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1. INTRODUCTION

For an n-state.ffnite, homogeneous, ergodic Markov chain with transition

matrix P = rpij], the stationary distribution is the unique row vector 7r satisfying

IrP = r, c ni = ,l.

Letting Anxn and enxl denote the matrices A = I - P and e = [1, 1, . . . , llT, the

stationary distribution lr can be characterized as the unique solution to the

linear system of eGuations defined by

VA = 0 and Te = 1.

(See Kemeny and Snell [ll] for an elementary exposition of finite ergodic chains.)

The theory of finite Markov chains has long been a fundamental tool in the

analysis of social and biological phenomena. More recently the ideas embodied in

Markov chain models along with the analysis of a stationary distribution have proven

- to be useful in applications which do not fall directly into the traditional Markov

chain setting. Some of these applications include the analysis of queuing networks

(Kaufman [7]), the analysis of compartmental ecological models (Funderlic and

Mankin [5]), and least squares adjustment of geodedic networks (Brandt [l]). Recently,

the behavior of the numerical solution of systems of nonlinear reaction-diffusion

equations has been analyzed by making use of the stationary distribution of a finite

Markov chain in conjunction with the concept of group matrix inversion (Galeone [6]).

An ergodic chain manifests itself in the transition matrix P which must be row

stochastic and irreducible. Of central importance is the sensitivity of the

stationary distribution t to perturbations in the transition probabilities in P.
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The sensitivity of r is most easily rlauged by considering the transition nrobabilities

in P to be differentiable functions. One approach, adopted by Conlisk f3],

Schweitzer [lg, and'funderlic and Heath [4j‘is to examine partial derivatives

anlap.W Our strategy is to consider the transition probabilities pij(t) as

differentiable functions of a single parameter t and study the stationary distribution

n(t) as a function of t. We present a new and very simple formulation for the

derivative, dn(t)/dt,  of the stationary distribution directly in terms of the

derivatives dpij(t)/dt and entries from w(t) and a matrix A# (t), called the group

inverse of A(t) = I '.P(t). After the derivative ds(t)/dt has been obtained, we

demonstrate its applicability by using it to deduce the relative sensitivity of a

discrete Markov chain. This is followed by a first order perturbation analysis.

Finally, it is demonstrated how a QR factorization can be used to simultaneously

compute a along with estimates which gauge the sensitivity of r to perturbations

in P.

2. BACKGROUND IMATERIAL

In this paper, we take advantage of results which are phrased in terms of
#the gmup inverse A' of A = I - P. Below is a short summary concerning the matrix

,
A# . Proofs and additional background material on A' may be found in Campbell and

Meyer [2] and Meyer [9], [lo].
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BACKGROUND MATERIAL CONCERNING A#
I
I

:

(2.1) Each finite Markov chain has the property that A = I - P belongs to i

some multiplicative matrix group. (P is the transition matrix.) Let i
I

G denote the maximal subgroup containing A. The inverse of A with i
#

:
respect to G is denoted by A and the identity element in G is I

I

:
denoted by E. :

(2.2) For all finite Markov chains, the limiting matrix is the difference :!

of the two identities I and E in the sense that-A.

Pm I + P + P2 + l . . + Pk-l=kl~~~k=I-E=I-AA#

:
' I

Of course, if the chain has a limiting matrix in the strong sense, i

then :
I

PO0 = lim Pk = I - E.
k+m

(2.3) If the chain is ergodic (i.e., P is irreducible), then

P+= = I -E=I -AA# !
= en !

i
where e is a column of Vs.

:
I

(2.4) The group inverse A# of A can be characterized as the unique matrix i
# if ?I # #

I

satisfying the three equations AA A - A, A AA = A, and AA = A A. i
I
I



3. DIFFERENTIATION OF THE STATIONARY DISTRIBUTION

Throughout this section, we assumethat A(t) = I - P(t) where P(t) is

a matrix which is row stochastic and irreducible for each t in some interval

(a,b). Furthermore, we will assume that each entry pij(t) of P(t) is differentiable

at each t in (a,b). It is important to note at the outset that, in general, the

null vectors of a differentiable matrix need not be differentiable. However,

for our special situation, normalizing a null vector of A(t) so as to produce

the stationary distribution vector n(t) always results in a differentiable vector.

--.

