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1. INTRODUCTION

For an n-state finite, homogeneous, ergodic Markov chain with transition

matrix P = [pij]’ the stationary distribution is the unique row vector w satisfying

" = x, Z L 1.

Letting A and €nx] denote the matrices A =1 -Pand e = [1, 1, ..., l]T, the

nxn
stationary distribution w can be characterized as the unique solution to the

linear system of equations defined by
A =0 and we = 1.

(See Kemeny and Snell [11] for an elementary exposition of finite ergodic chains.)

The theory of finite Markov chains has long been a fundamental tool in the
analysis of social and biological phenomena. More recently the ideas embodied in
Markov chain models along with the analysis of a stationary distribution have proven
" to be useful in applications which do not fall directly into the traditional Markov
chain setting. Some of these applications include the analysis of queuing networks
(Kaufman [7]), the analysis of compartmental ecological models (Funderlic and
Mankin [5]), and least squares adjustment of geodedic networks (Brandt [1]). Recently,
the behavior of the numerical solution of systems of nonlinear reaction-diffusion
equations has been analyzed by making use of the stationary distribution of a finite

Markov chain in conjunction with the concept of group matrix inversion (Galeone [6]).

An ergodic chain manifests itself in the transition matrix P which must be row
stochastic and irreducible. Of central importance is the sensitivity of the

stationary distribution = to perturbations in the transition probabilities in P.




The sensitivity of m is most easily nauged by considering the transition nrobabilities
in P to be differentiable functions. One approach, adopted by Conlisk [3],

Schweitzer [11], and Funderlic and Heath t4j"is to examine partial derivatives
aw/apij. Our strategy is to consider the transition probabilities pij(t) as

differentiable functions of a single parameter t and study the stationary distribution
n(t) as a function of t. We present a new and very simple formulation for the

derivative, dwn(t)/dt, of the stationary distribution directly in terms of the
derivatives dpij(t)/dt and entries from =(t) and a matrix A#(t), called the group

inverse of A(t) = | =P(t). After the derivative dr(t)/dt has been obtained, we
demonstrate its applicability by using it to deduce the relative sensitivity of a
discrete Markov chain. This is followed by a first order perturbation analysis.
Finally, it is demonstrated how a QR factorization can be used to simultaneously
compute a along with estimates which gauge the sensitivity of = to perturbations

in P.

2. BACKGROUND MATERIAL

In this paper, we take advantage of results which are phrased in terms of

#

of A=1 -P. Below is a short summary concerning the matrix

# may be found in Campbell and

the group inverse A

#

A". Proofs and additional background material on A

Meyer [2] and Meyer [9], [10].
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BACKGROUND MATERIAL CONCERNING A#

(2.1) Each finite Markov chain has the property that A = 1 - P belongs to

some multiplicative matrix group. (P is the transition matrix.) Let

G denote the maximal subgroup containing A. The inverse of A with
respect to G is denoted by A# and the identity element in G is
denoted by E.

(2.2) For all finite Markov chains, the limiting matrix is the difference
of thgﬁtwo identities | and E in the sense that

2 k-1
PG = lim ! +P+PR ‘; oo + P =1 -E=1- AA#

k »

Of course, if the chain has a limiting matrix in the strong sense,

then
P° = 1inPk=1 - E.

k>

(2.3) If the chain is ergodic (i.e., P is irreducible), then

P = 1 -E=1- At =en
where e is a column of 1's.

(2.4) The group inverse A# of A can be characterized as the unique matrix

#_ .4

satisfying the three equations AﬁA = A, A#Ai = A, and AA A"A.

e e e e e e e e e e e e e e e e e e e e e e o o o o e — e




3. DIFFERENTIATION OF THE STATIONARY DISTRIBUTION

Throughout this section, we assumethat A(t) = 1 - P(t) where P(t) is
a matrix which is row stochastic and irreducible for each t in some interval
(a,b). Furthermore, we will assume that each entry pij(t) of P(t) is differentiable
at each t in (a,b). It is important to note at the outset that, in general, the
null vectors of a differentiable matrix need not be differentiable. However,
for our special situation, normalizing a null vector of A(t) so as to produce

the stationary distribution vector n(t) always results in a differentiable vector.

