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Abstract

We present an adaptive method  based on the idea of multiple,  component grids for the solution  of
hyperbolic partial differential  equations using  finite difference techniques. Based upon  Richardson-
type estimates of the truncation  error,  refined  grids are created  or existing ones  removed  to attain a
given. accuracy for a minimum  amount of work. Our approach  is recursive in that fine grids can
themselves  contain even finer grids. The grids with finer mesh  width in space also have a smaller
mesh  width in time, making  this a mesh  refinement  algorithm in time and  space.  We present the
algorithm,  data structures  and grid generation procedure, and conclude with numerical  examples in

one and two space  dimensions.
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1. INTRODUCTION

In this paper we describe an adaptive finite difference method for

systems of hyperbolic partial differential  equations. The solutions of

these equations are often smooth and easily approximated over large

portions of their domains but contain boundary layers or locally

isolated internal regions with steep gradients, shocks, or

discontinuities where the solution is difficult to approximate. .We

adaptively place finer grids in these regions over a coarse grid

covering the domain. The solution on each fine subgrid can then be

approximated by standard finite difference techniques, as done on the

coarse grid. If we are solving a time dependent problem, the difficult

regions will change in time, and thus our grids must adapt in time in

response

assmp tions about the number or type of these

to the solution.

about their direction of motion.

Our algorithm is vp_ry general, and makes no

irregular regions, nor

The grid refinements we introduce in two space dimensions are

rectangles of arbitrary orientation. Our algorithm is recursive, in

that subgrids with finer and finer mesh width can themselves be nested

in other subgrids. We use oriented rectangles for two reasons: (1) it

allows us to approximately align our coordinates with singular surfaces

such as shOcks, and (2) it allows us to reduce the size of the refined

region alld the number of mesh points introduced. Furthermore, this

allows us a very simple user interface, and requires very little

overhead to maintain. Our strategy for grid refinement is to maintain

a constant mesh ratio of time step to space step on all grids. We

refine in time as well as space, so large time steps are taken on

coarse grids and sinall time steps on fine grids. Values on the
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b ounda ri es of the finer grids are defined using interpolation

procedures applied to the coarser grid in which the refinement is

embedded. We believe that our adaptive methods are the first to use

such a space-time grid

in the efficiency of the

structure and find that this is a mjor factor

method.

We have only inplemented these methods for problems in one and two

dimensions ove r rectangular domains. Yowe ove r , they can Se

extended to general regions using techniques like those used by Starius

[1980] and B. Kreiss [1982] in a straightforward way. These approaches

break up general

rectangles. Our

domains into subdomains

msh refinement approach

which are mw=d onto

allows to easily useus

different methods in different regions -- e.g., higher order

approximations where the soiution is smooth, and special lower order

methods specifically designed for shocks were they occur. our

algori tI-33, which decomposes the computation into regular blocks, can

also be easily used for parallel or concurrent processing.

Adaptive methods have long been used as standard practice in ma ny

of the classical problems of numerical analysis such as quadrature and

ordinary differential equations . Our methods are close in spirit to

those discussed by Pereyra and Sewell [ 19751 for boundary value

problems. The original motivation-for our adaptive method can be found

in Oliger [ 19791.

Other adaptive methods have now been proposed for both time

dependent and boundary value problems for partial differential

equations. Adaptive multigrid methods have been proposed by 3randt

[1977] for elliptic problems. Adaptive finite element methods have

been developed by Sabuska and Rheinboldt [1978] and Rank [1981] for



these same problems. Ext ens ive theory has been developed for these

adaptive me thods . Recently adaptive finite element methods have

started appearing for parabolic equations as well (Davis and Flaherty,

119821 1, Gannon [ 19831, Sherman and Seager [1981]). Miller et al.

[ 19811 have derived moving finite element methods which they have

applied to both hyperbolic and parabolic equations. Adaptive grid

methods for hyperbolic equations in one space dimension have also been

cosidered by Hyman [1981] and Harten and Hyman [1982]. Bolstad 119821

has developed a one dimensional adaptive mesh refinement algorithm

using methods very similar to ours. - Dwyer et al. [ 1980) and Winkler

[1976] have also done adaptive finite difference calculations, but

their grid refinement is done in only one dimension. Our algorithms

and data structures are for problems in two space dimensions, and are

readily extended to three dimensions since there are no new topological

difficulties.

In section 2 of the paper we describe our grid structure. Section

3 describes the integration algorithm for this grid structure. This

includes the interactions between the grids as well as the technique

for estimating the local truncation error, upon which our adaptive

strategy rests. In section 4 we describe our method of subgrid

generation, ard in section, 5 the data structures used in our method.

timerical  results obtained using our programs in one and two space

dimensions are presented in section 6. Our computational results

obtained with the adaptive programs are compared with computations on

uniform grids with mesh intervals which are the same as the finest used

in the adaptive computation. Ye have been able to achieve comparable

accuracy with cmsiderably less cost using the adaptive method.



2. GRID DESCRIPTION

In this section we describe the type of grids we use in solving a

problem with our adaptive mesh refinement strategy. We also develop

the notation and terminology needed to discuss these grids.

At the start of a computation only the coarsest, or base grid is

specified by the user, This base grid, denoted'Go , will remain fixed

for the duration of the computation. We use the term grid to refer to

the convex hull of the point set of the grid, rather than the point set

itself. Go itself may be composed of several possibly overlapping

component grids. Thus, we say that grids overlap if their convex hulls

'have a nonempty intersection. We call each component grid Go,j 9 and

loosely say that Go is the union of its components Go,j . Each

component grid is required to be locally uniform in some coordinate

system. They need not form a simply connected domain. In addition,

these grid compor?ents do not necessarily have the same mesh width. For

example, we might use a grid over a region with a boundary layer that

has a mch finer discretization than that of the grid covering the

interior of the domain. Furthermore, within each grid the mesh spacing

in the coordinate directions need not be equal. For simplicity of

exposition, however, we ignore these points and assume Go has mesh

spacing h, = hy = ho on all components Go j .9
During a computation, refined subgrids will be created adaptively

in response to some feature in the transient solution, such as the

estimated error in the solution or the appearance of shock fronts. Our

goal is to generate the subgrids to best fit the area of the domain

where they are needed. The subgrids we create are rectangles of

arbitrary orientation. By keeping the subgrids locally uniform,



integration on these subgrids can be very efficient. By allowing the

arbitrary orientation, it is possible to have a coordinate system which

is locally approximately normal and tangent to some feature in the

solution, for example a shock front. For some numerical methods, for

example in fluid dynamics  problems, it is important to have the flow

basically along a coordinate direction. Our rotated grids easily allow

for this. In addition, storage requirements can be significantly

smaller by allowing rotated rectangles.

