pp. 268-280. .

Proposes solving maximum likelihood problems by conjugate gradients.

176. /C/ Maistrovskii, G. D. (1971) “Convergence of the Method of Conjugate Gradients,”
USSR Comp. Muth. and Math. Phye. 11 No. 5, pp. 244248.

(Zh. v+hirl. Mat: mat. Fix. 11, No. 5, 1 Ml-MO/) Proves that the FletcheeReeves  (1964) al-
gorithm converges for any uniformly convex function with bounded level sets and Lipachitz
continuous gradient, using exact line searches.

177. /EIL/ Paige, C. C. (1971) The Computation of Eigcnvafuce and Ea’genvectors of Very Large
Sparuc Mot&es,  Ph. D. dissertation, University of London.

Gives rounding error analysis of Lancros (1950) method (and Hessenberg methods in gen-
eral). Corrects and expands Kaniel (1966) convergence theory. Compares various imple-
mentations.

178. ,/AL/ Phillips, James L. (1971) “The Triangular Decomposition of Hankel Matrices,”
Math. of Comp. 25, pp. 599-602.

Observes that a Hankel matrix is a moment matrix: H;i  ==(B’% ,B j-b ) for some matrix
B and vector v . Applies the Lanczos (1950) algorithm to B and obtains a Cholesky factor-
ization of H as a byproduct of 0 (n 2) operations.

179. /CN/ Powell, M. J. D. (1971) “Recent Advances in Unconstrained Optimization,” Math.
Programming 1, pp. 26-57.

Surveys conjugate gradients and Quasi-Newton research (among other things) from 1967 to
1971.

180. /C/ Reid, J. K. (1971) “On the Method of Conjugate Gradients for the Solution of Large
Sparse Systems of Linear Equations,” in Large Spawe  Sets of Linear Equations, Academic
Press, New York, pp. 231-254.

Emphasizes the use of conjugate gradients as an iterative algorithm for large, sparse, well-
conditioned problems, using much fewer than n iterations. Discusses various computational
forms of the algorithm and compares storage requirements, operations counts, and stability.
Recommends recursive residuals with a-r T r /p TAp and +r T r /r T r . Also uses
minimum residual algorithm.

181. /EL/ Weaver, Jr., William and David M. Yoshida (1971) “The Eigenvalue Problem for
Banded Matrices,” Comprters and Structure8 1, pp. 651-664.

Uses Lanczos (1950) algorithm with n iterations and full reorthogonalioation to solve the
generalized banded eigenvalue -problem  AZ ==XBz where B is symmetric and positive
definite and A is symmetric. Solves linear systems involving B and uses QR on the tridiag-
onal matrix.

182. /PS/  Widlund, Olof B. (1971) “On the Effects of Scaling of the PeacemanRachford
Method,” Math. of Comp. 25, pp. 33-41.

Analyzes and discusses the choice of D in the iteration (wD *+H)z,, +l/~(wD *-V)r, + b ,
(wD2+V)z,,+I==(w02-H)z,  +I/2+b , and suggests the use of D pdiug (H) or D =diag (V).

183. /AN/ Willoughby, J. K. and B. L. Pierson (1971) “A Constraint-Space Conjugate Gra-
dient Method for Function Minimization and Optimal Control Problems,” Int. J. Control
14, pp. 1121-1135.

Applies conjugate gradients to the Lagrangian  function, using line search to guarantee satis-
faction of equality constraints. .
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184. /EL/  Takahasi,  Hidetosi and Makoto Natori (1971-72) “Eigenvalue  Problem of Large
Sparse Matrices,” Rep. Compt. Centre, Univ. Tokyo 4, pp. 129-148.

Performs a stability analysis for the Lanczos (1950) algorithm without reorthogonalisation.,
and proposes stopping the iteration when the inner product of the Lanczos iterate with the
i.nitiaI vector grows too large in order to prevent round-off errors in the estimated eigen-
values. Gives numerical experiments illustrating the effects of the stopping criterion.

185. /ACPS/  AxeIsson, 0. (1972) “A Generalized SSOR Method,” BIT 12, pp. 443-467.

Solves a nonseparable elliptic partial differential equation by conjugate gradients precondi-
tioned with a scaled SSOR operator based on a mesh varying with the smoothness of the
coefficients. Shows that the number of iterations is dependent on h-l/* when h is defined
by h% being the smallest eigenvalue of D”A as the me&size goes to zero. Presents nu-
merical experiments.

186. */CN/ Beale, E. M. L. (1972) “A Derivation of Conjugate Gradients,” in Numerical
Metho& for Non-/incur  Optimization,  ed. F. A. -Loo&ma,  Academic Press, New York, pp.
3s43.

Gives an elementary derivation of the algorithm, including the case where the initial direc-
tion is not the gradient.

187. /CN/  Broyden, C. G. and M. P. Johnson (1972) “A Class of Rank-l Optimization Algo-
rithms,” in Numerical  Methods for Non-linear Optimization, ed. F. A. Lootsma,  Academic
Press, New York, pp. 35-38.

Derives an update formula based on minimizing
Jacobian and the approximation matrix.

a norm of the difference between the inverse

188. /CN/ Cohen, Arthur I. (1972) “Rate of Convergence of Several Conjugate Gradient Algo-
rithms,” SLAM J. Numcr. Anal. 9, pp. 248259.

Proves an n-step quadratic convergence rate for the Poiak-Ribiere (1969), Daniel (1967),
and Fletcher-Reeves (1964) algorithms when they are reinitialized periodically. Corrects er-
rors in the work of Daniel and of Polyak (1969).

189. /N/  Crowder, Harlan and Philip Wolfe (1972) “Linear Convergence of the Conjugate Gra-
dient Method,” IBM .I. of Rcs. tznd Devcf. 16, pp. 431-433.

Shows that conjugate gradients with initial direction vector not equal to the residual con-
verges only linearly, and that conjugate gradients with no restarts on a nonlinear function
converges no worse than linearly.

