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ESTIMATES OF EIGENVALUES FOR ITERATIVE METHODS*

GENE H. GOLUB AND MARK D. KENTt

Abstract. We describe procedures for determining estimates of the eigenvalues of op-
erators used in various iterative methods for the solution of linear systems of equations.
We also show how to determine upper and lower bounds for the error in the approximate
solution of linear equations using essentially the same information as that needed for the
eigenvalue calculations. The methods described depend strongly upon the theory of mo
ments and Gauss quadrature.
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1. Introduction. We wish to solve the system of equations

(1) Ax=b

where A is an n x IZ, symmetric, positive definite matrix. It is frequently desirable
to rewrite (1) as

(2) Mx=Nx+c

where M and N are symmetric and M is positive definite. We are interested in
those situations where it is a much simpler computational task to solve the system
Ms = d than it is to solve (1).

We shall use an iterafiue procedure of the form

(3) xk+l = x)-l+ wk+l(ykak + xk - XL-l),

where Mrk = c - Ax, E c - (M - N)xk. Depending on the choice of parameters,
(3) describes the conjugate gradient (CG) method, the Richardson second order
@SO) method, or the Chebyshev semi-iterative (CSI) method. The success of the
latter two methods depends on having good estimates for the smallest and largest
eigenvalues of the iteration matrix M’1 N. In this paper we show how to obtain
the optimal parameters for the CSI method using modified moments calculated from
the successive iterates produced by the method. The same can be done for the RSO
method (see the appendix), however, the results for the CSI method are superior.

The algorithm for estimating the optimal parameters is based on the modified
Cbebysbev algorithm given in [5].  See also [S], [14]  and [15].

In $2 we review the connection between moments and eigenvalues and introduce
modified moments. $3 shows how modified moments arise naturally in certain itera-
tive methods. In $4 we show how to use modified moments to determine successive
elements in a tridiagonal matrix whose eigenvalues approach the eigenvalues of the it-
eration matrix. Improvements are given in 55 which lead to a fairly stable algorithm.
Determining error bounds is the topic of $6 and this is followed by computational
results in $7.

The appendix describes variations of the primary material of this paper.

*This work was in part supported by National Science Foundation Grant Number DCR 8412314.
tPartial.ly  supported by the Natural Sciences and Engineering Research Council of Canada.
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2 GENE H. GOLUB AND MARK D. KENT

2. Moments and Eigenvalues. The connection between moments and eigen-
values is well known (e.g., [13],  [12],  [S]). For completeness, we include the following
short derivation taken from [S].

The Cayley-Hamilton theorem states that every matrix A satisfies its charac-
teristic polynomid

(4) x(A)  5 A” -&-1X*-l  - ’ - * - &j = 0

A” = &,,lAn-l  + . . . + &I.

For this discussion assume that A has distinct eigenvalues Xl < & < . l . < X,. Let

n

(6) V =
c aiwi,
kl

where oi # 0 for all i, Awi = &wi and llwi lla = 1. Post-multiplying (5) by v we
obtain

A”v = ~n-lAn-‘v + . . . +&v

(7) A”v = [v, Av, . . . , A”“v]t

where t = [so,&, . . . ,<n-#‘. T he matrix on the right hand side of (7) is the Krylov
matrix K”(v) associated with A and v. Let u = A”v. The coefficients of the
characteristic polynomial (4) are given by the solution of the following system of n
equations in n unknowns
(8) Kn(v)t = u.

Unfortunately, the system of equations (8) is usually ill-conditioned.
Let H = (K”(v))=K”(v) and c = (K”(v))=u. An equivalent system to (8)

is the system of normal equations He = c (which is even more ill-conditioned than
(8)). Note that

(9)
EHI-t+ljtl = (A’v)*Ajv

= VTA’+j v

andso the element [H]ij depends only on the sum of the
matrix whose elements are the moments pi+j.  = mr+lj+lZ

H is a Eankel

Lb-1 . . . . . . . . . P!i?n-2 J

To see why we call pi+j  a moment we use (6) and (9) to obtain

n
Pi+j -_ VTA’+iv = vT c

p=l p=l

n
cCi+j = c

a2 xi+i
P P

p=l
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FIG. 2.1: The meuutre  da(X).