It is important to realize that these subgrids are not patched

into the coarse grid. Rather, a subgrid should be thought of as

overlaying a coarser grid. Each grid is defined independently of the

other grids, with its own solution vector, storage, etc. In this way,

each subgbrid can be integrated (almost) independently of the other

grids. It also easily allows for the possibility cf using moving

subgrids, even if the coarsest grid is stationary. By keeping the

grids independent, the a lgori th.m can be viewed as a method of domain

decomposition, ard is well suited for multiprocessor architectures

currently under development. Other authors (Simpson, [1978]) have

created refined meshes which are connected into the underlying coarse

grid to mke one global grid. In their approach, fine grid points are

merged into the set of coarser grid points. In several dimensions this

is difficult to do. It destroys-the local uniformity of each grid,

substantially slowing down and complicating the integrator, as well as

preventing its vectorization. In addition, it requires storage

overhead and processing which is typically proportional to the number

of refined grid points, instead of the number of refined grids.

It is possible that the fine subgrids will themselves contain even
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finer subgrids within their boundaries, i.e., subgrids can

recursively gemrated. We say that a point in one grid is contained

another grid if it lies in the convex hull of that grid. A grid

contained in another grid if all points in that grid are contained

be

in

is

in

the other. Similarly, a point of one grid is an interior (boundary)

point of another grid if it lies in the interior (on the boundary) of

the convex hull of the other grid. We define the level of a grid to be

the nmber of coarser grids the fine grid is contained in. The coarse

grid Go is at level 0 in the grid hierarchy. The subgrids of Go are

part of Gl and they are said to be level 1 refinements. Refined grids.
within the G1 grids are at level 2, denoted G2 , and so on. In this

way, a nested sequence of grids with finer and finer discretizations

may be created over some portion of the spatial domain. Each such grid

is one grid component, dented G; j , of Ga ) where GQ consists of9
those grids at level 2 in tile hierarchv havicig mesh width hg . A point,

in the problem domain may therefore be interior to several grids, but

the

the

approximate solution at that point is defined by interpolation from

finest grid to which that point is interior.

In practice, we assume a set of possible mesh discretizations

!h&‘hy”‘h,x] has been specified in advance where each hQ is an

integra 1 rmltipie of hZ+l . A good choice for this refinement ratio

will depend on how much of the domain needs what amount of refinement.

If only one part of the domain needs to be in a fine grid with mesh

width h.J = ho/r , it is more efficient to create one level of

refinement with hl = hO/r than two levels each with a ratio of 4;. In

general, however, not all areas needing refinement will need the same

amount of refinement, arguing for smaller values of the refinement



ratio r. Since there is some overhead associated with refined grids, we

prefer a refinenrent ratio of 4 over the ratio of 2 typically used with

rmltigrid  methods. In special cases where it is expected that all

areas needing ref inertllent  will need a lot of it, higher values of r can

be used efficiently.

We emphasize two points about the grid hierarchy. If at some time

during the computation there is a grid with mesh width hQ , we require

that it be contained in a grid at level R-l, Which in turn is required

to be contained in a level L-2 grid, and so on to the coarsest grid.

*All intermediate grids betwe.en the finest and coarsest are maintained.

Furthermore, each point in a fine grid at level 2 rmst be in the

interior, not just on the boundary , of a grid at the next coarser

level, unless it is on the physical boundary of the domain.

Second, not all. points in a fine grid are interior to the same

coarse grid. We call this type of nesting level nesting. Figure 2.1

Figure 2.1 Sample Grid Structure
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illustrates how the grid at level 2 is nested in the union of grids

G1,l and G1 2 at level 1. Figure 2.1 also illustrates the complication9
in two or more dimensions of overlapping refined grids, which we

discuss later. In one dimension, where a grid is just an interval,

level nesting is identical to straightforward grid nesting, and

overlapping of fine grids does not occur. Grids at the same level of

refinement with the same mesh width are either disjoint or else they

are merged into one grid spanning a larger interval.

In sum, using the ideas of independent component grids and

recursive refinement, a hierarchy of- nested grids is formed. The

complete grid structure is denoted

G=UGa '
R

where the grid structure at level & is the union of rectangular

components

Ga = U G~,j .
j



3. INTEGRATION ALGGRITFTM

In this section we describe the integration algorithm that we use

to solve a hyperbolic pde using mesh refinement. There are three main

components to this algorithm. They are (i) the actual time integration

using finite differences that is done on each grid, (ii) the error

estimation and s ubseq uent grid generation, and (iii) the special

grid-to-grid operations that must be done every time step during the

integration that arise because of mesh refinement itself. We describe

these three components in turn.

Since each grid is defined as an independent computational entity,

with its own solution vector, each grid can be integrated in time

independently of the other grids, except for the determination of its

bounder] values. We must then consider the question of which grids CO

integrate when, and determine the order of their integration. This is

made easy however by t’he following requirement.

Recall from section 2 that in our grid formulation, the mesh

widths $ of grids at level R are an integral factor r of the mesh

width hQml of the next coarser level. We use the same factor to set

the time step on the level R grids, s = kawl/r. In this way we keep

the mesh ratio X of time step to space step constant on all grids.

This makes mr algorithm one of mesh refinement in time and space, One

of the main reasons our method is efficient is because the overly

restrictive small time step of the finest grid is not applied over the

entire danain.

This constant mesh ratio X makes it easy to determine the order of

grid integration. The steps are interleaved so that before advancing a

grid, all its subgrids are integrated co the same time. At every



coarse grid step, all grids should be at the same time. One coarse

grid cycle is then the basic unit of the algorithm. Fig. 3.1

illustrates this in one space dimension and time.

