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The ‘truncated SVD as a method for regularization
Per Christian Hansen*

Abstract

The truncated singular value decomposition (SVI) is considered as a method for regulariza-
tion of ill-posed lincar Icast squarcs probleins. In particular, the truncated SVI) solution is com-
parcd with the usual regularized solution. Necessary conditions arc defined in which the two
methods will yicld similar results. This investigation suggests the truncated SVD as a favorable al-.
tcrnative to standard-form rcgularization in casc of ill-conditioned matrices with a well-dctcrmincd
rank.

Key words: truncated singular value decomposition, rcgularization in standard form, perturbation
theory_for truncated SVI), numerical rank.

1. Iniroduction

This paper deals with methods for solving the unconstrained lincar Icast squarces problem

ninfldb = A x|l , A € R™" | 'm > n . )

Here, and throughout the ppper, )| . |l = Il + k. When the matrix A is ill-conditioned, the problem
(1) is ill-posed in the sense that a small perturbation of b may lead to a large perturbation of the
solution. The same is truc for perturbations Of A. A well-known and highly regarded method for
dealing with such ill-posed prohlcms is the method of regularization by ‘T'ikhonov [ 18] and Phillips
[l 7). In particular. regularization in standard form corresponds to defining a regularized solution
Xy, as a function of the regularization paramcter A, by

xp = argmin {6 — A x|I? + A* lIxI?} . )

It is casy to show that x, is the least squares solution to the problems

[5]-

where /,, denotes the itlentity matrix of order #, and x, is unique since the augmented matrix in
(3) has full rank.

A

Al Q)

min x

Another well-known method for dealing with ill-conditioned matrices in problem (1) is the
truncated singular value decomposition ('SVD), cf. 1 lanson [12] and Varah [21]. 'The use Of the
TSV has certain similarities with the user of regularization in standard from, and it is gencrally
known that the two methods often produce very similar results [22]. The purpose of this paper is to
investigate the connection between the two methods and define necessary conditions in which the
two methods will yield similar results.
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‘I'he author is aware that it is often necessary to substitute || 7. x |} for || x || in (2), and that this
may have a considerable cffect on the solution [25]. However, it is strcsscd that analysis of the
standard-form problem (2) will shed light on some general relations between TSVI) and regulariza-
tion, and that a problem not in standard form can be transformed into a problem in standard form
as shown by Eldén [6].

The organization of the paper is as tollows. In Scction 2 the 'TSVD and stanaard-form regu-
larization arc stated in terms of the SV of the matrix A, and in Section 3 a new perturbation
theory for the TSVI) is given. On basis of this, it is natural to divide ill-conditioned matrices into
two classes of matrices with well-determined and ill-dctcrmined numerical rank, rcspectively, as dis-
cussed in Scction 4. Scction 5 treats the case of matrices with well-determined rank, and it is
verified that TSV and regularization can, produce similar solutions. Finally, the case of matrices
with ill-dctcrmincd rank is treated in Section 6 whcere it is shown that the similarity of the two solu-
tions now depends on the projection of the right-hand side 6 onto the left singular vectors of A.

The paper is similar in spirit to the papers of Varah [22] and Wedin [23,24], and cxtensions
of the results of Wedin arc given.

2. Truncated-SVD and standard-form regularization

Throughout the paper, the singular value decomposition (SVD) of the matrix A in (1) will
be cxtensively used. To summarize the SVD bricfly, Iet A4 be decomposed into the three matrices
U, X, and V.

A=UzVy" ©)

wherc the left and right singular matrices Y € R ™* " and V € R "*" arc orthogonal, and whcrc the
matrix £ € R™*" has diagonal form:

2= diag(ey,02....0,) . (5)
The diagonal clements {o;} of Z arc the singular valucs of A, and they arc ordered such that:
0‘|2022...20,)0,...1:...:0,,:0 (6)

where r = rank (A). In particular, || 41l = @1. For a rigorous treatment of the SVD, sce e.g. [LO].
It is stressed that the SVD is mainly used here as a powerful analysis tool. The TSVD and the regu-
larized solutions as decfined below can be computed with much less computational effort my means
of other methods {4,6].

