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Abstract

We present a collection of stability results for finite difference approximations to the advection-

diffusion equation ut - a uX + b uxx. The results are for centered difference schemes in space

and include explicit and implicit schemes in time up to fourth order and schemes that use

- different space and time discretizations for the advective and diffusive terms. The results are

derived from a uniform framework based on the SchurCohn theory of Simple von Neumann

Polynomials and are necessary and sufficient for the stability of the Cauchy  problem. Some of

the results are believed to be new.
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1. Introduction
The linear advection-diffusion equation:

ut - au, + bun, b 2 0, 0)

is often used as a model equation in computational physics,  partly because it models two of the

most basic processes in a physical system, namely advection and diffusion. In this paper, we are

interested in the stability analysis of approximation schemes for solving this model equation. An

understanding of the stability properties of a computational scheme is important for both

theoretical questions of convergence and for practical questions of sensitivity to round-off errors.

Since stability results for many common schemes for approximating the wave equation ut -

aux* and the heat equation ut - bun are well-known [ll], an often used practical strategy is to

take the more restrictive of the two stability constraints for the wave and heat equations as the

stability condition for the full advectiondiffusion  equation (1). However, the stability results for

schemes approximating the equation ut - aux + buxx cannot always  be inferred from those for

the wave and heat equations. Moreover, there is a danger of arriving at a condition that is more

restrictive than necessary. For example, it is well known that Euler’s method for the wave

equation is unconditiondly  unstcr6k,  but the scheme applied to the advection-diffusion equation

(Scheme E2E2 in Section 4) is actually eonditianuf~~  atuble. Worse yet, one can easily arrive at a

condition that is not sufficient. For example, the stability condition of the scheme that consists

of the Leap-Frog method applied to the ux term and Euler’s method applied to the u, term

(Scheme LF2E2 in Section 4) is actually more restrictive than those of the corresponding methods

applied to the wave and heat equations separately.

The definition of stability that we employ here is a generalization of the classical von Neumann

stability condition and is designed to guarantee that the computed solution inherits one

important property of the exact solution: that its norm remains bounded. We used a unified

approach for deriving the stability results which is based on the SchurCohn theory of locating

zeros of polynomials in terms of their coefficients. We apply this technique to analyse  a

collection of commonly used finite difference schemes that includes higher order approximations

in both space and time.

Stability analysis for difference approximations to time dependent partial differential equations

is often tricky, tedious and difficult. In this regard, it may be of interest to point out here that

we have found an erroneous stability result for the Euler scheme E2E2 given originally by Fromm
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( [3], p.365)  and later quoted by Roache ( 1131,  p.44) and another erroneous result given in Roache

( [l3], p.O1) for the LF2E2 scheme. The SchlllcCohn  technique that we employ here, however, is

extremely powerful and general (especially for analysing  schemes that span more than two time

levels) and can be used in a systematic way to derive stability results for schemes (not necessarily

finite difference schemes) that are not analysed  here.

Some of the results that we shall present here are well-known and can be found in books such

as Richtmyer and Morton (111, Roache [13],  Vichnevetsb  and Bowles [17].  However, we believe

that some of the results are new. In any case, we hope that the collection of stability results in

this paper will prove to be a useful reference.

In Section 2, we review centered difference approximations for the advective and diffusive

terms. The general framework of stability analysis and the SchnrcCohn theory will be presented

in Section 3. Analysis and results for a collection of commonly used schemes will be given in

Section 4.

2. Centered Diflerence Approximationa
In this section, we collect for reference purpose, some well-known results concerning centered

finite difference operators for approximating the terms u, and Us. Define the translation

operator:

T(h)u(x) - u(x+h), h > 0. (2)

We can now define the following difference operators in terms of T(h):

D+(h) - (T(h) - T(o)) / h? (3)

D_(h)  - WO) - Wh))  / h?

Do(h)  - (T(h) - T(-h)) j 2h = (D,+D-)  / 2. (5)

(Notation: When the argument of a difference operator is left out, it is understood to be h.)