190. /AEL/  Dahlquist, Germund, Stanley C. E&en&at, and Gene H. Golub (1972) “Bounds for
the Error of Linear Systems of Equations Using the Theory of Moments,” J. of Math. Anal.
and Applica. 37, pp. 151-166.

Uses the Lanczoa algorithm to derive quadrature rules by finding roots of
polynomials, and uses these for obtaining error bounds for linear systems.

a s e t o f orthogonal

191. /CN/  Dennis, Jr., J. E. (1972) “On Some Methods Based on Broyden’s Secant Approxi-
mation to the Hessian,” in Numerical Methods for Non-linear Optimization, ed. F. A. Loots-
ma, Academic Press, New York, pp. 19-34.

Surveys some rank-one and rank-two update algorithms and a class of methods for least
squares problems and some convergence results.
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192. /C/ Devooght, J. (1972) “The Reproducing Kernel Method II,” J. Muth. Whys. 13, pp.
1259-1268.

Derives a connection between the conjugate gradient algorithm and the reproducing kernel
method.

193.

194.

195.

196.

197.

198.

199.

200.

/CN/ Dixon, L. C. W. (1972) “Quasi-Newton Algorithms Generate Identical Points,”
Math. Programming 2, pp. 383-387.

Notes that all algorithms in the Broyden  (1967) family of algorithms generate the same se-
quence of points on general differentiable functions if the line searches are exact.

/AEN/ Fried, I. (1972) “Optimal Gradient Minimioation Scheme for Finite Element
Eigenproblems,” J. of Sound and Vibration 20, pp. 333-342.

Computes the smallest eigenvalue of a generalired eigenvalue problem by applying conju-
gate gradient to minimize the Rayleigh  quotient. Determines the B parameter by seeking
the direction which will result in the lowest function value, much aa in the memory gradient
method. Uses projection to get the higher eigenvalues. Estimates the error in the eigen-
value estimates and presents numerical experiments.

/AEL/  Golub, G. H., R. Underwood, and J. H. Wilkinson (1972) The Lonczos Afgortlhm
for the Symmetric AZ -XBz Problem, STAN-Cg72-270,  Stanford University Computer Sci-
ence Department Report.

Assumes B positive definite, and iterates using a Cholesky factorization of it. Gives an Al-
golw program.

/L/ Gragg,  W. B. (1972) “The PadG  Table and Its Relation to Certain Algorithms of Nu-
merical Analysis,” SZAiU  Rev. 14, pp. l-62.

Gives the relation between the Lancaos  polynomials and the Pade Table.

/EL/ Haydock, R., Volker Heine, and M. J. Kelley ‘il972) “Electronic Structure Based on
the Local Atomic Environment for Tight-Binding Bands,” J. Phys. C: Solid State Phy8ica  5,
pp. 2845-2858.

Independently discovers the Lancaos (1950)  algorithm for symmetric matrices and names it
the “recursion method.” Does not normalize the vectors.

/C/ Kammerer, W. J. and M. 2. NMhed  (1972) “Iterative Methoda  for Best Approximate
Solutions of Linear Integral Equations of the Fit and Second Kinds,” .I. of Math. And. and
Applies. 40, pp. 547-573.

Proves that conjugate gradients converges to a least squares solution, and under certain con-
ditions, to the one of minimal norm.

/C/ Kammerer, W. J. and M. 2. Nashed (1972) “On the Convergence of the Conjugate
Gradient Method for Singular Linear Operator Equations,” ZAA4 J. Numer. And. 9, pp.
165-181.

Proves that conjugate gradients, applied to minimizing the norm of the residual of an equa-
tion involving a bounded linear operator between two Hilbert spaces with closed range con-
verges to a least squares solution. Gives bounds on rate of convergence in both cases. Also
studies the caSe of nonclosed range.

/N/ Klessig, R. and E. Polak (1972) “Efficient Implementations of the Polak-Ribiere Con-
jugate Gradient Algorithm,” SIAM J. Control 10, pp. 524549.

Presents two modifications to the conjugate gradient algorithm to ensure convergence
without line searches.
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201. /AN/ Leondes, C. T. and C. A. Wu (1972) “The Conjugate Gradient Method and Iti Ap
plication to Aerospace Vehicle Guidance and Control. Part I: Basic Results in the Conjugate
Gradient Method. Part II: Mars Entry Guidance and Control,” A~tronuutiee Ado 17, pp.
871-890.

C&&tea optimal trajectory for simulated problem of braking into Mass atmosphere.

202. /CN/ McCormick, Garth P. and Klaus Rittet (1972) %lethoda  of Conjugate Directions vs.
Quasi-Newton Methods,” Math. Programming 3, pp. 101416.

Recommend8 the on-p superlinear
perlinear conjugate direction methods.

Quasi-Newton algorithms over the n or n -l-step su-

203. /EL/ Paige, c. c. (1972) “computationai Variants of the Lanctm Method for the Eigen-
problem,” J. hut. Mat&.  Applier. 10, pp. 37-l.
Gives round-off error anaiysia and computationai experience with various mathematically
equivaient formuiations.

204. ’ /N/ Piamon, B. L. (1972) “A Mod&d Conjugate Gradient Method for Optimization
Problenrr,” frrt, J Control 16, pp. 119%1196. -

Showa experimentaIIy  that re&rting a nonIinear  conjugate gradient procedure is as good as
the Mehra (lSe9) idea of taking a Newton step arery 1) iterations, based on the accumulilr
t&m of the Hemian by the conjugate  gradient directions.

205. /CN/ Powell, M. J. D. (1972) “Some Properties of the V&able Metric Algorithm,” in
Numerical  Mdiok /or Non-l&war  Optimireti~, ed. F.‘A. Lootumr, Academic Press, New

\ York, pp. l-17. .
Proves convergence of the DFP algorithm
tion is convex (not uniformIy convex).

in cue that 8 level set is bounded and the func-

206. /AC/ Reid, J. K. (1972) “The Use of Conjugate Gradients for Systems of Linear Equa-
tions Pdg ‘Property A’,” SIAM J. Numrr. And. 9, pp. 32&332.

