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Abstract

We derive the Moving Finite Element (MFE) equations for the solution of a scalar evolutionary equation
in d space dimensions (d > 1) and introduce the clementwise approach to MFE. This approach yiclds a
decomposition of the mesh- and solution-dependent matrix A in the (semi-discretised) non-linear system
of ordinary differential equations A(y)y = g¢{y) which forms the basis for proofs of cigenvalue clustering.
With a simple, specific block diagonal preconditioner, D, it is shown that the eigenvalue spectum of the
preconditioned MFE matrix Dt Ais [% L1+ %] indcpcndently of the mnesh configuration, the solution and
the number of nodes. A more specific result is established for the case d = 1. These resualts guarentee
extremely rapid solution techniques using, for example conjugate gradient methods. We show how the
analysis extends to systeins of partial differential equations when a separate moving mesh is used for cach

componcent.



1.Introduction

The Moving Finite Element (MFE) Method, introduced by Miller and Miller [11], has been used with
considerable success to obtain solutions to a number of time-dependent partial differential equations - see
[5],[7],(8] and [10] for parabolic problems and [ 14],{ 15]-and [ 13] for hyperbolic problems. In this paper
wc present no numerical results, but rather describe and extend previous theoretical work ([ 14]) to prove
results on the inherent good conditioning of the MFE equations independently of the solution, the mesh
configuration and the number of nodes.

Moving and adaptive mesh methods for the numerical solution of time-dependent partial differential
equations arce developed because of the possibility of accurate representation of true solutions on grids which
distort to describe developing or propergating features. In most such methods the equations for determining
grid configuration are considered separately or are decoupled from those for the solution representation (see
for example [1],[2],[4] or the review in [G]). The MFE method however goes against this tradition in that
simultancous equations for the solution and mesh variables are derived simply on the basis of minimisation
of a residual norm. In this paper we show that t he resulting MFE equations have a definite structure,
and t hat the algebraic conditioning of the equations is good this result being independent of the mesh-
configuration, the solution and the nnmber of nodes. These results do uwot hold if the solution and mesh
variables are considered separately.

In section 2 we deseribe the piccewise linear MEPE method without penalty terms for ascalar evolutionary

_equation in d-dimensional space (d > 1), This yiclds the MFE cquations in the form

A(y)y = 9(y) (1.1)

where y is a vector containing the unknowns (the fnite clement cocficients and node position vectors), A is
the solution- and mesh-dependent MFI matrix and ¢ comes from the spatial derival ive terms, In section 3
we briefly consider appropriate modelling of boundary conditions. [u section 4 for 1 he one-dimensional case)
and scction 6 (for higher dimensions) we introduce the clementwise approach to MFE and show how this
yiclds the structure of the MFE equations through a decomposition of the matrix A. This decomposition
explicitly reveals the causes of indeterminacy in the MFE method and allows simple and natural treatment
of these degenceracies without the need for penalty terms. These proceedures are described fully in {14] and
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[13] (sec also [ 15]) and are not described again here. The main results of this paper are presented in sections
5 (one-dimension) and 7 (higher dimensions) where wc prove that if wc premultiply the MFE matrix A(y)
by the inverse of its (d + 1)-square diagonal blocks D(y), then the cigenvalues of the resulting matrix D7t 4
lic in the closced interval | %, 14 12!] independently of the solution, the mesh configuration and the number of
nodes. In onc-dimension the result is more specific : D™ A has just two distinct eigenvalues of % and % and
possibly onc or two of unity depending on boundary conditions. There results contrast with the sitaution
in standard (fixed mesh) finite element methods where the conditioning of mass or stiffness matrices are
certainly mesh-dependent (sce for example [12, p.213]). In section 8 we show how these results extend to
systems of partial differential equations if a separate moving mesh is nsed for cach component of the system.

2. The Moving Finite Element Method

In this section we develop the basie piccewise linear Moving Finite Blement (MFE) method for a scalar
evolutionary equation of the form

up — L(u) = 0 (2.1)

.
together with appropriate initial and boundary condi t ions in v region 1 of d dimensional physical space,
and some time interval [0,77]. We use simplex clements (e, simple line segments in 1 dimension, triangles
in 2 dimmeusions, tetrahedra in 3 dimensions,. .. ) with nodes at the vertices and thus seck an approximation

of (2.1) of t he form

NID
Ulrt) = D aj(t)os(r,s(t)) (2:2)
Jj-1
where r is the position vector of il point,
8 = (ﬂl’QZV'"ﬁN-QD)T : (23)

contains the nodalposition vee tors 45, a; is a nodal parameter, and g is afinite element basis function. Here

N is the number of internal nodes and B the number of boundary nodes. Any of these nodes may have any
L]

number Of the variables Of s aud/or a; constrained to be held fixed, and modelling of boundary conditions

is achieved by applying such const raints appropriately. (We ret urn to the issue of boundary conditions in

section 3). In the following we assumne (for definiteness) that all boundary nodes are held fixed as well as
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the amplitudes at these nodes — this models Dirichlet conditions over a fixed domain. The function Uz, t)
thus has N( 1 + d) degrees of freedom.

