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1. Introduction. , .

Splitting methods for time-dependent, partial differential equations have been most [requently
studied in the context of spatial spliltings, as in the approximate factorization techniques for
cfficiently implementing implicit algorithms in more than one space dimension[8], [11], [13]. Some .
attention has also been given to splitting or fractional step methods for problems where the
differential operator is split up into pieces corresponding to different physical processes which are
most naturally handled by dillerent techniques. This has been done, for example, with convection-
diffusion and the Navicr-Stokes equations[1], [4], [5].

More generally, a splitting method may be useful any time one is faced with a problem

U = Au (11)

where A is some differential operator of the form

A= A1+ A2
such that the problems
ue = Aju (1.2a)
and
U = Agu (1.20)

are each easier to solve than the origina problem. By alternating between solving (1.2a) and (1.2b)
we hope to compute a satisfactory solution to (1.1).

In this paper we consider such methods applied to a one-dimensional quasilinear hyperbolic
system

' us = A(Z, t, u)u, (1.3)

where A is an n X n matrix with real eigenvalues. We assume that A is of the form
A= A; + A,. (1.4)

In our notation, “f” and “s” stand for “fast” and “slow” respectively, which reflects a common
situation in which the solution contains waves traveling at quite different wave speeds. If A is
constant then the solution operator for the problem (1.3) on a single tirnestep of size k is exp(kAd.),
that is to say

u( z,t + k) = exp( kAD,)u(z, t). (1.5)

Fer nonconstant A the solution operator is more complicated. Our analysis will be concerned
mostly with the constant coefficient case, so we will use the notation of (1.5) throughout. The
ideas generalize easily, but are most intuitively seen in terms of exponentials.

The additive splitting (1.4) comes into play when the solution operator exp(kAd;) is ap-
proximated by the product of the solution operators for the subproblems

U

Asu, (1.6a)

and
ut = Aauzo (loﬁb)

We replace (1.5) by
u(z, t + k) ~ exp(kA;9,) exp(kA.Dz)u(z, t).
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An approximation lo u{z, ¢t + k) is thus obtained by first solving (1.6b) with u(z, ¢) as initial data,
and using Lhe resulting solution as initial data for (I .8a). If Ay anti A, commute, this splitting
is exact. When they do not commute, we have introduced an crror which is O(k?). As noted by
Strang(18], this error can be reduced to O(k®) by usc of the splitting

exp(k(Af + A,)0z) = exp(§kA;0;) exp(kAsD;) exp(d kA dy). (1.7)

Analogous results hold for the corresponding splittings with variable coeflicients. Computations
confirm that the globa error is also improved (from O(k) to O(k?)) by the use of this splitting.

The numerical approximations to the solution operators exp(kA,3) and OXp(%kAfaz) will be
denoted by Q,(k) and Qf(k/2) respectively. The numericall method based on the Strang splitting
(1.7) is then

UL = Qs(k/2)Qa(k)Qs(k/2)U T, (1.8)

where U7, is the numerical approximation to u(mh, nk) on a grid with Ax = h .and At = k. When
splitting a multidimensional problem into one-dimensional subproblems, this sort of a splitting
gives rise to the so-called locally one dimensional (LOD) method, a spatially split scheme. In the
present context we will refer to (1.8) as the time-split method.

In practice U™*! can be computed via the sequence

U, = Qs(k/2)UT,
U = Qk)U,, (1.9)
Ut = Q4(k/2)U,,

‘athough it should be noted that when several steps of (1.8) are applied successively the adjacent
Qy(k/2) operators can be combined into @g(k), and the half-step operators need only be applied
at the beginning and immediately before printout, i.e.

Unm . Qs(k/2)Qs(F)Qf(K) . -Qf(k)Qs(k)Qs(E/2)U,.

There are several situations in which the use of the time split method may lead to a more
eflicient solution of the origina problem. We will mention three such cases here. Our analysis will
be mostly concerned with the first and last of these.

Problem 1: Suppose the solution to (1.3) contains both fast waves and slow waves, i.e. the
eigenvalues p; of A satisfy '

Il < Jpal < oo < gl K lipat] < o0 < o]

Assume also that there are relatively few elements of A which contribute to the fast waves. We can
take advantage of this structure-by splitting the operator into slow and fast parts and using small
. time steps only on the fast part. That is, we can choose k so that exp(kA,8,) can be adcquatly
represented by a single step of some finite difference scheme and then approximate exp( %IcAfam)
by several steps of a difference scheme with a smaller timestep. Similarly, we can handle more
than two clusters of wave speeds by means of further splittings.

Such a splitting method requires less work than using small timesteps on the full unsplit
problem, and will thus be more efficient provided the accuracy is not too adversely affected by the
error in the splitting; We will sce that this depends very much on the problem at hand. In cases
where the splitting error is small, the time-split method actually may be more accurate, since we
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will be able to use nearly optimal mesh ratios for each cluster to minimize the truncation error
and improve other characteristics of Lhe method, such as its dissipative behavior.

Similar splittings have been cousidered by Iingquist, Gustalsson and Vreeburg[4] for this lype
of problem. However, the splitting in their problem involved little interaction between the different
time scales, so that many of the problems we shall encounter were not present.

Example 1.1. Consider a block triangular system of the form

LA, A2 :
A= |11 1.10
[ 0 Azz] (110

with ||A11]l == ||A22]] &= 1 and € « 1. It is reasonable to take

1 A
Ay = [e/(l)“g],A , =.[3A;z]. (1.11)

For this problem the effectiveness of the split method depends greatly on the coupling A2 between
the different time scales. This is analyzed in section 2 where we also present a simple procedure
for changing variables to reduce the coupling.

Problem 2: Consider the same situation as in Problem 1, but where the fast waves are
known to be absent from the physical solution of interest. Recently Kreiss[9], [I0] and Browning,
Kasahara, and Kreiss{2] have considered some new approaches for this problem which rely upon
properly preparing the data so that the fast wave components are eliminated. These can be
considered as projection techniques. Majda[12] has considered using filters to suppress the fast
waves in the same context.

In this case the true solution should satisfy

exp(kAB,)u(z,t) = exp( kAD)ulz, 1)

providing the splitting between fast and slow scales is done correctly. Tor variable coefficient
problems it will not be possible to have the correct splitting at all times and the operator Ay
cannot be dropped entirely. Iowever, we can consider using the time-split method (t.8) with a less
accurate scheme for Qf(k/2) than is used for Q,(k) , perhaps by using the-same. timestep for both
with a larger spatial step for Q¢(k/2) . In such a manner it may again be possible to obtain the
same accuracy more efficiently. Turkel and Zwas[18] have considered a method for this problem
which is similar in spirit.

Problem 3: Suppose that the coefficients in the problem (1.3) have large mean values
about which they oscillate with small amplitude. In this case it may be possible to split out a
constant coefficient problem which can be solved exactly, leaving behind the small perturbations
for A,. Then (1.8) can be used with some large timestep approximation for Q,(k) while Q4( k/2) =
exp(%kA,@,) exactly. This is clearly more efficient than using small timesteps on the unsplit
problem. Moreover, since the dominant part of the operator is being handled exactly, great
increases in accuracy are also possible.