Approximations for u, and uxx using centered differences are well-known and are contained in

the following theorems:

Theorem 1: Formally, the fti derivative D, = 8/8x has the following expansion:

where
D* - Do “c (-l>j  bj (h2D+D-/4y’,

j==O

bj - [ (j!)2 22i ] / (2j+l)!.

w
(7)
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Proofi See Kreiss and Oliger [7], Fomberg [2] and Vichnevetsky and Bowles [17].

Theorem 2: Formally, the second derivative Dxx = i!12/aX2  has the following

expansion:

Dxx = D+D_ “c (-13 ~j (h2D+D-/43, (8)
where j=o

~j - [ (j!)’ 22j ] / [ (Zj+l)!(j+l)  1. (9)
Proof: See Swartz [Ml.

We shall denote the 2m-th order difference approximation for DX and D, by Azrn and B2m

respectively .

2
..

Definition 3: For m 2 1, define:

AZ m - Do ~’ (-1~ uj (h2D+D-/43,
j-0

B,m 3: D+D_ ~’ (-13 ~j (h2D,4/43,
j=O

For the stability analysis, we shall need the Fourier transforms of these operators. We shall

define the Fourier transform of an operator A by

x a (A eiv) / eip, (10)
where

q-2Irw.

By noting that

and

where

J),eiqx  3e: ((eie-e-i’)/(2h)) eig - (i sin0 / h) eia, (11)
( h2D,D/4)eiqx = ((ei’-2+eBi’)/4)  eiqx - -(sin2(#/2)) eia, 02)
9 = %rwh, (13)

we can easily derive the following:
N
AZm = iq (sin0 / 0) E uj (fn2(O/2)3,

pzrn - - $ [sin2(  e/2)/(  O/2)7 E’ p. ( sin2( 8/2))i.
j=o J

(14

(15)

We note that ~j is always purely imaginary and ~j is always real.

The coefficients Qj and ~j in (7) and (9) are tabulated for orderw  up to six (i.e. j - 0, 1, 2) in

Table 2-l. For computational purposes, it is often more convenient to transform equations (0)

and (8) into stencil forms as:
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Table Sl: V~U~S  Of bj, ~j

+--0-0+--0-0-0-+--0-----+
I j I bj I  c(j  I

+--0-0+ -0-0-0-0+--0-0-0-+

IOI 1 I1 I
+--0-0+--0-0-0-+--0-----+

I 1 I 2/3 I l/3 I
+-----.+e.-  - B ~ *)> Y . y .,-SD------+

I 2 I 8/15 1 8/45 I
+-----+--.m--0-0+--0-0-0-+

B 2m - [ b x-W) ] / h2*
j=-L J

The value  of xj and L are tabulated in Tables 2-2 for orders up to six.

Table 2-8: Stencils of h and B,

V1 IU~S  of Xj fat D,,  (X-j = Xj)

v-- .-

I m IL;
+-----+----- +a-0-0----0-0-+-------------+-

Ill11 - 2 I 1 I
+-----+--,-,+-,- -0-0-0-0-0+--0-0-0-0----+-

I 2 I 2 I - 30112 1 16/12 1
+-----+-----+-------------+-------------+~
I 3 I 3 I - 490/180 1 270/180 1
+--0-0+--0-0+--0-0-0------+-------------+-

x2-0-0-0-0-0-0+--0-0-0----
I -

-0-0-0-0-0-0+--0-0-0----

- l/12 I -
--------,---+--------o-o
- 271180 1 21180

-0-0-0-0-0-0+--0-0-0----

‘I
--+

I
--+

I
--+

I
--+

(17)
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3. Stability Analysis - General Discussion

3.1. Definition of Stability
We shall consider the following Cauchy  problem for (1):

Ut = au, + bun, o<xsr,

u(O,t) = u&t).

u(x,o) = f(x) = ‘c f(w)e .w iqx
W-B

The exact solution is given by:

. where
u(x,t) = i qw)edw) t&x,

s(w) = iqT*Lq2.