Thc basic idca of TSVD as well as standard-form regularization is to impose the additional
requirement on he solution that its norm be small, thus hopefully domping lllc contributions from
the errors of the right-hand side.  In the case of 'TSVI), this is achicved by neglection of the com-
ponents of the solution corresponding to the smallest singular values, since these contributions 1o
the solution arc most likely to be large. Thus, the TSV of A is defined as the rank-& matrix

7 k g
A = UV =Fuoe b, I = disglon... 04,0, . 00€ER™" )
izl

where 2y cquals 2 with the smallest 7 -k singular values replaced by zeroces, and k < r. u; and
y; arc the columns of the matrices U and V, respectively. When the number K is chosen properly,
then -the condition number /oy of the 'TSVD A, will be small. The TSVD solution to (1),
dcefined by:

X = At 6, ®)

is thercfore not very sensitive to cirors in 6 and A The matrix At is the pscudoinverse of Ay:
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AF = VEFUT | Zi=diaglorh.... 060, ... 00 ER™" (9)

and At is actually a {2,3,4}-inversc, or outer inversc, of A, cf. [2]. The TSVD solution can usu-
ally be computed from a Q-R factorization of A as dcscribed in [4].

Consider now rcgularization in standard form. As can be scen from Eq. (2), the additional
requirement on the norm of the solution enters directly into the definition of the regularized solu-
tion x,. For theoretical investigations, this solution can also be expressed in terms of the SVD of
A. 170 do this, it is convenient to write x, as

X\ = A)‘Ib (lO)
where the matrix 4,/ € R™™ is a "regulatized inverse”, defined by:
A = (ATA + N2 1)-7 4T . (11)

(4)] is only a {3,4}-inverse of A [2] and therefore not really an inversc.) This matrix turns out to
be closely related to the matrix Az above. To see this, introduce the matrix

. g1 O
= digp——— —
» R A LD C
When (4) is inscrtcg_ into (11), it is seen that A,” can be written in terms of the SVD of A as
Al =vEy vt . (13)

This establishes the nice similaritics bctween Egs. (8), (9) and (10), (13), respectively. 1hc matrix
Ay should not be computed in any of the forms (11) or_ (1 3); instcad, x, can be computed
cflicicntly directly from (3) as described in [6].

€ Rmxn ) (12)

T'he most important observation from Egs. (9) and (13) is that rcgularization, like the TSVD,
tends to filter out the contributions to the solution corresponding to the smallest singular values
[22]. To claborate on this, the ith diagonal clement of £, as weH as 2,F can be written as the ith
diagonal clcment of Z,* times a filter fuctor f;. For the 'TSVD, this filter factor has the form

1 for o; 2 04

fi 5o for o; € oy .(14)

corresponding to a sharp filter that simply cuts off the last n — k components. For regularization,
the filter factor takes the form

i =——, , i=12....n

fi 0‘2 + Az { (15)
corresponding to a smooth filter that damps the components corresponding to o; < A. When K is
chosen such that o = A, the sharp filter of the 'TSVD can in fact be scen as an approximation to
the smooth filter of the rcgularization method, cf. Fig. 1. This can be taken as a hint that x; and
x, may bc similar, and in Scctions 5 and 6 this will be investigated further.

. |
b=z |
I
o :
fi = -j2 \
i X
Figure 1 . l log{g,/\)
--- Filter factor for rcgularization i !
in standard form. 7/ 10:= A >
- - - Filter corresponding to trun- Il I
i

cated SVD with o = A. /
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3. Perturbation theory for the TSVD

To investigate the circumstances in which the TSVD is applicable as a rcgularization
mcthod, it is nccessaty to have a perturbation theory for the TSVD. Such a perturbation analysis is
carried out in this scction. The results here arc strongly connected with those of Wedin [23,24].