Equation (10) is equivalent to

(11) /‘k =
/

A” da(A), k = 0, 1, . . . ,2n - 2,

where da(A) is a discrete non-negative measure determined as follows:

{

0, for A 5 Al,
(12) a(A)  = a: + cu; + * * * + a:, for At <A L&+1, t = 1,2 ,..., n-l,

crf + a$ + . - - + ai, for A, < A. .

and is shown in Fig. 2.1.
Associated with the measure da(A) is a set of discrete orthogonal polynomials

($?k (A)):!0  such that

and

/
~i(X)~j(X)da(X) = 0 when i # j

cpn(W  a x0)-
Using the moments (/li}fgG2
MEil

it is possible to compute the coefficients {ri}r!l,
which appear in the three term recurrence relation

(13) b’k+l(A)  = (A - rk)@(A) - VkPk-l(x)

via the Chebyshev algorithm [5]. This, however, is a very ill-conditioned process.
The situation can often be improved by replacing the ordinary moments (11) by
modified moments

v, =
/ Pk(A) da(A)

for a set of suitably chosen polynomials pk(x).  Note that if p,(x)  = Ak then the
modified moments reduce to the ordinary moments. The numerical condition of the
map from modified moments to the coefficients (Ri}y&i,  (~i}~~~ has been studied
by Gautschi [5]. In general, the condition is improved. However, it is clear that the
choice of polynomials pk(A)  will have some effect on the stability of the transforma-
tion.
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3. Modified Moments and Iterative Methods. We now demonstrate how
modified moments arise in certain iterative methods for the solution of symmetric,
positive definite linear systems Ax = b. In the following discussion let 7 = Tk be
fixed.’

For future use, we derive some relationships concerning the “generalized resid-

xk+l =  xk-1  +wk+l(y%k +  xk - x)-l)

C - Axk+l =  C - AX,-1 -  Wk+l(YAXk +  AXk - c  +  c  - l&-l)

(14)
(15)

(16)

MZk+l = it&-l - Wk+l(YAZk + MZk-1 - MZk)

zk+l = zk-1 -  Wk+l(yi@AZk  +  zk-1 -  zk)

Sk+1 = “Jk+l(~-Y~-l&k+(~-w,+l)Zk,~

zk+l 3 wk+lB&k + (1 - wk+l)zk-1

where B = I - yMwlA  E (1 - y)I + yM”N. Note that zi = Bzo, 22 = wzB2zo  +
(1 - wz)zo and in general

zk = wkw),1 . - .w2Bkzo  + a -.

(17) zk = b(B)zo

where Pk( B) is a matrix polynomial of degree k: in B. From (16) we have the related
set of scalar polynomials

(18) Pk+l@) = wk+l+k(x) +(I-wk+l)pk-l(x)

P-l@)  = 0 PO(X)  = 1.

We will need to work with the eigenvalues and eigenvectors of B and so we
digress for a moment to investigate the well-known (e.g., Wilkinson [16])  properties
of B.

First, consider the eigenproblem M” Nx = Ax or, equivalently, the generalized
eigenproblem Nx = AMx, sometimes called the matrix pencil (N, M). Note that
M and N are symmetric and M is positive definite. We can write M as M =
UB2UT where U is an orthonormal matrix and 8 = diag (@I,&, . . . ,19,,).  We use
this decomposition of M to write

( N - A M )  = U8(8-‘U=NUW’ - H)W=

det(N - AM) = (det U)2(det  0)2  det(S - AI)

where S = 0-‘UTNUO’l. Now, (det U)” = 1 and (det 0)” = fli 6: hence the zeros
of det(N - AM) are those of det(S - AI), S is a real symmetric matrix and so it has

‘Thh i8 not redly necessary. However, in many instances the value of y can be deduced from
the specific problem and the computational procedures discussed here may vary 7 from a known
optimal value.
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a complete set of orthonormal eigenvectors yi. We have

SYi = Xiyi

O”UTNUO”yi = Xiyi

N(UB”yi) = AiU0yi

= AiU8(8UTUB”)yi

= AiM(UB”yi).

Let qi = UB-‘yi  then Nqi = Xi Mqi. The vectors yi are orthogonal and UO” is
real and non-singular so the vectors qi form a complete set of eigenvectors for the
matrix pencil (N, M). For i # j we have

and so the vectors qi are orthogonal with res&ct  to M.
Finally

Bqi E [(l - y)I + yM”N] qi
E [l + y(& - I)] Qi
E iiqi.