Partial differentiation of (2.2) gives

X au ;
Uir,t) = Zf'lj(t)é—a'j +3;(t).V, U
i=1 J

N d
= Z[‘ijaj(f’ g(t)) + Z éjm(t)ﬂjm(ﬁ’a(t)ag(t))] (24)
m=1

i=1

h

Whero §j,, (t) is the m'® component Of 3; (t) and

oU
O s

ﬂj m = (25)

is one of d sccond type basis functions. (* denotes time derivat ive). The support, of cach f3j,, is the same as

that Of a; and indeed the-arguements Of Lynch [9] can be used to show that

o .
ﬂj"' - _‘(')x"‘ ('J’ (2'6)
where we have taken r Of (2.2) to be
r={r,T9,...,3q). (2.1

Note that cach g, is lincar on cach element, but is in general discontinuous actoss the element edges which
emanate from node j sinee the derivatives QU /dx,, are piccewise constant funct jons. Minimisation o f the
square of the Ly norm of the residual

WU~ L), (2.8)

with respect to the time derivatives of the parameters aj, 85, m=1,. .., d, 7=1,..., N gives risc to the
N( 1 + d) equations
(U~ L(U)ya; ) =0
) (2.9)
(U, - LU), Bju) =0

m=1,...,if, 7 =1,..., N. Substituting for U/, from (2.4) then gives the set of MFE cquations

A(y)y = 9(y) (2.10)

where
e T, T. . T\T '
Y= (ulaﬂl 9"'2v§2;"',uN7§N) (2.11)
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and g(y) arises from the terms containing L(U) in (2.9).
The MFE matrix A is square and symuinectric, consisting of inner products of the a% and B’s in blocks,
the (4,7)!" (d + 1) x (d + 1) block being
(aiya; Y (Binyoi ) ... (Big,a; )
(@i, B51) (Bir,Bjr) .- (Bia,Bj1)
Aij = . . ) .
(@iyBia)  (Bir,Bja) .- (BiasBya)

where (., .) denotes the Ly inner product,. Note that so long as U, remains square integrable, we have that
2 _ Ty
WUz, =9" Ay (2.13)

from which follows that the MFE matrix is positive semi definite and singular only when 3 # 0 exists such
that [7, = 0. We will further ment ion the potential causes of singularity of A in sections 4 and 6, but refer to
[14],[ 15] and {13] for a complete description.

3. Boundary Conditions

There is cousiderable freedom in the manner in which boundary conditions can be modelled in the
MFE method. Essentially we may hold fixed or allow to vary in the minimisation (2.8) any subsct of the
parameters

{a;,8T :i=N+1,...,N+ B}, (3.1)

to achieve the appropriate conditions.
A Dirichlet condition

u = h(r) (3.2

on the boundary 901 of the fixed region 2 could be modelled by fixing cacli 8; to remain at it’s initial position
on I and setting a; = h{g;) for all time. It may in certain problems however be appropriate to allow some
or all of the boundary nodes to move along the boundary. Depending on the geometry of the boundary (and
the coordinate system used) this may be casy or more difficult to achieve in practice.

For a homogencous Neuma n n condition,

3N , .
g = 0 on JQ1, (3.3)



the variables d;, 3 = N+ 1,...,N + B are unconstrained and are dectermined from the minimization of the
residual (2.8). Except only for degencracies that might arise-these arc described precisely in [14],[15] and
[13]—the positions of boundary nodes may also be allowed to vary in the minimiantion of (2.8). Thus some
part or all of the boundary may bc allowed to move as the solution evolves.

4. Elementwise Approach and Equation Structure-One-Dimension

In onc-dimension (d = 1) the obvious choisc of node numbering is
a=38)< 8 <---<sny<sn41=0b (4.1)

where Q1 is the interval [, b] and sy and sn 4, arc the boundary nodes. (Note that though this is the natural
ordering in one-dimension, the nuwmbering of boundary nodes differs from that used i (2.2) which will be
used in higher dimecusions).