Since our refined grids are rotated rectangles, the difference

equations roust be transformed into the rotated coordinate system. This

can be done in an automatic way, so that the integrator, which is

supplied by the user, can be separated from the adaptive mesh routines.

For standard finite difference equations, this can even be done in a

conservative way (Viviand, [1978]), which is important for problems

with discontinuous solutions. To solve

r
t

-G2J-

mGll -j .

Figure 3.1 1D SPACE TIME MESH
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Ut = f(u), + g(u),

under the more general coordinate transformation

S = dX,Y>

I we solve

Ut = i(u), + &A),

where

;= (r,f + rvg)
J - -

;;=
(s,f + syg)

J

and J is the determinant

- J= det [ rx ry ] .
sX sY

We point out that it is sometimes not necessary to transform the

difference equations for each grid. If the physical problem is

invariant to translation and rotation, we can use the identical

difference equations on each grid. It can also happen that the

difference scheme itself is invariant under rotation. Jameson [1974]
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has proposed a rotated difference scheme for transonic flow

I calculations. The rotation is built into the scheme to be able to

properly difference the potent ial equations in the streamline and

normal direct ions.

Finally, we note that it is sometimes beneficial to use different

integrators in different regions of the solution. For example, in a

shock problem one might use a first order integrator on a refined grid

, around a shock, and a higher order method elsewhere. Another approach

could be to use a more expensive method such as the Glimm scheme only

on refined grids, and a less expensive integrator on the coarse grid.

One can also solve different equations on different grids. For

example, it is possible to only add artificial viscosity on a fine grid

(a round a shock zone), or solve boundary layer equations only on a

separate grid in the boundary layer. Several integration nodules can

be easily supplied by the user without any further changes to the mesh

refinement program.

Error estimation and the subsequent regridding operation is the

second mjor task of the mesh refinement algorithm. This is where most

of the canputational overhead of the method lies. Every several t ime

steps, we estimate the error at all grid potnts and possibly create new

fine grids or remove those no longer needed. If a new fine grid is

created, its initial values are interpolated using the finest grids

from the already existing grid structure. No thing need be done t0

remove a grid that iS no longer needed except reclaim its storage

space. .

We first discuss how of ten the error estimation should be done,

and then the procedure we use to do it. In hyperbolic problems, one
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can estimate the speed of propagation and calculate how fast some

phenomenon needing to be fn a fine grid will move. If we add a buffer

zone around the fine grid we can lengthen the time interval over which

grids are appropriate, and thus lengthen the interval between the

regridding operations. The larger this buffer zone the less often we

have to regrid, but the more work it is to integrate the extra points

in the bffer zone.

Typical calculations give an optimal regridding frequency of

approximately every 3-4 steps. If there are many levels of refinement,

we apply this result at each level. The finest ‘grids must be moved

more often than the coarsest grids. We ‘acal the same regridding

procedure with a base level which is finer than the coarsest level.

The base grids stay fixed, and finer subgrids will be created within

the boundaries of the grids at the base level according to the proper

nesting restrictions of section 2.1. The potential problem here is

that a refined grid might move off its base or not stay sufficiently

far away from the base grid boundaries. If

probably time to move the base grids as well.

where

this happens, it is

Finally, we use estimates of the local truncation error to decide

to refine the grid. There are two reasons for this. First, we

were motivated by the convergence results of (Gustafsson, [1975]) for

initial bo unda ry value problems for hyperbolic sys terns. Under some

assunp t ions that are mostly about the Cauchy stability of the

difference approximations and stability in the sense of Kreiss for the

initial boundary value problem, Gustafsson shows that if

(0 the local truncation error Z khm4,(t)
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(ii) the initial error of the approximation Z hB% (gAt), o =

091 s**‘* S

(iii) the error for the boundary approximation Z hB fV (t )

where d, e, f are bounded functions, and if 6 > m, then the convergence

rate is order IIL 74sh refinement can control these errors by decreasing

k and h in those regions where Ihmd,,(t)  1 or lhSfV(t)  1 are too large.

Gustafsson’s results are for nonadaptive , uniform grid

calculatiors. More recently , Oliger [1982] has a convergence result

for adaptive mesh refinement under some stronger hypotheses than those

of Gus taf sson. Experimentally, the eqected rate of convergence is

observed along with the expected decrease in constants when the local

truncation error tolerance (that is, the refinement criteria) is

reduced.

To estfrrmte the error, we use a method based on Richardson

extrapolation. For simplicity, let Q be a two-level explicit

difference operator. If the solution is smooth enough, the local

truncation error is

u(x, t+k) - qu(x,t) = k(kql a(x,t) + hq2 b(x,t)) + k 0( k‘l+l + hq2+l,
J

(3.1)

-1 +kO(kq+l + hq2+l) ,

where we denote tk leading term by T. If u is’smooth enough, then if

we take time two steps with the method 9, to leading order the error is

2-T  9

u( x, t+2k) - Q2 u(x,t) = 2~ + k 0( kq1+l + kq2-+’
> .
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Let Q2h be the same difference mz thod as Q but based on mesh widths of

2h and 2k. Also, assume the order of accuracy in time and space are

equal. q1 = q2 . Then

u(x, t+2k) - Q2.$X, t) = (2k)( (2k)q a(x, t) + (2h)q b(x, t)) + O(hqf2)

= 2q+l r + O(hq+2) .

Since u(x+2k) - Q2u(x,t) Z 2~ , by forming the difference

Q 2ub, t)-Q2h’-dX, t>

2q+l - 2
= T + O(hq+2) , (3.2) _*

we get an estilcate  of the local truncation error at time t. In words,

We. take one giant step based on mesh widths of 2h and 2k using the

solution at time t, an4 compare it with the solution obtained by taking

two regular integration steps to obtain the pointwise error estimate.

This is illustrated schematically in Figure 3.2.