Express B as B = Q&Q-l  where Q = [ql,  . . . , qn]  and A = diag (x1, &, . . . , i,).
chtdy, q(B)  = QP,(A)Q-‘. We can write zo as a linear combination of the
eigenvectors qi of B

n
20 = c WQi-

is1

Let P,(B) = ckj=o cj Bj then using (17) we have

zk = QPk(A)eaiQ-‘pi
i=l

k n

jt0 i=l

j=O i=l
n

i=l

Now, forming the inner product

(zk, ZI) = (Zk, Mzr)

= xafpk(%)Pl(%)
i=l

= p&p,(i) d,(i). ”J
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Hence (21:) 20) = Vk.  With each iteration of (3) we can calculate a modified moment.

4. Using Modified Moments. The results of the previous section indicate
that we can calculate the modified moments2

we will use these moments to obtain another set of polynomials $k(A) with $-r(X)  =
0, $0(X)  = 1,

(20) J $k(A)h(A)da(A)  = 0, for k: # 1 .
and *n(k)  = 0, (i.e., &(A)  O( x(X)).  Additionally,-we require the polynomials ?,&(A)
to have the form

* (21) tlk,+lO) = @a+1 -ak)tik(+-ktlrk-l(A)

rather than the more conventional form (13). This choice will produce a more compu-
tationally  attractive algorithm. The results for $,(A) of the form (13) are contained
in the appendix. Our aim is to compute the coefficients Ok, bk in (21). The technique
used here is similar to that in [5].  It is repeated here due to the variations imposed
by the choice (21).

Define

(22) ok1 = J ‘bk(+l(A) da(A).
Then, since we can write

PI(X)  = +1(A)  + 5 tlj+j(X)
j=O

we have 6k1 = 0 for k > 1. Now consider

(23) = ok J +k(A)pk(A)  da(X)

. =ukk s i n c e  8, = 1.

Then, replacing pk(X)  in (23) with the recurrence relation (18) we obtain

@kk = J 'bk(A) [UkApk-l(A)  + (1 - wk)pk--2(A)]  da(A)

(24) = ok hjk(x)Pk-l(x)  da(A).J
Rearranging (21) gives

(25) Ati, =  ($,+1(x)  +JJk$k(A)  +  bk’bk-l(A))bk+l,

2Fkom now on, we will not distinguish between ,I and 5.
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and substituting (25) in (24)

ukk = 2 J [$k+l(A) + Ok*,(A) + bk+k-@)]Pk-@)da(x),

(26) = =bkUkm.+.
Wk+l

From (26) we get an expression for bk :

(27) h
wk+l ukk=-. .
wk uk-l,k-1

To find an expression for c&k we note that

(28) “k+l,k = J tlk+l(A)p (A) da(A) = 0,-k

and replacing $,+1(A)  in (28) by the recurrence relation (21)

0 = J [<Awk+l - ak)lkk(A) - bk$k-r(A)]  Pk(x) da(x),

(29) = J wk+dPk(A)+k(A)  da(x)  - ahok)  - bkak-1,k.

The recurrence relation for pk( A) in (18) gives

wk+lh’k(A)  = Pk+l(A) - (1 - Wk+l)Pk-l(A),

and substituting (30) into (29) results in

0 = J $k(~)(pk+l(~)  - (1 - wk+l)pk-l(A))  da(X) - akUkk - bkuk-l,k,

(31) 0 = uk,k+l- akukk  - bkUk-1,k.

k?arranging (31)  gives an expression for ak :

@k,k+l ok-1 ka )  = - - b,d
ukk ukk '

(32) = -,k+l “Jk+l @k-l,)- - -
ukk Wk ok-l,k-1.

Now we seek a recurrence for @)I for 13 k.

ok1 = J +k(%(A) da(x),
= J [thk - ok-l)tDk-l(A) - bk-dk-z@)]pI(A)  da(X),

(33) = wk J ~‘bk+)Pl(~) i&(A) - ak-lok-1,1 - bk-lbkq.
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Once again we use (18)

(34) API(X)  = [Pi+1(W - (I- w+l)PLl(Nllw+l,

and substituting (34) in (33) gives an expression for bki:

(35) ukl = wI[flk-l,l+l  - (1 - wI+l)uk-1,1-l] - ok-luk-lJ -  h-lW+a,i.
w+1

Equations (35), (32) and (27) furnish the algorithm for determining the coefficients
of (21). The initialization required is

u-1,1 = J h(X)pt(X)  da(X)  = 0,

(36) UO,l = J p,(A) da(X) = y, for 1 = 0, 1, . . ., 2m - 1,

Vla0 = -, bo = 0,
VO

and the algorithm continues with

Wk
ukl = -[ok-1,1+1 - (1

w+1
- wI+l)uk-l,bl] - ak-luk-1,I - bk-Vk-z,h

(37)
for I= k, k + 1, . . . ,2m - k - 1,

uk,k+l “‘k+l ok-&k ok+1 ukk
ak = - - . bj+--

ukk wk ok-l,k-1’ wk ok-l,k-1’

fork = I,2 ,..., m- 1.
The choice of polynomials of the form (21) leads to a generalized eigenvalue

problem. Writing (21) in matrix form we obtain

ek+l $k+l .