Example 1.2. The simplest example is the scalar problem
ue = (1 + afz))us (1.12)
where |a(z)] << 1 and we use the splitting’

Af =1, A = aX).



Take k = ph for some inleger p. The operator exp( 4 kAfd,) in known exactly: exp( § kA3, )u(z, t) =
u(z + Lph, t). If Lax-Wendroll is used (or the remaining subproblem u, = a(z)u; then the method
(1.8) cnn be written as a single step method

Uptl = Uiy + 52Ut = Ungpet) + 197 0(Em)((Em + B) 4 o&m))(UTy 1 = Ultp)
- (a(ﬁm) + O‘(‘Em - R)) :ln+p - U;ﬂ:—l))

where Z,, = €y, + %ph. Notice that even though this is a scalar problem, the operators 3, and
a(z)d, do not commute and so the Strang spliting must be used.

The shallow water equations provide a more interesting example of Problem 3. These are
discussed in section 8.

General considerations. The cffectiveness of the time-split method depends on the error
in the splitting (1.7). If this is exact then the splitting method is clearly more efficient For the
types of problems we are considering. On the other hand, if the splitting error dominates, it
may be necessary to reduce the timestep considerably, eliminating the possible benefits of the
splitting. In the next section we derive an cxplicit expression for the splitting error and indicate
how to determine whether a splitting method is useful on a given problem. We will show that the
eguations sometimes need to be transformed to reduce the linkage between fast and slow modes in
order to achieve the desired accuracy.

The @ operators in the time-split method can consist of one or more steps of any explicit or
implicit scheme using two time levels. It is not immediately clear how a scheme using more than
two time levels (such as leapfrog) could be used. For suppose we want to use leapfrog as Q,(k) to'go
sfrom U” to U™ in (1.9). Then we would need-some approximation to exp(—kAd;)U" (which is not
U™) to play the role of U * a the previous time level. As a first step towards incorporating multi-
level schemes into the splitting framework, section 4 introduces a different type of split scheme
which does use leapfrog for Q,(k). This method is based upon approximations to the variation
of parameters formula, or Duhamel’s principal, and will be called the Leapfrog Duhamel method. .
Similar ideas have been used for ordinary differential equations by Certaine[3]. The accuracy and
stability of the Leapfrog Duhamel method is considered in sections 5 and 6.

The initial boundary value problem is considered in section 7. In most cases boundary data
will have to be supplied for the intermediate solutions U~ and U™" in (1.9). We consider the
problem of approximating the correct boundary data in terms of the given boundary conditions.

Some further examplés of splittings and computational results are-presented in section 8.

2. Accuracy of the time-split method.

In this section we consider discretizations of the approximate splitting
u(z, t + k) = exp( §kA0.) exp(kA,8;) exp( 3kA70:) u(z, t) (2.1)

for the solution of u; = Au, = (Ay + A,)u, with ||A,]| < ||Af]]. Up until section 7 we will deal
only with the Cauchy problem, where —oco < z < oo. Of course these results also hold for a strip
problem with periodic boundary conditions, eg., 0 < z < 1 and »(0, ) = »(1, t). We will assume
that Ay and A, are constant matrices but our approach carries over for more general problems
if the exponentials in (2.1) are replaced by the appropriate solution operators. For example, the
splitting error for the problem (1.12) is given in example 8.2 of section 8.

If Az and A, commute then the splitting (2.1) is exact. Otherwise we define the splitting error
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operator [isp5.( k) by

Esplit(k) = exp( §6A50;) exp( kA;0;) exp( s kAf0;) — exp(k(Af + A,)0;)
= — Lk (3A%A, — LA;AA; + 1A,A% | (2.2)
— YAZA; + A A A, — LA A2)E + O(KY).

The local truncation error operators for the approximate solution operators Qs(k/2) and
Q.(k) are defined by
Ef(lc/2) = Qf(k/Q) -~ exp(%kAf(?,)
Ey(k) = Q,( k) — exp(kA,9;).
Note that for a second order scheme such as Lax-Wendroff these are O(k®). We can now compute
the truncation error operator for the split scheme. The numerical solution operator is

Qs(k/2)Q:(k)Qs(k/2) = (exp( §kAs9z) + Ef(k/2))(exp(kAsdz) + E,(K)
X (exp( §kA;0z) + Ef(k/2))
= cxp(§kAs9;) cxp(kA,8;) exp(3kA;0;)
+ E (k) + 2E5(k/2) + O(K*Y)

= exp( k(Af + A,)9z) + Eqpiit (k)
+ E(k) + 2E¢(k/2) + O(k%).

-The truncation error operator for the time-split method (TSM) is thus

ETM(k) = Q(k/2)Q4(k)Qf(k/2) — exp(k(Af + A,)0x) (2.3)
= Eypuin(k) + Eo(k) + 2E4( k/2) + O(k*). |
For a given problem this error can be computed directly and used to assess the efficiency of the
time-split method relative to an unsplit method.

In order to illustrate some of the propertics of this method and the effect the splitting error
Espiie(k) has on its utility, we restrict our attention to the case where Q,(k) consists of a single
step of Lax-Wendroff. For convenience we use LW/(A, k) to denote the Lax-Wendroff operator,

LW(A, k) =1 + kADy + §k*A%2D, D_

where Dy, D+ and D_ are the standard centered, forward, and backward difference operators,
respectively. We thus have

Qs(k) = LW(A,, k). (2.4a)
For Q¢(k/2) we consider both
Qr(k/2) = exp(3kAs9;) (2.4b)
and
Qs(k/2) = (LW(Ay, k/m)y™? (2.4¢)

for some even integer m. The situation (2.4b) occurs when the solution operator exp( 4 kA;8y) is
known exactly, as in Problem 3. In (2.4c) Q(k/2) consists of m/2 steps of Lax-Wendroff with
timestep k/m. This might be appropriate when solving Problem 1, for example.
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The standard error analysis for Lax-Wendrolf shows that for (2.4a) we have
Ey(K) = EEW(K) = — Yk3A3 - kh%A,)03 + O(k*). (2.5a)
When (2.4b) is used there is no error on the fast, scale and
Eg(k/2) = EFP(k/2) = 0. (2.5b)
Otherwise, when (2.4¢) is used,
Qs(k/2) = (LW(Ay, k/m))™/?