Iter8tes on h8if of the vari8bles  to 88ve work.
207. /AC/ Ruhe, Axe1 and Torbj&n Wberg (1972) “The Method of Conjugate Gradients Used

in Inverss Iteration,” BIT 12, pp. 543454. .
ShOWI4
dienb often

an idea of Goiub for solving the inverse iteration
gives convergence i n 8 smaii number of stepe.

equation by conjugste

208. /AcN/ Takahashi, Tomowaki (1972) “An Experimentai  Analysis of Optimization Algb
rithms Using a Model Function,” Optik 35, pp. 101-115.

Recqmmends  against conjugate gradients for nonlinear problems.

209. /AEL/ Whitehead, R. R (1972) “A Numericai Approach to Nuclear She&Model Calcula-
tions,” Nuclear Phyuieu  Al82, pp. 290400.

Uses the Lancsos (1950) aigorithm to compute approximate eigenstates.

210. /PS/ Young, David M. (1972) “Second-Degree Iterative Methods for the Solution of Large
Linear System8,” J. Approz.  Theorj, 5, pp. 137-148.

Notes that second order Richardson is an acceleration of Jacobi. “However, it does not
seem to be generally recognized that second degree methods can be effectively applied to
other methods as well.” Estimates rates of convergence for acceleration of SSOR, improv-
ing the Habetler and Wachsprua (1961) method of estimating o.

1973
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211.  /AN/ Bloemer, William L. and Buddy L. Bruner  (1973) “Optimization of Variational Trial
Functions,” J. Chcm. Phys. 58, pp. 3735-3744.

Uses DFP algorithm for computations in atomic and molecular theory.

212. /S/ BracheBarak,  Amnon and Paul E. Saylor (1973) “A Symmetric Factorization Pn>-
cedure for the Solution of Elliptic Boundary Value Problems,” SLAM .I. Namer.  Anuf. 10,
pp. 190206.

Studies an algorithm proposed by Stone (private communication, 1969) which, although not
second order (see Saylor (1974)), is designed to force maximal cancellation when the error
matrix is applied to a discretiaation  of a first degree polynomial.

213. /PS/ Concus, Paul and Gene H. Golub (1973) “Use of Fast Direct Methods for the
EEicient Numerical Solution of Nonseparable Elliptic Equations,” SLAM J. Numcr.  And. 10,
pp. 1103-1120.

Uses a preconditioned Chebyshev iteration, with fast direct solution of Helmholtz’s equation
on a rectangle, to solve linear and self-adjoint elliptic partial differential equations. Obtains
convergence estimates independent of mesh size for scaled equations that are smooth. Prcz-
*poses fast direct solution of general separable operators ss a preconditioner.

214. /CPS/  Evans, D. J. (1973) “The Analysis and -Application of Sparse Matrix Algorithms in
the Finite Element Method,” in The Mathemeticr  of Finite Element8 und  Applicutione,  ed. J.
R. Whiteman, Academic Press, New York, pp. 427-447.

Surveys direct methods, SOR variants, preconditioned Richardson and Chebyshev methods,
gradient methoda,  and preconditioned conjugate gradient. Gives results for a model bihar-
manic  problem using conjugate gradients with SSOR preconditioning and various relaation
parameters. .

215. /AEL/  Golub, G. H. (1973) “Some Uses of the Lancaos  Algorithm in Numerical Linear
Algebra,” in Topics in Ntrmcricul Andy&,  ed. John J. H. Miller, Academic Press, New
York, pp. 173-184.

Gives clear derivation of the Lanczoa  (1950) algorithm for the symmetric eigenvalue problem
and for the solution of linear systems. Gives error bounds on the eigenvalues and on the er-
rors in the linear system after fewer than n steps.

216.  /C/ Kielbasi&ki,  A. ,  Grazpa Wo&&kowska,  and H.  Woiniakowski  (1973)  “Algoryt-
mixacja metod najlepszej  strategii  dla wielkich ukladdw  rdwnti  o symetrycznej, dodatnio
okr&lonej  macielry,” Roemiki Polukiego  Towtarqdwa Mutcmatyczncgo:  Mutemutyku Sto-
dowunu  Seria 3,1, pp. 47-88.

“Algorithmitation  of the Best Strategy Methods for Large Linear Systems with a Positive
Definit+  Matrix” Presents an Algol code for a method which combines the Chebyshev and
minimal residual iterations (See Engeli et al (1959),  Chapter 2).

217. /CN/  Luenberger,  David G. (1973) Introduction to L&war  and Nonlineur Progrumming,
Addison-Wesley, Menlo Park, California.

Gives derivation of the conjugate gradient method from the viewpoint of conjugate direc-
tions and optimal polynomials. Develops the partial conjugate gradient algorithm (See also
Forsythe (1968).), the expanding subspace property, and convergence bounds, and extends
the algorithm to nonquadratic problems. Summarizes Luenberger’s research in the field.

218. /AN/ Polak, E. (1973) “An  Historical Survey of Computational Methods in Optimal Con-
trol,” S’Rev. 15, pp. 553-584.

Surveys gradient and other methods.
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219.  /ACN/ Powers, W. F. (1973) “A Crude-Search Davidon-Type Technique with Applica-
tions to Shuttle Optimization,” J. Spueecrujt  10, pp. 7101715.

Uses DFP with crude line searches.

220. /CP/ Stewart, G. W. (1973) “Conjugate Direction Methods for Solving Systems of Linear
Equations,” Numcr.  Muth. 21, pp. 285-297.

Develops bi-conjugate direction methods, using one set of basis vectors for the search direc-
tions and another to define  a subspace  orthogonal to the residual. Relates the algorithms to
matrix factorirations.  Develops the block generalization of this class of algorithms.

221. /AC/ Wang, R. J. and S. Treitel (1973) “The Determination of Digital Wiener Filters by
Means of Gradient Methods,” Geophyuicu  38, pp. 310-326.

Analyzes seismic, data by ieast squares and conjugate gradients.