To find the zeros of &+1(X)  we solve (38) by transforming it to a standard eigenvalue
problem Jk+lx = Ax where ,&+I is a symmetric tridiagonal matrix

The computational procedure described is, in some sense, equivalent to the
Lancoos  algorithm [13],  [9]. T hus, we would expect that the extreme eigenvalues of
Jk will provide good approximations to the extreme eigenvalues of B as k increases.
Once we have sufficiently accurate estimates for the largest and smallest eigenvalue
we can restart the CSI method with (near) optimal parameters.
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5. Improving the Calculation of the Modified Moments. We will now
derive improved expressions for the modified moments uk in terms of the vectors
zk for the CSI method. After 2m iterations of (3) we can calculate {ok}~~~ and
Ibk IFit and so have, in principle, the roots of &(A).

Obviously, it would be advantageous to have the roots of &(A)  after only m
iterations of (3). It is possible to attain this goal, if the iteration (3) is the Chebyshev
semi-iterative method. For the CSI method we have estimates, a and b, of the smallest
and largest eigenvalues of B and the parameters, in terms of p = (b - a)/(b + a), are
given by

2 1 1y=-
b+a’ wk+l =

l-$wk
with wi = 1, w2 = 0

- l-%’

It is well known [lo]  that

(39)

where

ck(z) = cos(kcos-‘2
c-h(kcosh-

1, 149,kW;
z), 1~1~ 1, k 1 0.

Ck(z)  satisfies the three term recurrence relation &+1(z)  = 2&&(z)  -Ck-r(z)  with
initial conditions Co(z) = 1 and Cl(z)  = z. From the classical identity ccx(k + l)O =
2 cos k9 co8 16 - cos(k - I)& we have Ck+l = 2ckcl - CI,-11.  Hence for I= k,

(40) c2k = SC; - CO, c2,+1 = 2ckck+1  - cl.

Working from (39) and making liberal use of these identities we obtain

c2ktxh) lPd) =  ~a,(~/~) =  &) + c2k(1~p) pk[ 2(x) - 11
which leads directly to the modified moment

(41) “2, = (gk,ak) + c2k;l,ll)  (fzk* ‘d - “0).

simdarly, for m&,+1(A):

P-+1@) = Pk(+b+@) +
1

@2k+l( f h)
bdx)Pk+l(~) - PI@)]

leads to the modified moment

(42) “2k+l = (zk, zk+l) + (bk,zk+l)  - VI).

The first two modified moments are given by uc = (80,  ZO)  and ~1 = (40, zl).

6. Error Bounds. In this section we indicate how to obtain error bounds for
an approximate solution to the system Ax = b. We now summarize some of the
results given in [3]  and [7].

Let the eigenvalues of A satisfy a < Ar 5 X2 5 . . . 5 A,, 5 b corresponding to
eigenvectors { Wi}y=l. Suppose we have an approximation to x which we denote as
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3E. Now we seek to find upper and lower bounds on I]x - %]I. Let the residual vector
be r0 = b - AZ so that ro = A(x - ii). Hence

Ml
ijzq s IIx - Kll L IIA-‘II * Ilroll*

Writing ro = CFz1 &iwi,  we have (cf. 32)

(43) P, = CAP r0,n-j) (p = 0, 1, . . . ,2k).
i=l

Nowx-Z=AA-‘roso

(44) lb - %/I~ = (Aw2re, ro) = 2 c$Ai2 = p-2.
i=l

Equations (43) and (44) are equivalent to (see (11) and (12))

J b
(45) Pp = XP da(X), (p = -2,O, 1,. . . ,2k).

a

Then determining upper and lower bounds on ]]x- %]I 2 is equivalent to the following.
Problem: Given 2k+l  moments (p.}, fto, determine upper and lower bounds on p-2.
The solution to this problem is related to the classical theory of moments. In order
to give a numerical algorithm, we review some facts from the theory of Gaussian
quadrature.,