(18)

(19)

(20)

.

Thus, the wave with frequency w travels with speed a and decays at an exponential rate given by

@Tpq* .

We discretize the spatial interval by a uniform grid with mesh site h - 1/(2n+l)  and use k to
. denote the time step. The most general difference approximation to the system (18) is of the

form :

4-1 dx,t+k) - b 4j v(x,tjW,

I=0

(21)

where the ~j m +j(a,b,h,k), j - -l,O,l,..,p are spatial difference operators:

Oj- ’ (22)P=-mj
1’,( a,b,h,k) T”(h).

The difference scheme defined above has a stencil that spans p+2 time levels, and on the time

level tjk (j - -l,O,l,...p), it spans the mesh points from x-mjh to x+Mjh.  See Figure 3-l.

We shall assume that (#-Jo1  alwap exkts and is bounded, so that (21)  can be solved for

v(x,t+k). This usually amounts to requiring the band matrix defined by the linear operator +-1

to be nonsingular. Any reasonable difference approximation has this property. Also, in practice,

initial values have to be supplied for the time levels t - O,k,...pk. These values can be supplied

by using one-step (tw+level)  schemes for starting, for example, but for our analysis we shall

assume that these values are obtained from the exact solution u(x,t).

We look for approximate solutions to (21)  of the form ’

v(x,mk) - ‘c NW) Rm(U) ei’Y (23)err-11



Figure 3-l: Stencil of a General Difference Scheme

. . . . . . . . . . . . . . . . . . I . . . . . . . . . . . . . . . . . . . . . .
P.0 a - - - - -  - - -x X”“‘X”‘X”‘X”““X”““’ t - p k

I
x-mph

---> x  d i r e c t i o n
x+t'$,h

Note that if m - 0 in (23), we shall end up with the correct initial function v(x,O) = ‘c ywpqx.

It can be shown ( [8], Ch. 9) that v(x,mk) as given by (23) will satisfy the difference qK:ion (21)

if R(8) satisfies the chorocten’8tie  quation:

is the Fourier transform of ~j. Fi(S) is ~NBUY dhd the amplification &t~r of the difference

scheme.

The characteristic equation (24) is a polynomial equation of degree p+l in R and so hm p+l

roots. Only one of these, usually called the pn’ncipal  root, corresponds to the approximate

solution v(x,mk) that we want. The other p roots are usually called uputious  roots. In practice,

any enor introduced in the computation will be propagated by all the spurious roots. Therefore,

unless there are some restrictions‘on  the spurious roots, these propagated errors may become

unbounded and overwhelm the approximate solution that we seek. Since the exact solution u(x,t)

to the system has a norm (or energy) that is decreasing with time (or at least not growing with

time), it seems reasonable to Mk the same from the approximate solution v(x,t).  This is what

Richtmyer and Morton [ll] referred to aa the practical stability criteria. It usually turns out that

this condition will be satisfied if we restrict the time step k appropriately.

The left hand side of (24) is usually called the charaeterietic  polynomial. Its coefficients are

functions of a, b, h, k and 8. In general, we can express the characteristic polynomial of a p+2



. time level scheme as:

H(R) - a0 + a,R + . . . + ap+lRP+‘. (26)

We shall call the p+l roots of H(R) RI,R2,....,Rp+l’ with R, being the principal root. It is clear

from (23) that a necessary condition for the computed solution v not to be growing is :

lRjl 5 1 V j. (27)

This is usually called the uon Neumann Stability Condition and polynomials with property (2)

are called von Neumann Polynomials.

The von Neumann Condition is also sufficient for non-growing solutions for all two time level

(p = 0) difference schemes with only one dependent variable [ll]. However, it is not sufficient in

general. The insufficiency mainly arises from the fact that when p > 0, condition (27) does not

exclude the case of multiple roots .on the unit circle. Therefore we have to modify the von

Neumann condition a little bit.

