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Abstract. We derive and analyze several methods for systems of hyperbolic equations with
wide ranges of signal speeds. These techniques are also useful for problems whose coefficients have
large mean values about which they oscillate with small amplitude. Our methods are based on
additive splittings of the operators into components that can be approximated independently on the
different time scales, some of which are somd;imes treated exactly. The efficiency of the splitting

-methods is seen to depend on the error incurred in splitting the exact solution operator. This is
analyzed and a technique is discussed for reducing this error through a simple change of variables.
A procedure for generating the appropriate boundary data for the intermediate solutions is also
presented.
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1. Introduction. . L

SpliLting  rncLhods  for time-depcndcnt partial difl’erent,ial equations have been most frcqucntly
studied in the context of spatial spliltings, as in the approximaLe  factorization tcchniqrlcs for
cfficicntly irnplcmcuting implicit algoril,hrns  in more than one space dirnension[6], [Ill, [13].  Some .
attention has also been given to split,ting or fractional step methods for problems where the
differential operator is split up into pieces  corresponding to diffcrcnt physical processes which are
most naturally handled by dilrcrent techniques. This has been done, for example, with convection-
diffusion and the Navicr-Stokes equations[l],  [4],  [5].

More generally, a splitting method may be useful any time one is faced with a problem

ut = Au

where A is some differential operator of the form

such that the problems
Ut = &u

and
Ut = Azu

(1 1).

(1.24

(1.2b)

are each easier to solve than the original problem. By alternating between solving (1.2a) and (1.2b)
we hope to compute a satisfactory solution to (1.1).

In this paper we consider such methods applied to a one-dimensional quasilinear hyperbolic
system.

ut = A( z, t, u)u, (1 3).

.

where A is an n X n matrix with real eigenvalues. We assume that A is of the form .

A=Af+A,. (1 4).

In our notation, “f” and “8 stand .for “fast” and “~10~” respectively, which reflects a common
situation in which the solution contains waves traveling at quite different wave speeds. If A is
constant then the solution operator for the problem (1.3) on a single tirnestep of size Ic is exp(lcAd,),
that is to say

u( z, t + k) = exp( kAd,)u(z,  t). (15).

Fcr nonconstant A the solution operator is niore complicated. Our analysis will be concerned
mostly with the constant coefficient case, so we will use the notation of (1.5) throughout. The
ideas generalize easily, but are most intuitively seen in terms of exponentials.

The additive splitting (1.4) comes into play when the solution operator exp(kA&) is ap-
proximated by the product of the solution operators for the subproblems

ut = Afuz (1.6~)

and

We replace (1.5) by

ut = AduZ.

u(z, t + k) = exp(kA&)  exp(lcA,&)u(z,  t).

(1.6b)
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An approximation lo U(Z, t + k) is thus obtained by first solving (l.tib) with ~(2, t) as initid data,
and using the rcsultiug solution as initial clatn for (I .6n). 11’ Af anti A, cornmute, this splitting
is exact. When they do not commule, we have introduced an error which is O(k2).  As noted by
Strang[lG],  this error can be reduced to O(lc”) by USC of the splitting

, (17).

Ar~logous  results hold for the corresponding splittings with variable cocfiicients. Computations
confirm t,hat the global error is also improved (from O(k) to O(k2)) by the use of this splitting.

The numerical approximations to the solution operators exp(kA,r3,)  and cxp(ikAf3,)  will be
denoted by Q,(k) and @(k/2) respectively. The numerical method based on the Strang splitting
(1.7) is then

u“,+I = Q~(k/23Qs(k)Q~(lc/2)U~ (18).

where Uz is the numerical approximation to u(smh, nk) on a grid with Ax = h .and At = k. When
splitting a multidimensional problem into o,ne-dimensional subproblems, this sort of a splitting
gives rise to the so-called Zocally one dimensional (LOD) method, a spatially split scheme. In the
present context we will refer to (1.8) as the time-split method.