Suppose we are given (/4i)& and a function $(A) defined in the interval (a 5
A 5 b), and we wish to determine (L, U) so that

We can determine a quadrature rule such that

(46) Jb
pt =

0
A’da(A) = 2Ait; + eBjzi,

izl j=l

for r = 0, 1, . . . ,2k + m - 1. Here (Ai, ti}br  and (Bj}jm,l are unknown and the
(3 If=1 is specified. Such a quadrature rule is called a generalized Gauss-R&au
rule.3

Then

Jb

a
41(A) da(A) = 6 Ai+(ti)  + 2 Bj$(%j) + R[$]

is1 j=l

where the remainder term, R[+], is given by

(47) R[+l = (2k + m)!‘(2k’m”“[~(A-~j) [fi(l-ti)12do(l), a< q< b.

3To be distinguished from a normal Gauss-FL&au rule where we have m = 1 and z1 = a or
tl = 6 in (46).
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Thus if +(A) = XB2  and m = 1,

R[X-2] = -2(k + l)~-(~~+~) lbCX-%l)  [Q(r-ti)12WA).

Hence for zr = a > 0, the Gauss-Radau rule yields an upper bound for p-2  and if
zl = b, we have a lower  bound from the Gauss-Radau rule. It can be shown [l, pg. 801
that these bounds are attainable. Later in our discussion, we shall need upper and
lower bounds for p-1. Note that since R[X”]  < 0 when 11 = a, the Gauss-Radau
rule will yield an upper bound on ~-1  and that when zi = b, we have a lower bound.

It is well known that finding the Gauss quadrature rule is equivalent to finding
the zeroes of the set of orthogonal polynomials, {pj (A)}f=c,  associated with the
measured&(A).  Thusifcpk(ti)=Ofor  i=l,2,...,k,  then

(48) J b
pr = A’da(A) = ?Aitr, (r = 0, 1, . . . ,2k - 1).a i r l

As previously mentioned (cf. $a),  the coefficients (xj}F=r,  {r#}~~~  can be computed
directly from the moments but this process is generally numerically unstable.

Given (wj}J=r,  {r#}~~,‘,
ht .?,

we can compute the Gauss quadratures as follows [7]:
= tridiag{ qj - 1, Xj, qj } . Then the eigenvalues of Jk are the nodes of the

quadrature rule. Furthermore, if ~0 = 1, then the square of the first component of
each normalized eigenvector is the weight associated with each ti. The eigenvalues
and first component can be efficiently computed by the QR method.

The computation of the Gauss-Radau rule (m = 1) is only slightly more com-
plicated. The idea is the following. Let

Tk+l = I .
For notational convenience, we designate to as the prescribed node.4  We wish to
calculate Tk+r so that pk+l’(tO) = 0, and hence the eigenvalues and eigenvectors of
rk+r yield the Gauss-Radau rule. Now

0 = $‘k+l(tO) = (to - Fk+l)$‘k(tO)  - &k-l(t0)

and hence Fk+l = to - $vk-r(t())/(Pk(ts).  The Computation of wk+l is simplified as I *
follows: Solve

(Jk - toI)b = qzek

where ok = (O,O, . . . , 0, l)=. Then Fk+l = to + 6,.
We need not compute the eigenvalue-eigenvector decomposition to determine

upper and lower bounds on cc-2  and p-1.  Let Tk+l = @‘QT  where QTQ = &+I

‘The due of to is either a or 6.
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and T is the diagonal matrix of eigenvalues of yk+r. The vector QTel  consists of
the first component of each eigenvector of Tk+r. Hence (cf. (48)),

k
Y

Pr - c
Aitf = eTrk+lele

i=O

Thusifs=-
k

cl-2 22 c Aiti2 = (eZ&)(5r;:led,
i=O

andfors=-1
k

p-1 Y cAit,’ = erJ,;,el.
i=O

6.1. The Conjugate Gradient Method. We now describe how the ideas
given above can be used in combination with the conjugate gradient method. Our
idea is to be able to construct bounds on the error after k steps of the conjugate
gradient method.

The conjugate gradient algorithm can also be written in the form (3) [2].  Recall
that (x, y) = (x, My). T he parameters are chosen to ensure that the generalized
residual Vectors  satisfy (zk, z&+1)  = 0 and (zk-1,  zk+r) = 0. In exact arithmetic, all
the generalized residuals would be mutually orthogonal and in the following derive
tion it is assumed that (21,  zm) E (~1,  MI,)  = 0 for 2 # m.