1974

222. */ACP/  Axelsson,  0. (1974) On Preconditioning and Convergence Accelerution in Spursc
Mutrb Problema, CERN Technical Report 74IO,-Data  Handling Division, Geneva.

Proposes conjugate gradients or Chebyshev iteration preconditioned by SSOR (or block-
SSOR) for solving discretitations of elliptic partial differential equations. Proves that, for
the model problem, the condition number is reduced by the power l/2. Gives numerical
results for the model problem.

223. /ACP/ Axelsson,  0. (1974) “On the Efficiency of a Class  of A-Stable Methods,” BIT 14,
pp. 279287.

Uses the term “preconditioning.” Solves a particular linear system by preconditioning conju-
gate gradients or Chebyshev with a related linear operator, giving condition number in-
dependent of mesh.

224. /ACNP/  Bartels, Richard and James W. Daniel (1974) “A Conjugate Gradient Approach
to Nonlinear Elliptic Boundary Value Problems in Irregular Regions,” in Conference on the
Numerical Solution of Diferentiuf  Equationa,  Dundee, 1973, ed. G. A. Watson, Springer Ver-
lag, New York.

Develops the idea in Daniel’s 1965 thesis of solving discretiaations of linear or nonlinear
self-adjoint elliptic partial differential equations by conjugate gradients, preconditioned by
the Laplacian operator. Uses a fast Poisson solver at each iteration. Shows that the conver-
gence rate is independent of mesh size. Provides numerical results.

225. /CEL/  Belford, Geneva G. and E. H. Kaufman, Jr. (1974) “An Application of Approxi-
mation Theory to an Error Estimate in Linear Algebra,” Muth. of Comp. 28, pp. 711-712.

Corrects a result of Kaniel (1966)  on the convergence of the conjugate gradient and Lanczos
algorithms by noting that the standard Chebyshev theorem does not apply although a result
of Kaufman and Belford (Ji Approz. Theory 7 (1973) U-95) gives the desired conclusion.

226. /CN/  Bertsekas, Dimitri P. (1974) “Partial Conjugate Gradient Methods for a Class of
Optimal Control Problems,” IEEE Truna.  on Auto. Control AC-19, pp. 209-217.

Uses conjugate gradients preconditioned by the inverse of
the initial point. Restarts the iteration every u <n steps.

a part of the Hessian evaluated at

227. /S/ Brachai-Barak,  Amnon (1974) “A Factorization Procedure for the Solution of Multidi-
mensional Elliptic Partial Differential Equations,” SIAM 3. Numer. Anal. 11, pp. 887-893.

Generalizes the Stone symmetric splitting of Bracha-Barak (1973) to more than two space
dimensions and studies convergence properties.
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228.

229.

230.

231.

232.

- 233.

234.

235.

/EL/ Cullum, Jane and W. E. Donath (1974) A Block Generulizution  of the Symmetric S-
Step Lunczos Algorithm, IBM T. J. Watson Research Center Report RC 4845, Yorktown
Heights, NY.

Develops the block Lancros algorithm with selected reorthogonalization. Presents numerical
results.

/EL/ Cullum, Jane and W. E. Donath (1974) “A Block Lancoos  Algorithm for Computing
the q Algebraically Largest Eigenvalues and a Corresponding Eigenspace for Large, Sparse
Symmetric Matrices,” in Proc.  1974  IEEE Conference on Decision und Control, IEEE Press,
New York, pp. 505-509.

.

Presents the block Lancros algorithm as a generaliration of the algorithm of Karush (1951).

/PS/  Evans, D. J. (1974) “Iterative Sparse Matrix Algorithms,” in Softwure for Numerical
Muthematics,  ed. D. J. Evans, Academic Press, New York, pp. 49-83.

Surveys the basic iterative methods and discusses the importance of preconditioning in the
stationary iterative methods as well as higher order ones such as Richardson extrapolation
for large sparse, as well as small dense ill-conditioned matrices. Draws attention to the
‘Lanczos  (1950) method as a promising one for computing eigenvalues.

/AEL/  Harms, Edward (1974)  “A Modified Method of Moments Approach to the Solution
of Scattering Equations,” Nuclear Phpaiee  A222, pp. 125-139.

Uses the Lanczos (1950) algorithm for finding eigenvalues relating to scattering theory.

/AN/ Haschemeyer, Rudy H. and Leonard F. Estis (1974) “Analysis of Self-Associating
Systems from Sedimentation Velocity Data,” J. Biological Chem. 249, pp. 489-491.

Uses DFP.

. /AENP/ Hasselman, T. K. and Gary C. Hart (1974) “A Minimization Method for Treating
Convergence in Modal Synthesis,” AIAA  J. 12, pp. 316-323.

Minimioes the Rayleigh quotient using conjugate gradients preconditioned by a diagonal ma-
trix. Projects against earlier eigenvectors.

/CN/ Huang,  H. Y. (1974) “Method of Dual Matrices for Function Minimization,” J. of
Cptimizution  Tireorg and Appficutions  13, pp. 519-537.

Presents a method bssed on two matrices: one for generating (conjugate) directions and the
other to generate a descent direction. Proves n +l or fewer step termination on quadratic
functions, and needs no line searches.

/PS/ Kin&d,  David R. (1974) “On Complex Second-Degree Iterative Methods,” SL4.M .J.
Numer. Anul. 11, pp. 211-218.

Discusses acceleration of stationary iterative methods when the eigenvalues are contained
within an ellipse in the complex plane. Notes that the method does not have practical ad-
vantage for SOR, but does produce a more efficient algorithm using Gauss-Seidel.

236. /GN/ McCormick, G. P. and K. Ritter (1974) “Alternate Proofs of the Convergence Pro-
perties of the Conjugate-Gradient Method,” J. of Optimizution  Theory und App&ztions 13,
pp. 497-518.