fromem s oo !
g THEOREM 3.1: If A(t) = - P(t) where P(t) is row stochastic, §
§ irreducible, and differentiable on (a,b), then each component of the g
g unique stationary distribution w(t) of P(t) satisfying i
i i
g w(t) = =(t)P(t), Zwi(t) =1, "i(t) > 0, is differentiable on (a,b). é
| 1
b e e +
PROOF: If Di(t) denotes the i-th principal minor of A(t) obtained by deleting

the i-th rowand i-th column of A(t), then for each t in (a,b), Di(t) > 0 and

w(t) is given by

3.1 w(t) = —— [Dy(t), Dy(t), . .., D (t)].

L 0,(t)

This formula for w(t) is a simple consequence of the fact that (adj A)A = A(adj A) = 0
and {e} is a basis for N(A). Because the entries of A(t) are differentiable, each
Di(t) must be differential and hence each component of w(t) must be differentiable

at each t in (a,b). |



In the sequel, we will omit writing the argument t (e.g., instead of
writing m(t), simply write 7) and we sometimes will also use the notation
(*) to indicate the differentiation with respect to t (e.g., write = instead"

of dn(t)/dt).

Hamme e L e L e e e “emeeesmccccccnscccmcconane +
H 1
} THEOREM 3.2: If P = P(t) is row stochastic, irreducible, and ;
1
E differentiable for t in (a,b), then the derivative of the stationary E
[} |
E distribution associated with P is given by |
: i
i . # '.
i (3.2) ~ w = 7PA !
b i
; i
E where A# denotes the group inverse of A = 1 = P as described in the }
] i
E previ ous section. i
1
| i
| |
'L ----- - D e T D A D > e R T T X T T Y ppp——— F Y Y +
PROOF : Identify R(AT)\Nith the row space of A. If A:R]xm + R(AT) is the

mapping defined by A(x) = xA and if Ar:R(AT) - R(AT) denotes the restriction of
" A to the space R(ATi, then A, is a bijection on R(AT) and it is not difficult
<1.oraT Ty . - -1 # _
to show that Ar :R(A") = R(A") is given by Ar (x) = xA™. (See pp. 121-122 in
Campbell and Meyer [2].) Thus for b € R(AT), the unique vector x in R( AT)
satisfying xA = b is given by x = bA#. Apply the elementary product rule for
differentiation to the equation = = P to obtain
m=aP +q P
or

(3.3) A = 7P



and deduce that =P € R(AT). To see that 7 € R(AT), differentiate the equation

me = 1 to obtain
7e = 0.
Hence T is orthogonal to e. Since {e} is a basis for N(A) it follows that
. L T
(3.4) T € N(A) = R(A").
Because A# is the inverse of A on R(AT), (3.3) and (3.4) imply
T = TI’PA#,
which is the desired conclusion. .

By multiplying (3.2) on the right by the i-th unit column ei, we may extract

the expression for the derivative of the i-th stationary probability L

T‘ ------------------------------------------------------------ - - - - - - +
1

] 1
E COROLLARY: The derivative of the i-th stationary probability E
1] ) ]
E is given by, E
H ; . S # !
s (3.5) T = 1rPA1. |:
1 ]
E :
5 ]

E where A, is the i-th column of A, i
! | ;
F e e e e e e e e .- —————————————————— - 0 0 0 e e e +

One of the most pleasing aspects of Theorem 3.2 and its Corollary is the

sheer simplicity. The simple structure of (3.2) and (3.5) make it absolutely



clear how the stationary distribution changes as the transition probabilities
change. It shows that A# acts as a '"magnification factor'". If, at a particular

point to' the derivatives of the transition probabilities are all relatively

small and the i-th column of /\# contains only relatively small entries, then

the i-th stationary probability LE must have a relatively small derivative.

