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Abstract:

The steepest descent algorithm is a classical iterative method for solving a linear system
Ax=b, where A is a positive  definite  symmetric matrix. A common  way to accelerate
an iterative scheme is precondition  the method, i.e. to solve a simpler system Mz=r in
each stage of the iteration. We analyze the effect of solving the preconditioner
inexactly. A lower bound for the convergence  rate is derived, and we show under what
conditions  this lower bound  is obtained.  Finally we describe  some numerical  experi-
ments which shows that in practical situations the lower bound may be too pessimistic.
An amusing result is that in some cases small errors may lead to higher convergence
rates than if the preconditioner  is solved exactly!

1 Introduction

In most cases when an iterative algorithm is used to solve a linear system, it is necessary to
use a preconditioning technique to get fast convergence, i.e. in each step of the algorithm
we solve the system Mz = r, where M is an approximation for the matrix A. In practical
problems it is often difficult or expensive to solve this equation exactly. It may be also be
advantageous to use an “inner” iteration scheme to solve the preconditioned system. In
these cases it is of great importance to ltmow how exact the inner system must be solved to
get a desired rate of convergence. Analysis of this kind is performed for the Chebychev
and the Richardson methods in Golub and Overton (81) and in Golub and Overton (86). In
this paper we study the effect of inexact preconditioning on the steepest descent algorithm.
This method is not much used in practice-because of its slow convergence. The algorithm
may however be used as a starting point for developing more sophisticated methods, such
as the conjugate gradient algorithms.

For the conjugate gradient algorithm, the effect of inexact preconditioning is not well
understood. A result of the same kind for this algorithm would be of great importance. The
analysis in this paper may provide some insight into this much more difficult problem. The
interesting point of the analysis is the way some generalized Kantorovitch inequalities rela-
tively simply leads to non trivial bounds for the convergence rate.
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2.1 The Inexact Preconditioned Steepest Descent Algorithm

Let A be a positive definite, symmetric matrix. The system Ax=b is solved by the follow-
ing iterative process:

F 1 do:;z “b y;;“*
h&k = Q + & ; where Q is an arbitrary vector satisfying llc& S 6ilr& (2-l)
,=‘&&; where (a,.)  is the l-2 inner product

xk+l =Xk+aZk*

The matrix M is called the pre-conditioner of the system. We assume that also M is positive
definite, symmetric. It should be chosen so that the system Mz=c is easy to solve within
the accuracy 6. The convergence rate of the algorithm depends on the condition number of
M-IA, i.e. of

K(M-IA) = an(j(M-lA) ZE baxOM’lA)
bidM’lA)

(2.2)

Where X- and & are the largest and smallest eigenvalues of M-IA.

2.2 Derivation of the algorithm

Let zk be an arbitrary direction. We want to find the “best” approximation of the solution
along this vector, i.e. we let

xk+l = xk + akzk

where ak is the number that minimizes the ratio

R (nc+lA-h+l)  ’ -- - --=
hA-lnJ

From (2.3) we get the following recurrence for the residuals:

(2.3)

(2.4)

R+l=b-kk+l=rk-Q&k (2.9



If we define O(a) by

WO = h+l&k+l) = (q&-$J - h(zk&) + a2(zkAza)

we get

SoRismikmizedfor

(zkd
Qk=‘o

For this value of a we get

(zk,# ’
R = ’ - (zk,Azlr)(~,A-1rL) .

I

(2.6)

(2.7)

cw

‘(2.9)

If we let Mz = r, we see that for M = A we get R = 0, so the convergence rate is getting
higher the better M approximates A. When the preconditioner is solved inexactly, i.e. when
we solve

MZk = R + qk ; where Ilq& s 611&112

we get the algorithm (2.1).