A=A+E=UZVl | b=b+e (16)
and let x; denote the perturbed TSVD solution

% = A b an
with A and At defined as in (7) and (9). Also, define the following three uscful quantities:

ke = Al 4t = oyl (18a)

. E
me =IENIAA = 1EWo = e 2L (18b)
wop = 14 = A 142 . opartor . (18)

Ky is gencrally known as the condition number of A, n is equal to k; times the relative error
level || 211Al A ]l, andwy is the size of the relative gap in the singular value spectrum between
singular valucs g and o + 1.

Theorem 3.1. Assume that || E || < a4. Then:

7 1. 1 4t
A= — < :
4l 5 = o —NEN ~ T-m

19

Thecorem 3:1 can also be found in c.g. [24, Lemma 3.1], but is included here for complete-
ness. It states that || At || increases monotonically when the norm || £ || approaches o. Hence, for
the TSVD to be useful, || /£ || must bc small compared to the k'th singular value of A, otherwise 4"
may differ considerably from Agt. This point is claborated in the following thcorcm:

Theorem 3.2. Assume that || || < oy — oy + 1. Then the relative error of || Ag* || is bounded by:

N4t - Ay = Al Ki £l
< 3 S 20
T S " T noU = = @) 4] (20
As a special case, for K=r =rank(A)and || E ||< a,:
Na*r - 4% k& EN
< I 21
A = "T=q 4l @1)
Proof: The proof follows from [23, I}q. (4.6)] and Thcorcm 3.1 above:
- . ~ ||A N+ 1At
et = Al < K “[“/lk+|| A+ ——t 2
— G4l
A1 A&+ T AE Q=
< IIIH[" I || Pl " k~” m)]
Ok — Ok4l
1 2—-
= |l
T T U= a0 = 6rrrlon)
3 = = oxs1loy anell AN
A T M= Ok ! @)

"?k)(l - orsloy) ~ 1= )1 - N — wg)
Jnscrtion of (18b) in (22) then ylclds (20). (21) follows from the fact that if || £l < @,, then



rank (4) = rank(d) and G,4; = 0. O

Eq. (21) is a well-known result and states that for A * to bc close to A+, both the condition
number &, and the quantity 7, must bc small. Eq. (20) is an extension of this result to the TSVD,
and it is seen that for the perturbed pscudoinverse of the TSVD, Ag', to b close to At it is also
necessary to require that the relative gap wg bec small. In other words, if the SVI) is to be success-
fully truncated at k, then there must be a well-determined gap bctween the singular values o and
o1 +1. This is also the cssence of the following extension Of [23, Eq. (3.1)].

Theorem 3.3. Assume that || E || < 64 — o 1 and let 8  denote the subspace angle
0 = 8{S(4),5(4)} (23)
where S is any of the four fundamental subspaces N, N-, R, and R-. Then:

sind, < LE1 . e
T 0k- Oks1  1—0kp1loyg
Nk Kk ”E“ (24)
- —wp = 1—m —wi ll4ll
As a special case, for k=r =rank(A) and | El| < o,:
snd, <, = NEN N4+ = « JED (25)

4l

Finally, consider the perhaps most important result: the relative perturbation of the TSVD
solution (8). The following thcorem is an extension of [24, Theorem 5.1].

Theorem 3.4. Assume that | E || < ok = ox4+1, and, let i, = b = A xi denote the residual
corresponding to the TSVD solution x;. Then:

—_—y Al r
llxe — %l < S {lEl el e el e 6
1Al T—me | WAl T W6l T=me— @ [ 1 me - wg -
As a special case, for k = r = rank (A) and || E |{< o,:
lx, - % |l x [nel o et . Nall
r < 4 + 1) + + . 27
i < oo | et | v @n

In both equations, the denominator || b || can be replaced by || A x 11 and I| A 11l xi I, thus tightening
the bounds.
Proof: This proof follows a different linc than that of [24]. The error of the TSVD solution is:
Fe—xe= AFb—xc= AFb+e)—x= AFUxi+r+e)—x
=AFUA-E) g+ +e)—xp= A (Axe —Exi +r +e)— xi
= At (= Exe + e + n)— U, - A A xe
Taking norms on both sides yields

