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1. Introduction

In this paper, we consider iterative solution procedures for solving

singular linear systems

(1) Ax = b, b c Range (A)

where A is an n by n, Hermitian, positive semidefinite (hereafter HPSD) matrix.

Our aim is to consider variants of the block Jacobi, SOR, and SSOR iterations.

The fundamental paper of Keller ([1965]) considers methods based on splittings

A=B-C

Mth B a nonsingular matrix. Here we ailow B to be singular.

This paper concerns block iterative methods. We suppose that A has the

k by k block structure: *
. . . . . . . . . . ..Alk

.
(2) A = ....

. . . . . . . . . . . . %sk

a We call the matrix D Z diag (All, *. . . . . . , qrk) the block-diagonal of A.

For any subspace S of 8, Sf denotes its orthogonal complement. For any

matrix A we let N(A) be its null space, R(A) its range, A* its conjugate

transpose,and A+ its generalized inverse. Recall that

N(A+) = N(A*) = R(A)
I

Also, recall that AA+ is the orthogonal projection onto R(A).

We shall consider iterations of the form

n+lX = xn + H(b-Ax") n = 0, l,........

where N(HnR(A) = 10).
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Letting T = I - HA we have, for any solution x of (l),

(xn+l - x) = T(x"-x).

Thus, we are concerned with the matrix Q = lim Tn.
SHJ

-.

Definition: The square matrix S is an R-matrix if

rank 2(S ) = rank (S).

If S is an R-matrix, then S is nonsingular on its own range, and

c” = R(S) @ N(S).

Theorem 1: [Kutznetsov [1975]]: Q exists if and only if

(i) fi (T) f sup Ixl < 1
XE(T(T)
L.# 1

(ii) HA is an R-matrix

where a(T) is the set of T's eigenvalues. In this case, Q is the projection

onto N(A) parallel to R(HA).

When H and A satisfy the hypotheses of the theorem, we say that the method

(3)s or the matrix T, is convergent for A.

e 2. Main Results
We shall now obtain conditions on a possibly singular matrix B that guaran-

tee convergence for A of the matrix I - B+A. We then apply these results to

analyze block Jacobi overrelaxation, SOR, and SSOR iteration for matrices

whose diagonal blocks may be singular.

Lemma 0: Let A be HPSD. Then (x, Ax) = 0 if and only if Ax = 0.

Proof: Sufficiency is trivial. For necessity, expand x in the eigen-

vectors of A.

We collect here several properties of partitioned HPSD matrices.

Dahlquist [1979] and Albert [1969] obtain like results.



Lemma 1: Let the HPSD matrix A be partitioned as in (2). Let D*be

its block-diagonal and let E = D-A. Then:

(i) N(D) = N(All)@N(Az2)@.....@N(Akk);

(ii) D is HPSD, as are each of itsdiagonal blocks;

(iii) if, for some 1 < j < k, Ajjxj = 0, then Aijxj = 0 for all 1 < i < k;- - - -

(iv) if E = L + L* where L is strictly lower triangular, then

Dx = 0 only if Lx - L*x = 0; i.e.,

(4) (a) N(D)C N(L)

(b) N(D)C N(L*)

(c) N@)C N(E)--.

(d). N(D)r N(A).

(v) For each a c fO,l), let A(a) be defined by

A(a) : D - aE

Then A(a) is HPSD and

(5) WA(a) )C N CD) .

Proof: (i) and (ii) are obvious. To prove (iii), suppose Ajjz = 0, while

'A.z=cfO.
iJ

Let x(6) be partitioned conformably with (2),

.
⌧ ( 6) =� ( 0,...., 0, c *, 0,....., 0, -62*, 0, l ..*) o )*ith f .

position jth  poiition

Then for 8 sufficiently large

x(6)* Ax(&) - c*Aiic-26c*c <O,

a contradiction. (iv) is a trivial consequence of (i) and (iii). To prove (v),

assume that for some x,

. 0 > x*A(a)x = x*Dx-ax*Ex.
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B y  (ii),

ax*Ex > x*Dx ) 0,

and, therefore,

x*Ex > x*Dx, 0 > x*Ax, . .

a contradiction. This shows that A(a) is HPSD. If A(a)x - 0, then

0 < X*DX = ax*Ex 5 x*Ex

with strict inequality and a contradiction unless 0 = x*Dx = x*Ex. By Lemma 0,

Ijx = 0 then, so we have the inclusion (5).

Lemma 2: If A is Hermitian and B is any matrix such that

(6) B+B* is HPSD

and -T.