This procedure has several points to recommend it. First, it is

not necessary to know the exact form of the truncation error to apply

it. ‘Ihe functions a(x,t) and b(x,t) in (3.1), which involve higher

derivatives of the solution, need not be known explicitly. Especially

for system of equations in several variables, it can be quite

difficult to compute the exact form of the error. Not only is our

estimator independent of the pde, the error estimation procedure is

independent of the difference method. This is important if mesh

refinement is going to be generally applicable to a wide variety of

problems without an inordinate amount of programming. The exact same
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Figure 3.2. Richardson Error Estimation Procedure

users-supplied method of integration can be nsed for the error

estimation. The restriction of thf.3 procedure, that the acctiracy in

time and space be the same, is not a severe one. Piany popular finite

difference methods fall into this category, for example, second order

methods like Lax-Wendroff or XacCormack's  method, and Leap Frog, and

first order methods such as upstream differencing. For methods where

the accuracy in space and time is not the same, a more expensive

variant of this procedure is possible. For example, one could estimate

the spatial and temporal error separately, by first keeping k constant

and taking a step based on 2h differences, then keep h constant and

take a step with time step 2k. Other variations are possible too.

Finally, we mention that for nonsmooth solutions we no longer have

an accurate error estimate. However, the Richardson estimates still

provide a good criterion for refinement since near a singularity the

estimate will probably be large. For piecewise constant initial
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conditions, th Richardson algorithm gives an estimate proportional to

the jump in the solution.

The last major component of the mesh refinement algorithm concerns

the interaction between the component grids. There are three tasks

which fit under t’his heading. The first of these deals with

boundaries. Refined grids have boundaries which are in the interior of

the problem domain, ati so they will need boundary values not supplied

with the pde. These values can be calculated in three ways. First, if

a boundary point is in the interior of a different fine grid, we can

get the boundary value at the next time step from the interior

integration of the intersecting grid. If there are no intersecting

fine grids, the bounda ry values are caJ.culated using values from

underlying coarse grids. Ve use either the Coarse Mesh Approximation

Method (Ciment, [l971]) or interpolatioc  from a coarser grid to gust the

boundary values. In Berger [ 19821 we prove that if we use Lax Wendroff

as the interior difference scheme -dth either of these interface

equations, - mesh refinement in time and space by any integer is stable

in the seme of Kreiss. In addition, stable boundary conditions have

been derived which maintain the conservation form of the difference

scheme at the interface between the fine and coarse grid. These will

also be reported elsewhere.

The second item of intergrid communication is updating. If a fine
-

grid is nested in a coarse grid, then when they are integrated to the

same point in time the coarse grid values are updated by injecting the

fine grid solution values onto the coarse grid points. If grid points

do not match up at regular intervals, interpolation is used to find the

value from the fine grid which replaces the coarse grid value. For
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explicit methods, it is only necessary to update as many coarse gridI

points at the perimeter of the fine grid as the number of points in the

stencil for the coarse grid integrator. For implicit methods, it is

necessary to update the entire coarse grid, and in fact, some sort of

averaging might be desirable before injection onto the coarse grid.

This is similar to the residual weighting used in multigrid methods

(Brandt, [1977]).

Updating is necessary for two reasons. If the coarse grid is not

I updated, the solution can become so dispersed and dissipated that after

a while it will look as if refinement is no longer necessary. Second,

this prevents a train of bad values on the coarse grid f ram spreading

into the buffer zone and contaminating the values that will be used for

the boundary approvima tion for the fine grid.

The last grid communication task is that of averaging. This only

arises when two subgrids at the same level of refinement overlap. In

general, the region of overlap is at most a few coarse mesh widths

wide. Still, the question arises when updating the underlying coarse

grid, which fine grid should inject the solution values. The solution

on either fine grid is as accurate as the other. Since they are only

overlapping by O(h) width, and they are coupled through the boundary

values, the solutions do not diverge from each other. However, if one

is not careful about injecting onto the coarse grid, thee can be a jump

in the solution representation on the coarse grid. So far, this has

only been important for graphical output.

The overall mesh refinement algorithm is presented in Figure 3.3

in outline form. It can be written quite simply as a recursive
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procedure. Of course, in writing the mesh refinement prcgram in

Fortran, we have converted it to an iterative procedure.

Recursive Procedure Integrate (level)

Repeat (h,/h,)m times

Regridding time? -- error estimation for grids at level level and finer- -

step * tlevel on all grids at level (level)- -

-If (level + 1 exists)

Then Begin

Integrate (level + 1)

Update (level, level + 1)- -

End

end

= 0 (*coarsest grid level*)level

Integrate (level).

Figure 3.3. Coarse Grid Integration Cycle
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4. CLUSTERXSG  &%D GRID GEN'EP~TION

Much of the success of this adaptive mesh refinement algorithm

lies in the generation of efficient subgrids. The idea is to estimate

the error at all grid points in level 11 grids, and flag those points

where the error (or some other measure for determining the need for

refinement) exceeds a tolerance s. The grid generation procedure

creates a new level of grids with mesh width hQil so that every fiagged

point is in the interior of a fine grid. The cost of deciding where

fine grids are needed, and generating them, is small since it is

proportional to the number of coarse grid points. The most expensive

cost is the cost per step of integrating the fine grids, which is

proportional to their area. Thus we seek to minitize the total area of

these refined grids. In addition, we want to create grids whose

coordinate lines are approximately aligned with the solution.

More precisely, when it is time to regrid, a new grid level may be

created, an existing ievcl recreated, or no longer necessary existing

levels removed. Even if a fine grid should simply be translated in

some direction we use the more general approach of creating a new grid,

and initializing it with solution values taken from the old refinement

before it is deleted.

The outline of the regridding algorithm is as follows. Suppose

the current grid structure G has R levels. Based on the error

estimates of level 11, we might create new grids at level R+l. Next,

based on estimates from the (larger) level R-l grids, we recreate a new

level $ , making sure it includes the new levelL+l. Continuing, the

error estimates on level g-2 are used to generate level%-1, making

sure level& is properly nested, and so on to the coarsest level. It
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is important to work from the finest to the coarsest levels, even

though this entails the extra work of ensuring proper level nesting.

This way, grids are generated using the most accurate error estimates

taken from the finest grid at any given point.

Thus, for each existing level of grids, we apply the same

procedure to generate the next finer level. This regridding procedure

consists of four steps:

(1) flag points needing refinement

(2) cluster the flagged points _

(3) generate a grid for each cluster

(4) evaluate , possibly repeat.