Definition 4: We shall call polynomials H(R) with the following property:

lRjl<l W,

Schur  Polynomials.

We shall call polynomials H(R) with the following property:

Rj didind on IRl - 1.

Simple von Neumann Polynomiale.

Definition 6: We shall call a scheme stable if its characteristic polynomial is a Simple

von Neumann Polynomial V 8 E (0, 24.

Note that this definition of stability is necessary and sufficient for the computed solution to

not have a growing norm. Since the roots Ri are functions of a, b, h, k and 0, the stability

condition will impose a restriction on the range of values that the fast four parameters can take.

The notion of stability defined here is analogous to the notion of M-stability  in the theory of

difference methods for the initial value problem in ordinary differential equation ( [9], p.33 and

[0], p.412 ). Condition (28) is the so-called root-condition in that theory.

Notice that our definition of stability (that of non-growing solutions) is slightly different from

the definition of stability used in Richtmyer and Morton [ll] and in particular the discussion

about the effects of lower order terms on the stability for the heat equation on p.195 of their
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book does not apply in our case. Their definition of stability allows growth in the solution and,

for diffusion problems like ut = b IQ stability is practically unaffected by lower order terms like

a ux.

3.2. The Schnr-Cohn  Theory
There is a whole theory, originating from Schur [14,15] that deals with the class of Simple von

Neumann Polynomials. This theory, an excellent exposition of which can be found in a paper by

J. J. H. Miller [lo], enables one to determine conditions on the coefficients of the characteristic

polynomial for it to be Simple von Neumann. We shall present the main results of that theory

here and shall refer the reader to the original papers for more details.

Given a polynomial
u .

4(z) - a0 + alz + . . . + a,zY s C
j=O

ajZJ9

of degree u (a, # 0) and having no zero at the origin (a0 # 0), (any given polynomial can be

reduced to this case without losing information about the location of its zeros), one can associate

with 4 another polynomial +*, satisfying the same conditions, and defined by

where i denotes the complex conjugate of a. The reduced polynomial br is defined by

41(z)  - ( 4*(o)  4(z) - d(O) 44 ) 1 z* (29)

The main results that we need are contained in the following two theorems:

Theorem 6: d is a Schur Polynomial iff I&O)l  > Iq5(O)l and q$ is a Schur Polynomial.

Theorem 7: # is a Simple von Neumann Polynomial iff either I&I)l > I+@)( and +r

is a Simple van Neumann Polynomial or 41 3 0 and 4’ is a Schur Polynomial (4’

denotes the derivative of # with respect to its dependent variable).

By repeated applications of the above two theorems, it is possible to reduce the question of

whether a n-th degree polynomial is a Simple van Neumann Polynomial to that for a first degree

polynomial, which can be solved solved more easily by analytical means. These results turn out

to be very useful for determining stability limits of difference schemes, = compared to fmt

finding the roots of the characteristic polynomial explicitly and then determining their absolute

values. Furthermore, this last approach may not even be applicable for polynomials of higher

degrees.
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4. Stability Analysis - Specific  Schemes

4.1. Some Commonly Used Schemes
In this section, we shall present the stability analysis and results for some commonly used

difference schemes for solving the advectiondiffusion  equation. We shall adopt the following

convention for naming the schemes.

Definition 8: The name for a scheme shall consist of four fields:

Scheme Name: A B C D

where A3 is used to denote how the scheme treats the advective  term au,, and CD is

, used to denote how the scheme treats the diffusive term bun. A and C are used to

denote the time discretitation method used for the au, term and the bum term

respectively. B and D are used to denote the order of the centered differencing used for

the auX and bun terms respectively.