Starting from the three-term recurrence for the residual vectors (14) we form
(zk,zk+l) ad (zk-1, zk+l):

(49) (zk, zk+l)  = --ok+1[7k(zk, (M - N)zk) - (zk,zk)],

( 5 0 )  (Zk-l,zk+l) =  (zk-1,&k-1).-k+&k(zk-l,(M- N)zk)+(zk-1, zk-l)].

From (49) we see that if (zk, zk+l)  = 0 then either W)+l  = 0 (in which case iteration
(3) has terminated), or

(Sk, zk)

” = (Zk,(M - N)zk)’
Now, setting (50) equal to zero we obtain

(52) wk+l = 1 - 7k

or, using only M-inner products .

(53) 'y,w)+l= I- -
Wk’yk-1  (zk-1, zk-1) ’ - .

Not surprisingly, it is possible to get eigenvalue estimates from the conjugate
gradient algorithm. From (15) we have

(54) zk+l = l;k-1 -Wb+l(7(I- M-'N)zk +Zk-1 -Zk). 9

Rearranging (54) gives us

(55) (I - ikf-%)z, = ck-lzk-1 + akzk + bk+Ck+l,
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defining ok, bk and c). We can Write (55) in matrix notation as (I - kf-‘N)&  =
&J, where & = [Zo, 81,. . . , zk] and

Note that Jk can be symmetrized. This is essentially the Lanczos process and we can
expect that the extreme eigenvalues of Jk will approximate the extreme eigenvalues
of (I - M-l N) even for relatively small k.

In the special case where M = I, an algorithm has been given in [4]  for com-
puting upper and lower bounds for

(56)

where 6, 3 x - Xk. The bounds are based on the fact that the conjugate gradient
method yields a minimum for (56). We are able to show that for the CG method

(57)
where p = (PO, ~1,  . . . , Irk)= and

ccl cl2 *** ..’ h+l

P2 Pa
Ml= .

[

�* l /‘k+l  /lk+2
. .. .. .

Ir k +1 �** -*� l l - C(2k +i
1

Thus obtaining an upper and lower bound in (56) is equivalent to determining upper
and lower bounds for p-1 and we have already shown how to make this computation.
The remaining term in (57) is computed as follows:

Thus, we obtain the following algorithm for bounding 1]8k+1]1:
1. fknstruct  &+I.
2. solve Jk+lh = el.

6.2. The Chebyshev Semi-Iterative Method. We return to the CSI method
for Ax = b. We have

(x - x,) = B(x -x&l) = B’(x - Xo),

where B = I - 7A (i.e., M = I in (14-17)).
Now since rk =Ae,,andA= $(I - B), we see that A&k  = Pk(B)zc,  and hence

JOn P:(8)&kk = 7rr&(B)(I  - B)“P@)ro = 7 8l 1-e da(O).
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Now

G E N E  I i .  G O L U B  A N D  MARI$ D .  K E N T

PEW Pm - l 1
1-8= 1 - e +m*

Note that ‘w is a polynomial of degree 2k - 1 and

$(I - q-1 = r!(l - 6)-(‘+‘)
2 0, for 101 < 1.

Thus, if we apply the Gauss-Radau rule to

with m = 1,

Hence if ~1 = 81 the Gauss-Radau rule yields a lower bound for (58), and if ~1 = 8,)
the rule yields an upper bound.

7. Computational Results. The eigenvalue calculations perform well in prac-
tice. Tables 7.1 and 7.2 show the results of two sets of experiments. The Chebyshev
semi-iterative method was used with the same unit-length random initial vector and
a right hand side of zero. Thus, the problems solved had a zero solution vector.

The matrix resulting from the discretization of the two-dimensional Laplace
equation was used for the results in Table 7.1. The values of /r and y are the
parameters used to start the iterations (calculated from estimates a and b). The
column labeled ‘dynamic’ shows the number of iterations required to reduce the
norm of the error to less than 0.5 x 10” when the parameters are changed at some
point during the execution. The column labeled ‘switch’ indicates the iteration
that the method stopped performing the eigenvalue calculations and switched to
the standard CSI method. This point is either when the eigenvalue calculations
have “converged” or when the eigenvalue calculations break down (see below). The
eigenvalue calculations have converged when p, calculated from the estimates of the
extreme eigenvalues, changes by less than 1.0 x 10” from the p calculated with
the previous eigenvalue estimates. The column labeled ‘fixed’ gives the number of
iterations that would have been required if the switch were not made, i.e., if the
calculations were to continue with the initial choice of parameters. Finally, the
columns fi and y indicate the parameters used to restart the process at the ‘switch’
point.