Steps (2) and (3) are the difficult steps.

The first step in the algorithm is to identify those grid points

at level R which need to be in a finer grid at level R+l. In section 3

. X = FLA&GEDPOINT

OLD GRID STRCCI-URE

I I 1 I I I 1
G
.* .

x X x

NEW GRID STRUCTiJRE

Figure 4.1. 1'0 Rzgridding Algorithm
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we discussed the use of local truncation error estimates in deciding

where these refined meshes are needed. Using the procedure described

there, we estimate the error at all grid points at level R, flagging

those points ,X where e(h) > E. At this step we also flag grid points

in level R grids which are interior to grids at level R+2, even if e(x_)

< c based on the level R grid. Since each flagged point at level R

will be in a level R+l grid, proper level-nesting is assured.

The second step of the algorithm is the separation of flagged

points into distinct clusters. In step three, each cluster will be fit

with a fine grid containing all the flagged points of the cluster. We

describe the procedure for the one dimensional case here separately.

Since in one dimension a grid is just an interval, clustering is

trivial and can be done concurrently with grid generation. The

leftmost and rightmost  flagged points of the coarser grid form the left

and right boundary of the new subgrid. The cluster in this case would

consist of all flagged points between and including the leftmost and

rightmost flagged points. Possibly, if a long enough gap of unflagged

points is found, two or more separate subgrids  may be formed instead.

The exact definition of long enough depends on the size of the buffer

zone. After a grid is created, it will be enlarged to include a safety

zone around all its flagged points. Recall from section 3 that this

buffer zone determines how often grids must be examined versus how

large they are. The size of this buffer zone is what determines how

large the intergrid spacing should be. Flagged points which are closer

together than twice the size of the buffer zone should be in the same

grid refinement.

Figure 4.1 illustrates the regridding procedure in one dimension.
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On the left is the grid structure before regridding, and on the right

is the new grid structure. The x’s are the grid points which have been

flagged with high error estimates. The grid structure is illustrated

schematically by drawing each grid separately, instead of superi.mposing

them. We have used a buffer width of one coarse grid point in this

illustration.

2D Grid GeneratI_on

The clustering algorithm serves two purposes: one is to separate

spatially distinct phenomena so that different features of the solution

will be in separate grids. The second purpose is to subdivide points

when one rather large region should be fit wi<h several grids. This

situation is illustrated in Figure 4.2. ‘Lf the entire front

(represented by the darkened line) were fit :gith one large grid, it

Figure 4.2. Multiple Grids - One Front
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wouldhave an unacceptably large area of refinement. If we had some

information about the directional layout of the points, a smart

subdivision of the points could be made.

It is very tricky to find a general clustering algorithm that is

almost foolproof and is not very expensive. Our approach is to start

with a simple algorithm which works in the easy cases, and try to

detect when it does a bad job of clustering. In these cases we use a

more expensive algorithm, and try to tailor it to the special cases

. when the first approach fails. We are lucky to be able to draw on the

large literature in pattern recognition and Artificial Intelligence

(see, for example, Duda and Hart, [1973]; Hartigan, [1973]). There are

algoriths for feature extraction or edge detection as well as more

general clustering algorithms With goals similar to ours. We report

here on the simplest clustering algorithm in two dimensions, and refer

the reader to Berger [19&Z] for a detailed discussion of alternatives.

HOwever, this is still an open problem where more research is needed.

'Ihe first approach we use to cluster points is the nearest

neighbor algorithm. The nearest neighbor algorithm forms clusters

which are distinguished by having interpoint distances for points in

the same cluster smaller than the intercluster distances. We start

with one point forming a new cluster. Successive points are included

in this cluster if the distance from the point to the cluster is less

than some specified tolerance, whch we usually take to be two mesh

widths.

The nearest neighbor algorithm is very successful in accomplishing

the first goal of clusteing, but fails in the second. In these cases

we use special data structures, such as minimal spanning trees and
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relative neighbor graphs, to organize and process the points into

separate clusters. These data structures possess certain properties

that should also hold for points in the same cluster. For example, two

points in the relative neighbor graph are connected if no other point

is closer to both of them. Once the points are connected to each other

in an organized way, we use an iterative method of grid generation.

Starting with a core group of points, the algorithm proceeds by merging

the points connected to the core cluster through the data structure and

immediately generating the fine grid to the new cluster, until no more

merges can be successfully done. A merge is considered successful if

it has an acceptable efficiency evaluation. This is step 4 in the grid

generation algorithm.

Our practical criterion for easuring the efficiency of a new grid

uses the fraction of the area of the rectangle GJhich is unnecessarily

refined. This can be estimated quickly by taking the ratio of flagged

points to the total number of cOarse grid points in the new fine grid.

If this ratio falls below a cutoff tolerance, typical-ly between l/2 and

3/4, the merge is rejected, and the previous cluster remains. The

pictures in Figure 4.3 illustrate the different subgrids that are

formed using the efficiency parameter indicated.

A last important observation is that once we have good clusters

they do change very fast. If at some initial time an expensive

clustering algorithm is used, the same clusters can continue to be used

for many time steps. Flagged pints can be grouped in the same clusters

they were grouped in at the previous step, and only the orientation of

a new refined grid need be calculated. If grid points are flagged on a
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jb) eff. = .50

(a3 eff. = 45

(c) eff. = .75

Figure 4.3. Efficiency of Subgrids
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section of a coarse grid not previously refined, the flagged points

should be added to the nearest cluster.

Given a cluster of flagged points, the next step is to generate a
,

rectangular grid so that grid lines are in some sense aligned with the

points. The ret t angle should have as small area as possible to

minimize the work of integrating that grid in time. The algorithm we

use for this first determines the orientation of the rectangle, and

then the length of the sides needed to enclose the points . For

simplicity we present it in two space dimensions, but it generalizes

immediately to higher dimensions. -

Let A be the n-by-2 mattix of the coordinates of the n flagged

points, and Am the matrix of the same dimension with the x and y

coordinates of the mean of the points, (xm,ym>. The matrix MtN =

(A-$>t (A+, where
I .

x1 y1

A=

. .

. .

