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The Convergence Rate of Inexact Preconditioned
Steepest Descent Algorithm for Solving Linear
Systems

by
Hans Munthe-Kaas®*

Abstract:

The steepest descent algorithm is a classical iterative method for solving a linear System
Ax=b, where A is a positive definite symmetric matrix. A common way to accelerate
an iterative scheme is precondition the method, i.e. to solve a simpler system Mz=r in

each stage of the iteration. We analyze the effect of solving the preconditioner

inexactly. A lower bound for the convergence rate is derived, and we show under what
conditions this lower bound is obtained. Finally we describe some numerical experi-

ments which shows that in practical situations the lower bound may be too pessimistic.
An amusing result is that in some cases small errors may lead to higher convergence
rates than if the preconditioner is solved exactly!

1 Introduction

In most cases when an iterative algorithm is used to solve alinear system, it is necessary to
use a preconditioning technique to get fast convergence, i .€. in each step of the algorithm
we solve the system Mz = r, where M is an approximation for the matrix A. In practical
problems it is often difficult or expensive to solve this equation exactly. It may be also be
advantageous to use an “inner” iteration scheme to solve the preconditioned system. In
these cases it is of great importance to know how exact the inner system must be solved to
get adesired rate of convergence. Analysis of thiskind is performed for the Chebychev
and the Richardson methods in Golub and Overton (81) and in Golub and Overton (86). In
this paper we study the effect of inexact preconditioning on the steepest descent agorithm.
This method is not much used in practice-because of its slow convergence. The algorithm
ma)(1 however be used as a starting point for developing more sophisticated methods, such
as the conjugate gradient algorithms.

For the conjugate gradient algorithm, the effect of inexact preconditioning is not well
understood. A result of the same kind for this algorithm would be of 8_reat importance. The
analysisin this paper may provide some insight into this much more difficult problem. The
interesting point of the analysisis the wa%/ some generalized Kantorovitch inequalities rela-
tively simply leads to non trivial bounds for the convergence rate.
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2.1 The Inexact Preconditioned Steepest Descent Algorithm

Let A be a positive definite, symmetric matrix. The system Ax=b is solved by the follow-
ing iterative process:

ror k =0,1,2... dO:
Ik=b- Axg
Mz =1y +qx ; Wheregg isan arbitrary vector satisfyingliggllz < dlirgll> 2.1)

ox = (%%5 ; Where (-,-) isthe |-2 inner product

Xk+1 = Xk + OkZk

The matrix M is called the pre-conditioner of the system. We assume that also M is positive
definite, symmetric. It should be chosen so that the system Mz=¢ is easy to solve within

the accuracy 6. The convergence rate of the agorithm depends on the condition number of
M-14A, i.e of

Amax(M-1A)
Amin(M-1A)

WhereAmax and Amin are the largest and smallest eigenvalues of M-1A.

k(M-1A) = condM-1A) = (2.2)

2.2 Derivation of the algorithm

Let z¢ be an arbitrary direction. We want to find the “best” approximation of the solution
along this vector, i.e. we let

Xk+1 = Xk + OkZ (2.3)
where ay is the number that minimizestheratio

From (2.3) we get the following recurrence for the residuals:

Tk+1 = b - AXg41 =1k - OkAZk (2.5)




If we define®(cr) by

D(0) = (N 1,A" I1k41) = (A Iny) - 20z, 1x) + a2z Az) (2.6)
we get
I(D(a))
@) = -2(zk,Ix) + 204(zi,Azy) (2.7)

So R is minimized for

ox = z%’{% 2.8)

For thisvalue of awe get

(zic1y)? |
R ‘

= - (zAZY(A ) - (29)
If welet Mz =, we seethat for M = A we get R = 0, so the convergence rate is getting

higherI the better M approximates A. When the preconditioner is solved inexactly, i.e. when
we solve

Mz = 1y + gk ; Whereliggll, < Slirgll; (2.10)
we get the algorithm (2.1).