The following abbreviations will be used for the time discretizations:

E - Forward Euler (rUat  order, two levels, explicit)
BE - Backward Euler (fmt order, two levels, implicit)
CN - Crank-Nicolson (second order, two levels, implicit)
LF - Leap-Frog (second order, three levels, explicit)
DF - DuFort-Frankel  (second order, three levels, explicit)
BD - Backward Differencing  (second order, three levels, implicit)
P4 - Pade (fourth order, two levels, implicit)

For example, the following scheme:

(P+’ - $“)/k = aDOvu’ + bD+D-*

will be denoted by E2E2 because Euler’s method is used to discretke in time and the spatial

approximations are second order.

We shall analyse  the following classes of schemes: EnEj, BEnBEj,  CNnCNj,  P4nP4j,  BDuBDj,

LFnCNj, LFnEj and LFnDFj, where n and j are even nonsero  integers. This set of schemes is by

no means exhaustive but is intended to include most of the commonly used schemes. It includes

schemes that are fmt order, second order and fourth order in time; schemes that use the same

order of spatial approximation for both the au, and bun terms and those that use different

orders for the two terms; schemes that use the same temporal scheme for both terms and those

use different temporal schemes for them; explicit schemes and implicit schemes; and finally two-

level and three-level schemes.





11

Table 4-l: Summary of Stability Results for Schemes for ut = au, + bun

Notation: h: space step, k: time step.
n, j : positive even integers., U = min[n , j].
An : n-th order centered difference operator for u,.
B. : j-th order centered difference operator for u,,.
O!der(p, q> : Truncation error = O(hP) + O(k'%

+--0---we-,

1 Scheme
I

I E2E2
I ,
+----------
1 BEnBEj
I

I CNnCNj
I
+-w-----w--
I P4nP4j
I
I
+------w---
I BDnBDj
I

I LFnCNj
I
I
I
I
+----------
I LF2E2
I
+----------
I LFnDFj
I
I
I
I
+----------

.
(v l +l - v')/k = (aA, + bBj)vm*' - I Unconditionally Stable

I order( U, 1) I
.--0-0-0-0-0-0-0-0-0--------------------+ -0-0-0-0-0-0-0-0-0-0-------+

(V l +l - v’)/k =
(aA, + bBj)(vm+l  + v')/2

I Unconditionally Stable I
I order( N, 2) I

.--------------------~~~~~~~~~~~~~~~~~~~+~~~~~~~~~~~~~~~~~~~~~~~~~~~+
(I - G/2 + c2/12)v”’ =
(I + c/2 + G2/12)v9

I Unconditionally Stable I
I I

uhero C = k(aA, + bBj) 1 ordot{ U, 4) I

’
.

(3/2)  (v‘+*-v’)/k  - (l/2) (va-vrl)/k 1 Unconditionally Stable I
= (aA, + bBj)Vl+l I order( H, 2) I

,--------------------~~~~~~~~~~~~~~~~~~~+ ---,---,,--,-,-------~~~~~~+
(v l +l - v"')/(2k) = I Same as that for LFn: I
+ bBj(vD+l + v"')/2

aA,v'
ln=2: k < h/la1 I
ln=4: k < 0.7287 h/fal I
(n=6: k < 0.6305 h/la1 I
I order( M, 21 I

,--0-0-0-0-0-0-0-0-0--------------------+ -,-,,,,,-,,,,,,,,,-,-----,-+
(vl +l - vr1)/(2k) = aA2vm + bB2vP1 I (rk/h)* + (4bk/h*) < 1 I

I ordor( 2, 2) I
,I-------------------~~~~~~~~~~~~~~~~~~~+-~~~~~~~~~~~~~~~~~~~~~~~~~+

(vl +l-vD-l )/(2k) = aAnvD + bBjm I n=2,j=2: k < h/In1 I
- (qjb/h2)(vD+' - 2v' + v"') I n+j=2: k < 0.5311 h/la1 I

92 = 1 I n=2,j=4: k < 0.9685 h/la1 I
‘14 = 413 I n=4,j=4: k < 0.5453 h/la1 I
96 = 68145 I Error = O(hR.k2,qj(k/h)*) I

,--0-0-0-0-0-0-0-0-0--------------------+ --,---,------,-------~~~~~+
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condition:

(1 - r)2 + a2 < 1.

lt follows that two nece88ory conditions are:

752 ancl ISI I 1,
which reduces to

aP,l2 I 1 and l~ln, 5 1.