For this problem, the optimal Chebyschev semi-iterative method converges in
213 iterations. The same (optimal) parameters are obtained from the eigenvalue
calculations at iteration 135. The desired solution vector is reached at iteration 221.
The extra 8 iterations can be accounted for in two ways: the iteration method is
restarted at iteration 135, and the calculated parameters are not exact.

Next (row 2) the initial parameters are chosen so that ~1 = 0.975. Here the
eigenvalue calculations break down at iteration 103. The best value of /.A at this
point is p. Restarting with these parameters @, yoPr) the method converges in
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a b cc Y dynamic switch fixed fi 4
1 baopt opt C(opt Yopt’ 221 135 213 CIopt Yopt
2 0.1 7.9 0.975 Yopt 252 103 1170 0.998775 yopt
3 0.01 7.99 0.9975 Yopt 226 135 326 C(opt Yopt
4 0.0001 8.0 0.999975 0.249997 333 135 1448 llopt Yopt

Table 7.1: 2D Laplace, 4096 x 4096 in 64 x 64 blocka. C(opt # 0.996632, yopt z 0.25, %uopt 0.00467,

bopt # 7.99533.

252 iterations. Note that, even though the eigenvalue calculations broke down, the
estimates obtained were still good enough to provide immense savings in the number
of iterations performed (252 instead of 1170).

Usually breakdown in the eigenvalue calculations occurs because the value of bk
in (37) becomes negative and we cannot calculate a value of pk for the tridiagonal
matrix Jk+l. This may be a stability related breakdown. Even though the use of
modified moments has improved the stability of the determination of the coefficients,
it may not be as stable as we would wish (see last paragraph of $2).

An interesting point is that if the whole process is restarted with the approximate
solution at the breakdown point as initial vector, then the eigenvalue calculations
typically break down again in short order (usually less than 10 iterations). In most
experiments it has proven fruitless to try to restart the eigenvalue calculations after
an initial breakdown.

Regardless of whether the eigenvalue calculations complete successfully or not,
the process of restarting the method slows down convergence for a few iterations.
The basic reason for this is that the building of the Chebyshev polynomials has been
broken and the process starts again from a linear Chebyshev polynomial.

In most cases the effect of the new parameters more than makes up for any
hesitation caused by restarting.

The eigenvalue calculations complete successfully in the next entry (row 3) at
iteration 135. The method converges in 226 iterations instead of the 326 iterations
that would have been required if the method were not restarted with the improved
parameters.

Finally, row 4 gives an example where the smallest eigenvalue is under-esfimoted
and the largest eigenvalue is over-e&muted.  The eigenvalue calculations again con-
verge in 135 iterations and both parameters have been correctly calculated. At this
point, however, the error vector still has a rather large norm and 333 iterations are
required to complete the process. However, if the method had not been restarted
with the optimal parameters it would have required 1448 iterations to complete.

The next series of experiments use the Kruwtcho~k  matriz  which is a tridiagonal
matrix associated with a discrete set of orthogonal polynomials called Krawtchouk
polynomials. The (n + 1) x (n + 1) Krawtchouk matrix has the following form:

K=

a1 P
q/n a2 (n - UP/n

Q/n 03 (n - Wn
. . .. . .. . .

. %t Pin
!l an+1

where ak is chosen to make the row sums equal one. This matrix has the property
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a b P Y dynamic switch fixed ir 9
1 aopt bopt Crdpt Yopt 42 - 42 - -
2 0.01 1.1 0.981982 1.80180 67 41 102 0.898495 1.80005
3 0.06 1.0 0.886792 1.88679 82 40 > 256 Popt Yopt

Table  7.2: Kmwtchod mat&, 256 x 256, bpt = 0.90, rapt = 1.8, =oopt i/16, bopt = 1 + aopt.

that for p > 0, q = 1 - p, the (n + 1) eigenvalues of K are Aj = j/n, for j = 0, . . . , n.
The tests used the 256 x 256 shifted matrix fi = K + &I which has popt = 0.90,

Yopt = 1.8. Iterations were continued until the norm of the error was less than
0.5 x 10’8. The extreme eigenvalues are a = $I ~0.0555556 and b = 1 + a.

The CSI method with optimal parameters required 42 iterations to meet the
requested tolerance. Using the optimal parameters, the eigenvalue calculations did
not converge before the solution was obtained (in 42 iterations).