Wec introduce some numbering of the clements k =1, ..., n = N + 1 (n is the total number of clenents
and N is the total munber of internal nodes as before). For cach element K, let v = 1, 2 number the two
nodes (vertices) o f the clement. Then we define ¢, to be the ‘clement basis funct ion which has support
ouly on clement kK and which is linear, taking the value 1 at node v and zero at the other node of clement
k. In this once-dimensional setting there is a simple choice of the clement numbering in terms of the node
nutubering given by (1.1), namely that the clement between nodes ¢ and ¢ + Uis numbered k =i+ 1, v =1
denoting the Teft hand vertex whicliis node 7 and v = 2 the right hand node 7 + 1. For o == 1, o is the simple

“hat function with support on just the two clements about the node ¢, thus with the element nnmbering
deseribed above, ¢y, is that part of the basis function «; on element k =14 1, and ¢go is that parct of a4y
on the same element.

With these definitions, we reparameterise the piccewise linear (discontinuous) function 7, (z, t) of (2.4)

in the form

Ur(z,t) =Y e (t)bro (. 8()). (4.2)

k=1 v-=1

To be consistent with the Dirichlet boundary conditions of section 2 we must impose

‘u’)u =0= ‘lb,ﬁ (43)
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and thus write

n n—1
Ur= tniber+ ) hradia. (4.4)
k=2 k=1

From (2.4) (with d = 1) and (4.4) we may rclate the nodal paramcters &, § to the wg, as follows.From
(2.4) and (2.6)

N N
Ut = Ed]‘(x,‘ +éjﬂj = Z (dj - Uzéj)aj, (45)

j:-_], j=1

and with the simple choice of node-clement numbering described above wc have

a; = dia + dis11; (4.6)
thus (4.5) is
N
U= (a; = Urd;)(bj2+ bjra1). (4.7)
it
Rewriting (4.7) as
n:- N |1 n-1=N
Ut = L ((1j 11— my 4 .5_.,'_ 1)(/)_,’1 + Z (dj —-m;. 3 ""j)d’ﬂ, (48)
=2 J=1
(where we have written the gradient of U as
e s
mi, .= L7 4 (4.9)
4 $541 — 8
we can compare directly with (4.4) to give
Wy =a; § —my;. %é,-_ 1 and g = @y — My __%5,-. (4.10)
Thus if we write these equations as
w= My
where
o (e s . e T (412)
W = (25w, Weg;. . . Way) :

and gy is the derivative of (2.11'), then the 2N x 2N matrix M in scen to be 2 x 2 block diagonal with ¢¢#

diagonal block

M,:,(} ‘"‘*‘-f) i=1,...,N. ‘ (4.13)



We note that this block diagonal structure of M is a consequence of the simple 1 = 1 node-clement numbering
which we have used in the one-dimensional case. (Othcr orderings of the variables would give rise to a
permutation of the rows and columns of M). The situation in higher dimensions when such orderings are not
possible will be explained in section 6.

We can also express a simple relationship between the element basis functions ¢, and the node basis

functions ay, B; (= Bi1) in terms of the matrix M. To sce this, write

a = (ar,Br; a2, B2 s an, BN)T (4.14)
and
¢ = (b125 barsbazi- i dua)T (4.15)
and notc that (2.4) and (4.4) are
yTa= U= wT¢. (4.16)
Using (4.1) this yiclds
a=MTg. (4.17)

We now introduce the clementwise MFE miatrix. In a similar maaner to @ 13), but using the elementwise
deseript jon (4.4) we obtain

N}, = wTCw (4.18)

where the matrix ¢ has entries which are the inner products of clementwise basis functions @i, in pairs .
Because the support O f cach ¢, is on one clement only and ther@re only two different basis functions on
cach clement, € is a block diagonal matrix having at the upper left and lower right corners respectively the

1 x 1 blocks

C, = (fﬁn,'f’n) and C, = ('ﬁula‘f’ul)y (4.10)

and ot herwise having - 2 (= N — 1) 2 x 2 diagonal blocks, the (k - l)”‘ of which is

M- (‘/’kla‘/’kl) ('/’kl,'f’kz))
(/k‘_((‘/’“*‘/’kl) (br2,bra) ) (4.20)
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Evaluation of these inner products yields

1
Cl=§A81,
1 2 1
= - = .y N- 421
Cx 6A8k(1 2) ,’.k 2,...,n-l, ( )

1
Cn - EA.’N*—l .

Note that M and C are of the same dimension, but that the diagonal blocks of C are staggered with respect
to those of M.