Because the entries of A# 2 A#(t) are continuous functions of t (Corollary 3.1

in Meyer [10]), it follows that at tys m; cannot be extremely sensitive to small
perturbations in the transition probabilities whenever the i-th column of A#(to)

has no entries of relatively large magnitude. On the other hand, if the i-th

column of A#(to) contains some entries of large magnitude, then small perturbations

in P(to) can be greatly magnified so as to make m; very sensitive near to'
More precisely, translate the discussion to the origin and write

"i() - 1 (0) = 7, (0)t + O(t?)

and

tP(0) = P(t) - P(O) + 0(t2).
Theorem 3.2 now produces the following perturbation formula.
(3.6) n(t) - 7,(0) = w (Q)[P(t) - P(O)IAF(0) + 0(t?).

It is transparent from (3.6) that the entries of A#(O) are the fundamental
qguantities which govern the sensitivity of the stationary probabilities.
Assuming that t is small enough so that higher order terms may be neglected,

apply Holder's inequality to "(3.6) and obtain the statement



ornyiaf
@7 7y (t) = m(0)] < te() 1 [P() - P(O)IAS(O)

where (1/p) + (1/9)“= 1. For all of the HO6lder norms it is the case that

lw(t)lp < 1. Thus for every H8lder vector norm I-lq and compatible matrix

norm l-ﬂm, it follows from (3.7) that

(3.8) v (t) - =, (0) | < IP(t) - p(o)nmmf(onq

The observations made throughout this section motivate the following

definition.
DEFINITION: For an ergodic Markov chain with transition matrix P
and stationary distribution =, the condition number for the i-th
stationary probability m is defined to be the number
I
Condq(ni) 'Aiuq
where I-Iq is any H&lder vector norm and Ag is the i-th column of the

group inverse of A =1 - P. For a matrix norm ﬂ-ﬂm, the number

_ paf
Condm(n) = A Im

is defined to be the condition number for w. This number will also be

referred to as the condition of the underlying Markov chain.




4. LINEAR PERTURBATIONS

A special case of the preceding analysis which is of particular interest
is that in which the perturbations are linear functions. That is, for a fixed

row stochastic irreducible matrix Po’ let F be a constant matrix such that
P(t) = Po + tF

is row stochastic and irreducible on (a,b). As before, let A(t) = 1 - P(b)

and Ao 2 A(0) =1 - Po' By making use of our earlier results, we can obtain
a verysimple and explicit formula for 7, the derivative of the stationary

distribution associated with P(t).

ittt sesmssccones Somsssssssssseocoes t
] ]
f THEOREM 4.1: If P(t) = Po + tF is row stochastic and irreducible i
! !
E on [0,8), then the derivative of the stationary distribution =(t) i
| f
E associated with P(t) is given by !
| s
{4 #(e) = o(e)Faf 11 - trATTT for t i [0,8) i
1 1
5 s
E where A" is the group inverse of A =1 - P_. E
1 1
et e e e e e H
PROOF: Using Theorem 3.2, we obtain

@.2) #(t) = w(t)F(1 - P - tF)F = a(t)F(A, - tF).
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Let m) =n(0). From Theorem 3.1 of Meyer [10], the matrix (I - tFAg) is

always nonsingular and the term (Ao _ tF)#can be expanded as follows.

# _ af . #\-1 ® - i -
(4.3) (AO - tF) = AO + tAOFAO(I - tFAO) - PQ(I - tFAg) ]%(I - tFAg) 1
where P: = ew is as described in (2.2). Since

e = P(t)e = Poe + tFe = e + tFe

-

must hold for all t in [0,8), it follows that Fe = 0 and hence

FP_ = Fem,

o
]
o

Use this when substituting (4.3) into (4.2) to obtain
4.4) i) = (e)rafLn + eraf(r - eraf) 1.