Proves superlinear convergence of a reset conjugate gradient algorithm, similar to the
Polak-Ribiere algorithm, with approximate line searches, compact level sets, f twice con-
tinuously differentiable in a neighborhood of z* , and I’ ’ (z* ) positive definite. Gives a
rate of convergence when f’ ’ is Lipschitz in a neighborhood of z* .
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237. /EL/ Paige, C. C. (1974) “Bidiagonaliration of Matrices and Solution of Linear Equa-
tions,”  SLM4 .I Nttmcr.  Anal. 11, pp. 197-209.

Shows that the Golub and Kahan (1965) algorithm is equivalent to the Lancoos  (1950) algo-
rithm applied to a matrix with 0 blocks on the diagonal and A and AH off the diagonal.
Applies the algorithm to solving linear least squares problems and computing eigenvalues of
2-cyclic matrices.

238. /Acp/ Palmer, John F. (1974) Conjugate Direction Methods and Parallel Computing,
Ph.D. dissertation, Stanford University Computer Science Department, Stanford, CA.

Develops the block form of the Golub. and Kahan (1965) bidiagonaliration algorithm. Adds
reorthogonalization  to Luenberger (1973) partial conjugate. gradient algorithm. Derives
block Lancxos and block conjugate gradient algorithm. Extends to symmetric indefinite
problems using Gauss elimination with partial pivoting (rather than Paige and Saunders’ LQ
factorization). Discusses parallel implementation on SIMD machines with number of proces-
sors much less than n . Solves model problem using red/black ordering to reduce system to
half size, and then applies conjugate gradients preconditioned by tridiagonal blocks.
Presents similar results for nine-point operator and biharmonic. Presents a modification to
the Powell (1964) nonlinear conjugate direction algorithm based on a QR factorization to
prevent directions from becoming linearly dependent.

239. /NE&/  Ruhe, A. (1974) “Iterative Eigenvalue Algorithms for Large Symmetric Matrices,”
in Numerbche Bchandiung  lton Eigenwcrtaujgaben  Oberwoljaeh 197#?,  ISNM 24, Birkhguser
Verlag, Base1 and Stuttgart, pp. 97-115.

Compares Lancros (1950)  algorithm with optimiration of the Rayleigh quotient by steepest
descent and conjugate gradient algorithms on problems in which the matrix is on secondary
storage units. Studies the rates of convergence and gives numerical examples showing that
the Lanczos algorithm is superior, although the conjugate gradient algorithm also works well
on well-conditioned problems and is easily implemented.

240. /AELN/  Ruhe, Axe1  (1974) “SOR-Methods for the Eigenvalue Problem with Large Sparse
Matrices,” Math. of Comp. 28, pp. 895-710.

Applies SOR to minimization of the Raleigh quotient. Notes that.it  is as effective as conju-
gate gradient minimization if the separation of the eigenvahes is not too bad, but conjugate
gradient minimization or the Lanczos (1950) algorithms are preferred in case of poor separ&
tion.

241. /AC/ Saxena, Narendra K. (1974) “Adjustment Technique without Explicit Formation of
Normal Equations (Conjugate Gradient Method),” J. of Geophyuicaf  Research 79, pp. 1147.
1152.

Applies conjugate gradients to the normal equation formulation of a geodetic triangulation
system of size 965~ 573. References Saxena (1972) technical report for a detailed descrip
tion of programs and testing. Gives good reference list for German literature.

242. /S/ Saylor, Paul E. (1974) “Second Order Strongly Implicit Symmetric Factorization
Methods for the Solution of Elliptic Difference Equations,” SW J. Numer. Anal. 11, pp.
894908.

Proposes an alternative to the SIP method of Stone which gives a symmetric (rather than
unsymmetric) splitting of the matrix while preserving the “second order” property that
(discretirations of) all first degree polynomials are in the null space of the error matrix.
Concludes that all such symmetric second-order splittings are impractical numerically.

243. /AC/ Sayre, D. (1974) “LeastSquares  Phase Refinement. II. High-Resolution Phasing of a
Small Protein,” Acta Cryat.  A30, pp. 18&184.
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Uses conjugate gradients on a parametric least squares problem with only 5 iterations for
each set of parameters but total computational costs of $7500.

244. /AMP/  Wilson, William J. (1974) “SST Flight - Profile Optimisation,” Proc. Inst. of
Elect. Engrs. 121,  pp. 739745.

Uses preconditioned conjugate gradients to solve a control problem related to the Concorde.

197s

245. /CP/ Char&a,  R., S. C. Einstat, and M. H. Schultz (1975) “Conjugate Gradient
Methods for Partial Differential Equations,” in Advance8 in Computer Methods for Partial
Di,,erential  Equationq  ed. R. Vichnevetsky, AICA, Rutgers University, New Brunswick, NJ,
pp. 80-64.  .

Applies the conjugate gradient algorithm, preconditioned by the Dupont, Kendall, Rachford
(1988) scheme, to the model problem in two dimensions, and states that 0 (n ‘/‘loge-‘)
operations are required to reduce the error by e. Gives analogous results in three dimen-
qions.

248. /CN/ Danilin, Yu. M. (1975) “Dual Direction Methods for Function Minimization,” in
Optimization Techniques: FIP Technical Conference, ed. G. I. Marchuk, SpringerVerlag
(Lecture Notes in Computer Science 27), New York, pp. 289-293.

Summarizes some previous work in developing algorithms based on biconjugate vectors.
Gives a superlinearly convergent algorithm based on biorthogonal directions for minimizing
functions whose Hessian matrices are uniformly positive definite with bounded condition
number.

247. /EL/ Davidson, Ernest R. (1975) “The Iterative Calculation of a Few of the Lowest
Eigenvalues and Corresponding Eigenvectors of Large Real-Symmetric Matrices,” J. Comp.
Phge. 17, pp. 87-94.

Uses Lanczos (19SO)  to motivate
sive than Lancaos per iteration.

a method, also related to coordinate relaxation, less expen-

248. /N/ Dennemeyer, R. F. and E. H. Mookini (1975) “CGS Algorithms for Unconstrained
Minimiration  of Functions,” J. oj.Optimiration Theory and Application8 18, pp. 87-85.