— (expltr00) - (8543 - £ta)t) ™

= exp(§kAs0,) - H( 4543 - £h24,)02 + O(KY)

and so
Es(k/2) = EEW(k/2) = — &(5543 — kh?4,)03 + O(kY). (2.5¢)

In this case wC must choose an appropriate value of m, the number of small timesteps used within
each large timestep. For fixed h, the error E‘}V(k/Z) does not approach zero as m — co. From

(2.5¢) it seems unreasonable to take m any larger than a value for which || %A?” ~ ||kh2Af]|.
This suggests taking

k
m e ZllAgl (2.6)

The proper choice of m may also be influenced by stability requirements. Determining the stability
of the operator Qf( k/2)Qs( k)Qf( k/2) is in general a difficult problem, which will be considered
in some detail in section 5. It will be shown there that for some problems the product operator
is stable provided @¢(k/2) and Q,(k) are each stable independently. It is well known that for
Lax-Wendroff the stability condition on Qf(k/2) is p(As)k/mh < 1, i.e, m > p(Af)k/h. The m
given in (2.6) is consistent with this requirement. Also note that for k/h == 1/||A.]||, (2.6) becomes
m = || A/} Al

When the splitting error Egpiie(k) is negligible compared to the other terms in (2.3), the
truncation error for the split scheme becomes

E™*M(k) = E,(k) + 2Ef(k/2) + O(k*)
= — K3(A3 + L;A3) — kh%(A, + A;))33 + O(K?).
This error is roughly the same as we would obtain using (LW(A, k/m))*, i.e, Lax-Wendroff with

. smal steps on the unsplit problem. The truncation error for the unsplit method can be derived in
the same manner as (2.5¢) to obtain

EW(k) = — X E(A; + A)° — kR*(Af + A,))33 + O(K*)

2.7
a - %(%Aj} — kh*(A; + A,))03. 27)

Thus we do amost as well by taking large steps with A, and small steps with Ay as we would by
taking small steps on the unsplit problem. This can lead to considerable savings. If Qf(k/2) =
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exp(gkAs9;) the results are even more striking. Now the error (2.3) is simply
ETM(k) = E,(k) + O(k*) = — k343 — kh%A,)0% + O(K").

Comparing this to (2.7) shows that the split scheme is considerably more accurate. It also requires
less work, since now nothing is computed using small steps.

The results of the last paragraph are all based on the assumption that Fip;.(k) is negligible.
In practice Eqpjie( k) may easily dominate the discretization error E,(k) + 2E4( k/2). in this case the
split scheme is less accurate than Lax-Wendroff with timestep k/m. Nonetheless the split scheme
may be preferable. It may be possible to use the split scheme with smaller k and h to obtain
better accuracy while still requiring less work than the unsplit scheme. The proper quantity for
comparison is the work required to obtain a given accuracy. This can be estimated and compared
for various methods as we now do. Under some mild assumptions, we will see that the methods
(2.4a,b) and (2.4ac)are always morc efficient than the unsplit scheme (providing we choose k/h

properly).

Work comparisons. We will compute expressions for the work required to obtain a solution
at time ¢ = 1 with error a& most 7. All of the bounds below are rough order of magnitude bounds
which are sufficient for our present purpose. Suppose that

lAll =~ lAfll =a,  [lAall =15

where b/a = € << 1. Also suppose that ||u,zz|]| & 1. This is for convenience only, since it removes
one common factor from all of the bounds below.

We will first analyze the unsplit Lax-Wendroff method LW({A, k). Suppose that W is the
work required to compute LW(A, k)U%, at a single point z,,. Then the work required to advance
the solution on a unit z-interval by one unit of time is W/kh = \W/k? if k = Xh. The error
committed in one time unit using the unsplit method is bounded by

I((LW(A, k))'/* = exp(A9,))ull
< SHEIAIR + kR2[A]) + O(kY)
< L1k%(a® + a/N%) + O(K®).
Since we require an error = 1, we Set
§k2(a® + a/N?) =1
giving

67

B o=
a(a? +1/22)°

Thus w(7; X), the work required to achieve a given accuracy 7 using Lax-Wendroff with stepsize
ratio X\, is given by

\W

w(r)) = o
a’w
= ()\a + 1/XG)W.
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Wc have not yet specified . Choosing X to minimize w(r; X) gives X\ = 1/a and the minimum work

w(r) is

2wy
W(T) = %‘T/—V— for unsplit Lax-Wendroff. (2.8)

Now consider the split method (2.4a,b). Let W, be the work required to apply Lax-Wendroff on
the dow scale and W5 the work required to computed exp(kA;3,)U7,. Set WTsM = W, + W™,
Typicadly WTs M =~ W. The error over one unit of time for the split scheme is bounded by

(o™ - i
S %”Esplit(k)u + E,,( k)u + 2Ef( [c/2)u + 0( k4)”

For (2.4b), E¢(k/2) = 0. From (2.5a),

| Es(F)ull < §k(k*6° + h%b)
= £°(6° + b/)\?).
The splitting error is bounded using (2.2),
”Esplit(k)u” S %—k:’(azb + abz)
~ Lk3a?b,

although it may be much smaller for some problems. Since our results depend very much on the
size of this error, we will suppose for now that

| Espiis(k)ull < 2k
for some ¢, so that
1.
1 Bspia(k)u + Eolk)ul] < L2 (o + b3 + b/X2).
In order to obtain accuracy T we must take

67

B =
o+ b3+ b/X\2

SO
w(T;\) = AWTIM /2
WTSM
= XNo + b + b/x2)6—T. ‘(2.10)

The optimal stepsize ratio A now depends on the size of the splitting error and is given by

A=

b
T (2.11)
so that

TSM

for the time split method (2.4a,5).
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If ¢ < b® (eg. when Ag apd A, commute), then (2.11) gives X == I/b and

B b2 WTsMm
R

When W79 M ~ W this is better than (2.8) by a factor of €2, mcaning greatly improved efficicney.
Note that when o = 0 the only error incurred is the error in using Lax-Wendroff on the dow scae.
From our previous discusson of Lax-Wendroff it is clear why X = 1/b is optimal in this case.

On the other hand, if the splitting error is asbad as (2.0) indicates, then ¢ = a%b and \ = I/a
in (2.11) giving

W(T) (2.12)

abWTSM
wlr) o

This is still an improvement over (2.8), although now only by a factor of e. Note that now X is
chosen appropriate to the fast scale, even though the fast part of the problem is solved exactly,
in order to reduce the error due to splitting. Indeed, if we try to use A = 1/b when o = a2%b, we
obtain no improvement over (2.8). For this reason it is advisable to always use small time steps
with the time-split method (2.4a,b) unless Eg,j;(k) is known to be very small, in which case even
greater efliciency is achieved by using larger timesteps.

Now consider the method (2.4a,c) where Lax-Wendroff is used for both operators. In this case
WTSM = W, + mWy where Wy is the work requried to apply Lax-Wendroff on the fast scale. We
are assuming that Wy << W, =~ W. We will take m == Xa as suggested in (2.6). Using (2.5¢) we
find that

1
E”Espm,(k)u + Es(k)u + 2E¢(k/2)u|| < %Ic2(a + 0%+ b2 + a3/m2 + a/xX™).

“We then obtain

W, + )\an_
67

for (2.4a,¢). (2.13)

w(r; X) = N(o + b® + b/2\% + 2a/2?)
W, + )\an_
67

The optimal X now depends-on the relation between Wy and W, and is more difficult to solve for.
We will discuss three possible choices of X: X = I/a, X = I/b, and X = 1/\/@.

When X\ = 1/a, m = 1 and we are simply aternating between LW(As, k) and LW(A,, k). In
general we would not expect this to be any more efficient than using the unsplit method LW(A, k).
Indeed, we find that

~ Mo + b% + 2a/)\%)

w(r; 1/a) ~ (o + #)/a + 2a7) P
2 W, + Wf ‘
~at————
37

regardless of the size of o. This is better than (2.8) only if W, + Wy < W, which is generally not
the case for the problems we are considering. (Note that this is the case, however, in the LOD
method, where we alternate between solving one-dimensional implicit problems in different space
dimensions.)