By making use of the identity

= - #y=1 _ # #y=1
1 = (l tFAo) tFAO(I - tFAU) R
(4.4) reduces to
w(t) = w(t)FAi(I - tFAi)'],

which is the desired conclusion. .
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There are at least two interesting features to this theorem. The first is

to notice that at t = 0, the behavior of ®(t) is governed strictly by F, Aﬁ,

and =(0).
e s neeeeees :
1
{ COROLLARY: For P(t) =P, + tF, the derivative 7(t) of the i
1 ]
H ]
E stationary distribution evaluated at t = 0 is given by 5
! i
| 1
i . # ’
: (4.5) 7(0) = n(O)FAo. :
! !
: ) 1
[}
E The derivative ii(t) of the i-th stationary probability at t = 0 is !
= a
] 1
i . P :
PG 7;(0) = =(0)F[A,], :
! !
' 1
" # - - # 1
4 where [Abli is the i-th column of A. For any H#lder vector norm and 1
| i
1 . ) i
! compatible matrix norm, ;
: :
] 1
5 . # # i
! 4.7 Iwi(O)l 5_IF[A0]1H < IFt l[Ao]i"’ :
! '
' g
Fom e e e e cmc e eeceeeeeececmcececececccememe—eeseeecae——————— +

Another important point to be made concerning Theorem 4.1 and its corollary
is the fact that neither § nor E is Teduired gofbﬁ;"smaml"u 1 a for ﬁ
in (4.1) as well as those in (4.5) - (4.7) are global in the sense that they
hold for all t and F for which P(t) = Po + tF represents an irreducible
transition matrix. However, if either t or F is small enough in magnitude to

insure that ItFA§ﬂ< 1 for compatible vector and matrix norms such that #I} <1,

then

B R
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tFA
k-X-O (£7A)

#,-1
a - tFQT)

so that taking norms in (4.1) produces the following corollary.

i e e t
] ]
i COROLLARY: If ltFAﬁﬂ < 1, then E
] 1
] ]
] 1]
E s |FA§| 5
| 4.8 Izl < Il , .
5 = 1o umh i
| . |
) # ]
E Furthermore, if t“F“Aon 21, then :
! !
] 1
: iF # IFl !
i 1A & 1A™H :
E I TR, Aol Mo TR <(Ay) :
@9 ™ < T A TFI i
: ot el e (A, =
| 0 |
1 _ # '
b mere ) A A e e i

The expression (4.9) is a continuous counterpart of the discrete formula
given by Meyer in [10].

The results of sections 3 and 4 make it absolutely clear that for a finite
homogeneous ergodic Markov chain, the sensitivity of the stationary probabilities
are directly governed by the entries of the A'# matrix. There appears to be ample
evidence to support the use of A as the fundamental quantity in gauging the

"condition of a finite Markov chain" and it seems apparent that any perturbation

or sensitivity analysis of a finite Markov chain should revolve around the matrix A%

In dealing with almost any aspect of a finite chain, the entries of A# seem to
be relevant, regardless of whether these quantities are used explicitly or whether

they appear only implicitly being incorporated in different terms or notations.
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In one way or another the A# matrix always seems to be present.

5. UTILIZING A QR FACTORIZATION

The utility of orthogonal triangularitation is well documented in the
vast literature on matrix computations. The purpose of this section is to
demonstrate how one can use a QR factorization of A =1 - P to not only compute
the stationary distribution m, but to also gain some insight into the relative

sensitivity which m is expected to exhibit.

For every nxn irreducible row stochastic matrix P, it is well known that
A =1 - P must have Rank(A) = n = 1. Moreover, any subset of n - 1 columns from
A is linearly independent. There is "essentially" a unique QR factorization A.
The R-factor is uniquely determined by A and the Q-factor is unique up to the

algebraic sign of the last column.

? .................................................... ———oe- cecuccccscanan ----T
! THEOREM 5.1: If Anxn is as described in the previous sections and %
1
] ]
] 1
E if A= QR is a QR factorization of A, then R must have the form E
1 i
] 1
! v :
v (5.1) R=]-+- ;
: 0 '
]
! 1
’ i
E where U is a nonsingular upper triangular (n = 1)x(n - 1) matrix and E
! ]
¥
, e is the column of 1's. The stationary distribution = can be recovered E
4 ]
]
H from the last column, g, of Q as f
' i
]
' - T i
e et s
t
' Z !
' q; H
o e e e e e cmmm—m—————————— oo e e +
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PROOF : To prove that R has the form (5.1), we need to show r n = 0. Let

n

e be the column of all 1's and use the fact that 0 = Ae = QRe to obtain
Re = 0.