W% = xell < WASNNEN Nxell + el + lIrkH] + 1, = A¢ A xll (28)

The_ contribution to” || X - x¢ |l from the vector = £ x; + e + r, comes from its component in
R(Ag). the range of Ay, and in the worst case both £ x; and e belong to R (Ay). ‘The contribu-
tion from ry is, however, bounded by || ri Il sin @, where 8, = 8 { R( Ax), R(A)}, cf. Fig. 2(a).
Concerning the second _term in (28), the matrix 1, = Ax" Ay is the projection matrix for orthogonal
projection onto N(/; ), the -null space of A, and from Fig. 2(b) it follows that
(T, - Ad A xe | = llxi || singy, where @ = @ {N-(4;),N-(4)}. Upper bounds for both
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angles 8, and @y arc given in Theorem 3.3, and an upper bound for || 4¢" || is given in Thcorem
3.1. This gives Egs. (26) and (27). 0O

RE . H(A)

x,lising

R(A) M{A)

(a) (b)

Figure 2. The contributions to (28) from (a) 7, and (b) x.

Again, Eq. (27) is a well-known result. The new main result (26) supplements Theorems
3.2-3.3 above and states again that the perturbed TSVD solution x; can only bc guarantced to be
closc to the true solution when there is a well-determined gap between singular valucs o and

Ok +1- -

4. Matrices with well-determined and ill-determined numerical rank

Although the concept bf matrix rank is not necessary for the use of TSVD as a method for
regularization, it is appropriate to discuss this concept here since it is so strongly connected with the
above perturbation theory. This lecads to a natural division of ill-conditioned matrices into two
classes: those with well-dctcrtnincd numecrical rank and thosc with ill-dctcrmincd numerical vank.
Such a characterization was also discussed by Golub, Kicma & Stewart [9].

It is well-known that, due to approximations, rounding crrors, and other sources of crrors, it
is very unlikely that true zero singular values occur in practical numerical applications. It is there-
forc common ‘o neglect the singular values smaller than a certain threshold, which obviously
corresponds to the usc of the TSV, Thc choice of a suitable threshold takes its basis in the fol-
lowing classical perturbation bound for the singular valucs [LO, p. 286]:

lo;—a; | SNEN . i=12....n . (29)

This implies that singular valucs &; of A larger than || £l arc giiarantced to rcpresent nonzero
singular values o; of A. However, onc cannot distinguish the singular valucs &; below || Z || from
cxact zerocs. As a conscqucncc, when

a > NEN 2 G (30)

for some &, onc can only guarantce that the rank of A is at least K.

This lcads to the dcfinition of the numerical rank r, of A, with respect to the error level
7> 0, as the number of singular values strictly greater than 7:

oy 2 °°°'20r,>720r,+1' @3
Equivalent names for 'numerical rank” arc "cffective rank” [8] and "pscudorank’ [12]. The so defined

TSVD 4, (7) consists only of those contributions u; o; v/ 1o 4 with a significant magnitude as

measurcd by the crror level 7, while the uncertain contributions (corresponding to i > r,) arc dis-
carted.
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The above .definition of the numerical rank is indcpcndent of the particular distribution of
the singular values of A. The numecrical rank 7, is, however, only uscful when r, is well-
detcrmined with respect to ; i.e., r, must be insensitive to small variations in 7. As seen from Fig.
3, this is only the case when thcrc is a well-defined gap between the singular values o, and o, ;1.

Exactly the same conclusion can be drawn from Theorems 3.2-3.4 of the perturbation theory in the
abovcscction, with £ = r,. Depending on the behavior of the singular valuc spectrum, it is there-
fore natural to characterize an ill-conditioned matrix as cithcr a matrix with a well-determined
numerical rank or an éll-determined numerical rank One should look for an numerical rank only if
it actually can be expected to be thcrc, as is the case for ill-conditioned matrices with a well-
determined numerical rank.