2.3 Convergence rate of the algorithm (2.1)

To get alower bound for the convergence rate we need alower bound for the ratio

2
& A(zi';’(nr;) AT when zy satisfies (2.10). Theratio is related to the famous inequality of
Kantorovitch (see Householder_(72)%. This-inequality is however not general enouPh, but
Bauer & Householder(61) suppliesthe necessary generalizations. They givethefollowing

corollary:




Bauer & Househ

For any non-null vectorsu,v and pos. def. symm. A
ivBul 2 liviHiullsin ¢ ; 0S ¢ S

implies

HAy.vHA-] - 2.

uHAuvHA Ly [(c41) + (kD) cos OF ;0 ond(A)
uby-vHy 4x

Suppose p and g are two vectors satisfying ﬁf;qu cosO.If weletd = ;—- 0 in the above
corollary, we get:

(p.9)? ®p@a__ 5 4xcos20 _
(P.p)€(q.9) . (P.APXQA1Q) ~ [(x+1) + (x-1)sin 0]2

2 2
1 1
x2(1+sin@) «x 2-(1-sinB)
\ cosO ' coso

But 1+5ing _ cos® _, [Lisin , S0 we get the following lemma:
cos®  I-she -sine
Lemma2
1p,g)! n
Suppose foiqn = €050 5 0<0< 5
!
Then (p.)° —>f 1 2 —
(p.Ap)(q,A"'q) ( 1 +sin6 )3‘+(Kl+sin6 )'7
*T=smo 1-sing

Wherex = cond(A).

We a so need another result from Bauer & Householder:



Theorem 3(Bauer & Householder):

T
lyHxi < lixll-tyll-cosp ; O < ¢ Si‘

impliesi(Ay)HAxI < IAxIIMIAyll-cosy Where cot}'z—’ = K-cotg-

If we apaEIy this theorem with A-1, do the change of variables: y = Au, x = Av, and
finally take the contrapositive of this theorem, we get the following result:

demma

I(a,v)l . )
l'lfx -1‘1,3‘1?5“’ implies

(AwTAv >

6 v 3
lAullAv] - 0S¢ Where any = ktang- . x =cond(A)

Provided 0< ¢ <7, i.€ 0< xtan¥ < 1

Back to our origina problem. From (2.10) we have Mz =1 + q =, S0 (2.9) gives us.

- (vTM-In2
R=1- (vVIM-1IAM-Iv)(rTA 1) (211)

We want to bound the second term away from zero. Instead of supposing a bound on the
norm of g, asin (2.10) it is easier for the analysis to assume a bound on the angle between

r and v. Assume that

I(v,n)l
Vit = S0 V (2.12)

If we do the change of variables:

v
v (2.13)
W= ~/ M A M
We get
(vIM-1r)2 _ (p.9)? (2.14)

(vIM- 1AM Iv)(rTA-Ir) ™ (p,Wp)-(q,W-1q)



To apply lemma 2 we need the angle between p and g. From lemma 4 we get

p.a) _INMITAMIL 1
"P“ TN VTN Y= @1

Wheretan?:vcz-tang- and k2 = Ycond(M) , provided O < Kztang- < L

Now lemma 2 gives:
!
09", — 1 (2.16)
@.Wp)(q,W g 1 +5in@ \2 1+5sin®\ 2 :
PP 4 (K‘I-sine) (“1 _l-sine)

Wherek; =cond(W) =condWM-1.A -\ M-1) =cond(M-1A).

Trigonometric manipulation gives:

14sing 1+ tang- 1 + katany
(2.17)

1- Kztan%

It is easy to verify that

2 (x-l)z
1- 1 1 =
KZ+x° 7 K+1

So wefinally get the result that the bound for theratio in (2.4)

' 1+ ktant
VR < : +11 ; where ¥’ = ;- ———2-;2- (2.18)
1- Katanz

Now we can state the main theorem of this paper:



Theorem 5 (Convergence rate inexact preconditioned steepest descent)

L et the system Ax = b be solvedby the iterative process(2.1).

_ I(vie.mo!
=+ >
Let vk = 1¢ + g, and assume that vl = <OSY-

. ‘
(tk+1,A 11 41) X' -1
Then <
( (e Alry) K'+ 1

1+ Kztan:—'
where ¥ = x;- | —————= . kI = condM-1A) and ;3 = Ycond(M)
1- Kztan;i

provided 0 < xztanaz-w <1

2.3 Proof that the lower bound in theorem 5 is optimal.
The result in theorem 5 is obtained by two consecutive transformations:

1) The transformation in (2.13) and (2.15) where both r and v are transformed by
M-1,

i) The transformation in (2.14) and (2.16) where p and g are transformed by vW
andVWw-1 respectively.