This together with the fact that R is upper triangular guarantees that rnn = 0.

The fact that U is nonsingular now follows by noting that
Rank(U) = Rank(R) = Rank(QR) = Rank(A) = n-1.

To see that the stationary probabilities can be obtained from the last column
of Q, recall that A = | -« P where P is a nonnegative irreducible matrix with
spectral radius 1. One consequence of the Perron-Frobenius theorem is that if

xTA = 0, then xT >0 or x < 0. Moreover, the system

(5.3) x'A=0, x »0, |xTa] =1

possesses a unique solution for x' . Since the last row of R = QTA is zero, it is

clear that
0= qTA
where.q is the last column of Q and hence d-> 0 or qT < 0. Thus
L
q
q /j=1 J

satisfies (5.3). Since the stationary distribution also satisfies (5.3), it

must be the case that

T
=3 ) |
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IT the last column of a Q-factor produces the stationary distribution w, of
what relevance, if any, is the remaining information in the Q-factor and R-factor?
It is demonstrated below how to use the QR-factors to gauge the inherent
sensitivity which n can exhibit to small perturbations in P. To see how this
is accomplished, recall from the previous sections that the sensitivity of the
i-th stationary probability LA is directly governed by the magnitude of the

entries in the i-th column of A#. The goal therefore is to write A# in terms of

the QR-factors. Since A is orthogonally similar to RQ via

A = QRQ)Q’,

it easily follows that

af = qrarfe”.
(See Campbell and Meyer [2]). If we adopt the Z-norm, then
(5.4) IA#IZ = n(RQ)#nz

and the objective shifts to studying the structure of RQ and measuring the
magnitude of its group inverse.
Unfortunately, group inversion is somewhat different than other familiar
4
inversion processes in that (RQ)# # QTR". Moreover, there is no known way to

directly unravel the term (RQ)# so as to directly gauge its magnitude. However,

the special structure of our matrix A = 1 - P does lend itself to an analysis
by block decomposition.

By nature of the QR factors for A, the matrix RQ must be of the form
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U
RQ =]=- - + - |l et e a] =
0 1 T

Since A = QR has rank n = 1, and since QR is similar to RQ, it follows that
Rank(RQ) = n = 1. We know from Theorem 5.1 that U is nonsingular so that it

must be the casein (5.5) that V = U(Q]- edT) as well as (Q]- edT) is nonsingular.

It is well known (see Campbell and Meyer [2]) that for a nonsingular V,

. # 1 .
Voib v vy
-t = - = - o -t e
-0 v O 0 1
and hence (RQ)#is derived from (5.5) as
(Qy-ed)T ) (0 -ed)TUTN(Qy - edD) (e )
G.6) R)F =2 |-----ooao b oem e e e e e
0 ' 0

We could, of course, stop here and simply say that HA#HZ (and hence the
condition of the associated Markov chain) is essentially that of HV"HZ and advocate

estimating Condz(V) in order to gauge the sensitivity of the underlying chain.

However, it is apparent from (5.6) that the magnitude of (RQ)# (and hence of A#)

is determined by two inverses; namely

(5.7) (Q-I - edT)'1; which is  dependent solely on Q

and

(5.8) U']; which is dependent solely on R.

—_
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Intuitively, one feels that the influence of Q in I(RQ)#H2 should

somehow be insignificant. The next section explores to what extent this

is true.

6. CAN THE ENTRIES IN Q BE NEGLECTED IN ESTIMATING IA#IZ?

The contribution from Q in IA#I2 is manifested in the matrix of (5.7).