+~-~-o-~~o-~~-~~-~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-~--~~-~--~~- +

: I

: THEOREM 3.1:
:

If A(t) = I - P(t) where P(t) is row stochastic, i
:

: irreducible, and differentiable on (a,b), then each component of the 'I
: I
: unique stationary distribution r(t) of P(t) satisfying :
: :
: I

: n(t) 3: n(t)P(t),  Eli = 1, r,(t) > 0, is differentiable on (a,b). i
I I
I i

PROOF: If Di(.t) denotes the i-th principal minor of A(t) obtained by deleting

the i-th TOW and i-th column of A(t), then for each t in (a,b), Di(t) > 0 and

r(t) js given by

(3.1) r(t) = 1
1 Di(t)

[D+t), D2(t), . ..s Dm(t)lm

This formula for r(t) is a simple consequence of the fact that (adj A)A = A(adj A) = 0

and {e) is a basis for N(A). Because the entries of A(t) are differentiable, each

Di(~t) must be differential and hence each component of Ir(t) must be differentiable

at each t in (a,b). m
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In the sequel, we will omit writing the argument t (e.g., instead of

writing w(t), simply write T) and we sometimes will also use the notation

(*) to indicate the,differentiation  with..respect  to t (e.g., write 1; instead'

of dn(t)/dt).

I
I' THEOREM 3.2: If P = P(t) is row stochastic, irreducible, and i

: :I
:
:

differentiable for t in (a,b), then the derivative of the stationary i

:

I

:
distribution associated with P is given by :

:
:

:
l #

I (3.2) --. 1; = lrPA
I

I
I
I

I
t
I

:
: where A#

i
denotes the group inverse of A = I - P as described in the I

I
I

:
I

:
previ

I
I

ous section. t
:
:
I

0-0.+------o--4--------I

PROOF: Identify R(AT) with the row space of A. If A:Rlxm + R(AT) is the

mapping defined by A(x) = xA and if Ar:R(AT) + R(AT) denotes the restriction of
. TA to the space R(A ), then A, is a bijection on R(AT) and it is not difficult

to show that A$ R(.AT) + R(.AT) is given by A;'(x) = xA''. (See pp. 121-122 in

Campbell and Meyer [2].) Thus for b E R(AT), the unique vector x in R( AT)

satisfying xA = b is given by x = bA# . Apply the elementary product rule for

differentiation to the equation II = WP to obtain

or

(3.3)
.

;A = srp
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and deduce that ri E R(AT). To see that 1; E R(AT ), differentiate the equation

ne = 1 to obtain -.

7;e = 0.

Hence $; is orthogonal to e. Since {e) is a basis for N(A) it follows that

(3.4) ii E N(A)
1

= R(AT).

Because A' is the inverse of A on R(AT), (3.3) and (3.4) imply--.

7i
l t= APA ,

which is the desired conclusion. m

By multiplying (3.2) on the right by the i-th unit column ei, we may extract

the expression for the derivative of the i-th stationary probability ni.

One of the most pleasing aspects of Theorem 3.2 and its Corollary is the

sheer simplicity. The simple structure of (3.2) and (3.5) make it absolutely
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clear how the stationary distribution changes as the transition probabilities

change. It shows that A# acts as a "magnification factor". If, at a particular
. .

point to, the derivatives of the transition probabilities are all relatively

small and the i-th column of A# contains only relatively small entries, then

the i-th stationary probability Ri must have a relatively small derivative.

Because the entries of A# = A# (t) are continuous functions of t (Corollary 3.1

in Meyer [lo]), it follows that at to, Iri cannot be extremely sensitive to small

perturbations in the transition probabilities whenever the i-th column of A#(t,)

has no entries of relatively large magnitude. On the other hand, if the i-th

column of A#(to) contains some entries of large magnitude, then small perturbations

in P(t,) can be greatly magnified so as to make ni very sensitive near t
0.

More precisely, translate the discussion to the origin and write

"i(t) - of I.'i(O)t + O(t2 )

and

the) = P(t) - P(0) + o(t2).

Theorem 3.2 now produces the following perturbation formula.

(3.61 pi 0 'i(O) = ~f(O)[P(.t)  0 P(0)IAB(O) + ‘~t2)*

It is transparent from (3.6) that the entries of A#(O) are the fundamental

quantities which govern the sensitivity of the stationary probabilities.