For A = I/b increased efficiency is possible if the splitting error is small. From (2.13),

Wa + %Wf

67
W, + %Wf

61

w(r; ) = (a/b + 26% + 2ab)
~ (o/b + 2a'b)
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Suppose thal Wy + cW, = AW for some 7 < 1/2. Then W, + $Wy = W and so
0114

e 214
67 ( )

This is better than (2.8) whenever o < ab?/+. In this case the time-split method is more efficient.
For example, if ¢ = 0, (2.14) is better than (2.8) by a factor of 7.
Unfortunately, if ¢ = a2b as in (2.9), then

aZ(Ws + %VVf)
w(rlfb) e ————

which is no better than (2.8) and may bc worse if Wy > eW.
Now consider an intermediate stepsize ratio, X = 1/v/ab. From (2.13),

W, + Va/bW,
w(r;1/Vab) =~ ——1—(0 + 2a®b) a/b Wy
/ab 61‘_
< g3/2p1/2 W, ++/a/b Wy

27
W, +v/afb Wy
27

w(r; 1/0) = (ac/b® + 24%)

= \fea?

regardiess of the size of ¢. This is better than (2.8) if Wy + /eW, < %W, which will generally be
true.

We conclude that the method (2.4a,c) is more efficient when X is chosen correctly. If the
splitting error is known to be small then X = 1/b can be used. Otherwise smaller timesteps should
be used, eg. A = 1/\/55. Very small timesteps, A = |/a, should never be used.

Here we have not dealt with the advantages of the split scheme resulting from the possibility of
choosing the stepsize ratio on cach scale so that the k% and kh2 terms in each of the Lax-Wendroff
errors nearly cancel out. When this can be done, the splitting may be even more advantageous
than indicated here.

Block triangular systems. Since the efficiency of the split scheme is limited primarily by
the splitting error, it is interesting to investigate how this error depends on the coupling between
fast and slow scales in a simple model system. Suppose that the matrix A is of the form (1.10)
with ||A12]| &= « < 1 and that the splitting (1.11) is used. Here A g is the coupling between fast
and slow scales. If Aj2 = 0, the problem is uncoupled and Egplic(k) = 0. In general, from (2.2),

3
E apiie(k) = —’f—[" schu(cAndn = 24ndn) 93 + o),
610 0 I
Thus || Espiis(k)u|| = ak®/24€2. The' efficiency- of the splitting depends on the size of a. In the

notation used above, we have
a= 1[e b =1, o = laa®b.

For unsplit Lax-Wendroff, (2.8) gives

-

1w
T 237
The time-split method (2.4a,b) is dways more efficient if we choose
A= (1 + laa®p)~1/2
For example, if @ ~ 1 we should use A\ =2 2/a = 2¢ in order to reduce (2.15) by a factor of €. The
maximum efficiency indicated in (2.12) is achievable only if a < €2, in which case taking A\ = 1
reduces (2.15) by a factor or €.

w(r) (2.15)

10

]



Reducing the splitting error. I'or block tgiangular systems in which Ay is not sufliciently
small, it is possible to reduce the coupling through a change of variables so that the optimal
elliciency can be achieved. A change of variables amounts to replacing « by 4 = Bu for some
nonsingular matrix B. The system u; = Au, then becomes @, = BAB '@,. Clearly, if B is
chosen to be the cigenvector matrix of A then the problem completely decouples into independent
scalar equations. We are secking something less expensive which only decouples the fast and slow
scales. Thus we want a matrix B such that

1 -0 ’
BAB~! = |<Cu 2.16
[ 0 022] (216

with ||C1]| =& ||C22|| & 1. In the block triangular case, it suffices to consider B of the form

b L

BAB~! — [%Au —L1A1iByg + Ajp + 312/1221
0 Az

Then

and so B;g should be chosen to solve

1
2A11312 — B2 Az = A1z (2.17)

_in order to completely decouple the fast and slow scales.
In the present context solving for Bz from (2.17) is not worthwhile. In order to achieve
optimal efficiency we need only reduce the coupling by one or two factors of ¢. Further reductions
do not gain anything once the Lax-Wendroff errors dominate. This suggests taking

Biz - €ATl Az (2.18)
S0 that .
BAB—1=[%A11 Agz’]
0 Agg
where

Aglz) = €Aty A12Aza.

We now have ||A(112)|| ~ ea provided |!AT'|| & 1. The coupling is thus reduced by a factor of

€ through the use of a very simple change of variables. The above process can be repeated to .

obtain additional factors of e. This change of variables has been suggested by Kreiss[9] in a similar
context.
For full systems of the form

Ay A2

we can obtain a similar reduction in the size of both off-diagonal blocks and again reduce the
splitting error by several orders of magnitude. In this case we consider B of the form

o= g 3 o)

11

A= [%Au Alz]



It is easy to verify that the lower corner of A is annihilated by taking L to satisfy

£L1111 - AggL - Ljth + A21 = 0.

€
The matrix K can then be chosen as before to remove the remaining upper corner. This results
in a system of the form (2.16). This particular transformation is discussed more completely by
O’Malley and Anderson[14]. Again, however, we are not interested here in completely annihilating
the corners, but rather in reducing them by a factor of €. This is easily accomplished by taking

K = eAfi Az
L= —6A21Ar11.
Example 8.1 in section 8 illustrates the use of the change of variables for a triangular system.

3. Stability of the time-split method

In this section we investigate the stability of the time-split method when applied to a constant
coelficient problem on the entire real line, —co < x < co or, alternatively, on a finite interval
with periodic boundary conditions. When Q%(k/?),= Qy(k), as is true for the splittings (2.4), for
example, Cauchy stability of the Strang splitting (1.8) is equivalent to stability of the first order
splitting

U™t = Q,(k)Qs(k)U™. (3.1)
For simplicity we restrict our attention to this splitting, and set Q(k) = Q,( k)Q s(k).

In general the stability of Q,(k) and @(k) does not imply stability of Q(k). Instead stability
must bc checked directly. In fact, (3.1) can be unstable even when Qf(k) and Q,(k) are exact
solution operators for well-posed hyperbolic problems as the following example shows.

Example 3.1. Let
|11 » 101
wo=lo B a0

Then the problems u; = Ajug, u, = Asu, and uy = (A + A,)u, are al well-posed, strictly
hyperbolic problems for any value of the parameter p. Let '

Qs(k) =exp(kA;9z),  Qa(k) = exp(kA9;).
and let G¢(€, k/2) and G,(¢&, k) be the corresponding amplification matrices. For the exact solution

operators, _
Gy(é,k/2) = exp(ikéAf)

__[e**¢  pisinké
“lo - ek
and .
Gs(f) k) = exP(ZkEAa)
_ [coskf 1sSnké
" lisinké cos k¢
We have p(Gy (&, k/2)) = A(Gs(€, k)) = 1 for al € and k. On the other hand, the amplification
matrix G(&, k) for the time-split method (3.1) has p(G( &, k)) = 1 for al ¢ and k only if |p] < 2.
When |g| > 2, the method is unstable. Figure 3.1 shows graphs of p(G( &, k)) for p = 5,10.