Using (2.13)},(4.11) and (4.18) we have
9T Ay = |U||], =wTCw =¢y"TMTCMy (4.22)

which gives the important cquality

-

A=M'CM, (4.23)

where A is the 2 x 2 block triple-diagonal MFI matrix given by (2.12) for cl = 1, M is the 2 x 2 block
diagonal matrix given by (4.13)which represents the mapping from the node-based t0 the element based
representations, and €' is t he clementwise MFE matrix, also block diagonal and given by (4.21).
A s deseribed in section 3, in the case of homogencous Neumann boundary conditions we have the
nodewise description
N

U, = agerg + [('tjaj +- .‘31/11'] +an Nt (4.24)
J-1

-which has corresponding clementwise deseription

U, = Z Wiy ey + Z Wi2Pka. (4.25)
Pt koot

The analysis as above in the Dirichlet case then yields a matrix M whicl is as in (4.13), but with extra 1 x 1

upper and lower diagonal corner blocks
My=1and My , =1, (4.26)
and a matrix C which is 2 x 2 block diagonal throughout with

1 2 1
ck_aask(l 2) k=1,...,n= N+1. (4.27)
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With these modifications, the decomposition (4.23) of the MFE matrix in the Neumann case remains true.
Having cstablished the decomposition (4.23) for A, we are immccliatcly able to deduce that A iS non-
singular if and only if both M and C are non-singular. From (4.12) and (4.20) the sources of dcgencracy are
thus seen to bc respectively lack of curvature at a nodé (this has been called ‘parallelism’ in [14] ,[15] and
[ 13]) and clement-folding (‘hode-colliding” in one-dimension).
It is not the purpose of this paper to discuss the sources of degencracy and methods of treatment since

this has been covered in [14]. Rather the results of this paper arc proved only for the case of non-singular

MFE matrix A.
5. Eigenvalue Clustering--Onc Dimension

Evaluating the inner products in (2.12) we obtain the non-zero blocks of A in the one-dimensional case

as
IR Grv vty wiete W) BLE S BT 4
A= (-AASZ.- m,-_:(:{a.») W= 2..,N (52)
and
Ai vi=Aiir  ,i=2,...,N (5.3)
where

Agj =aj - aj._y.

Note that

Ay = 20400 1+ Aiin) . (54)

We have

(541
2]
S

(i(.’t(j‘,"i) = %A.‘),’AS,’ {1(7"-."_7:_ - m; %)2 Z 0 (

with equality if and only if there is parallelism and/or clement folding. We assume that neither of these
degeneracies occur, so that from the decomposition (4.23), M is non-singular and € is positive definite. Let
D be t hie positive delinite matrix of"the 2 x 2 diagonal blocks of A, For convenience we introduce also the

10



(line) diagonal matrix I2 where

A81
Asg - o
R? = é Asg ' (5.6)
o h
Asnyy
which is such that
C=RCR (5.7)

with

(2 \

—N
N -

2 1
C= L2 (5.8)
0 2 1
1 2
- 2)
We then write (4.23) as
A=MTCM (5.9)
where
M=RM. (5.10)

Note thatM and € have the same structure as M and ¢ respectively since 2 merely scales the non-zero
clements, aud that Mis non-singular. Now treating all these matricies as consisting of 2x2 blocks throughout
(thus € has 2 x 2 diagonal blocks -(7{',- = 2I and (;lf-dingmml blocks containing the entries of unity), the

*(4,7)"" Llock of A is
Aij=MTCi; M; (5.11)

since M is block diagonal in this context, 1'»7,- denoting its 7 diagonal block. From (5.11) we have

Aii = M.’ Cii M;, (5.12)
so that
(A - /\D)g‘j = M,T (- Aﬁ;,-)ﬁ,;j Mj (5.13)

where §;; is the Kronecker delta. We write (5.13) as

A-AD=MTC\M (5.14)
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where C, is the matrix with blocks

(Ca)ij = (1 — Aby) Ci . (5.15)

From (5.14) we have the result that u is an cigenvalue of D'A if and only if C,, is singular. Now
2(1 -
(N
2(1-2) 1 O
1 2(1-A)
2(1-A) 1

Cy = 1 21-4) © (5.16)
o C2(1-A) 1

K 1 2(1-))

2(1 = A)
thus since

AL=A) 91 L a)| = (2a - 1)(2A - 3) (5.17)

we have that the cigenvalues of D' A are N — | of £, 2 of unity and N — 1 of 3. The cigenvalues of D ! A
are data independent (though those of A and D separately are certainly not).
TFor Liomogencous Neumann conditions a similar arguement to the above yiclds a matrix € which is

block diagonal throughout , all diagonal blocks being

(2“1— Y 2(11-A) : (5.18)

1
2

Thus for these boundary conditions the cigenvalues of D ‘A are all | and % in pairs.