Assuming that t is small enough so that higher order terms may be neglected,

apply H8der's inequality to '(3.6) and obtain the statement
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(3.7) IT, w. - r,(o,l 2 h(0)lpl  [P(t) - P(0)lA:[O)~q

where (l/p) + (l/q)‘= 1. For all of the H6lder norms it is the case that

h(t)! < 1.
P- Thus for every HCSlder vector norm LOq and compatible matrix

norm Llirn, it follows from (3.7) that

(3.8) IT,(t). 0 ri (0) 1 2 UP(t) - p("~omRA:(0)n
q

The observations made throughout this section motivate the following

definition.

DEFINITION: For an ergodic Markov chain with transition matrix P

and stationary distribution r, the condition number for the i-th- - -
stationary probability pi is defined to be the number

xwhere I Jlq is any Hdlder vector norm and Ai is the i-th column of the

group inverse of A = I - P. For a matrix norm Mm, the number

Cond,(r) = llA#om

is defined to be the condition number for r. This number will also be

referred to as the condition of the underlying Markov chain.-m
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4. LINEAR PERTURBATIONS

A special case of the preceding analysis which is of particular interest
. .

is that in which the perturbations are linear functions. That is, for a fixed

row stochastic irreducible matrix PO, let F be a constant matrix such that

P(t) = PO + tF

is row stochastic and irreducible on (a,b). As before, let A(t) = I - P(t)

and A0 = A(0) = I - PO. By making use of our earlier results, we can obtain
--.

a very simple and explicit formula for G, the derivative of the stationary

distribution associated with P(t).

t--- -0’1)

I
f

I
I THEOREM 4.1: If P(t)
I

= PO + tF is row stochastic and irreducible i
I

i
: on [O,B), then the derivative of the stationary distribution a(t)

i
I

f
I

I associated with P(t) is given by
I
:

PROOF: Using Theorem 3.2, we obtain

(4.2) a> = n(t)F(I - PO - tF)# = n(t)F(Ao - tF)#.
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Let 9to = n(0). From Theorem 3.1 of Meyer [lo], the matrix (I - tFAi) is

always nonsingular and the term (A0 #- tF) can be expanded as follows.
. .

(4.3) (A0
- tF)# = A; + tA;FAz(I - tFA;)-' - Pi(I - tFA#)-'A'(; - tFA#)"0 0 0

where Pi = en is as described in (2.2). Since

e = P(t)e = Poe + tFe = e + tFe

--.

must hold for all t in [O,S), it follows that Fe = 0 and hence

FP: = Fero = 0. n

Use this when substituting (4.3) into (4.2) to obtain

(4.4) I;(t) = n(t)FAi[I + tF.4:(1 - tFA#,)-'1.

By making use of the identity

I = (I - tFAt)-' - tFAi(I - tFA")-',
0

(4.4) reduces to

.
dt) = ir(t)FAt(I - tFAi)-l,

which is the desired conclusion. * I)
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There are at least two interesting features to this theorem. The first is

to notice that at t = 0, the behavior of i(t) is governed strictly by F, A$
. .

and n(0).

:
:
:
:
:
:
:
I
I

i

:
I
1,

:

:

t
I

t

:
I

:

COROLLARY: For P(t) = PO f tF, the derivative G(t) of the

stationary distribution evaluated at t = 0 is given by

(4.5) l;(O) = n(O)FA;. :
:--. :t

The derivative pi of the i-th stationary probability at t = 0 is
:
1
I

(4.6)
:
:

d #where [Ab]i is the i-th column of A,. For any Holder vector norm and i:
:

compatible matrix norm, :
:
:I

(4.7)

Another important point to be made concerning Theorem 4.1 and its corollary

is the fact that neither t nor F is required to be "small".I - - - T h e  f o r m u l a  f o r  G- w
in (4.1) as well as those in (4.5) - (4.7) are global in the sense that they

hold for all t and F for which P(t) = PO + tF represents an irreducible

transition matrix. However, if either t or F is small enough in magnitude to

insure that !tFA$ < 1 for compatible vector and matrix norms such that 1IU ~1,

then



(I - tFA#)-1 =
0 kio (tF() k=:

COROLLARY: If ItFAt! < 1, then

Furthermore, if tnFiaA$J ~1, then

(4.9) ra
m-

where K(A~) = ~AollA,#I.

$, “(A01
0

l- t ;fi k(AO)

The results of sections 3 and 4 make it absolutely clear that for a finite

homogeneous ergodic Markov chain, the sensitivity of the stationary probabilities
#are directly governed by the entries of the A' matrix. There appears to be ample

Qevidence to support the use of A' as the fundamental quantity in gauging the

"condition of a finite Markov chain" and it seems apparent that any perturbation

PCor sensitivity analysis of a finite Markov chain should revolve around the matrix A'.