(7) (B+B*)x - 0 only if Ax - 0

then BA is an R-matrix. If in addition

(8) (B+B*)x = 0 only if Bx = 0

then B+A is an R-matrix.

Proof: Suppose (Bx,x) - 0. Then

0 - (Bx, X) = (B*x,x)  - ((B+B*)x,x>.

a By Lemma 0, (B+B*)x - 0, SO by (7) Ax - 0. Thus N(B)c N(A) and N(B*k)c

N(A) by the same reasoning. Hence B is nonsingular on R(A) and rank (BA)' =

rank (BA) unless ABz = 0 for some nonzero z s R(A).. But for any such z,

(Bz, z) = 0

since N(A) 1 R(A), so z E N(A)nR(A) = (0). This shows that BA is an R-matrix.

For B+A, B+ is also nonsingular on R(A) since N(B+) = N(B*)C N(A). Now

suppose B+z E N(A) for z E R(A). Then, letting u = B+z, we have Bu = BB+z = z,

since
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R(A) = N(A)'c N(B*)' = R(B).

Thus,

O= b,z) = (Bu,u),

so that u c N(B+B*). By hypothesis, then, z = Bu = 0. QED

The next lemma provides sufficient conditions for satisfaction of the

first hypothesis of Kuznetsov's theorem. Our proof parallels Keller's for

the case of a nonsingular matrix B (Keller [1965]),.

Lemma 3: Let A be HPSD and let T = I-B+A, 'where B is such that

(9) N(B+B*)CN(A)

. the matrix P defined by

.
(10) P E B+B*-A

is HPSD, and

(11) N(P)CN(B).

Then 6(T) < 1.

Proof: Using (9) we can show, as in the proof of Lemma 2, that

(12) N(B)C= N(A)

and

a (13) N(B*)CN(A).

Thus, B*, and hence B+ is nonsingular on R(A). Thus TX = x if and only

if Ax = 0. Now, let u be an eigenvector of T corresponding to the eigenvalue

X#l. Thus,

(1 - X)u = +B Au;

left-multiply by B and take the inner product with u to obtain

(Bu d 1
(BB+Au,u) = l-x

Now R(A)CR(B) since as we have seen, R(B)' = N(B*)CN(A); thus BB+A = A.
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Thus, with X = a MB,
. 2(1-a)

(l-(r)2 + B2

By (11) and (12), (Pu,u) > 0 if u t N(A). Thus the last expression on the

right is positive. The inequality obtained by dropping it yields

I Ix2=a2 2+B x1. QED*

We now obtain necessary and sufficient conditions for convergence when B

is HPSD, as is the case for Jacobi-like methods.

Theorem 2. Let B be an HPSD matrix such that N(B)r N(A). Let C = B-A and

let T = I-B+A. T is convergent for A if and only if

(0 B+C is-a.HPSD

and

(ii) N(B+C)c N(A).

Proof: Sufficiency follows from Theorem 1, since the hypotheses of Lemmas 2

and 3 are easily verified. For necessity, note first that since N(B)CN(A),

if Bx = 0, then Cx = Bx-Ax = O-O = 0, so N(B)CN(C) also. Thus R(B) is invariant

under all of A, B, and C. For (i) suppose that B+C is indefinite. An xcR(B)

can be found for which
a

((B+C)x,x) < 0,

so that

(14) (Cx,x)/(Bx,x)  < -1.

Consider the generalized eigenvalue problem Cx - XBx for xsR(B), a problem

which makes sense since B is nonsingular on R(B) and R(B) is C-invariant. By

(14)v an eigenvalue X < -1 exists. Let x be the eigenvector. Then

Tx=x- B+(B-C)x

= B+Cx

= Ax,
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.

so that i(T) > 1. For (ii), suppose (B+C)x = 0 while Ax $ 0. Take xeR(B)

by removing its orthogonal projection on N(B) if necessary---x remains nonzero

since if x had no component in R(B), Ax would have been zero---the resulting

x still is a null vector of B+C and Ax is not changed. Now

-Bx = Cx,

and since B+Bx = x,
+-x = B Cx

=x- B+Bx + B+Cx

= TX,

so ; (T) 2 1. QED

As an example,--we consider the block-Jacobi overrelaxation (BJOR) method,

based on the choice B - OD where D is the block-diagonal of A.

Corollary: The BJOR method is convergent for A if and only if &ID-A is HPSD

and N(ZwD-A)c N(A).

By choosing o sufficiently large, these conditions are necessarily satis-

fied.