Uses conjugate direction algorithms
predetermined set of vectors.

with directions generated bY Gram-Schmidt on a

249. /N/  Dixon, L. C. W. (1975) “Conjugate Gradient Algorithms: Quadratic Termination
without Linear Searches,” J. Inst. Mathe.  Applies 15, pp. 9-18.

Accepts the first improved point generated by a certain line search procedure rather than
the function minimizer. Stores and updates two extra vectors.

250. /CN/  Gay, David M. (1975) Brows’s Method and Some  Cenerakations, with Applakationa
to Minimization Probfeme,  TR 75-225, Ph. D. thesis, Department of Computer Science, Cor-
nell University, Ithaca, NY.

Draws the connections among Brown’s method (1988) for solution of nonlinear equations,
Craig’s (1955) method for linear equations, and Stewart’s (1973) generalized conjugate
direction algorithms. Uses these properties to derive new algorithms for constrained and un-
constrained minimiaation.

251. /AEL/  Hausman Jr., R. F., S. D. Bloom, and C. F. Bender (1975) “A New Technique for
Describing the Electronic States of Atoms and Molecules - The Vector Method,” Chem.
Phya. Letter8  32, pp. 483-488.
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Uses Lanczos (1950) to determine smallest eigenvalues of large matrices modeling
configuration interaction wavefunctions.

252. /EL/ Haydock, R., V. Heine, and M. J. Keller (1975) “Electronic Structure Based on the
Local Atomic Environment for TightBinding  Bands: II,” .!. Whys. C: Solid State Phyaica  8,
pp. 2591-2805.

Reties  their 1972 derivation of the Lanczos algorithm.

253. /C/ Hestenes,  Magnus  R. (1975) “Pseudoinverses  and Conjugate Gradients,” Communica-
tiosw of the ACM 18, pp. 4&43.

Notes that conjugate gradients can be used on least squares problems using symmetry of
A*A or  AA* . Gives an algorithm for constructing a pseudoinverse of A using the stan-
dard formulation, but with o , r , and p considered to be matrices, and with inner product
(2  ,☺ )-C%j Y*ij l

Notes that the algorithm is 0 (n ‘) for computing the inverse of a dense
nonsingular matrix.

254. /N/ Huang,  H. Y. and A. K. Aggarwal (1975) “A Class of Quadratically Convergent Algo-
‘rithms  for Constrained Function Minimization,” J. of Optimitation Theory and App’k’cations
18, pp. 447-485.

Derives a family of algorithms which includes the conjugate gradient algorithm and the
variable metric methods. Shows that all the algorithms behave identically for quadratic
minimization subject to linear constraints and terminate in at most n -r steps when r is
the number of linearly independent constraints.

255. /AEL/  Ibarra,  R. H., M. Vallieres, and D. H. Feng (1975) “Extended Basis Shell-Model
Study of Two-Neutron Transfer Reactions,” Nuclear Phyeies  A241, pp. 388-408.

Discusses the Lancaos method using fewer than n steps to calculate two-nucleon overlaps.

258. /CPS/ Marchulc, G. I. (1975) Method8 of Numerical Mothernotice, Springer-Verlag, New
York.

(Translated by Jii RuiiEka  from Metody  V&hi8litd’noi Mathematiki,  1979,  Nauka, Novosi-
birsk) Gives an exposition of the conjugate gradient method (Sec. 3.2) and suggests its use in
acceleration iterative methods based on matrix splittings.

257. /CL/ Paige, C. C. and M. A. Saunders (1975) “Solution of Sparse Indefinite Systems of
Linear Equations,” SLW J. Numer. Anal. 12, pp. 817-829.

.

Extends the Lancaos algorithm to nonpositive definite systems by replacing the implicit LU
decomposition without pivoting with various stable factorioations. Produces a generaliza-
tion of the conjugate gradient (SYMMLQ) and minimum residual (h4INRES)  algorithms.
Notes that the algorithm can be used for linear least squares problems. Reports computa-
tional experience, and refers to a-technical report for programs.

258. /AI%/ Platzman, G. W. (1975) “Normal Modes of the Atlantic and Indian Oceans,” J. of
Ph$wied  Oceanography 5, pp. 201-221.

Uses the Lancxos  algorithm to find eigenvalues in a small range of the spectrum.

259. /EP/ Ruhe, Axe1  (1975) “Iterative Eigenvalue Algorithms Based on Convergent Split-
tings,” .!. of Computational Whys. 19, pp. 110-120.

Solves generalized eigenvalue problem by splitting’ A -pB -V-H and iterating
2, +1= v-lH+z,  .

260. /C/ Stewart, G. W. (1975) “The Convergence of the Method of Conjugate Gradients at
Isolated Extreme Pain-ts  of the Spectrum,” Numer. Math. 24, pp. 85-93.

Shows that the error component in the direction of an eigenvector for an extreme and iso-
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lated eigenvalue converges rapidly.

261. /AcEL/  Todd, John (1975) “Numerical  Analysis at the National Bureau of Standards,”
SL4M  Rev. 17, pp. 381-370.

“This scheme was devised in 1951 simultaneously by E. Stiefel in Ziirich  and M. R. Hestenes
at INA There was considerable preliminary work at INA in which Forsythe, Karush, Motz-
kin and Rosser also participate-d. At the same time Lanczos, also at INA, adapted his
(1950)  method of minimized iterations for the determination of the characteristic polynomial
of A to one for the solution of AZ =+ and arrived at the same conjugate direction method.
There was much further work at INA by b.] Paige, M. Stein, Hayes, Hochstrasser, L. Wil-
son and Curtiss. The definitive report is (Hestenes and Stiefel (1952) and Hestenes (1958)].”

282. /N/ Turner, W. C. and P. M. Ghare (1975) “Use of Dynamic Programming to Accelerate
Convergence of Directional Optimioation  Algorithms,” J. of Optimization Theory and Appli-
cations 18, pp. 39-47.

Gives algorithm for determining step lengths for
ty to conjugate gradients but does not apply it.

multiple steps at once. Claims applicabili-

283. ./EL/  Underwood, Richard (1975) An Iterative Block Lanctos Method for the Solution of
Large Sparse Symmetric Eigenprobfems, Ph.D. dissertation, Stanford University Computer
Science Dept. Report STANCS-75-498,  Stanford, CA.