In dealing with almost any aspect of a finite chain, the entries of AB seem to

be relevant, regardless of whether these quantities are used explicitly or whether

they appear only implicitly being incorporated in different terms or notations.
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In one way or another the A# matrix always seems to be present.

5. UTILIZING A QR FACTORIZATION

The utility of orthogonal triangularitation is well documented in the

vast literature on matrix computations. The purpose of this section is to

demonstrate how one can use a QR factorization of A = I - P to not only compute

the stationary distribution r, but to also gain some insight into the relative

sensitivity which nis expected to exhibit.

For every nxn irreducible row. stochastic matrix P, it is well known that

A=1 - P must have Rank(A) = n - 1. Moreover, any subset of n - 1 columns from

A is linearly independent. There is "essentially" a unique QR factorization A.

The R-factor is uniquely determined by A and the Q-factor is unique up to the

algebraic sign of the last column.

:
* i

!
:
:
:
:1
I
I

:

:

:

:

:
I

:

:

:

:
I

:
I

:

:

THEOREM 5.1: If Anxn is as described in the previous sections and :
;
I
!

if A = QR is a QR factorization of A, then R must have the form

(5.1)
u ’ -Ue

R= -+o-[ 10' 0

where U is a nonsingular upper triangular (n - l)x(n - 1) matrix and

e is the column of 1's. IThe stationary distribution TT can be recovered ;

from the last column, q, of Q as II
I

(5.2) ‘II i .qT,

n .

c
j=l qj



PROOF:

14

To prove that R has the form (5.1), we need to show rnn = 0. Let

e be the column of all l's and use the fact that 0 = Ae = QRe to obtain

Re = 0.

This together with the fact that R is upper triangular guarantees that rnn = 0.

The fact that U is nonsingular now follows by noting that

Rank(U) = Rank(R) = Rank(QR) = Rank(A) = n-l.

To see that the stationary probabflities can be obtained from the last column--.
of Q, recall that A = I - P where P is a nonnegative irreducible matrix with

spectral radius 1. One consequence of the Perron-Frobenius theorem is that if

TxA= 0, then xT > 0 or xT < 0. Moreover, the system

(5.3) TxA=O, Tx >o, uxTnl = 1

possesses a unique solution for xT. Since the last row of R = QTA is zero, it is

clear that
a

0 = qTA

Twhere.q is the last column of Q and hence q > 0 or q T < 0. Thus

n
qT/j'l qj=

satisfies (5.3). Since the stationary distribution also satisfies (5.3), it

must be the case that

ndL
n -*
c

j=l qj
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If the last column of a Q-factor produces the stationary distribution r, of

what relevance, if any, is the remaining information in the Q-factor and R-factor?

It is demonstrated below how to use the..QR-factors  to gauge the inherent

sensitivity which v can exhibit to small perturbations in P. To see how this

is accomplished, recall from the previous sections that the sensitivity of the

i-th stationary probability ni is directly governed by the magnitude of the

entries in the i-th column of A# . The goal therefore is to write A' in terms of

the QR-factors. Since A is orthogonally similar to RQ via

A * Q(PQ)QT,

-v.

it easily follows that

AP' = q(dQT .

(See Campbell and Meyer [Z]). If we adopt the Z-norm, then

(5.4) IA#Q2 = 1(RQ)x12

and the objective shifts to studying the structure of RQ and measuring the

magnitude of its group inverse.

Unfortunately, group inversion is somewhat different than other familiar

inversion processes in that (RQ)' # QTR'. Moreover, there is no known way to

.directly unravel the term (RQ)# so as to directly gauge its magnitude. However, .

the special structure of our matrix A = I - P does lend itself to an analysis

by block decomposition.

By nature of the QR factors for A, the matrix RQ must be of the form



I

U 1 -Ue
(5.5) RQ = - - + - -[ 10 ' 0

I

16

I

U(c - ae) v 1 b
-+------ = ,,+,..

0 I[ 10 ' 0
I

. .

Since A = QR has rank n - 1, and since QR is similar to RQ, it follows that

Rank(RQ) = n - 1. We know from Theorem 5.1 that U is nonsingular so that it

must be the case in (5.5) that V = U(Q, - edT) as well as (Q, - edT) is nonsingular.