Next, let A = D-L-L* where L is strictly lower triangular, and consider

the (symmetric) block-SSOR method, defined ;for o # 0 or 2 by
a

B = (5)-l (t D-L) D+ ($ D-L*]

C j---l (2 ML) D+ (+ ML*)

Corollary: The block SSOR method converges for A if and only if 0 < w < 2.

Proof: A straightforward computation, making use of Lemma l(iv), shows that

(15)
-l l+(l-w)2D

0 - (L+L*) + ZLD+L*
I .

,

from which the hypotheses of *Theorem 2 can be verified. For w outside [O,2],

B+C must be negative semidefinite, as (15) shows.
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We call the case o = 1 in the BJOR the block-Jacobi method. We consider

the case of block Z-cyclic matrices.

Theorem 3: If A-D is block Z-cyclic, then the block-Jacobi method is convergent

for A if and only if N(D) = N(A).

Proof: Every eigenpair of T is an eigenpair of (E,D), for if

Tu = Xu

then since DD+E = E,

Tu - u-D+(D-E)u = Au,

so that

Eu = XDu.

If u s N(A) then X - 1; otherwise Du # 0 and 0 < (Au,u) = (Du,u) - (Eu,u) -

(1 - ;X)(Du,u) so that X < 1. Since E is Z-cyclic, -X is also an eigenvalue, so

X > -1 (see Varga (19621.) If N(A) = N(D), we have convergence. But if

N(A) - N(D) is nonempty, we have

Eu = Du

for some ucR(D), so 1 and -1 are both eigenvalues.

We now consider the block-SOR splitting
a

B - w-'D-L

c = u-l(l-w)D+L*

Theorem 4: Block-SOR is convergent for an HPSD matrix A if and only if 0 < w < 2.

Proof: Let 0 < 0 < 2. According to Lemma l(v), since

B+B* - 2~''A(w/Z)

we have that B+B* is HPSD and N(B+B*)C N(D)c N(A). Moreover, by Lemma l(iv),

N(D)C N(L), so N(B+B*)C N(B). The matrix P of (lo),

.P=B*+C=w-1(2-w)D,

. is HPSD and its null space is contained in N(B),as shown above. Thus Lemmas 2

and 3, and hence Theorem 1, apply.
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Our proof that convergence requires 0 < o < 2 mimics the proof of Lemma 3.

First we dispose of the case o = 0. Actually for w = 0, our definition of the

method is nonsense. But the "blockwise" definition.
._

cbj - k<j jk kA Xn+’ - Ej Ajkxn

n+l
xj

= x; + q - x;)

makes perfect sense. In fact, for o = 0, T - 1 and B - 0. T is convergent for

A if and only if A--.is the zero matrix. For w outside of [0,2), we shall show

that i(T) 1 1 unless A E 0. First we show that N(B+)CN(A). Let B+x - 0.

Then B*x - 0. B* is block-upper triangular and its diagonal blocks are nonzero

multiples of those of A. Partition x as (~l,...,x$* conformably with A. Then

Akkxk -" By Lemma 1 (iii) v Aik% - 0 for 12 iz k-l; these are the blocks

in the kth block-column of B*. Hence, 0 - B*x - B*(x1 ,...,xk,1,O)*. We can

repeat this argument to show, eventually, that Dx - Ax - 0, as required.

We now proceed as in the proof of Lemma 3 to show that if Tx - Xx and

*A#1 then

2Re -&

[ 3

0% x)
- l + @x,x)

P is a negative scalar multiple of D if w~[O,Z] and is zero for w = 2. In the

former case, since xiN(A), (Px,x) < 0 and this implies that i(T) > (Xl > 1.

In the later, we have i(T) = IAl = 1.

QED
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Concerning necessary and sufficient conditions for a general splitting

A = B-C, we have only partial results. Sufficient conditions are provided

by Lemmas 2 and 3. When all conditions except (10) are satisfied, we have

that if B*+C is negative semidefinite then T is not convergent for A unless
. .

AE O---this was shown in the preceding proof. When B*-K is indefinite, we

cannot say. For example, when

1 k

.A = A(a) = 1 ci

a 2.

and B - D = diag (1,1,2), then for loI _.< &- A is HPSD (its nonzero eigen---_ .

values are 2-+ fi a); unless a = 0, B*+C is indefinite: since its trace is 4

and its determinant is -4a2 < 0, it has'exactly one negative and two positive

eigenvalues. Finally, T(a) = I - -'D A(a) has the eigenvalues il, *(l-4a2)+ - 1 12)

so that

< 1 for Ial < 1

i Q(a))

i I

- 1 for a - 1

> 1 for Ial > 1
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