Although the upper left hand (n-1)x(n-1) block Q] in a general orthogonal matrix

Q c
Q:--1--:----
!
dT ' a

is not necessarily invertible, the special structure of A =2 1 - P forces Q1

to be nonsingular when Q is the Q-factor in a QR-factorization for A.

]
]
'
[}
]
[}
[}
]
[}
]
]
]
[]
[
[}
[}
]
s
[}
]
(]
]
(]
[]
[]
[}
[]
]
]
]
[]
[]
[]
[
]
]
[]
[)
]
[]
[)
]
]
)
]
]
]
]
]
]
]
]
]
]
]
[]
]
]
]
]
1
]
]
]
]
1
]
]
]
]
1
]
[]
[}
[}
[}
+

LEMMA 6.1: If A = QR is a QR-factorization for A =1 = P, then the

(n-1)x(n-1) matrix Q in

Q c
R SR
d 1 a

is nonsingular.

LT L R e el e e Ll T T TS +

-
+ Rttt I el L kX ey —
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PROOF: Recall from Theorem 5.1 that R has the form

where U is (n-1)x(n-1) and is nonsingular. Thus

! 1
A, QU » -Q,Ue
A:--1-+-§2-=QR=_1-+--]-
Ay v Ay ar ! -dTUeI
implies Q] = A1U_1 . Recall from the ciiscussion at the beginning of Section 5
that A] must be nonsingular and conclude that Q.l is nonsingular. .

Using the familiar formula for the inverse of a rank 1 update, we obtain that

-1 T =1
i -1 -1, ed
(6.1) S=(Q -ed) = Q7 4 ———
. TA-1
1-4d p, e
If it could be guaranteed that Q] is such that ﬂQi_lllz is not unduly large and
Ta-1 . .
. ]1-d Q-I e| > >0, then we could disregard the action of Q. Unfortunately, one
can exhibit ergodic Markov chains in which Q]'] can possess entries of arbitrarily

large magnitude. For example, consider the chain whose transition matrix is
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0 1 0
T= e 1-2¢ ¢
1 0
In this case,
1 -1 0
A= |- 2¢ -€
0 -1 1

and the QR factors are of the form

- . 2 “
€ . €
)
1+e¢ Y1+3e° + 288 Vi1 +2e
[]
- ]
Q= !
- € € ' 1
[}
1+e¢ : V]+3ez+251 E v1+2=
...................................... t------------------.---------
i
-1-¢€ ! €
0 7. ,38 |
Yi+3ef + 288 1+ 2
-1 - sz ! 82‘
]
1 +¢ 1+¢ E 1+
[}
R = !
]
0 1 + + E -!]4-:;5 +;:
1+ ez ! 1+ 52
]
...................................... T----_------------------_---_
0 0 E 0
. 1

The leading principal submatrix Q1 approaches singularity as € = 0 and hence
-1
IQ] l2 +» as e+ 0.
Although the Q] matrix may be badly conditioned, one might still hope that
Q] - edT is better conditioned. The following theorem establishes that this is

indeed true.
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o e e r e a e e et e m e o e e e e e e e e
]
)
:- THEOREM 6.1: For A=1 « P where P is an (nxn) irreducible stochastic
i
' matrix, let
E
]
: [}
: Q v ¢
: Q=l--%--
i dT 1 a
1
!
]
]
E be a Q-factor from a QR decomposition of A and let e denote the column
!
i of I's. If S = (Q'l - edT)°1 and v = (¢ =~ ae), then.
]
H .
|
L (6.2) Ist, = 1(q, - edT)"lz <1+ AT
!
:
] and
i
]
?
]
i (6.3) ISvl, =1(Q) - ed) (c - ae)ly < T+ AT .
!
i
B e e e e 0 0 0 e - = 4 - - - - - - - . o - - - = - -
PROOF: We will first demonstrate that
T

i (Qle + d)c

(6.4)" 5= (0 - ed) = Q) - —L——
c'e +a
and
Q;re td

(6.5) Sv=5(c-ae) =« —— .