In spite of this example, there are some very important classes of splittings for which the
individual stability of Qs (k) and @,( k) does imply the stability of Q(k). It is useful to delineate
such classes, since the stability of @(k) and Q,( k) is d £n easy to determine, whereas the stability
of Q(k) may be quite tedious to determine directly.

12
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Figure 3.1. Spectral radius of the amplification matrix G(&, k) of example 3.1 for yu = 5,,10, as
a function of £k between —7 and .

Block triangular systems. One such case is the block triangular system of equations

b=l

v), L 0 Axjv]

with the splitting (1.11). The solution v does not depend on =. In solving for u, the computed v
enters essentially as a forcing function. The schemes Q,(k) and Q(k) will be of the form

. =1. gl o, =[2u® 9| (32)

Suppose that @11(k) and Q22(k) are stable schemes, and in particular, that there exist a norm || . ||
and a constant a > 0 such that

NR11(k)ll <1+ ak for al k sufliciently small. (3.3)

All of the following estimates will be in this nhorm. We aso suppose that

IRu(k)VI| < kM||ID V|| (3.4)

for some constant M. These assumptions are satisfied for the methods (2.4) *provided the Lax-
Wendroff operators are stable. Wc then have the following theorem.

13



THEOREM 3.L. Suppose Qs(k) and Q,(k) are stable schemes as above, Then the split scheme
Qs(k)Qs(k) is stable for smooth initial data V. More preciscly, we obtain bounds for the solution
which depend on a discrete Sobolev norm of the initial data,

™l < Kz(lU°] + 1D+ V) (3.5a)
vl < Ke|IlVOll (3.5b)
for nk < T. Here K and K are constants depending only on the fixed time T.
Proof. When the full scheme U™ = Q.(k)Q(k)T™ is written out wc obtain
Ut = Qu(k)U™ + Qui(k)Qia(k)V™ (3.6a)
VL = Qaa(k)VT™ (3.6b)

The bound (3.5b) follows immediately from (3.6b) and the stability of Qq9(k). Moreover, by
linearity, an identical bound holds for the lincar combination of solutions-D V™, i.e,

1D+ V™| < Krl|D4V).
Using this together with (3.4) in (3.6a) gives
WU < NQuBIU™ + kM K||D4VO|)).
When iterated n times this gives

WU < NRQu(BIMNUN + kMET(IQuu(B)™ " + |Qui(k)|I™
o+ llQuRl + DIIDLVO.

v (3.3), IQu(R)|* < (1 + ak)™ < e2T if nk < T. Using this in (3.7) gives
U™ < T (U + TMEKZ||D L VO|))
for nk < T, which is of the desired form (3.5a). 1

(3.7)

Simultaneously normalizable matrices. Stability also follows dircc tly when Ay and A, .
arc normal matrices (a norma matrix is one which commutes with its transpose). This includes,
for example, symmetric matrices and scalar problems. In fact, it suflices that Ay and A, be
simultaneously normalizable, i.e., that there exist some nonsingular matrix S such that SA,S~!
and SAg S—1! are both normal. Thus, the case of simultaneously diagonalizable Ag and A, is also
covered. This is a consequence of the following, even more general, theorem.

THEOREM 3.2. Let Al, Ag, .. ., A,, be constant matrices. Approximate each solution operator
exp( k;A;0;) by some operator Q;(k;) with amplification matrix G,(£). Suppose there exists some
nerm || . || for which :
”GJ(E)” <1 V¢, 7=1L2,...,m (33)
Then the scheme

U™ = Qi(k1)Qa(k2): - Qu(km)U™ (3.4)
is stable.

Proof. Let G( €) = G1(€)G2(€)- - -Gm(&). Then powers of G(¢) are uniformly bounded in the

norm || . || since
‘ IG™(ll < NG

G ()I® NGm(EI)™
<1
It follows. that (3.4) is stable. &

14



COROLLARY  Suppose there exists some nonsingular matrix S such that SAJS"“ is normal
forj=1,2 ..., m and that the amplilicalion matrices G;(&) satisfy

NG ENGTIL e = 1,2,...
ihEe(&s™ | ve 0= 1.2 418, j=1,2,..,m

Then the scheme (3.4) is stable.

Remark: Condition (3.511) is satisfied if @;( k;) is the exact solution operator or one or more
steps of Lax-Wendroff.

Proof. Since the 2-norm of a normal matrix is equal to its spectral radius, conditions (3.5)
give
ISG,(€)S7 Iz = A(SG;(€)8™Y) = p(G( €) < L

It follows that the hypothesis of Theorem 3.2 is satisfied in the norm || . || defined by
Al = 1SAS™Hl2.

This completes the proof. 1

4. The Leapfrog Duhamel method.

As mentioned in the introduction, the time-split method does not immediately lend itself to use
with multi-level difference schemes. We now present a new method with the same basic philosophy
Tas the time-split method but which uses leapfrog on the slow time scale.

Using Duhaniel’s principle (i.e., variation of parameters) wc can write the solution to (1.3) as

t+%
u( z,t + k) = exp(2kAfdz)u(z, t — k) + / . exp((t + k — 7)Af0z)Asuz(z, 7) dr.
t-

If we now approximate the integral by the midpoint rule we obtain

u(e, t+K) ~ exp(2kA; 0 )u(z, t — K) + 2k exp(kA;0:) A uy(z, t)
= exp(kA;0.)[exp(kA;0z)u(z, t = k) + 2k A uz(z, ).

L]
Replacing u.(z, t) by the standard centered difference operator and approximating exp(kAsd;) by
Qs(k) gives the Leapfrog Duhamel method,

UL = QuRIRAMUE" + AUy = Ul (4.1

The term inside the brackets is essentialy leapfrog for the problem ug = Azug since Qf( k)U™ ! =
exp(—kA,0;)U™. If Q(k)is an O(k®) approximation to exp(kA;d,) then (4.1) provides an O(k®)
accurate approximate solution, even for noncommuting A¢ and A,. This will be shown in section
5 where the method is analyzed in more detail.

We pay a price for using a scheme involving three time levels, since (4.1) requires two applica-
tions of the operator Qy(k). 0 ne of these is needed only to provide the proper values a time n— 1.
Nevertheless, this method may be useful, particularly in cases where exp(kAsdz) is known exactly
and thus is easy to apply.

15



5. Accuracy of the Leapfrog Duhamel method

The Leapfrog Duhamel scheme can be analyzed in terms of the error in the midpoint rule
directly from its derivation. We prefer to build upon the results in section 2 by rewriting Leapfrog
Duhamel as a splitting.

First consider the standard leapfrog scheme on u; = Aju,,

Untl = U™+ 2kA,DU™.
The truncation error is given by

[u(z, t — k) + 2kA,Dou(z, 1)] — u(z, t + k)
= [(I + 2kA,Dy exp(kA,&,)) - exp(2k1136_.,,)]u(x, t — k).

For conformity with section 2, we define the operator Q,(2k) by
Qs(2k) = I + 2kA,Dg exp(kA,9;).