A 6i/61

- M
1 * X x
X X

Xe
e
D

2y i

Tt

Figure 3. Singular value spectra corresponding to an ill-conditioned matrix
with X well-determined and e ill-dctcrmincd numerical rank.

It should be noted that the scaling of A has a considerable cffect on its singular value spec
trum. Inhcrent in the above discussion is thercforc that the matrix A4 has been properly scaled.
Good scaling strategics seem to be to scale so that, as far as possible, the unccrtaintics in all the clc-.
ments of A arc of the. same order of magnitude, or so that ail columns of A have approximately
the same norm I . II.

Any distribution of singular values in bctween the two cxtremes of Fig. 3 may of course be
expected in practical applications. However, there arc certain cntcgorics of problems that clearly
Icad to ill-conditioned matrices with cithcer well-dctcrmined or ill-dctcrmincd numerical rank.
Matrices with well-determined numerical rank arc most likely to occur when the algebraic least
squarcs problem (1) is obtained from somc underlying problem for which the concept of rank
makes scnsc. Examples of such problems arc:

obscrvation of signal components in noisy data [19],
solution of some Fredholm integral cquations of the first kind [7,11],
determination of (A ,B)-invariant and controllability subspaces [15,20].

Matrices with ill-dctcrmincd numerical rank, on the other hand, arc obtained from underlying ill-
poscd problems wherc the concept of rank has no intuitive intcrpretation. Examples of such prob-
lems arc:

digital image restoration [1],
solution of integral equations in solid statc physics [S},

inverse Radon and Laplace transformation [14,16,21].
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5. TSVD and matrices with well-determined numerical rank

When the matrix A in problem (1) has a well-dctcrmincd numerical rank as discussed in
Section 4, it scems natural to apply the TSVD as a mcthod for rcgularization. The question then
arises: under which circumstances is the TSVD solution x; close to the regularized solution x3?
This obviously depends on the choice of the rcgularization parameter A, and the filter factors (14)
and (15) in Scction 2 suggest that A should bc chosen somcwhcrc between the singular values oy
and oy +1, where K is the numerical rank. The choice of the regularization parameter A is not a
trivial problem as can bc seen from the following theorem.

Theorem 5.1. Let X be chosen such that A €{ex+1, ox]. Then:

4l 4l
2 2wk

where wy is the relative gap (18¢).

< 4l £ (2)

Proof. From Eqg. (13) is follows that
g = max Ok Ok+1
a? + A2 GF+ A ol + A2

Both of these quantitics arc monotonically decreasing functions of A and they interscct at
A = (o, 6%+1)*. Thus, the minimum and maximum values of || 4{ Il arc attained at A = o4 and
A = 0441, respectively:

A=or =>4 = %ot = w4,

A= opa = 1ALl = %ok = %oitei = %li4¢lloft . O

l4{]l = max
-, i

Theorem 5.1 states that if wy issmall, i.e. if there is alarge gap inthe singular value spec-
trum of A at k, then A{ may differ considerably from A4;* if A is chosen close t0 o441 On the
other hand, if A is chosen close to @y, then A and A+ i-night bc similar. Thecloseness of these
two matrices iSinvestigated in the following theorem.

Theorem 5.2. Assume that X € [k +1, o). Then:

1% Al = At Wl

1:22* < min ” ﬁA,{fﬂk ! = 1+:2'1 ¢3)
and the minimum is obtained when

A= (ofors)* . (33a)
Under the same assumption:

min | AC4{ — 4| = 1_::,‘ (34)
and this minimum is obtained for

A= ok okr)* . (342)

Proof. "The proof followsdirectly fromthe hppendix andthe followingrelations:
145 = A¢ I =12 = 27 = max | (6 = &)1 for p = 0,

Na(af = a4l =i E(Za+—2f)||=m§x|[€;\"fk]1| forp=1 . 0
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The csscnce of Theorem 5.2 is that the diffcrcnce between the matrices 4 { and 4" is small
when A is chosen according to (33a) and when wg is small, in which case the minimum (33) is
approximately cqual to wg. The difference between the solutions x, and x; is thercfore also small
for this value of A. Similarly, it is seen that- the difference bctween the residuals corresponding to
the two solution:

(b—Ax)—(b-4x)= A4 —4Db , (35

is small when X is chosen according to (34a) and when wy is small, in which case the minimum
(34) is approximately equal to wg. There is a trade-off between (33) and (34); but since (34) is a
factor wj* smaller than (33) is secms appropriatc to choose A according to (33a).