. .

tXn yn,

Am p

5n Ym

. .

. .

. .

‘rn ym

and

I 2 2ci xi-xm . 'i ~iYi-xmYm 1
MtN = I

’ i “iY ioXmYm xi Y; - Y$ I

contains the second rime nt s of the points about their mean. This

matrix NtM determines an ellipse with the same first and second moments

as the original set of points (Cramer, [1951]), and so provides a good



-25-

approximation of the layout of the points. Since MtX is real and

symmetric, it has two real eigenvectors. These eigenvectors are the

major and minor axes of the ellipse. We use these eigenvectors to

determine the orientation of the rectangular subgrid. This algorithm

is invariant under translations and rotations of the points, and is

extremely simple. It is easy to find the eigenvectors since MtM is a

2-by-2 matrix. Furthermore, if clustering is done concurrently with

grid generation, the first and second moments can be updated instead of

recalculating them for every additional point. A similar technique of

clustering and fitting ellipsoids has been used by (Gennery, [1979])

for stereo vision processing. The goal of his work is obstacle

avoidance for exploring vehicles, for example, the Viking Lander's

exploration of Xars.

Once the grid orientation has been determined, the dimensions of

the rectangle are calculated to include all points in the cluster.

This is the expensive part of the algorithm. We take the dot product

of a point with the orientation vectors for every point in the cluster.

(Some of this work can be avoided if the convex hull of the set of

flagged point is kept. For iterative algorithms, there are also ways

to update the convex hull of a set of points for the addition of new

points.) Once the dimensions of-the rectangle are calculated, a buffer

zone of predetermined size is added around the rectangle perimeter to

complete the new subgrid.

Two additional points will complete the discussion of the

regridding algorithm. As outlined above, this algorithm creates one

new level of refinement for each invocation. For time dependent

boundary conditions, if no assumptions are made on the smoothness of



-29-

the boundary data, an incoming wave might need several new levels of

refinement for it to be well resolved. To handle this case, the error

estimation and grid generation procedure can be re-applied to a newly

created fine grid at the boundary to see if even finer new grids are

needed.

Finally , we mention that the initial grid creation at time t = 0

employs a slightly different strategy than the regridding procedure

used at later times. Only at this time can we take advantage of the

initial conditions specified with the -problem. For example, when a

level 1 refinement is created, it is initialized using the initial

conditions rather than interpolation. The error estimation and

regridding procedure can then be applied again on the level 1 grids to

see if even finer subgrids are needed, and so on, until a pointwise

error estimate e(z) < E holds at all points.
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5. DATA STRUCTURES

The data structures in our adaptive mesh refinement strategy turn

out to be surprisingly simple, although crucial to the feasibility of

the entire approach. A structure is needed which keeps track of the

relationships between the grids, as well as the solution storage for

each grid.

We will first describe the data structure we use in one dimension.

A generalization of this data structure is what we use in two or more

dimensions.

Recall fran section 2 the nesting requirement for one dimensional

mesh refinement: each fine grid must be entirely contained in a coarser

grid at the next level. We use this to define a tree data structure,

*where each node represents a grid, and make a correspondence between a

parent (of a) node, and a coarser, parent grid. Subgrids are

considered thz offspring of their parent gr%d. Siblings are subgrids

within the same coarser grid. If fine grids are at the same level of

refinement wi th different parents, we call them neighbors.

Technically, we use an ordered tree data structure where each node can

have rmltiple descendents. In this representation, we see that a node

will have multiple descendents if the coarse grid corresponding to that

node has several fine grids contained in it. In this one dimensional

case, it is also possible to order the nodes using the coordinate value

of the left-most grid point in the associated grid. Figure 5.1 shows a

grid structure and its related tree structure.

All the grid-to-grid operations, such as fine grids updating

coarse grids and setting internal boundary values for fine grids, have

an information flow which follows path links in the tree. The only
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Figure 5.1. 1D lLta Structure

nonstandard link in the tree is for the neighbor pointer we described

above. This thread is indicated by the dashed line Ln Figure 5.1.

This additional link makes it easy to implement the operation of taking

one integration step on all grids which are at the same level of

refinement.

Because this tree structure can grow or shrink dynamically, some

form of dynamic storage allocation is needed, both for the grid

information in each node, and the solution storage for each grid.

Since Fortran does not provide such a facility, tie storage management

rmst be arplicitly provided by the mzsh refinement program. We keep a

linked list of free nodes which are assigned to newly created grids and
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reclaimed when a grid is removed. Sometimes lwhen the regridding

procedure -r,S called, it is to move grids on only the finest levels.

The coarser level grids stay fixed. In this case, the top half of the

tree will remain as is. A new bottom half will be generated, and the

two halves connected. Although the number of nodes in the tree vary,

we would like each node to contain a fixed amount of information to

represent each grid. Since the number of offspring of each node is

variable, the tree is implemented with each ncde having an offspring

'pointer only for tk first descendent, with one sibling pointer per

node to connect the rest of the subgrid nodes (Knuth, (19681).

A grid tkn is characterized by the following pieces of

information stored i n each node of the tree.

I) Grid location

2) Number of grid points

3) Level in tree

4) Offspring pointer

5) Sibling pointer

6) Parent pointer

7) Pointer to the next grid at the same level

8) Time to which this grid has been integrated

9) Index into main storage array :qhere approximate solution values

are stored.

The same information characterizes two dimensional grids as well.

awever, the two dimensional version of this data structure is more

intricate than the one dimensional version since in two dimensions a

grid can be partially nested in more than one coarser grid. An

additional complication is that grids at the same level of refinement
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can intersect. Finally, in two dimensions there is the possibility of

having several base grids GO j in an initial domain specification. We9
have generalized the ne dimensional data structure to account for these

differences in the following way. We start with an n-tuply rooted

tree, where each of the n root nodes correspond to a canponent grid in

the coarsest mesh. Technically, a tree with more than one root is

called a forest, which is simply a collection of trees. Next, since a

subgrid <=an have many possible parent grids, we replace this single

slot of information in each node with a pointer to a short linkedtist

of parent grids. Lastly, we add to the information for each grid a

pointer to another linked list of intersecting grids at the same level

of refinenent. Schematically this data structure is illustrated in

Figure 5.2.