It is well known (see Campbell and Meyer [Z]) that for a nonsingular V,

. --. #
V I b

-0
,+o0I =

' 0.

l �-1  : ,,-2b

,+,-0

-0. � 0

. I I

#and hence (RQ) is derived from (5.5) as

(5.6) (RQ)# =

.
(Q 1 - edT)-$I-' : (Q, - edT)-'U-'(Q 1- edT)-l(c- ae)

We could, of course, stop here and simply say that iA#02 (and hence the

condition of the associated Markov chain) is essentially that of IV-'Hz and advocate

estimating Cond2(V) in order to gauge the sens,itivity of the underlying chain.

However, it is apparent from (5.6) that the magnitude of (RQ)# (and hence of A')

is determined by two inverses; namely

(5.7) (Q1- edT)-'*9 which is dependent solely on Q

and

(5.8) U-l .9 which is dependent solely on R.



Intuitively, one feels that the influence of Q in U(RQ)"$ should

somehow be insignificant. The next section explores to what extent this

is true. . .

6. CAN THE ENTRIES IN Q BE NEGLECTED IN ESTIMATING IAt12?

The contribution from Q in IAdll 2 is manifested in the matrix of (5.7).

Although the upper left hand (n-l)x(n-1) block Q, in a general orthogonal matrix
--.

is not necessarily invertible, the special structure of A = I - P forces Q,

to be nonsingular when Q is the Q-factor in a QR-factorization for A.

If A = QR is a QR- factorization for A = I - P, then the

(n-l)x(n-1) matrix Q, in

is nonsingular.
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PROOF: Recall from Theorem 5.1 that R has the form
I[ 1- JL : se

-.

0 : o--

where U is (n-l)x(n-1) and is nonsingular. Thus

ZQRE
-tl Ue

:dTU;
I

implies Q, = AIU-1 . Recall from the ciiscussion at the beginning of Section 5

that Al must be nonsingular and conclude that Q, is nonsingular. I

Using the familiar formula for the inverse of a rank 1 update, we obtain that

(6.1)
a

-1 T -1
S =

(Q

edT)-l = Q-1  + ‘1  ed  Q1

-1' 1
1 - dTQo le l1

-1If it'could be guaranteed that Q, is such that iQl I2 is not unduly large and

. 11 - dTQ;'ei > >O, then we could disregard the action of Q. Unfortunately, one

-1can exhibit ergodic Markov chains in which Q, can possess entries of arbitrarily

large magnitude. For example, consider the chain whose transition matrix is



8:
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0
8
01

In this case,

and the QR factors are of the form

Although the Q, matrix may be badly conditioned, one might still hope that

Ql - edT is better conditioned. The following theorem establishes that this is
.

indeed true.
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THEOREM 6.1: For A = I - P where P is an (nxn) irreducible stochastic

matrix, let . .

be a Q-factor from a QR decomposition of A and let e denote the column

of 1's. If S = (Ql - edT)-' and v = '(c - ae), then.

(6.2)

and

(6.3)

--.

w2 = u(Ql - edT)-lU < 1 + Jnll-IT2-

DSVR2 = 0 (.Q, - edT)-'(c - &I2 < 1 t m .

PROOF: We will first demonstrate that

T T
(6.4)' S =

(0 l - edT)-'
(Qle + d)c

=Q;- T
Ce+a

and

(6.5) SV = S(c - ae) = -
Q:e t d

T
c e + a

k,
:



It is not easy to verify that these are true by straightforward multiplication

and hence an indirect approach is taken,. If 6 denotes the scalar

TB=ce+u

and if M denotes the matrixI

then

I

. I I

I : -e Q, : c
0 0 0 +--0 -0+,aI[ 1 9
CT '1 a dT '

I
a

I I
,

c l- edT)-' : -(Q, -edT)-'(c- ae)
(6.6) - - - - - + m- - - - - - 0 - -

‘TI ’

Q, I d

0 0 +--

CT ’I a

b .

=

. T T
T

Ql -
(Q,e + d)c I Q:e + d

B I B

0 1

which proves (6.4) - (6.5). The desired conclusion follows by taking norms.

T T TSince Q, and c are submatrices of an orthogonal ma:rix, I(qli2 5 1 and

ncTi2 5 1 so that
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(6.7) r(ql - edT)-lU 2=

Taking Z-norms on

QT

produces

so that

(6 3)

.l
1 Q;e +
..

; B
b

--.

d

I

n T= BQle + d$ + 82

From Theorem 5.1, we have

1TT'-
0 k 9 a)

so that

B = bT, a$ 2 l(cT, ct)R2 = 1 .