In practice Un+l can be computed via the sequence

. G = &#/2)U:
U; = Q,(k)U=,
U;+’= Qf(k/2)U;

(19).

‘although it should be noted that when several steps of (1.8) are applied successively the adjacent
Qf(k/2)  operators can be combined into &f(k), and the half-step operators need only be applied
at the beginning and immediately before printout, i.e.

uz =  Qdk / 2>Qs(k >Qj(k )*  l  -Q,(k)Q,(k)Q,(k/z)uo,.

There are several situations in which the use of the time split method may lead to a more
efficient  solution of the original problem. We will mention three such cases here. Our analysis will
be mostly concerned with the first and last of these.

. Problem 1: Suppose the solution to (1.3) contains both fast waves and slow waves, i.e. the
eigenvalues pi of A satisfy

. . *

Assume also that there are relatively few elements of A which contribute to the fast waves. We can
take advantage of this structure-by splitting the operator into slow and fast parts and using small

. time steps only on the fast part. That is, we can choose k so that exp(kA$,)  can be adcquatly
represented by a single step of some finite difference scheme and then approximate exp( $kAfd,)
by several steps of a difference scheme with a smaller timestep. Similarly, we can handle more
than two clusters of wave speeds by means of further splittings.

Such a splitting method requires less work than using small timesteps on the full unsplit
problem, and will thus be more efficient provided the accuracy is not too adversely affected by the
error in the splitting; We will see that this depends very much on the problem at hand. In cases
where the splitting error is small, the time-split method actually may be more accurate, since we
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will be able to use nearly optirnnl mesh r:itios for ei.i(tlr cluster to rnirrimizc the t,runcat.ion error
and improve other characteristics  of Lllc method, such as its dissipative behavior.

Similar splittings have been consiclcrcd  by lcngquist, Custafsson  ancl Vreeburg[4]  for this lype
of problem. IIowever, the splitting in their problem involved little interaction between Ihc dih’erent
time scales, so that many of the problems we shall encounter were not present.

Example .1..2. Consider a block triangular system of the form

(1.10)

with ~~11~~~~~~ ]]A24 w 1 and 6 < 1. It is reasonable to take

Af =  [:$I ;], A ,  =.[; ii:]. (1.11)

For this problem the effectivcncss of the split method depends greatly on the coupling Ai2 between
the different time scales. This is analyzed in section 2 where we also present a simple procedure
for changing variables to rcducc the coupling. -

Problem 2: Consider the same situation as in Problem 1, but where the fast waves are
known to be absent from the physical solution of interest. Recently Kreiss[S],  [IO] and Browning,
Kasahara, and Kreiss[2]  have considered some new approaches for this problem which rely upon
properly preparing the data so that the fast wave components are eliminated. These can be
considered as projection techniques. Majda[l2] has considered using filters to suppress the fast
waves in the same context.

In this case the true solution should satisfy

‘exp( kA&)u(  2, t) = exp( k&d&&  t)

providing the splitting between fast and slow scales is done correctly. l?or variable coefficient
problems it will not be possible to have the correct splitting at all times and the operator Af
cannot be dropped entirely. IIowevcr, we can consider using the time-split method (t.8) with a less
accurate schernc for Qf(k/2)  th an is used for Q,(k) , perhaps by using the-same. timestep for both
with a larger spatial step for Qf(k/2)  . I n such a manner it may again be possible to obtain the
same accuracy more cIIiciently. Turkel and Zwas[l8] have considcrcd a method for this problem
which is similar in spirit.

Problem 3: Suppose that the coefficients in the problem (1.3) have large mean values
about which they oscillate with small amplitude. In this case it may be possible to split out a
constant coefficient problem which can be solved exactly, leaving behind the small perturbations
for A,. Then (1.8) can be used with some large timestep approximation for Q,(k) while Qf( k/2) =
exp( d kAf  a,) exactly. This is clearly more efficient than using small timesteps on the unsplit
problem. Moreover, since the dominant part of the operator is being handled exactly, great
increases in accuracy are also possible.