Develops the block version of the Lanc~os  algorithm and generalizes Paige’s convergence
theory for the eigenvalue and eigenvalue estimates. Suggests strategies for choosing a block-
size. Gives Fortran implementation with full reorthogonaliration.

284. /C/ Wodniakowska, G. and H. Wofniakowski  (1975) “Algorytmiracja metody me-T,”
Rocmiki Pobkiego  Towerzy8twa  Matemrtycmego:  Matcmatyka  Sto8owana  Seria 3,S, pp. 51.
80.

“Algorithmiaration  of the me-T method” Presents an Algol code for a combined Chebyshev
and minimal error iteration applied to the normal equations for a rectangular system.

285.  /C/ Wo~niakowski,  H. (1975) “Metals minimalnych Bbleddw  dla wielkich ukladdw
rchmmd liniowych  o dowolnej macierzy,” Roemiki  Po&kiego  Towarzy8twa  Matematycznego:
Matematyka Stosowana Seria 3,5, pp. &27.

“The Method of Minima  B-Errors for Large Systems of Linear Equations with an Arbitrary
Matrix” Develops conjugate gradient methoda  which minimize the B-norm of the error, and
suggests applying them to normal equations.

1976

288. /ACP/ Allwright, J. C. (1978) “Conjugate Gradient Versus Contraction Mapping,” J. of
Optimization meory  and Applicdtions  19, pp. 587-611.

Notes that prexonditioned conjugate gradients using a matrix splitting requires fewer itera-
tions than the stationary iterative method alone. Applies the conjugate gradient technique
to control problems, using R or R + p*Qw  as preconditioning for R + W*QW  , where w
is a low rank approximation to W.

287. /CP/ Andersson, Lennart (1976) SSOR Preconditioning of Tocplitt  Mat&e8, Ph.D. Thesis,
Computer Sciences Department, Chalmers University of Technology, GGteborg.

Analyoes the eigenvalue distribution for SSOR preconditioning of Toeplitz matrices and for
triangular Toeplitz matrix preconditioning. Applies the results to discretized elliptic
difllerential  equations.
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288.

269.

270.

271.

272.

273.

274.

/CPS/ Axelsson, 0. (1976) “A Class of Iterative Methods for Finite Element Equations,”
Computer Method8  in Applied Mechanics and Engineering 9, pp. 123-137.

Discusses the preconditioned conjugate gradient algorithm in three-term recurrence form us-
ing matrix splittings such as AD1 and  SSOR ss preconditioners, and gives operation counts
for solving self-adjoint second-order problems in d dimensions by SSOR preconditioning of
the conjugate gradient algorithm compared with a direct method and with standard conju-
gate gradients. Gives convergence bounds for preconditioned conjugate gradient algorithms
when the eigenvalues fall in two disjoint intervals and when thers are only a few isolated
large eigenvalues.

/S/ Beauwens, Robert and Lena Quenon  (1978) “Existence Criteria for Partial Matrix Fac-
torisations  in Iterative Methods,” SL4M  J. Numer. Anal. 13, pp. 815-843.

Presents existence criteria for partial factoritations such ss Stone’s method and Buleev’s
method. Extends results to block factorizations  and studies convergence properties of itera-
tions bssed on the symmetric point factorization methods.

/ACEL/  Cline, Alan K., Gene H. Golub, and George W. Platzman (1978) “Calculation of
,Normal Modes of Oceans Using a Lanctos Method,” in Sparse Mat& Computatione, ed:
James R. Bunch and Donald J. Rose, Academic Press, New York, pp. 409-428.

Dsterminss  interior sigenvaluss  of matrix of dimension 1919 by using inverse iteration, solv-
ing the linear systems using the Lanczos decomposition or the Paige and Saunders (1975)  al-
gorithm.

/C/ Concus, Paul and Gene H. Golub (1978) “A Generalioed Conjugate Gradient Method
for Nonsymmetric Systems of Linear Equations,” in Computing Methods in Applied Science8
and Engineering, sd. R. Glowinski and J. L. Lions, SpringerVerlag,  New York, pp. 58-65.

Develops an iterative method in three-term recurrence form which requires that the sym-
metric part of A be positive definite and that linear systems involving it be easy to solve.
Shows that estimates of the eigenvalues of M”A can be obtained in the course of the itera-
tion, and that the algorithm takes at most k iterations if there are k distinct eigenvalues.
Gives a computational example.

/ACP/ Concus, Paul, Gene H. Golub, and Dianne P. O’Leary (1978) “A Generalised Con-
jugate Gradient Method for the Numerical Solution of Elliptic Partial Differential Equa-
tions,” in Sparae  Mat& Comprtationq sd. James R. Bunch and Donald J. Rose, Academic
Press, New York, pp. 309-332.

Gives general exposition of preconditioned conjugate gradients. Suggests using conjugate
gradients until approximations to extreme eigenvahes  can be determined and then switching
to the Chebyshev semi-iterative method. Discusses block 2-cyclic, SSOR, and sparse factori-
zation preconditioning. Gives numerical comparison of Chebyshev and conjugate gradients
on elliptic difference equations preconditioned by a discrete Laplacian and for T-shaped re- .
gions  preconditioned by fast direct methods.

/CN/ Dennis, Jr., J. E. (1978) “A Brief Survey of Convergence Results for Quasi-Newton
Methods,” in Nonlinear Programming, ed. Richard W. Cottle and Carlton E. Lemke, Ameri-
can Mathematicai Society, Providence, R.I., pp. 185-199.

Surveys quasi-Newton algorithms and convergence results.

/AC/ Dodson, E. J., N. W. Isaacs,  and J. S. Rollett (1978) “A Method for Fitting Satisfac-
tory Models to Sets of Atomic Positions in Protein Structure Refinements,” Acta Cryat.
A32, pp. 311-315.

Applies conjugate gradients to a least squares problem.
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275.