Note that this is not the actual finite difference operator for leapfrog, since in general U™ is not
exactly equal to exp( kAs8;)U™!, but it is the proper operator for computing the local truncation
error, in which U™! and U™ are replaced by the true solution values. We can now define the
truncation error operator for leapfrog on stepsize k by

ELF(k) = Qu(2k) — exp(2kA,9;) = O(k%). (5.1)
The Leapfrog Duhamel scheme is

U™t = Qs(R)(Qs(RU™ " + 2k4,DoU™) (5.2)
where @ (k) is some approximation to exp(kA;d;) with error operator
E¢(k) = Qg(k) — exp(kA;8;) = O(k®).

To obtain the truncation error for Leapfrog Duhamel we replace U™~! and U™ by u(z, ¢ — k) and
u(z, t) in (5.2). The right hand side then becomes

(k)1 + 2kA,Do exp(kAD:)Q7 (k)] Q s (k)u(z, t — k)

= Qs(R[I + 2kAsDo explkA,0) + 2 A, Do(exp(kAD,)Q7 ' ()
—exp(kA,0.))| Qs (k)u(z,t—k) (523)

= [@s(k)Q,(2k)Q;(k )+2ka(k)AsD0(0Xp(kAaap)
- exp( kA0;)exp(kAs8z)— exp(kADL)Es (k))|u(z,t k).

Thus the Leapfrog Duhamel operator can be viewed as a splitting of the form Qf (k)Qs(2k)Q#( k)

plus some additional error terms which are O(k3). Let Efphb(k) denote the error operator for the
first order accurate splitting

EL (k) =exp(kAd;) — exp(kA,0;) exp(kA;d.) = O(k?).
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Observing that
exp(kAs0:) 125 (k) = O(k®),
Qs(k) = I+ O(k),
Dy = 8, + O(k?),

the operator in (5.3) becomes

Qs(k)Qa(2k)Qf (k) + 2kA0:Eqpy; (k) + O(k*).

Using (2.3) we obtain an expression for the truncation error operator for Leapfrog Duhamel,

EXTP(k) = (Qr(K)Qo(2k)Q5 (k) + 2kA, 8, Epy;, (k) + O(k))
— exp(2kAd,)

= Eqpin(2k) + EZF (k) + 2E4(k) + 2k A0 EL 15 (k) + O(KY).

For A, and Ay constant wc have

1
Eqpi(k) = 3 k(A5 A, — A, A5)0% + O(K?)
SO
Eypiis(2k) + 2kA,0.E ;0 (k)
= - §k%(A3A, — 245 A, A5 + A, A2
+ A2A; + ALAA, — 2454203,

The splitting error in Leapfrog Duhamel is thus roughly 8 times as large as the corresponding error
in the time split method with Lax-Wendroff. The work comparisons of section 2 can be repeated
for Leapfrog Duhamel with similar results.

6. Stability of the Leapfrog Duhamel method
At present the stability analysis for Leapfrog Duhamel covers only the case in which Ay and
A, are simultaneously diagonalizable,

XA X' = My, XAX'=M,

where My and M, are diagonalizable matrices. We assume that @g(k) is stable and is also
diagonalized by X. This is true for Qs(k) = exp(kAf9;) or for Qg(k) = (LW(As, k/m))“> with
p(As)k/mh < 1.. Let gf(k) be a single diagona eement of X Qs(k)X ! and p, a diagona eement
of M,. It suffices to consider the scalar equation

U = (KUY + 2kqp(k)uaDolU™. (6.1)

Let g¢(€) be the amplification factor corresponding to gs(k). By assumption, |gs( €)] < 1 for all &.

THEOREM 6.1. Suppose |Aps| £ 1, where X\ = k/h. Then the amplification factor g(¢) for
the scheme (6.1) satisfies

|9(&) = lgs(€)I-
17



Proof. The amplification factor is dcrivctl by letting
Up =g"(€)esm"
in (6.1). We obtain the equation
SE) = 95(€)97 () + 20ng(€)pss sin Eh
which can be rewritten as
(9(€)a7 ' (€))® — 2idus sin Eh(g( €)g7 ' (€)) - 1=0.
Solving this quadratic equation yields

9(6)97 ' (€) = ixuysin h £ /1 — X2 sin? éh.
If [\us] < 1, the square root is real and so
l9(€)g7 (N2 =1

. and hence
l9(E)f = lgs()]

as claimed. §

- Note that when the exact solution operator is used .for gs(k) we have |gs(¢)] = 1 and hence
lg(€)] =1 for al €. In this case Leapfrog Duhamel is nondissipative.

7. Boundary data for the intermediate solutions.

For general initial boundary value problems we must be able to generate the appropriate
boundary values for the intermediate solutions which arise in the use of a split scheme. We have
developed a general methodology for defining the proper boundary data which will be illustrated
here for constant coefficient problems at an inflow boundary. More general problems can also be
handled, as will be reported on elsewhere. The procedure will be demonstrated for the time-split
method (2.4a,b), but can also be used- for the other methods previously described.

First consider the scalar problem :

ue = —(1 + €)uy r>0,t>0

u(0, 1) = o(t) £> 0 74

with the splitting
A, =-1, A, =-—¢

Take k = 2h and use the method of characteristics solution for Ay and Lax-Wendroff on A, .
There is no need to use a Strang-type splitting, since the operators commute, and thus the split
scheme is simply

*

Um= ;_2 m=2,3,.-.
Ut = Uy = €Uy = Up—y) + 263Uy — 2Up + Upa_y) (7.2)
m= 1,2,...

18



The value Of U"+' is given by the boundary conditions,
Ust! = g(tnt1)-

For the splitting (7.2) we must also prowde U0 and U7. In general with k = ph for some integer
p > 1, we would nced to supply U3, Ul, Y Up__l

In order to generate boundary data we consider U:n as an approximation to u*(:cm, tnt1)
where the continuous function " (z, ¢) satisfies

* *

U = -u,  T20,t2>t,

u’(z, tn) = u( , t,) x> 0. (7.3)

Then, using the differential equations governing u and ", we can express UO and U} 1 in terms of
g(t). Consider Ug. We want

Ug=u"(0, t, + k)
u” (0, tn) + kug (0, t,) + ‘lc2uu(0 ta)* ... (7.4)
u (0, tn) — ku (0, t,,) + Lk%ul (0, ¢ )

I

Mere we used (7.3) to express u, in terms of u.. But since u*(z, t,) = u(z, t,) for al x, this
relation can be differentiated with respect to X, giving ug(z, tn) = uz(z, t,) and similarly for higher
derivatives. So (7.4) becomes

Ug = u(0, tn) = kug(0, ta) + 1k2u,.(0, bn) +

We can now use the original equations (7.1) governing u to rewrite this in terms of ¢-derivatives.of
u. Since

we obtain

=u(0,t, &/(1 : (7.5)
=gt k/(1 €).
This is the desired boundary data.

For such a simple example it is easy to verify that this is the correct boundary value. According
to the scheme (7.2) we would redly like

Ug= Uty = u(-ih, t,).