To illustrate the impact of the above thcorem it is convenicnt to compare the two methods
graphically as in Fig. 4. The solid curve, which is associated with the regularization method, is
given by

(og -Axy 0l M) , A 2 0 (36)

where by is the projection of the right-hand side on the range of A. Similarly, the points marked
X are associated with the TSVD and represent the point set

(Mg — 4 x ll llxell) . k=01.,n . 37N
The behavior of (36) and (37) is described in the following thcorcm.

Theorem 5.3. In (36). Il x, |l is a decreasing function of | | bg— A x, 1], and in (37).]| x; liis a
decreasing function of || bg - A x; 1l on a finite set. The curve -coincides with the point set at the
endpoints (k =0,A =0) and (k = n,A = 00) where they both touch the axes. The remaining
points OF (37) lie above the solid curve (36).

Proof The fact that || x, Il and lx, || arc decreasing functions follows. from Egs. (3) and (1) and
the following expressions:

f

2" d
lbg - 4 xll = 2"——7)—\—2 WP  lbg - 4 xll = 3 w6y
izl o +A i=k+1

in which g is. the ith column of the matrix U in (4). Eldén [6] has shown that x, can also be
characterized by

min|ld - A x|l subjectt o |Ixll <7

where 7 is a free parameter, and that normally the solution occurs when llx Il = 7. Henee,
x| > 11 x, |l for any x that satisfies || bg - A x| =llbg - Axyll. Q

Fig. 4 is drawn for the casc when A has a well-dctermincd numerical rank, and the ‘corner’
of the solid curve is characteristic for such matrices. It is intuitively clear that in order to vield a
fair trade-off bctween minimization of the residual norm and the solution norm (2), A should bc
chosen such that x, is rcprescntcd by a point near the “corner’ of the curve, The figurc shows that
this is actually the case when A is chosen according to (33a) as well as (34a). 1hc ligurc also shows
that the TSV solution xi is in fact close to x, for this choice of A.

The conclusion to bc drawn from this discussion is that if the matrix A is ill-conditioned
and has a well-dctermined numcrical rank, and if A is chosen near the intuitive optimum value,
then the TSVD solution xg is guaranteed to be similar to the rcguiarized solution x,. This suggests
that for this class of matrices, from a thcoretical as well as a computational point of view, a suitable
solution to (1) is the T'SVI) solution x; which, in most cases, can be computed cfficiently from a
Q-R factorization of the matrix A [4].
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g; BI
1.00-10° | 3.68-107}
500-10-! | 1.35-10°!
2.00-10"! | 4.98 102
1.00-10°! | 1.83:1072
5.00-10"2 | 6.74 10"}
2.00-1072 | 247-1073
1.00-10-2 | 9.11-10~*
1.00-10-% | 3.35-10~*
500 -10~6 | 1.23 -10~*
10 | 1.00-1076 | 4541073

102

Wl |l |Ww i) —

10"

©

A= W\ At = 1781073
Ay = A, )\;)“ = 3.1610”"

llbr — 4 x|l
»

103 10-4 103 10-2 10

Figure 4. Comparison of the TSVI) and regularization methods for an ill-conditioned matrix
with well-determined numerical rank. 'The numerical rank is obviously equal to k = 7.
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6. TSVD and matrices with ill-determined numerical rank

In spite of the conclusion from the previous section, the TSVD has also been rcported [22]
to yield results similar to those of regularization when the matrix A has an ill-dctcrmincd numcrical
rank. For such matrices, Theorem 5.2 is not useful since it turns out that the similarity of x, and
x; now depends strongly on the right-hand side &. More prcciscly, it depends on the projection of
b on the left singular vectors of A, as can be seen from the following theorem.