Row 2 of Table 7.2 shows the results when estimates of u = 0.01 and b = 1.1
were used. The eigenvalue calculations breakdown at iteration 41 but the method
converges at iteration 67 using the best available parameters. If the switch had not
been made an additional 35 iterations would have been required to meet the error
tolerance.

Finally we chose a = 0.06 and b = 1.0 giving the results in row 3 of Table 7.2.
Here the eigenvalue calculations converge at iteration 48 with near optimal parame-
ters and only 82 iterations are required to reach the solution. The error at iteration
256 in the fixed case is as large as 0( 10m4).

Appendix: Variations. Here we derive results for $k chosen to have the form

$k+1(4 = (A - ak)tlk(A)  - bk+k(A)-

We also present results for Richardson’s second order method. Note that Richard-
son’s method can also be used with the techniques in $2 and 93 however $4 is not
applicable. After 2m iterations of Richardson’s method we will only have the roots of
$J~(X)  and so cannot expect to have as good eigenvalue estimates as those obtained
with the Chebyshev semi-iterative method.

We start from (18) and define

,

then

Wk+l l **u2wlqk+l(A) = wk+l" :('JZdqk +(I -wk+l)wi-l.*'w2wlqk-l

qk+dA) = &?I: + ‘w;w:::’ q,-1

and so qk(X)  is a manic polynomial.
For both the Richardson and Chebyshev methods we have

(61)
l-k+1 = pa

wkwk+l 4.
where ~1 is defined in $4. Therefore for both methods we obtain:

qk+l= hk - !&k-l
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Thus in terms of a general orthogonal polynomial recurrence, qk+l = (A - (k)qk -
bk qk- 1, we have ck = 0 for all k and bk = $ for all k > 1. 61 is a special case since
equation (61) does not hold for k = 1. The value of 61 for Richardson’s method is
61 = -i(dw - 1) and for the Chebyshev method 51 = p2/2.  Now we define
new vectors  & as follows

iO=f&-0, ir=w,.f,wk  xzk-

Simihu  to the derivation in $2, we now have 5, = Qk(B)&) where kc = ~~=I  &iqi;
hence

(k&n)  =
J

Qlmh  (4 dW)*

The polynomials {qi(A)) are orthogonal with respect to some measure but not nec-
essarily &(A). The modified moments are given by

vk =
/

qk(A)qO(A) d&(A)  = (gk, 50).

Note that after 2m iterations, we have (PO,.  . . , u2,,,-~}  .
To compute the coefficients of $k(A) we use the modified Chebysbev algorithm

[4. Define

(63) 8 = (~O,%l), VA: = (@b)/8, fork=O,l,...,  2m-1.

Note that Z0 = zc and Z1 = 21.  The algorithm is similar to (36) - (37).
Initialization:

u-1,1  =  0 , for I = 1,2, . . . ,2m - 2,

(64) CO,1 = w, forl=O,l,..., 2m-1,

a0 = Yl, bo=O.

Continuation: for k = 1,2,. . . , m - 1

@kl = @k-1,1+1 - at-luk-1,l  - h-l@k-2,l+  bk-1,1-l

w-9
forl=k,k+l,..., 2m-k-1,

-,k+l flk-1,) flkk
0) = bk =

ukk ok-l,k-1’ @k-l,k-I ’

Improvement for the Chebyshev Algorithm. Once again we can use the
techniques of $5 for the Chebyshev algorithm. From [lo]  we have

(66)
and

(67) Wk “‘Wl =

Using (39) and (67) together with (59) we obtain

(68) qk(A)  = &ktA/d,
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which together with (40) give

(69) q2k = !I; - 2q0 (2)!!
2k

I q2k+l= qkqk+l-Q1

which leads to the modified moments

(70)
2k

u2k = tik r Sk)/8 - 2(2>!!
2k

, v2k+l = (z,, &+1)/t? - v1 (f> .

Here %k and s are given by (63), ~0 = 1 and vi = (Zc, Zi)/s.  Thus it is possible to
obtain two moments with each iteration of (3).

Problems with this approach. It is clear from (67) that the product of all
the wk’s will increase exponentially with k. In (63) we divide the vector zk by
this product thus the moments are rapidly approaching zero as k increases. On a
Vax 11/780  using double precision arithmetic ppe  were never able to go beyond about
60 steps of (65) because the diagonal elements of the u array, bkk,  rapidly converged
to zero. With the choice of polynomials (21) this problem is avoided, but it is still
possible to obtain very small bk).
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