276.

277.

278.

279.

280.

281.

282.

283.

/ACNP/  Douglas, Jr., Jim and Todd DuPont  (1976) “Preconditioned Conjugate Gradient
Iteration Applied to Galerkin Methods for a Mildly-Nonlinear Dirichlet Problem,” in Spatee
Matriz Computations, ed. James R. Bunch and Donald J. Rose, Academic Press, New York,
pp. 333448. -

Uses a fast direct method for Poisson’s equation to precondition a conjugate gradient itera-
tion.

/CN/ Fletcher, R. (1976)  “Conjugate Gradient Methods for Indefinite Systems,” in Nu-
merical Anulyeci  hndee  1975, ed. G. A. Watson, Springer, New York, pp. 73-89.

Studies symmetric indefinite problems. Discusses the minimum residual algorithm. Redis-
covers Fridman (1963) algorithm and relates it to Paige and Saunders (1975). Discusses the
Luenberger (1969) algorithm and proposes alternate formulas without fully solving the insta-
bility problem. Discusses extensions to nonlinear problems.

/C/ Il’in, B. P. (1976) “Some Estimates for Conjugate Gradient Methods,” USSR Comp.
Math. and Math. Phyu. 16, No. 4, pp. 22-30.

(Zh. v$chisl.  Mat. mat. Fiz. 16, No. 4, pp. &7-855)  Using Lanczos polynomials instead of
Chebyshev polynomials, obtains estimates of the form (Ac, ,e,, )i(eO,eo)/(2n +1)2 for con-
jugate gradients, and analogous results for minimum residual and “minimal discrepancies”
algorithms, whenever 1 1 A 1 1 51. Obtains a family of bounds for the error at the k -th
step by using the product of the j-th  degree Lanczos polynomial and the k - j-th degree
Chebyshev polynomial. Applies the estimates to conjugate gradients preconditioned by
ADI.

/EL/ Kahan, W. and B. N. Parlett (1976) “How Far Should You Go with the Lanczos
Process? ” in Sparuc Matrik Computotionu,  ed. James R. Bunch and Donald J. Rose,
Academic Press, New York, pp. 131-144.

Develops error bounds for the exact algorithm and computable diagnostics for the algorithm
with inexact arithmetic.

/AEL/  Kaplan, Theodore and L. .I. Gray (1976) “Elementary Excitations in Random Sub-
stitutional AIloys,” Phy&al Review B14, pp. 346203470.

Applies Lanczos (1950) algorithm to find eigenvalues of models of disordered systems.

/AC/ Konnert, John H. (1976) “A Restrained-Parameter Structure-Factor Least-Squares
Refinement  Procedure for Large Asymmetric Units,” Aeto Cry&. A32, pp. 614-617.

Applies conjugate gradients to a least squares problem in which some matrix coefficients are
threshholded to zero.

/N/ Lenard,  Melanie L. (1976) “Convergence Conditions for Restarted Conjugate Gra-
dient Methods with Inaccurate Line Searches,” Math. Programming 10, pp. 32-51.

Proves convergence of restarted’ conjugate ‘gradients with inexact line searches when the
second derivative matrix is continuous, bounded, and Lipschitz at the solution. Obtains n -
step quadratic convergence for some conjugate gradient methods with inexact line search.

/L/ Paige, C. C. (1976) “E
Symmetric Matrix,”

rror Analysis of the Lanczos Algorithm for Tridiagonalizing a
J. Inst. Mathe. Applica. 18, pp. 341-349.

Gives a rounding-error analysis and relates loss of orthogonalit);  to convergence.

/CN/  Powell, M. J. D. (1976) “Some Convergence Properties of the Conjugate Gradient
Method,” Math. Programming 11, pp. 42-49.

Proves that conjugate gradients on a quadratic objective function with arbitrary downhill
initial direction is either finitely terminating or linearlv conventent.
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284.

285.

286.

287.

288.

/CN/  Powell, M. J. D. (1976) “Some Global Convergence Properties of a Variable Metric
Algorithm for Minimization without Exact Line Searches,” in Nonlinear Programming, ed.
Richard W. Cottle and Carlton E. Lemke, American Mathematical Society, Providence,
R.I., pp. 53-72.

Studies the convergence of the BFGS algorithm without exact line searches. Shows conver-
gence for convex functions and superlinear convergence if the second derivative matrix is
positive definite at the solution under some conditions on the search.

/AC/ Proskurowski,  Wodrimierz  and Olaf  Widlund (1976) “On the Numerical Solution of
Helmholtz’s Equation by the Capacitance Matrix Method,” Math. of Comp. 30, pp. 433-468.
Uses the SYMMLQ algorithm of Paige and Saunders (1975) as an iterative method on a
dense well-conditioned matrix. Attributes the success of a small number of iterations to a
special eigenvalue distribution. Notes that the matrix can be represented in product form,
as in George (1970).

‘/CN/ Safro,  V. M. (1976) “The Rate of Convergence of Some Gradient Methods,” USSR
Comp. Math. and Math. Phyu.  16, No. 2, pp. 212-215.

(Zh. t#hiel. Mat. mat. Fiz. 16, No. 2, 496~499)  Obtains convergence estimates for a
Fletcher-Reeves-type conjugate gradient algorithm under assumptions that the differentiable
function to be minimized in Hilbert space is convex or strongly convex.

/AC/ Squire, Wm. (1976) “The Solution of Ill-Conditioned Linear Systems Arising from
Fredholm Equations of the First Kind by Steepest Descents and Conjugate Gradients,” In-
temat.  J. for Numeried Methods in Engineering 10, pp. 607-617.

Gets smooth solutions to a dense system by taking several conjugate gradient steps.

/AL/ von Charzewski, C. and R. M. Dreizler (1976) “Constrained HartreoFock  and
Minimization of the Variance,” Z. Phyuik A 278, pp. 33-40.

Compares the performance of calculations minimizing both the unprojected and the project
ed expectation value and variance of the Hamiltonian, both-calculations involving the Lanc-
zos (1950) algorithm.
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