Thcorem 6.1. Let B; = ufb, i =1,....n, where {u;} are the columns of the lefi singular matrix U
inthe S VD of A. Assume that the {B; } decay as:
Bi=o? ,p=0121314 (38)

and assume that A is chosen such that A € [o+1 , 6]. Then the difference between x, and x; as
measured by

d =minllx - xle . A€lok04 (39)
is a function of wy and k, as shown in Table / below. When wg # 1, which corresponds lo an 4

with ill-determined numerical rank, the relative measure dllblks! isa function of x4 only as shown
in Table 1.

P | B | d. "T‘L,uk 1
0 ili”i; Sdsi?f%z'_z o,
Lo 1 :kw,, "‘—1%

2 |of | oxg +gn% Sdso 1:2«:3’2 "‘—1715

3 o,’l cf-:z—‘i%f_ ot ;12-

Table 1. The similarity of x, and X as a function the decay of {8;}.
Proof. Scc the Appendix.

Although Theorem 6.1 covers only a very special casce of right-hand sides b it gives a clear
indication of the importance of the decay of the {8;}. IFor the case of Fredholm intcgral equations
of the first kind. the well-known Picard condition (cf. ¢.g. [22]) statcs that for a solution to exist, the
corresponding B;-cocfficients must decay faster than the singular valucs {g;} of the kernel such
that = (8; Iu;)* < 90 . Thcorcm 6.1 is a kind of discrctc Picard condition” for the “TSVD) and states
that the faster decay of the {8;}, the closer x; gets to x,.

The casc p = 0 is unrcalistic for most practical right-hand sides b and is included here only
for completencss. ‘The case p = 1 is slightly unrcalistic; but it sometimes occurs in practical appli-
cations. Both cascs do, howcvcr, apply to the perturbation e of b in many practical applications
when the right-hand side b consists of measured quantitics contaminntcd with mcasurcment errors.



«12 -

If, on the other hand, the cocfficients {ue} of the perturbation e decay like the B;-cocfficients for

p 2 2, then Theorem 6.1 lcads to a small perturbation bound on the TSVD solution. This result
agrees with the perturbation boundyiven in terms of the ®ffcctive condition number” as defined in
(31
» lIxll
k=9
-
1005 4
1004 ¢ 4
i| e=p
1| 1.00-10°
2 | 5.00-10°!
1003 3 | 2.00-10-!
4| 1.00-10°!
5 | 5.00-10-2 2
. B . -2
1002 | 6 | 1.00-10
7 | 1.00-10-3
8 | 1.00-10~*
9 | L00-10-%
10014 10 | 1.00-10°¢
AL = (AP A" = 562104
”bn - 4x “
10-¢ 10-3 10-4 10-3 10-2 101

Figure 5. Comparison of the TSVD) and rcgularization methods for an ill-conditioned matrix

with ill-dctcrmincd numerical rank. There is no intuitive way of choosing A or K.



=13 -

It is interesting to notice the different behavior of d and d |l & {lg! for p <€ 2 and for p >2.
The reason for this behavior is that for p < 2 the maximum element of x, — x; is associated with
ok, While for p >2 it is associated with @y. It is also interesting to note that d || b ket actually
decreases with increasing Ky, thus suggesting that K be chosen as large as possible to maximize k..
The perturbation theory of Scction 3 docs, however, still apply and there is thercfore a trade-off on
ki between minimization of d Il b |ls ! and minimization of the condition number x.

The general situation is illustrated in Fig. 5, showing the typical behavior of (36) and (37)
when A has an ill-dctcrmined numerical rank for the case p = 1 above. Here, thcrc is obviously
no intuitive way of choosing a suitable regularization parameter A. Neither does the singular value
spectrum of A suggest a suitable value of K. x; will be close to x, for any k provided that the
"discrete Picard condition” is satisfied

The conclusion to be drawn in this section is that if A4 is ill-conditioned and has an ill-:
dctermincd numerical rank then the TSVD solution x; will bc close to the regularized solution xy
if the B;-coefficients of the right-hand side b decay sufficiently fast, Hence, use of the TSVD as a
rcgularization method might give good results. In general, one can not guarantee a small perturba-
tion bound on the solution x; for any value of k; but if the perturbation e of the right-hand side
also satisfies the ‘discrctc Picard condition” then the perturbation bound on x; is small.