T
ce+a

- e e e e e o e e e o e e e e o e o o m
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It is not easy to verify that these are true by straightforward multiplication

and hence an indirect approach is taken,. If B8 denotes the scalar

B = cTe + a

and if M denotes the matrix

o 1 - | -
T [ ' [
Q;-ed | c - ae 1, e |l Q
M = - - et e wee .- = - o ot o= - - = + - N
o ! 1 ]
\'l | |
b - . - L
then
(Q;- e () -ed)M(c- ae) o ., d 1 e 77!
(6.6) M'] L 2 e e et - S
0 1 ! d
T [Lecl e . r (ge e dic’ Q}'eJ’ d
q . d T B Q - B ' B
= PO Y | P e + - - - I I T T Ty P e e == .
T T 1 t
- -

which proves (6.4) - (6.5). The desired conclusion follows by taking norms.

T T
Since Qi and cTare submatrices of an orthogonal maprix, Iqllz‘i 1 and

HCTIZ < 1 so that




T (Q;re + d)cT i

<1+

Ty-1
(6.7) l(q] - Ed ) uz = iQ]
Taking Z-norms on
l]-
l-QTe + d
T|! 1
Q ) =
]
d4 L I
produces
= 107, 2
n = 1Qpe + dij + gl
so that
(6.8) EQ]Te + dﬂz ]
= -1
B &
From Theorem 5.1, we have
T 3%(CT9 (!)

so that

g =1(c’ a2 1(cT,ally= 1.

Apply this to (6.8) to obtain

B

12 -

QIe + d

8

.
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lq{e +d 2
<n -1

(6.9)

Use (6.9) in (6.7) to arrive at

100, - ed)™ M, <1+ AT
Similarly, formula (6.5) produces (6.3). |

Since IA#IZ ﬁml(RQ)#'z, one can now look at the form for (RQ)# in (5.6)

and see that the Q matrix does not significantly contribute to the size of

1

IA#HZ. The only way for IA#N2 to be large is for IU” ﬂz to be large. This

is formalized below.

Fem e oo e e e oo eeaoecomecesseammmcssmmesmssmomecemososeesmmcmans
[}
i THEOREM 6.2: Let A =1 - P where P is an (nxn) irreducible stochastic
i
i matrix and let A = QR be a QR-factorization for A. If U is the (n-1xn-1)
1
i leading principal submatrix of R, then
|
1
L 610 1A', < o)
! (6.10) 2 - 2
i
1
e m e a—————————————— = = 2 2 e e e m
PROOF : From (5.4), we know that IA#I2 = ll(RQ)#ﬂ2 and from (5.6) we know that
1 1
# su” 1 SUT'Sv
G LAY I
0 ! 0

where S = (Q1 - edT)'] and v = C = ae. From Theorem 6.1, it fol 1 ows that
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1(RQ) 1, < 150N,V + 1suid)
= o(miun,, R |

Therefore, the condition number of the (n-1xn=1) leading principal submatrix
of R may be taken as an estimate (or as a measure in itself) of the condition
of the underlying chain. Since U is uppertriangular with positive diagonals,

estimating Condz(U) is not overly difficult (e.g., LINPACK methods can be used.)

7. CONCLUSIONS

For an ergodic chain with transition matrix P, a QR factorization of the

matrix A = 1 « P yields complete information in the sense that both the stationary

distribution ™ as well as measure of the sensitivity of 7 to perturbations in P

may be deduced.

1. w is obtained by normalizing the last column of Q.

2. The sensitivity of the chain may be gauged by Cond(U)

where U is the (n-1xn-1) leading principal submatrix of R.

In general, it is well known that an upper triangular matrix may be il1-
conditioned without possessing relatively small diagonal elements. However,
for the special situation of an irreducible Markov chain, we have not been able
to produce an example of an ergodic chain so that the factorization A = QR yields
an R in which ﬂU'lﬂ is large but U has no small diagonals. In all of our compu-
tational experiencet the sensitive chains always seem to force a diagonal entry.of
U to be relatively small. The more sensitive the chain, the smaller some diagonal

of U becomes, so it seems. There is clearly need for further study.
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