(2.10)

2.3 Convergence rate of the algorithm (2.1)

To get a lower bound for the convergence rate we need a lower bound for the ratio
(zkd2

(zk,Azkht,A+k)
when zk satisfies (2.10). The ratio is related to the famous inequality of

Kantorovitch (see Householder(72)).  This-inequality is however not general enough, but
Bauer & Householder(61) supplies the necessary generalizations. They give the following
corollary:



Corollary 1 (Bauer & Householderk

For any non-null vectors u,v and POS. def. sm. A

IVHUI  2 ilvll*llull&l  4 ; 0 s Q $
implies
uHAu~vHA-hS [(K+l) + (K-l)*cos +I2

uHu*vHv 4K
; where K = cond(A)

Suppose p and q are two vectors satisfying fiZcosMfwelet$=~-Kntheabove
corollary, we get:

Ilpll4lqll

(Pdo2 .(P9Pmq) 4lccos%
(P9PNq9q) l (P9AP)*(q9A-lq) ’ I(K+l) + (Ic-1)sin e]2 = .

\ c0se ’ c0se

2

But i+she c0se
-iI

i+sine-=-= -c0se i-she i-sine , so we get the following lemma:

Lemma2

Np,qN
suppose ilpll*llqll-2c0se ; oses;

Then cp,s)2 *
(p,Ap).(q,A-‘q)

Where K = cond(A).

2

We also need another result from Bauer & Householder:



Theorem 3 (Bauer & Householder);

IyHxl I llxll*Ilyllcos~  ; 0 s t# $

implies I(Ay)%xl 5 IIAxll~IIAyllcos~ where coy- 0v- Ecot~

If we apply this theorem with A-1, do the change of variables: y = Au , x = Av, and
finaLly take the contrapositive of this theorem, we get the following result:

4Lemma

b,v)l- 2  cosy i m p l i e sIhlll~llvll
uwTAv > cos $ (0 w
IIAull~IIAvll - where tT= WtanT ; K = cond(A)

Provided OS$$ , i.e 0Srcta.n~  < 1

Back to our original problem. From (2.10) we have Mz = r + q = v, so (2.9) gives us:

R=l- (vTM-1r)2
(v%-%M-1v)(rTA-lr) (2.11)

. .
We want to bound the second term away from zero. Instead of supposing a bound on the
norm of q, as in (2.10) it is easier for the analysis to assume a bound on the angle between
r and v. Assume that

b,r)l
iGiiPosw.

If we do the change of variables:

p = JM-‘v.

__

We get

(vTM+)2 (P,S)2
(vTM-IAM-lv)(rTA-lr)= (p,Wp).(q,W-lq)

(2.12)

‘i (2.13)

(2.14)



To apply lemma 2 we need the angle between p and q. From lemma 4 we get :

i(p,q)l = I(dxv)T(~l
Ilpl!*llqll ll$Fvll*ll~~l

2 c0se

8where tay = K2’tanT’ and ~2 = 4-j , provided 0 I; ?c2tan3 < 1.

Now lemma 2 gives:

2 2

(
i+sine t

Kll-S~e > (
i+she 4

_+ K1 l-s*1 1
Where ICI= condo = cond(d*Aad M-1) = cond(M-IA).

Trigonometric manipulation gives:

It is easy to verify that

So we finally get the result that the bound for the ratio in (2.4) is:

mI K’ - 1
K’ + 1 ; where K’.= ~1.

(2.15)

(2.16)

(2.17)

(2.18)

Now we can state the main theorem of this paper:
. ._



Theorem 5 (Convergence rate inexact preconditioned steepest descent)

Let the system Ax = b be solved bythkezrative process (2.1).
k vk = Q + qk, and aSSUIIX  that

hkII*h”kll
2 cosyr,

; Kl = cond(M-IA) and K2 = 4-j

provided 0 I K2ta$ < 1

2.3 Proof that the lower bound in theorem 5 is optimal.

The result in theorem 5 is obtained by two consecutive transformations:

i) The transformation in (2.13) and (2.15) where both r and v are transformed by
dii?

ii) The transformation in (2.14) and (2.16) where p and q are transformed by m
and d%&espectively.