7. Conclusion

From a theoretical as well as a practical point of view, the truncated singular valuc decom-
position (TSVD) is a suitable method for regularization of the ill-posed problem (1) when the
cocfficient matrix. A is ill-conditioned with a well-dctcrmincd numerical rank. If the parameter kK
of the TSVD A (7) is chosen equal to the numerical rank r, (31) of 4, then the TSVD solution is
little sensitive to errors in the matrix A and right-hand side b, and the TSVD solution is close to
the regularized solution with the rcgularization parameter chosen near its intuitive optimum value.
When 4 has an ill-dctcrmincd numericat rank, the 'I'SVD and rcgularization mecthods may also

producc similar results, provided that the B;-cocfficients (38) of b decay sufficiently fast.,, and if the.

corresponding cocfficicnts of the perturbation e of b also decay sufficiently fast then the TSVD
solution is little scnsitive to these errors.
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Appendix: Proofs of Theorems 5.2 and 6.1

In this appendix, the quantity d as defined in Eq. (39) is investigated for the special case
when 8; = 0,2 as in Eq. (38). Write x, = V §, and x; = V &, where V is the right singular
matrix in the SV (4) of A. The clcments of §, and & arc then:

P+l i , i :1,....k
,i=l..n and [&) = (A1)
0 i =k+1,..,n

(4

& = Y
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giving
LW\ | =
- Glp 012+A2 I 1: ’ k
- &= Lo (A2)
oif o?+ A2, i=k+l.,n

and since || x|l =11V £ll =l €11, it follows that:
d = min [lx, = xi lbo = min [[§, ~ & lbo = min { max | [§, — & | }
o 1A2 ol 1 \2 o optl ]
of + A2’ T o + A of N2 0k }‘2]

(A3)

= min { max
A i

Consider first the situation when A = . Inthiscase, it is straightforward (but quite
cumbersome) to show that:

~1y2
TN gpt b= 012
i ‘ 03 + A
d = fA,p) = o122 0P ~lo} : (Ad)
of+A = of+a} » P =34
Similarly, when X = 4+, One can show that;
Lﬁlz = Yol , p=012
‘ ofs1+ N
d =g\,p) = of 12 ol ol (AS)
of + A2 - of+ofyy P - hé

Hence, for p = 0,1,2 the maximum element of §, — £, is element no. k or k +1, while for
p = 3,4 the maximumelement isno. 1.

For p =0, 1,2 the function T is an increasing function of A, and g is adecreasing function
of A. Hencc. d can be written as:

d = min {fX.p).g(\,p)} (A6)

and the minimum occurswhenf (A, p) =g(A, p);i.e., whenclements no. k and k + 1 arc equal.
Thisleads to the cquation

o 1A TS A7)
O'E +A2 = 0Z+1+A2

which has the solution -~

of [~ 4ot -1+  TFFhoflar—1F |

2 p=0
-‘-’%z Wi ‘/ P=1 (A8)
p=2

wgﬂ[-%w,z*u -0+ 1+ [%f(l- wf ]

v
Insertionof thesolutionforp = 1into T (A, 1) gives wi /(1 + wy) asgivenin Table 1. For w; € 1
and p = 0,2 the above expressions. simplify to
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X B

p=0
o—iz wzn L p=2 (A9)

and insertion of thisinto f (A, p) and g(x, p) gives the upper and lower bounds in the third
column of Table 1. For p =3,4, d canbe written as.

d = min (A, p) (A10)

and since T isanincreasing function of A, the minimum of (A10) is obtained for A = o 4+1. This
leads to the remaining results in the third column of Table 1. The rightmost column of Table 1
follows from the simple fact that II b ke = &y for all p.
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