The final data structure used in our mesh refinement program

manages the large array which is the storage area for the solution

values on all grids. For problems in p space dimensions, we use a

p-dimensional array. For vector rather than scalar problems, we use a

ptl dimensional array where the extra dimension is the number of

variables in the problem. This storage area is managed as a linked

list of used and available blocks of storage. When a grid is created,

contiguous storage space is reserved from the sorted list of free

blocks using a first-fit algorithm (Knuth, [1968]). In this algorithm,

the list of free blocks of storage is scanned until a large enough

block is found. The requested space is allocated, and the unused

portion returned to the list. Reclaimed space, which occurs when a

grid is no longer necessary, is inserted back into the linked list of

free space. For quick memory access, space is never allocated in a
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level 0

level1

level2 _I,

Figure 5.2. 2D ikta Structure

.circular  fashion across the array boundary: all memory allocation rjJst

be contiguous. A compaction, or garbage collection, routine could be

included to provide for case where there is enough total but

noncontiguous space available in this array to satisfy a storage

request. However, as -Knuth [1968] reports, if storage is too

fragmented to service a request, canpaction usually adds only a few

more transactions before space is exhausted. .4 routine which would

allow the user to restart with a larger memory area would be more

useful.
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6. COMPUTATIONAL EXAMPLES

In this section we will present some numerical experiments in one

and two dimensions to illustrate how our adaptive mesh refinement

algorithn works. Our procedure for comparing results is the following.

We solve each problem with mesh refinement with a specified coarse

grid, a mximum number of levels of refinement, and an error tolerance

which is the criterion we use in deciding to refine a grid. We compare

the solution to that obtained on a uniform grid with first the

coarsest, then the finest (if possible) mesh spacing used in the mesh

refinement calculation. We measure the computer time without I/O costs

(when possible) and ths error in the solution. In all these cases, we

compute the 2 norm of the error at only the coarse grid points. In one

dimension, this means we compute

n
SerrorU2 =J i 1

C n i=l
error-(x =ihc)2 '

'and similarly in two dimensions. For the fine grid this means we

compute the error only at every hc/hf grid points. The one dimensional

examples were run on an IBM 370/168 using the Fortran H Extended

compiler, optimization level 3. 'Ihe two dimensional examples were run

using the same compiler on an IBM 370/3081.

Example 1. Shock Tube Problem

In this example, we compute the solution to the shock tube problem

in one space dimension. This Riemann problem is taken from Sod [1978]

where it was used to compare a number of methods for solving gas

dynamics problems. The initial conditions are chosen so that the
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solution contains a shock, contact discontinuity, and a rarefaction

wave. The problem is:

. Ut = fWx

forO< x< 1, and 0 < t < 0.15, where

U=

P
I

I
PU

PU 9 f= m2
-+P

I
P

e $ (e + p) 1
Hkre, p is the density, e is energy per unit volume, u is velocity, and

m is the momentum density pu. The equation of state is p = (y-l)pe,

where we take y = 1.4-a%d s is the internal energy per unit mass E = e

'lhe initial condit-lorts we use are

u(x,O) = 0

p(x,O) =

1

1.0 , if x<O

0.1 , if x>o

i

1.0 , if x<o

P(X,O) =

0.125 , if x>O

The integration method we use is the two-step Lax-Wendroff scheme.

'Ihe coarse grid step size is the same as in Sod [1978]. Reflecting

boundary conditions are used. Hopscotch arti.ficial  viscosity is used

to smooth the solution. The coefficient of the hopscotch artificial

viscosity was the same for all but the uniform coarse grid run. For

the coarse grid this led to too much smearing and so a smaller

coefficient is used.
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mesh refinement calculation are shown

buffer size 4

grids move every 5 steps

error tolerance 0.0005

refinement ratio

x

10

0.1

In Figures 6.1 and 6.2 and Table 6.1 we show the results of our

tests. Figure 6.1 shws the solution, and Figure 6.2 the plots of the

errors. In this experimertt, we have done two uniform grid runs with a

mesh spacing of O.Cl, and 0.001. We compare this to a two level mesh

refinement run with a refinement ratio of 10, and a three level

refinement run, which means the nosh spacing on the finest grid is

0.0001. During the calculation, the amount of the coarse grid which

was refined varied from 20 % to 70 %.

The most interesting results here are that in less than one fourth

the time, mesh refinement is adle to calculate a solution which is as

accurate as the uniform fine grid calculation. As we see in Figure

6.2, most of this error is due to the smearing of the corners of the

rarefaction and contact discontinuity. To improve the calculation of

the contact discontinuity, a better method than Lax-Wendrof f should be

used.

Table 6.1 shows the computation time and the ll*n2 errors for the
C
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Figure 6.1. Solutions for Riemann Problem
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Figure 6.2. Errors for Riernann Problem
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four computations. There are a large number of floating point

rmderflows, each of which is handled very inefficiently as an interrupt

to the processor. This skews the timings and so the correct asymptotic

ratio of fine to coarse timings of 100 is not observed.

An important feature to note here is that while a refinement by h:

(which is a factor of 100) is possible by using mesh refinement (given

our colnput ing resources), a computation with a uniform h: grid would

not be possible (it would take about 347~10~ seconds, or about 9 and a

half hours).

method h Ierrori12 time
C

Csecs) .

coarse 0.01 2.14 E - 2 7.36

fine 0.001 1.15 E - 2 347

MR 2 lev hf = 0.001 1.15 E - 2 79.9

MR 3 lev hf = 0.0001 6.53 E - 3 591

Table 6.1. Results of Computations for 1-D Nonlinear Example.

Example 2. 2D Rotating Cone

The rotating cone problem -has been used by Gottlieb and Orszag

119771 to coqare numerical methods for convection problems. The

problem is:

if (x - $2 + 1.5 y2 > ;

I 1 - 2((x - $2 + 1.5 y2) , if (x - $2 + 1.5 Y2 < ;
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on a recangular  domain -1 < x < 1, -1 < y < 1, and 0 -G t < 3.375. The

solution to this problem is a cone with elliptical base, which rotates

counterclockwise about the origin. tJe integrate the solution until the

cone is approximately halfway through the first revolution.