We show that it is possible to get equality in both these transformations:

Lemma 6:

we get equality in (2.15).



Proof:
(K&OS;

l
; andp= IK’v=r

(K34

(K2)-&OS5

-(K&S+

8 wSOtan7=K$an7;L where 8 is the angle between q and p.

Now we have q =

equality in (2.16):

Lemma 7;

Ifw=+
i

1

1

8cos-2 1 andp=

8
I ISitl-2

8cos-2 I so we must find a W that gives

8 _
I I-sinT

8cos-2
8

I

; p=
Sill-2

8
cos-2

8
-SiIl-2

andif+, then we get equality in (2.16).

Proof:

The reason why this lemma holds is that q and p are placed symmetrically around
xl + x2, where xl and x2 are the largest and the smallest eigenvectors of W. The
lemma is easiest shown by first rotating the coordinate system by 450. Then the result
is obtained by noting that the left hand side of (2.16) is the cosine of the angle
between m - p and d- q. We also need some trigonometric identities. We omit
the details.

Both W and M are p.d. symmetric, so the same must be true for A = m-W&i.
Cond(W) = ~1 and cond(M) = lcz2, so given ~1, ~2 and I& we can always construct an
example with equality in theorem 5. Hence we have the following result:



Theorem 8:

The lower bound in theorem 5 is the best possible result based only on the infor-
mation: cond(M), cond(M-IA) and the angle between v and r.

The lower bound is however quite pessimistic, because to obtain it we need a special
alignment between the eigenvectors of M and A: The largest and the smallest eigenvectors
of both M and W must lie in the same plane, and they must be rotated 450 with respect to
each other. To get a better result, we must use more information, but it is not easy to see
how this can be done. If we for example knew that:

(vTM-‘r)2
(VTM-lv)(rTM-lr)  2cos2e  ’ (2.19)

w 8we could have substituted tc2tanT  with tar+ theorem 5. This would give a much more

realistic lower bound, but to find 8 we must know M-k, i.e. we must solve the pre-
conditioner exactly.

Furthermore, for practical purposes it is more interesting to have a lower bound based on 6
rather than \cc. Although an obtainable upper bound on \I’ is easy to get from 6, this makes
the theoretical lower convergence rate even more remote from what we will see in real
situations.

3 Numerical experiments

The model problem studied is the following:

-uxx= 1; u(O)=u(l)=O

1Discretized with h = n+l, the system of equations becomes:

2 -1 Xl
-1 l l

. . . .

.

.

- 1

iI .

l

-1 2 x,.

=

(n+lY
.
.
.

(n+ly.

(2.20)

(2.2 1)

Whenever nothing else is said, the preconditioner M is taken to be the identity matrix.



In each stage of the iteration, the residual is added a random vector, scaled to have norm
Sllr&

lhkll
zk= % + qk’ “rr;izrr (2.22)

qk is a random vector with uniform distribution in the n-cube, i.e. each component of q is
uniformly distributed in [-1 ,l]. .

The initial vector is chosen randomly in such a way that the initial residual rg is a random
vector with uniform distribution in the n-cube.

By aver= convergence a between iteration m u p, we mean:

cnvrte(mp) = -
- -

Pf.

.016

,012

l e2 .6

1Fig. 6
Average convergence rate over the first 50 iterations for n =

Sd = steepest descent (6 = 0)
Pd = inexact sd, perturbated with different values of 6.

(2.23)

Notice that for small values of 8, pd performs slightly better
than sd! This effect is seen in many of the experiments,
although usually not as much as here.
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1QFip.
The effect of preconditioning. Average convergence rate
over the Crst 50 iterations. n = 20. The coeffkient matrix A

A=

the preconditioner M is:

2
andm= 3I i.

In this example thkem 5 does not say
anything about the convergnce rate when
6 > 0.1 , because in this case
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