We emphasise the mesh- and solut ion-independence of these result s which may be used to give extremely
rapid inversion technigques. In particular the author has used (i [14],[ 15] and {13]) the *Generalised Conjugate
Gradient Method’ of Couens,Golub and O'Leary [3] for which the exact solut ion of & MFL lincar system is
guarenteed after just 2 iterations if there are only two disinct cigenvalues for D™ ‘A (the Neumann case),
or 3 iterations if there are Dirichlet bonndary conditions which (as shown above) give rise to just one extra
distinct cigenvalue,

6. Elementwise Approach and Equation Structure—Higher Dimensions

The development we give here parallels that given for the one-dimensioual case in section 4 but contains
some important differences.

Wc choose some numbering of the elements K = 1,. . ., n and some numbering v = 1,. . . ,d -+ 1 of

the vert icies of cach element, and int roduce incar clement basis functions ¢, which have support only on
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clement K , taking the value 1 at node v of that clement, and zero at all other nodes. Wc then reparameterise
the picccwise linear (discontinuous) function U, of (2.4) as
n o drl
Uir,t) = 3 Y i (t)bro(r,8(2)) (6.1)

k=1 v=1

where, to be consistent with the assumed Dirichlet conditions in (2.4) we take

gy =0 (6.2)

th node of clement k is one of the boundary nodes with position 8;3J=N~+1,... N+D:

whenever the v
equivalently we consider the kv'™ term of (6.1) to be removed. Thus for d > 2 we shall assume that (6.1)

implicitly includes the effect of boundary conditions since (unlike in the onc-dimensional case) no simple

node-clement nmumbering exists which facilitates the identification of boundary nodes. From (6.1) we have
W2, = wTCb (63)

where

W= (Tbll""vu.)llll 15 cve ;'d)ulv"-a"i’ntH'l)T (6-4)

(boundary terms having been removed) and (7 is the square elementwise matrix having entries which are the
inner products

(‘/’ku ) ‘/’lu) (65)

of elementwise basis functions in pairs. If we order the basis functions as in (6.4) ;nancly

$=(Br1reerbrariioeibutreoorbuart)s (6.6)

then because of the single element support of cach ¢y, , € ix a block diagonal matrix. Tach block is
(d +- 1) x (d + 1) (or because of boundary conditions (d + 1 — q) x (d + 1 - q) if an clement has g vertices
on the boundary) |, the entries in the K7 block being a simple scalar multiple of the measure of clement k.
Furthermore,for the piccewise linear clements on simplicies that we are considering, it can be readily shown
that for ol p #£ v

(Pry brn) = 2{Pkry Prp) - (6.7)
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Thus the &* block of C is

Cr =04 Rk(I + E) (68)

where E is the matrix with all entrics equal to 1, | is the itlentity matrix , Ry is the measure of clement K,
and ¢4 is a positive constant dependent only on the dimnension of the physical space (c.f. (4.21) or (4.27) in
the onc-dimensional case). Note that the effect of boundary constraints is simply to reduce the dimension
of Ci and mnot to alter the structure (6.8).

We may also relate the nodal paramcters y to the clemnentwise paramecters w by
w=My (6.9)

where M is the rectangular matrix obtained by writing the aj, ﬁj[z (Bj 1y---,B5 a)] in terms of the ¢g, . To

sce this we have

N
U= (aje;+ B,4;) = iTa (6.10)
i=1
where
o= ((rl,[_ir;...;nN,[_ig)T (6.11)
and usiug (2.6},
N
Uy =) (45— VU.3;)a; =0T .(6.12)
it

sinee cach a is the sum of some set of ¢y, It follows from (6.9).(6. 10) and (6.12) that
a=MT¢ (6.13)

asi | 1 the one-dimensional case. Since «; mu,ljﬁn.rc defined on the support of a local patch of clements
arotind the node 7, M has a relatively simple structure, its entries involving only the components of the
(constant) gradient of the solution i11 the various elements.

Equations (2.13),(6.3) and (6.9) together imply that
A= MTCM . (6.14)

Since 4T Ay = 0 if and only if ¥TCw = 0 with & = My, i t follows that A is singular only if C is singular
or the rectangular matrix M is column’ rank deficient. Singularity of € occurs only when the measure of
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an clement decreases to zero -i.c. only when there is clement-folding. Column rank deficiency of M is the
consequence of lack of curvature i.c. parallelism. As in the one-dimensional case these dcgcencracics are
described completely in [14] and [13] and it is not the purpose of this paper to discuss these further.
To find the form of M from (6.9) consider a single’element l. At the vertex g of this element which is
node i say, wc comparc U, in the nodcwise and clementwise bascs rcpresented in the cquations
N d n d
U: = Z[djaj +) "ijmﬂjm] =33 wnudr (6.15)
j=1 m:=1 k=1 v=1