We show that it is possible to get equality in both these transformations:

Lemma 6:
x; 0 cos-‘z£ cos%
IfM= . s r=|- v V= v
0 x sin- -sin-

we get equality in (2.15).



Proof:

1 1
()" Zcos 3 (k) Zcos¥
q=A/M1lr= 2 ; andp=a/Mlv= 1 2

.
1

(xz)?sin¥ -(x;) 7sin-‘2£
so tan% = lcztan% ; Where @ is the angle between g and p.
.
Now we have q = cos-g- andp= cos% so we must find a W that gives
sin-q- —sin2
2 2

equality in (2.16):

Lemmat;
1
) 11 (Kl)-z- 0 11 cos-g- cos-z-
IfW=— N q: =
2 ) » P
L-14 o -7 A1 -1 sin —sin=
(xp) 2 : > >

and if 0 < 12‘- then we get equality in (2.16).

Proof:

The reason why this lemma holdsis that q and p are placed symmetrically around
X1 + X2, Wherex; and x; are the largest and the smallest eigenvectors of W. The

lemma s easiest shown by first rotating the coordinate system by 459, Then the result
is obtained by noting that the left hand side of (2.1% isthe cosine of the angle

l?qetvtglleenI YW - p and VW-1 - g. We al so need some trigonometric identities. We omit
the detalls.

Both W and M are p.d. symmetric, so the same must be true for A = VM-W+M.

Cond(W) = x; and cond(M) = x22, S0 givenkj, xz andy, we can aways construct an
example with equality in theorem 5. Hence we have the following result:



Theorem8:

The lower bound in theorem 5 is the best possible result based only on the infor-
mation: cond(M), cond(M-1A) and theangle betweenv andr.

The lower bound is however quite pessimistic, because to obtain it we need a specia
alignment between the eigenvectors of M and A: The largest and the smallest eigenvectors

of both M and W must lie in the same plane, and they must be rotated 450 with respect to
each other. To get a better result, we must use more information, but it iS not easy to see
how this can be done. If we for example knew that:

(VTM- 11-)2
(VIM-lv)(rTM-1r)

2 c0s20, (2.19)

we could have substituted xztan“fz'- with tan%-in theorem 5. Thiswould give amuch more

realistic lower bound, but to find  we must know M-I, i.e. we must solve the pre-
conditioner exactly.

Furthermore, for practical purposesit is more interesting to have alower bound based on &

rather than . Although an obtainable upper bound on v is easy to get from §, this makes
the theoretical lower convergence rate even more remote from what we will see in real
situations.

3 Numerical experiments
The model problem studied is the following:
-uxx =1 u0)=u(][ =0 (2.20)

Discretized withh = x%f the system of equations becomes:

2 -1 I (1)
-1 - L |
= (221)

=2
-1 2 xn. (n+1 )

Whenever nothing elseis said, the preconditioner M is taken to be the identity matrix.



In each stage of the iteration, the residual is added arandom vector, scaled to have norm
Slinll:

Iinll
7= 1k + Qe Sy (2.22)

qk iS arandom vector with uniform distribution in the n-cube, i.e. each component of q is
uniformly distributed in[-1,1].

The initial vector is chosen randomly in such away that the initial residua rg is a random
vector with uniform distribution in the n-cube.

By average convergencerate between iterationm and n, we mean:

_ 1 (Tn, A1,
envrte(m.n) = - yrois i 0 A_lr:))) (2.23)
B. .
&
3
3
L ole /\ sd
- 014
~,012
d
| m '14 .IG '18
Fig. 6

Average convergence rate over the first 50 iterations for n =
20.

Sd = steepest descent (8 = 0)
Pd = inexact sd, perturbated with different values of 6.

Notice that for small values of 8, pd performs dlightly better
than sd! This effect is seen in many of the experiments,
athough usualy not as much as here.
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The effect of preconditioning. Average convergence rate
over the first 50 iterations. n = 20. The coeffkient matrix A
and the preconditioner M is:

1 2 -1 1

and VM = 3

n

In this example theorem 5 does not say
anything about the convergnce rate when

8> 0.1, because in this case

Kz-tan£> 1.
2
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