Suffic+nt  conditions, however, art LZLL Xficult to derive. analytically, especially for larger

values of n and j. For the simplest case of n - j - 2, it can be shown that the necessary and

sufficient conditions are:

@ 5 2 and a2 5 a/2,
’ which reduces to

k < min(2b/a2,  h2/2b). -
(W

The analytical solution of this problem is not difficult but a bit tedious and can be found in [l].

For a geometric proof, see [12].  Results for the general case are not known.

Remarks: The stability of the method E2E2 was studied by Roache  (131  and a two-

dimensional version by Fromm [3]. Instead of condition (30),  they found lower bounds on the

spatial step size h independent of the temporal step sire k, the so-called cell Reynolds Number

limitation, which is more restrictive. Our results show that h can be as small ZM we wish. As

long as k is small enough, the scheme is stable. See also Hirt [S].

2) BEnBEj

The amplification factor is:

R =1/(1-ib+r).

It follows from the definitions of XI, and UBj in Section 2 that

]R12  - 1 / (1 + ;y + p s-1.

Hence this scheme is unconditionally stable.

3) CNnCNj

The amplification factor is:

R - ( 1 + i6/2 - 712 ) / ( I- ii!/2 + 712  ).

It follows that

lR12  - ((Wf2)2  + (b/2)2)  / ((1+7/2)2 + (b/2)2)  5 1.

Hence this scheme is unconditionally stable.
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4) PInPlj

The amplification factor is:

R - ( 1 + 812 + “G2/12 ) / ( 1 - 512 + “G2/12 ).

Let “G - R + i1 where R and I are real. Then it follows that

]R12 = ((1-~/2+R)~  + (a/2+a2)  / ((1+~/2+R)~  + (6/2+a2)  5 1.

. . Hence this scheme is unconditionally stable. , j. . ~

5) BDnBDj

In the notation developed in Section 3.2, the characteristic polynomial is given by:

q5( z) = (312 + 7 - i6)z2  - 22 + l/2 ,
and

4*(z) - I/2z2 - 2z + (312 + 7 + i 6) .

We shall use Theorem 7 to show that 4(z) is a simple von Neumann polynomial. It would then

follow that the scheme is stable.

The condition ]&)I > ]d(O)l is certainly always sati8fied.  We next compute b1 as

4,(z) - [(3/2 + 7)2 + S2 - l/4]% - 2(1 + 7 + i6) l

q+(z) is simple von Neumann iff

/2(1 +7 + i&)12  5 [(3/2 + $2 + # - 1/412 l

This can easily he shown to be true for any real 7 and 6. Thus flz) is simple von Neumann and

the scheme is unconditionally stable.

6) LFnCNj

The characteristic polynomial is given by:

qb( 2) - ( 1 + 7)f - 2ibz - (1 - 7).

We thus get:

qb*(z)  - (7 - 1)z2 + 2idz + (1 + 7).

The condition I+*(O)l  > lb(O)] reduceb to 11 + 7 > 11 - 71, which is always true because 7 is

positive.

Next we compute 4,(z) as

q+(z) - 47z - 4iy6 .
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4,(z) is simple von Neumann iff

ISI < 1  l (31 )

Note that condition (31) is the same as the stability criterion for the Leap-Frog scheme applied to

Ut = au,, with n-th order centered differencing in space. The criteria are all of the form ]ak/h]

5 Cn’ where the constants c, can be found in Fomberg [Z], for example. In particular, for c2 =

1, c4 = 0.7287 and cB = 0.6305.

7) LFnEj

The characteristic polynomial is given by:

4(z)  - z2 - 2it5z  - (1 - 27).