to obtain

d
"bl;t(mp = a0 + Z dimPim (6.11)
m=1
d
7))
= [d,- - Z ‘( 4 éim]a,‘ (6.17)
- m=1 m

using (2.G). (Note that for a boundary node i both sides of (6.16) will bc zcro for the assumed Dirichlct

conditions). Thns since on clement

¢l;z =a;
we have
d
. . —~ JU
wy, = ay — L r"’i::: (618)
m= 1 L

0 that in the row of M corresponding to iy, there is just one (d F 1) row-vector entry

au ol T
(1,—;,)—32—;,“-,"0%”)—2’ (019)

say, in the ¢ blocked column @ note that g is given by (2.11) and cach 8; is assumed ordered as

8 = (3il1“i27' . )'”(l)T s (620)

h

3;; corresponding to the 7" coordinate ;.

h

There will be a similar (d 4 1)-vector entry in the ¢** colamn for cach element K surrounding vode 1 :

thus there will be the same munber of veetors of the type pTin column i as there are elements around node

~k
t. Indeed if we order the vector b not as in the elementwise manner of (6.4) (which is illustrated for the

two-dimensional case in figure (6.1)), but in a nodewise manner (as illustrated for the two-dimensioual case

15



in figure (6.2)), then the rows of the matrix M will be interchanged in such a way that the resulting matrix
is block diagonal. That is, there exists a permutation matrix @ such that QM = N, say, is block diagonal

with rectangular blocks, i.c.

QM=N= B (6.21)

where cach rectangular block consists of (d + 1) columns of scalars (corresponding to the components

of pf) and the same number of rows as there are clements surrounding a node.

-~

Figure (G.I) : Elementwise Numbering Figure (6.2) : Nodewise Numbering

For other boundary conditions mentioned in section 3, the decomposition (G. 14) remains true, though

the miatrix C (as described previously) and the matrix M are slightly different than that deseribed above, For

a homogencous Neumann condition on a fixed domain with fixed boundary nodes (35, =0form =1, . . . , d,
t=N + I,..., N + D), the equation (G.18) becomes
Wi, = d; (G.22)

s0 that M has row entries

1=pF (6.23)
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in the ¢** blocked column. Similarly for other boundary constraints, the vector &T of (6.19) will bc of length

less than (d + 1) when i is a boundary node. That is, boundary constraints merely reduce the number of

entries in 1_)17', but the structure as described above ot hcrwisc remains true.

7. Eigenvalue Clustering - Higher Dimensions

The solution-independent eigenvalue clustering results given in scction 5 for the MFE method in one-

dimension extend to higher dimensional problems. We give a proof in this section of tho gencral result.
As in scction 5 we assumne that there is no parallelism and no clernent-folding.

We give the proof first for the case in which there arc no constraints on the amplitudes nor position
vectors of any boundary nodes. This assumpt ion merely simplifies the proof. At the end of the section we
shall deseribe how the proof is simply ammended to establish the resalt for all types of boundary conditions

mentioned in section 3.

We let D be the positive definite matrix of diagonal blocks of the MFE matrix A given by (2.12) for

t = j. To scc tho definitness of these blocks, let

d
Zp = aay Z ':'l'mﬁim (71)

m -1
be the (single-valued) function which has only local support around node ¢. Writing

2= (aq,8i1, 802, .., 8a) T (7.2)

then

(EA

2. =:TA320 (7.3)

2

with cquality if and only if 2 # 0 exists such that z; = 0. There is no parallelism, the inequality in (7.3) is

therefore strict and we have the required definiteness.

The result we shall prove is that independeutly of the mesh configuration and the number of nodes the

positive definite matrix D™ ' A has no eigenvalues greater than 1 -+ '; and none less than %
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As the first step in the proof we obtain a decomposition of the matrix A — AD as follows. Introduce the

(line) diagonal matrix R defined by
R, \

It

R2 =04 R2 (74)

C Bn

R, )
where each diagonal block is (d + 1) x (d + 1) , Rix (> 0) is the measure of clement k (k=1,. .., n), and oy

is the positive constant given in (G.8). Then the clementwise MFE matrix € satisfics

C=RCR (7.5)
where (sw again (6.8))
2 1 1 \
1 2
A C‘
1 1 2
2 1 1 1
1 2
C= N ) (7.6)
{ 1
2 1 1
1 2
C : ~
R |
: \ 1 - 12/
cach block being also (d + 1) square.
Define M by
M =RM (1.71)

I~
which is a scaling of the rows of the full column rank rect angular matrix Af. Note M is also of full column
rank. Let (@ be the permutation matrix given in (G.21) which is such that

N =QM (7.8)
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is (d + 1) x (d + 1) block diagonal and is negative definitc for any given g if and only if 5“ is negative

definite for the same p.