QTe + d

Apply this to (6.8) to obtain



(6.9) -4Q:e + d '
<n-l.

8 2-

. .

Use (6.9) in (6.7) to arrive at

a(Q, - edT)-'U 2il+Jn.

Similarly, formula (6.5) produces (6.3). E

Since lA'l12 q,l(RQ)#12, one can now look at the form for (RQ)# in (5.6)

and see that the Q matrix does not significantly contribute to the size of

IA'lp. The only way for IIA%12 to be large is for W-1~2 to be large. This

is formalfzed below.

:
: THEOREM 6.2: Let A = I - P where P is an (nxn) irreducible stochastic I;
I Ii i
:
:

matrix and let A = QR be a QR-factorization for A. If U is the (n-lxn-1) i
. : leading principal submatrix of R, then I

:
:
I

I Ii
I
I
I

:
(6.10) UA'12 I, O(n)W1~2.

PROOF: From (5.4), we know that uA'U2 = U (RQ)#fl, and from (5.6) we know that

where S = (Q 1 - edT)-'

[

I

su-1 '

-+

-0. I

I

* *

and v = C - ae. From Theorem 6.1, it fol 1 ows that



24

0 (RQ)#I,-< ns12nu-1124i=qj

- O(“)uJ-112. . . E

Therefore, the condition number of the (n-l%n-1) leading principal submatrix

of R may be taken as an estimate (or as a measure in itself) of the condition

of the underlying chain. Since U is uppertriangular with positive diagonals,

estimating Cond2(U) is not overly difficult (e.g., LINPACK methods can be used.)

7. CONCLUSIONS

For an ergodic chain with transition matrix P, a QR factorization of the

matrix A = I - P yields complete information in the sense that both the stationary

distribution TT as well as measure of the sensitivity of IT to perturbations in P

may be deduced.

1. >n is obtained by normalizing the last column of 4.-e

* 2. The sensitivity of the chain w&%auged by Cond(U)- - -

where U is the (n-lxn-1) leading principal submatrix of R.---m

In general, it is well known that an upper triangular matrix may be ill-

conditioned without possessing relatively small diagonal elements. However,

for the special situation of an irreducible Markov chain, we have not been able

to produce an example of an ergodic chain so that the factorization A = QR yields
l

an R in which Ill-1 I is large but U has no small diagonals. In all of our compu-

tational experience,. the sensitive chains always seem to force a diagonal entry-of

U to be relatively small. The more sensitive the chain, the smaller some diagonal

of U becomes, so it seems. There is clearly need for further study.



2s

REFERENCES .

[1] A. Brandt, "Algebra's Multigrid ,Theory," preprint, (1983).

[2] S. L. Campbell and C. D. Meyer,' "IGeneralized Inverses of Linear Trans-
formations,"
London, (1979)

Surveys. and.Reference Works in Mathematics, Pitman,

[3] 3. Conslisk, "Comparative Statics for Markov Chains," preprint, (1983).

[4] R. E. Funderlic and M. T. Heath,
Ecosystems,"

"Linear Compartmental Analysis of
ORNL/IBP-7114, Oak Ridge National Laboratory, Oak Ridge,

Tennessee, (1971).

[S] R. E. Funderlic and 3. 8. Mankin, "Solution of Homogeneous Systems of
Equations Arising from Compartmental Models," SIAM J. Sci. Stat.
Comp., 2, 375-413, (1981). - - -

[6] L. Galeone, "The Use of Positive Matrices for the Analysis of the Large
Time Behavior of the Numerical Solution of Reaction-Diffusion Systems,"
Math. Comp., 41, 461-474, (1983). ,

[7] L. Kaufman, "Matrix Methods for Queuing Problems,"
' Comp., 4, 525-552, (1984).

SIAM J. Sci. Stat.- -

[8] 3. G. Kemeny and 3. L. Snell,
(1960).

Finite Markov Chains, Van Nostrand, New York,

[9] C. D. Meyer, "The Role 'of the Group Generalized Inverse in the Theory of
Finite Markov Chains,"SIAM Review, 17, 443-464, (1975).

[lo] C. 0. Meyer, "The Condition of a Finite Markov Chain and Perturbation Bounds
for the Limiting Probabilities," SIAM 3. Alq. Disc. Meth., 1, 273-283,
(1980).

- -

[ll] P. 3. Schweitzer, "Perturbation Theory and Finite Markov Chains," 11. Appl.
Prob., 5, 401-413, (1968).