We thus get:

J(Z) - (27 - 1)~~  + 2i&z + 1.

Now the condition I#‘(O)l  > l+(O)1  reduces to 1 > ]l - 271  which will be satisfied iff

7<19
which Feduces to

Bpi < ‘*

This is the same as the stability condition for Euler’s method applied to the u,, term with a time

step of 2k and is clearly a necessary condition for stability.

We next compute b,(z) as

-- d*(z)  - ~(1 - (1 - 2~)~)  - 4i&y.

4 1(z) will be simple von Neumann iff

I4arl I 1 - (1-27)2,
which reduces to

Ial 5 1 - 7. -

This is a relationship involving 8, a and 8 and we want to derive conditions involving @ and Q

for it to hold for all values of 8. In the case of n - 2 and j - 2, this has been worked out in [l]

and the necessary and sufficient condition is:

lal2  + j9 5 1.

Results for more general values of n and j are not known.

(32)

Remark: Roache  [l3] considered this scheme for n - j = 2, but he claimed that the stability

analysis of the advection and diffusion terms may be analyzed separately, and thus obtaining the

conditions ]a1  5 1 and fl 5 1. (In his book, he had the equivalent of @ 5 2, which I believe is
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either a typo or a mere oversight.) These two separate conditions are much less restrictive than

(32) and we believe that Roache’s  results were erroneous. Rigal [12] derived the correct stability

limit using a different approach but he did not show that it is both necessary and sufficient.

8) LFnDFj

Generalized Du FortFrankel  methods have been studied by Gottlieb and Gustafsson [4].

When adapted to our case for the equation ut - au, + bun, the scheme LFnDFj becomes

(~+l- vm-l)/2k  - (aA*  + bBj)vm - (qb/h2~~” - 2Vm + v”“)

where ‘lj is a positive constant chosen to make the scheme unconditionally stable for the case a

= 0 (the heat equation). The conditions is exactly:

9j 2 Pj l w

The truncation error of the scheme is O(h”, k2, q(k/h)2).  Thus the larger the value of ‘lj is, the

larger is the truncation error. Therefore, in what follows, we shall assume that ‘lj takes on the

value of the lower bounds given in (33).

The characteristic polynomial is:

4(Z)- Z2(1  + rliB/2)-  c(9j~ + 2ib- 27).  (l-qja/2)  .

It follows that:

4(z) - z2(-1 + qa/s)-  c(rljj~-  2ib- 27)  + (1 0 rt,al') l

The condition ]&O)l > ]#(O)l  reduces to

1’ + 9jB/21->  1’ - 9jP/21 ?

which is always satisfied because ‘li and B are both positive.

We compute 4,(z) as:

e,(Z) - ‘9jBZ - 2(VjB - 27 + 9jfi�) l

Hence the stability criterion is given by

1’ + 27/(B9j)  + ial I ’ 9

which can be written as:

,2 5 (1 0 (1 + ~j(h2/2q))2)/I~,a12  . (34

It can easily be verified that, for a given n and j, the right hand side of (34) is a function of 8

only, and thus its minimum can be found, at least numerically, to yield au upper bound for o2 as

the stability criterion for the scheme LFnDFj. Moreover, it can also be seen from the form of

(34) that the limitation on k is more restrictive than the corresponding limitation for the Leap
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Frog method.applied  to ut - au,. The upper bounds have been computed numerically and their

values are given in Table 4-2.

Table 4-t: Stability Constants for Scheme LFnDFj

Stability Condition : a2 5 C, j , where cn j is given below:I *

J+-------------~-,----~ ~----o-o+----------o~~+
I 2 I 4 I 6 I

+-w-+-----w-------+ -0-0-0-0-0-0o+--0-0--------+
I 2 I 1.0 I 0.9685 1 0.9242 1

I 6 I 0.3976 1 0.4231 1 0.4281 1
+---+--0-0-0-0-0-0+-------------+ -0-W-W-W-W,-,+
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