Because of the definition of C (7.6) and the constructions of C , C,, , and C,, in (7.12),(7.17) and (7.23)

respectively, we have that the blocks of C‘,, have all diagonal entries equal to

2(1 - ), (7.24)

and all off-diagonal cntrics of either 1 or (1 — u). Wc shall now show that without loss of gencrality the

off-diagonal entries may be taken to be 1.

We first construct a particular clementwise numbering for which the off-diagonal eutrics in the blocks of

C,. arc all 1. For a given mesh of simplices select any clement and uumber its vertices as 1, ..., d + 1. Next
take any neighbouring clement (with d vertices at d nodes in common with the first clement) and continue
the numbering in such a way that (a)the first vertex numbered (d + 2) does not coincide with a vertex in
the first clement, and (b)the remaining vertices are numbered (d + 2 -+ ¢) where the order ¢ = 1,...,d is
determined by the increasing order of the vertices of the previous nnmbered element.  If a neighbouring
clement to this last numbered element exists then steps (a) and (b) can be repeated in the numbering of this
new cletent, and the process continued. If at any stage no such neighbouring element exists then any new

< clement can be chosen and it’s vertices numbered in any manner except only that vertices which coineide
with vertices of the immediately previously numbered element must be mumbered last in this new clement,

and in the same order. The steps in this nunbering éan always be done since each new clement must possess

a least one vertex distinct from those of the previously numbered element,

The purpose of this construct ion is that auy sct of d + 1 cousccutive clementwise nunbers must refer to
vertices at exactly d + 1 distinct nodes. An example of this type of clementwise numbering is illustrated for
the two-dimensional case in Figure (7.1) : compare this with the clementwise ordering illustrated in Figure
(G.I) which is not, of the described type since the vertices 3 and 5 (of the consccutive triplet (3,4,5)) are at
the same node.
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Thus

(A = AD);; = NT(I - 26;;)C; N; (7.15)

where 6;; is the Kronecker § . We write this as
A-AD= NTC\N (7.16)
where Cy is the matrix blocked in the same manner as € (which is described above) and having (i, 7)** block
(Ca)ij= - A65)Cij . (7.17)

Haviug derived the decomposition (7.16) wc now prove the stated result by contradiction, Wc firstly
establish the upper bound of 1 + '2—' on the cigenvalues of DA,

Assume | hat there mists an cigenvalue p of D 14 which is such that

p>14+ g ) (7.18)
Then there exists X # 0 such that
xT(A--puD)x=0 (7.19)
Using (7. 16) | his is
<7 NT O, fix =0 (7.20)
or
37C,2=0 (7.21)
whcre
z = Nx (7.22)

i s nou-zero because N has full column rank. We now prove that 7u is st rictly negative definite for all
( . adiets
p > L+ § thus contradicting (7.21).
From (7.17) €}, Lias the same structure as C . and because of the definition (7.12) we have that the
matrix (:',L given b y

Cu=QTC.Q (7.23)
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where N is block diagonal with rectangular blocks each consisting of (d + 1) columns of scalars and the same

number of rows as there are elements around a node. Note that

N=qM

has the same block diagonal structnrc as N and is alse of full column rank. Now from (6.14)

A= MTCM
= MTRCRM
=(RM)TQTQCQTQ( M)
= MTQTQCQTQM
= NTQCQTN

TCN

]
P4

where
C =QCQT

is an orthogonal transforiation Of the n(d -+ 1) x n(d - 1) matrix C given by (7.6).

(7.9)

(7.10)

(7.11)

(7.12)

Let the i'™ diagonal (rectangular) block of N be N; , and block the matrix € in a similar manner | i.c.

such that the ¢

in 1\7, . Then if Ay is the (k, 1) (d + 1) x (d + 1) block of the MFE matrix A, wc have

19

diagonal block (7;; is q x q if there are ¢ elements around node 1, that is if there are q rows

(7.13)

(7.14)



Figure (7.1)

Although this clementwise ordering is used in the proof, since the cigenvalues are independent of the
clementwise ordering used, the result is true for any clementwise ordering.

With the above type of clementwise ordering, all off-diagonal terins of the diagonal blocks of C", arc
1, since an entry of (1 — ) only occurs if (d + 1) consecntive clementwise munbers represent vertices at
less than ({4 F 1) distinet nodes - it is precisely to exelude such an ocenrence that the ordering above was

constructed.