Of course u is not officially defined for x < 0, but using the differential egquation (7.1) it can easily
be extended from the boundary. Since (7.1) has characteristics with slope 1/(1 + E), we Gnd that

w(=2h, tn) = w0, tn + 20/(1 + €)) = gltn + k(L + ))

exactly as in (7.5) .
We can compute U7 in the same manner. We want

*

Uy - u*(h, tﬂ+1)
u‘((), tnt1/2) where t,1/2 = tn + k/2.
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Wc now proceed as before,

Ui =u"(0,tn) Lku(0,1,) Lk%ug, (0, t,)
cu(0,. . —fkug(0, ) LkPugL(0, t,)
=u(0, tn) Friee(0tn) Y 25 )uee(0,t,) @ g
@ 9(tn = 35/(1 = o).

(7'6)

To summarize our procedure, we switched from t-derivatives of »* to x-derivatives of u*.
Since these were evaluated at time t¢,, they were identical to the corresponding x-derivatives of
u. We then switched back to t-derivatives of u along the boundary, which alowed us to usc the
known boundary conditions for u. Clearly this procedure will not work so neatly when we deal
with variable cocflicients, systems of equations, or inflow-outflow boundaries. Nonetheless, these
same ideas, combined with a little ingenuity, lead to sufficiently accurate approximate boundary
conditions for a wide variety of problems.

Constant coefficient systems. Next consider the system of equations

U = Aug = (Af + AGJu >0, t>0
u{0, 2) = "9(t) (>0 (77)

We assume that A and Ay have drictly negative eigenvalues. In general Ay and A, do not commute,
so we will have to use a Strang-type splitting. There will be at least two intermediate solutions,
say

U* ~ exp(—é—kAfaz)U"

* % n 7-8
U™ =~ exp(kA,d;) exp( §kAf0:)U™. (78)

Of course there may be many more if exp( % kAsd;) is itself approximated by severa steps of Lax-
Wendroff, but they can be handled similarly. The general principle should be clear from considering .
(7.8).

Again let u’(z, t) be a continuous function satisfying

(7.9)

We then want

U; = ’U.‘(O, tn+1/2)-
= u (0, t,) + %ku:(o, tn) + %k2u;(0, ta) + . ..
= u(0, tn) + §kAguz(0, 1) + k2 A%uss(0,8,) + . .. (7.10)
= 4(0, tn) + %kAfAl_luf(oy tn) + %k_24§A—2uu(0, ta) + . ..
=9g(tn) + §kA; AT ¢(t,) + § E2AZA 2 (t0) + ..,

We assume that the boundary is non-characteristic so that A is invertible. In general U; must
now be approximated by the first few terms of (7.10). If we keep only the first two terms we will
have boundary data with O(k?) errors. This is sufficient to retain the O(k?) global accuracy of
Lax-Wendroff (see Gustafsson(7]). It may, however, increase the error constant considerably and
partly offset the benefit obtained by using the split scheme. Consider, for example, a case in which
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|45l = 1 and ||A,]] = €. In this case the error IE7$M(k)u is like ck® at most and the resulting
global error, assuming « is smooth, will bc like ck?. [n order to achieve the same accuracy in the
boundary data we will have to include the third terrn of (7.10) as well (or at least its dominant
part). In some such cases it happens that

A}AT = 1+ O(c) for j = L,2,....
We can then retain O(ck?) accuracy simply by taking
Ug = gltnt1/2) + $k(A A7 = Dg'(tn).

This will be illustrated in Example 7.1 .
Now to find boundary values fo U**. The easiest way to proceed is to note that

U™ = exp(— LkA;0,)U™T!
which prormp ts us to define u"*(z, t) as the continuous solution to

u, (z,1) = Asu, (z,t) 20, t<tnyt

. (7.12)
u (T, tns1) = u(z, tnt) x 2 0.

We now solve this backwards in time for

U(,;‘ = u“(O, tn+l/2)'

Proceeding as in the derivation of (7.10) we obtain

Up =g(tns1) = $kAf AT g (tnyr) + §E2ATAT2 " (tnir) +
~ g(tny1y2) — $k(Af AT = D)g (tnt1)-

Example 7.1 Consider

[ L eses oo
(:v,0;—-f(:c) 0<z<1
4(0,t) =g(t) t>0

where 3 = (u, v)T. We have. chosen a strip problem to illustrate that outflow boundaries are
frequently trivial to handle with a split method. Take

-1 0 0 €
o R T
0 -2 €9 0
For this problem the splitting error is

—€1€9 Lq 3
Eone(k) = — LE3|  ° 1°1153,
spht,( ) [3 1€ creo z
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I'f we use the time-split method (2.4a,b) then, according to (2.11), the optimal stepsizc ratio is

€

=" ~ 2

te+éd
. where € = max |¢;]. For k = 2h and h = I/M, (2.4a,b) becomes:

*
m=Up_1, m=1,2,..,M
*

U
Vie=Vm_o m=23,...M

*%

U, =LW(A, kU, m= 1,2,.., M-I
- 0+l

Uy = g(ta+1)

Urtt=0U."_,,m = 1,2,.., M

V:z.+1 = V:r:—2) m = 2;3 yery M

Notice that no boundary conditions whatsoever need to be specified at the outflow boundary x = 1.
On the inflow side we ill need to specify UO, VI, UO , and V’l‘“. I?or ths problem,

A?eA_2 — (2 - é162)2 [4 126069 4 +34€1€2
=TI+ O(e).
and we can retain O(ek?) accuracy by taking ,

- ¥

Ug = g(tnt1/2) + sk(AfA" = I)g'(tn)

k €1€2 €
262 €1€2

(7.14)
]g'(tn)

= t _—

Similarly we use
Uy = gltar1/2) = $k(ArA7" = Dg'(tnsd).
In order to implement the split scheme, we also need Vi and V7!, We want V} =
v*(h, tnt1/2) = v*(O, tn+1/4) and so the appropriate value comes from the second equation of
ﬁ‘(o, tn+1/4) ~ g(tn+l/4) + %k(AfA_l - I)g,(tn)
i.e,

Vi=g2ltat1/4) + qae(2€2di(tn) + crcagh(tn))
where g = (g1 , g2)T. Similarly,

VTH = g2(t'n+3/4) - W_,::;S(252911(t'n+1) + flézglz(tn+1))-

Computations confirm that these boundary conditions preserve O(ek2) global accuracy in the
split scheme. Actually, for this particular example with k = 2h, even greater accuracy can be
achieved. Computing E,(k) from (2.5a) shows that the O(ek®) terms exactly cancel the O(ek®)
terms in Egpiit(k) , and that the total truncation error ET5M(k)u is actudly O(e2k3), giving O(e?k?)
global accuracy. Higher order boundary conditions can be derived which maintain this accuracy,
but this cancellation of errors is a fluke which does not occur in generd.
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Stability for the initial boundary value problem. The boundary approximations derived
here all depend only on the given boundary function g(t) and its deri vatives. Suppose the time-
split, method used in the interior is Cauchy stable. Then the stability of the resulting scheme
for the initial boundary value problem follows directly from the theory of Gustafsson, Kreiss and
Sundstrom[8], if we modify their stability definition 3.3 by using an appropriate Sobolev norm of
the boundary data on the right- hand side.

8. Computational results.

In this section wc give various examples of splittings and present the results of some numerica
experiments. The first example is a 2 X 2 upper triangular system of the form (1.11). We'
demonstrate the effects of the splitting error and its reduction by the use of a simple change
of variables as discussed in section 2. (

The second example is a variable coefficient scalar equation in which the coefficient has small
variations around some large mean value. We give an expression for the splitting error in such
problems.