We use Lax-Wendroff as the integrator. The boundary conditions

are zero inflow and first order extrapolation outflow. The parameters

for the mesh refinement calculation are:

buffer size 2

grids move every

error tolerance

8 steps

0.001

refinement ratio 4

x 0.25

In Figure 6.3 we show snapshot views of the location of the one subgrid

in this problem at various intermediate time steps.

The results of this computation are what we would expect. The

mesh refinement computation achieves about the same error as the

uniform fine grid in about one sixth of the time. In tfJ.s example, we

can also gat a rough esti-mate  of the overhead of the method. A uniform

fine grid run should asymptotically take 64 times the computer time for

the coarse grid run. This is because the grid is refined by 4 in both

coordinate di ret t ions, and there iS a’ factor of 4 for refinement in

time as well. In tMs rotating cone problem, roughly 12 % of the grid

is refined during the computation. Adding ! 2 % of the cost of the fine

grid run to the coarse grid time gives an estimated time of 78 seconds,
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Figure 6.3. Subgrids  for Rotating Cone Problem
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and so 9 seconds of the total mesh refinement computation time are

spent on other things bes ides integrating the grids. This is roughly

12 % of the computing time, most of which is present estimating the

error arxi generating the subgrids. Yowever, the entire run costs only

16 % of the cost of a run on the uniform fine grid with the same

accuracy.

Notice that in the mesh refinement computations, the wake behind

the cone is greatly reduced over the wake in the coarse grid

‘computations. This shows that the moving grid is correctly computing

the solution and keeping the coarse grid complltation under the cone

from contaminating the solution. This also shows why the coarse grid

rmst be updated from the fine grid.

me thod h II error! 2
C

time

Csecs)

coarse l/20 5.27 E - 2 6.86

fine l/80 9.34 E - 3 588.

MR hf = l/80 9.78 E - 3 86.6

Table 6.2. Results for computation of the solution to 2-D linear

example.

Example 3. 2-D Burgers Equation
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coarse

mesh refinemen

Figure 6.4. Solutions for Rotating Cone Problem
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For a nonlinear example we have chosen a problem from Gropp

[19aoJ. This problem contains complicated sbck interactions, and is

the most difficult example for the clustering and grid generation

algori tlms . The problem is:

ut+us+u -05
vhere

if x<; and p <i

if x>$ and y >i
1T’ otkxise

on the unit square O< x< 1, 0 < y C -1. At the discontinuities x - l/2

or y- l/2, the initial data is taken to be the average of the values

on either side.

We use ?IacGomck's method to integrate the problem. We specify

the infla~ boundary conditions to maintain the piecewise constant

solution, arid use first order extrapolation for the outflow boundaries.

Ihe parameters for the mesh refinement calculation are shown below:

--

buffer size 1

grtis move every 4 steps

error tolerance ,001

refinement ratio 10

x 0.5
-.

Ia Figure 6.5 we sbw the solution, and in Figure 6.6 the error.

The plots for this problem might be a little misleading. Because of

the limitations in graphics packages, both the error and the solution
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Figure 6.5. Solutions for Burgers Equation
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Figure 6.6. Errors for Burgers Equations
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plots for all runs are done with the resolution of the coarser grid.

For the runs with a finer grid, this means the solution is plotted only

every 10 fine grid points. In a problem with discontinuities like

this, the size of the overshoot is independent of the mesh width h

(Hedstrom, [ 19761). However, it appears as if the error on the fine

grids (both the uniform and mesh refinement calculations) is smaller.

This is because the overshoot in the solution is confined to the region

close to the discontinuity, and 10 fine grid points away from the

discontinuity the oscillation has decayed.

This problem is a hard test for mesh refinement because such a

large fraction of the region is refined. Howeve r , even in this

example, the mesh refinement calculation is faster than a uniform fine

grid. In Figure 6.7, we show the subgrids the algorithm generates at

the initial time t = 0, and at the final time when we output the

solution. In this case, we have the slightly surprising result of the

error for the mesh refinement run being slightly better than the

uniform fine grid run. This is due to the grid rotation (Figure

6.7(b)). When the fine grid values are injected onto the coarse grid

(both for updating and graphics), we use linear interpolation for the

rotated grid, since the grid points do not match up. This has the

effect of smoothing the solution in this region, which contains most of

the discontinui ties. This is why the error is less for the mesh

refinement run.
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Figure 6.7. Subgrids  for Burgers Equations



method h llerroril2 time
C

. sets

coarse l/20 8.0 E - 2 0.18

fine l/200 3.86E - 2 155

MR hf = l/200 2.75E - 2 109

Table 6.3. Results of computations for 2-D nonlinear example.
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7. CONCLUSIONS

We have presented an algorithm for the numerical solution of pdes

using automa tic grid refinements. Several novel features make this

algorithm possible. An automatic procedure which estimates the local

truncation error determines the points to be included in finer

subgrids. Our method of generating the subgrids is a key feature of

the algorithm. We cluster the parts of the domain needing refinement,

using a nearest neighbor algorithm for simple regions or an all nearest

neighbors graph with an iterative procedure for complicated shapes, and

to each cluster we fit a rotated rectangular subgrid. Another feature

of this algorithm is our use of data structures, which has made such an

automatic algorithm posible. We have implemented the mesh refinement

algorithn in both one and two space dimensions, and it generalizes

immediately to three (or more) dimensions. We have demons tated with

several numerical experiments that with our grid structure, we can do

calculations with the same accuracy for a fraction of the cost of a

calculation on a conventional, uniform grid.

There are several areas in mesh refinement still needing research.

We list SOIIE of the more important ones. The best solution strategy

for steady state computations is still unknown. For example, is It

better to iterate to near convergence on the coarse grid before

int roduc iqg a refinement , or should the solution on two grid levels be

mixed. ‘Ihe use of implicit finite difference methods with our grid

structure needs to be developed further. The development of data

structures for component grids in diEferent coordinate systems is an

important project, with applications beyond our adaptive mesh

refinement strategy. Finally, adaptive subgrid generation is a
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relatively new topic, and the best grid generation procedure is an

important open question.
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