To establish the upper bound of 1 % it remains only to show that the (d -t 1) x (d 4 1) block

2(1 - p) 1 . 1
= L " . (7.25)
(Cp)is : 21 ) 2(1-p)

is negative definite for all o> 1 + % This follows simply by applyiug the Gershgorin Cirele Theorem.

To establish the lower bound we similarly assume that p < % exists such that (A — D) is singular.

This again implics that z £ 0 exists such that (7.21) is true, and we contradict this by showing that ('j“

is strictly positive definite for all g < % As above this reduces to showing that (C,)i given by (7.25) is

strictly positive definite for all g < ;— To show this note that for any

’ ‘lz(fu,u-,ll.tu)T#O ' (7.20)
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we have

. d+1 d+1 2
Q7 (Cua= -2 a?) + (D)
i=1 =1
>0 for p< % ) (7.27)

thus giving the rcquircd result.

When boundary constraints are applied, the following considerations allow extension of the proof. Some
of the blocks of C (and thus of C in (7.6)) may be of dimension less than (d + 1), but the structure given
in cquation (6.8) holds whntcver the size of block. The hounds on u for definiteness of (C)i in (7.25) are
therefore not violated. We need also consider a particular clementwise numbering of tho desired type (as
described above) for the case when there are clements with constrained vertices (boundary nodes). Such
vertices are not to be numbered in this proceedure. The required type of numbering can be constructed in
the same way as that described above when there is no ‘neighbouring’ clement.

We therefore have proved that:

The cigenvalue spectrum of D ‘A s contained in the closed interval

[gyl " ;] (7.28

independently of the nnmber of nodes, the mesh configuration and 1 he solution,

In nunerical computations in the two-dinensional case we have found these bounds to be sharp.

The results of this section guarcutee rapid convergence of techniques such as the Generalised Conjugate
Method of Concus,Golub and O’Leary [3].

8.Systems of Equations

For a system Of M evolutionary equations

ul = Lty ,uM)=0  t=1,...,M (8.1)

we show that if the approximations U to the components € = 1, . . ., M cach have a separate computational
grid, then the structure of the MFE cquations i s the same as in the scalar casand the results given in
this paper for the scalar case carry over to systems, This follows since the left hand side term of (2.10)
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arises only from the timec-derivative in the differential equation, and the time derivatives appear lineary and
independently in the system of equations (8.1) also.

With this approach wc scek a solution of (8.1) of the form

Nt B, "
Ullr,t) = Y al(t)al(r,s’(t)) .¢=1,...,M (8.2)
i=1
where af is the nodal amplitude at the node with position vector gf for each component £ =1,.. ., M. Re-

spectivcly Ny and By arc tho numbers of internal and boundary nodes for the component U, Differcntiating

wcC obtain
N, d
Ul = _Z[d}(t)af(z,a(t)) t Y #n (0B (k)8! (2) 6= 1,...,.M (8.3)
J»g;-ll m=:4

where we have used (2.5) ,{ 2.6), nauncly

mE T = (84)
J dsfm Ozyn
Minimisation of
1_\_{‘
Sl - LWt UMy, (8.5)
-1

with respect to (,15 R é;m ym=L....d,7=1,...Ne, € =1,..., M then yiclds the sct of MFE cquations

N, Ny d
Do astodoal) + 30 Y B el) = (LW UM, ) (8.6)
J 1 ' 1 m1

fori=1,...,Ne, ¢=1,..., M and

N, N, d
Z ( ]7ﬂm> 2: Z ‘;';m (ﬂ_pm’ﬂm) (L’((]l’ MR} (/A[)'ﬂt‘ip (87)
Jj=1 gt -1

fori=1,...,Ne,p=1,...;,dand €= 1,..., M.
If we now write
y' = (af, 85 1o, oh,)T (8.8)
then the equat ions (8.6),(8.7) can be written as M ordinary differential equation systems linked only by their

right hand side (non-derivative) terms, namely

Ay )t =o' ™) (8.9)
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for £ = 1,...,M. The structure of the N¢(d + 1) x Ng(d + 1) matrix A of (8.0) is precisely the same as for
the scalar case with clements calculated using the nodal amplitudes and positions of the ek component only.

The Ne(d + 1)-vector g¢ has elements given by

gt =(LY(U*,...,UM), &f) (8.10)

95 pm = (LU ..., UM), B, (8.11)

where ¢; = (d + 1)1 — d.

The integrations i n (8.10),(8.1ic itinvolve evaluation of components other than £ over elements
of the £t* component grid can be carried out without too much difficulty using quadrature. This involves
obtaining a number of distinct point values of the various components which can be done without the need
for interpolation becauseof the continuous natare of the finite element solution.

An importaat feature of this apprmi('h is that the results presented in this paper for the scalar case also

apply to systemns.
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