In example 8.3 we consider the one-dimensional shallow water equations. In some cases this
system can be broken up into a constant fast part arid a quasilinear slow part in conservation form.

Example 8.1. This problem is designed to illustrate the effects of the splitting error. Consider
u,:[loo il"l for0<z<1t>0 (8.1)

with initial conditions

.ul(m) 0) = 'U:2((E, 0) = e_IOO(x—-l/g)?

and periodic boundary conditions
u;(0,t) = u, (1, ¢t) t>0,j) =12

Figure 8.1 shows the results after 236 time steps using Lax-Wcndroff with h = 1/50 and k = h/10
on the unsplit problem. Figure 8.2 shows the results based on the splitting

ol -l
We used k = h = 1/50 with
Qs(k) = LW(A,, k), Qf(k/2) = (LW(As, k/10))5.
In this case E,(k) = Ef( k/2) = 0 by a judicious choice of k/h and m. The second component ug
is computed exactly and the errors in uy; are due entirely to the splitting error.

If the change of variables suggested in (2.18) is applied twice to (8.1) with ¢ = 0.1, we obtain
the new variable

Ty = uy — (€ + €®)ug = uy — 0.11212

| _ |10 0.01%
ugf, |0 1 Jlug] '
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If wc solve this system with the same split scheme as before and then transform back to the original
variables by u; = @, + 0.1 luy, the errors in uq arc reduced to O 1073) as scen in figure 8.3.

The Leapfrog Duhamel scheme can be applied to this system with similar results. The same
change of variables can clearly be used to reduce the splitting error in this scheme as well.

Example 8.2. For problems of the form
u = (a + a(z))uy

with a constant and |a(z)| << |a|, the splitting error operator corresponding to Ay = a, A, = o(z)
is :
E split (K) = exp( § kad) exp( ka( 2)3;) exp( § kad,) — exp( k(a + a(z))dz)
=~ a((Ja + a(e)e’(z) - ((2)))0, + O(KY)

For the Leapfrog Duhamel scheme the splitting error is

Espiie(2k) + 2ka( 2)0: B 15, (k)

= Eqpiic(2k) + 2ke(2)0,(Lk%ac!(2)0, + O(k3))
= —%kaa[@a + afz))a’(z) — 4(c/(2))? = 3a(z)e!(2)0:]0, + O(K?).

The Lax-Wendroff and leapfrog errors on uy = a(z)u, are respectively

BV () = £ a(2)[2?(2)03 + Ba(z)(2)2 + ((@/())” + a(z)a’(z))0.]
+ él-khza(:z)ag + O(kY)

and
EXF (k) = 2BX% (k) + O(K*).

For the test problem
ug = (1 + 0.1 sin(27z))u, on [0, 1]
u( z, 0) = sin(4nz) 0<z<1
u(0,t) = u(1, ¢)

a comparison of the errors shows that the splitting error for either scheme with k = 4h should be
of roughly the same size as E,(k) and considerably smaller than the error for the unsplit operator
with the same spatial step and reduced time step k = h/2. Thus we expect the split scheme with
the true solution operator used on u; = u, to be more accurate than the unsplit scheme. This is
confirmed by the computational results in Table 8.1. Note that in this case the improved accuracy
was obtained using only about one eighth the work required for the unsplit scheme.

If Lax-Wendroff is used on the fast scale, Q(k/2) = (LW(Ays, k/8))4, the corresponding error
2E¢(k/2) is roughly the same size as the error in the unsplit scheme. This error dominates in the
resulting split scheme and so we get roughly the same accuracy as in the unsplit scheme. This is
also illustrated in Table 8.1.

Example 8.3. The one-dimensional shallow water equations can be written as

BL=-BHM, | (8-2)
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where v(z, t) is the velocity and ¢ = gh with h(z, t) the height and ¢ the gravitational constant.
Typicaly ¢(z, t) = ¢ + ¢'(z, t) where ¢ is constant and

14'(z,8) < 19|
|o(z, )] < |¢]-

‘With the change of variables p
1/2

u(z, ) = ¢
u ~—1/2[ u 1w
o, ="y 24

Ay =;§s’2[1°1
Ag(u, ¢) = —55’1/2[:;, 1

We have ||A,]| € ||4f]|- The matrix Ay is constant and the method of characteristics can easily
be used for Q(k/2) . Furthermore, the problem on the slow scale can he written in conservation

form. Since ¢, = ¢, wc have
CI ~—1/2] 142
i) =),

“For the numerical experiments we used the initial conditions

v(z, t)
the system (8.2) becomes

The natural splitting is then

"u(z,0) =0
#(z,0) = 16+0.1sin(271z) 0<z<1

and took $S= 16. We again used periodic boundary conditions and compared Lax-Wendroff on the
unsplit problem with k = h/20 to the split scheme with k = h on the slow scale and the method
of characteristics for Q¢(k/2) . For h = 1/100 the results are shown in table 8.2. Again the split
scheme outperforms the unsplit scheme. The errors were reduced by a factor of 100 while at the
same time the work was reduced by roughly a factor of 10.
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Figure 8.1. True and computed solutions at ¢ = 4.72 for example 8.1. The first component, u1,
is on the left and the second component, ug, is on the right. The schemes used are:

top: Unsplit Lax-Wendroff

middle: Time-split method (2.4a,b)

bottom: Time-split method with change of variables
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Table 8.1. Max-norm errors for example 8.2 at various times t. The schemes used are:
#1. unsplit Lax-Wcndroff with k = h/2
#2: Leapfrog Duhamcl with k = 4h, Qs(k) = exp(kad,)
#3: Time-split method (2.4a,b) with k = 4h
#4: Time-split method (2.4a,c) with k = 4h, m = 8.

h t #1 #2 #3 #4
1/50 048 | 6.619(—2) 1.336(—2) 2.147(—3) 6.470(—2)
096 | 1.342(—1) 1.949(—3) 4.598(—3) 1.315(—1)
152 | 2.058(—1) 1.414(—2) 7.193(=3) 2.016(—1)
2.00 | 2.685(—1) 3.434(=3) 9.617(—=3) 2.623(—1)
1/100 0.48 | 1.677(=2) 3.356(—3) 5.581(—4) 1.635(—2)
0.96 3.389(——2) 4.130(—4) 1.166(-3) 3.320(-2)
152 | 5.314(=2) 3.365(—3) 1.845(-3) 5.197(—2)
200 | 6.971(—1) 2.028(—4) 2.437(-3) 6.818(—2)

Table 8.2. Max-norm errors for u and ¢ in example 8.3 at various times t. The schemes used
are: .

#1: unsplit Lax-Wendroff with h = 1/100, k = h/20

#2: Time-split method (2.4a,b) with k = h = 1/100.

¢ #1 #2

025 | 3.983(-4)  2.952( -6)
3.354( -5)  2.338( -7)

050 | 8.059(—4)  5.882(—6)
1.248(—4)  9.386( -7)

075 | 1.232(—3)  8.793( -6)
2.683(—4)  2.085( -6)

10 | 1.687(—3)  1.166(—5)
4.829(—4)  3.628( -6)
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