Example 1.2. The simplest example is the scalar problem _

. Ut = (1 + cy(Z))Uz (1.12)

where Icy(s)] << 1 and we use the splitting’

Af =  1 , A, = a(x).
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Take k  = ph for some inkgcr p. The operator cxp( $ kA,il,)  in known cxact,ly: cxp( i kAfn,)u(x,  t) =
‘(~(2 + $ph, t). It’ Lax-Wendrolf is used l’or t;ho rcntaining  subproblem ZAP = (v(:c),(L~ then t;ho rnct,hod
(1.8) cnn be written as a single sley m&hod

u,n+l = UE+,  +,+P(q+p+l  - u:+,-,)  + $P24%J((+n  + h) + 4~4wz+p+,  - Kl+p)
- (f+?a)  + +n - ~))(~~+p  - ~~+,-1))

where Zzrn = x, + iph.  Notice that even though this is a scalar problem, the operators d, and
a(x do not commute and so the Strang spliting  must bc used.

The shallow water equations provide a more interesting example of Problem 3. These are
discussed in section 8.

General considerations. The effectiveness of the time-split method depends on the error
in the splitting (1.7). If this is exact then the splitting method is clearly more efficient For the
types of problems we are considering. On the other hand, if the splitting error dominates, it
may be necessary to reduce the time&p considerably, eliminating the possible benefits of the
splitting. In the next section we derive an explicit expression for the splitting error and indicate
how to determine whether a splitting method is useful on a given problem. We will show that the
equations sometimes need to be transformed to reduce the linkage between fast and slow modes in
order to achieve the desired accuracy.

The Q operators in the time-split method can consist of one or more steps of any explicit or
implicit scheme using two time levels. It is not immediately clear how a scheme using more than

, two time levels (such as leapfrog) could be used. For suppose we want to use leapfrog as Q,(k) to’go
-from U* to U** in (1.9). Then we would need-some approximation to exp(-kA,a,)U* (which is not
V) to play the role of U* at the previous time level. As a first step towards incorporating multi-
level schemes into the splitting framework, section 4 introduces a different type of split scheme
which does use leapfrog for Q,(k). This method is based upon approximations to the variation
of parameters formula, or Duhamel’s principal, and will be called the Leapfrog Duhamel method. .

_ Similar ideas have been used for ordinary differential equations by Certainc[3].  The accuracy and
stability of the Leapfrog Duhamel method is considered in sections 5 and 6.

The initial boundary value problem is considered in section 7. In most cases boundary data
will have to be supplied for the intermediate solutions U* and ?Y** in (1.9). We consider the
problem of approximating the correct boundary data in terms of the given boundary conditions.

Some further examplks of splittings and computational results are-presented in section 8.

2. Accuracy of the time-split method. -

In this section we consider discretizations of the approximate splitting

U(X,  t + k) = exp( @A$,) exp(k&%)  exp( @A,&) 21(x,  t) (2 1).

for the solution of ut = Au, = (A, + A&, with /ASll << 11Afll.  Up until section 7 we will deal
only with the Cauchy problem, where -oo < z < 00. Of course these results also hold for a strip
problem with periodic boundary conditions, e.g., 0 5 x 5 1 and ~(0, t) = ~(1, t). We will assume
that A, and A, are constant matrices but our approach carries over for more general problems
if the exponentials  in (2.1) are replaced by the appropriate solution operators. For example, the
splitting error for the problem (1.12) is given in example 8.2 of section 8.

If Af and A, commute then the splitting (2.1) is exact. Otherwise we define the splitting error
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operator EypliL(  k) by

E split (k) = exp( ~kA$,)  exp( kA,&)  cxp( $ kA$,)  - cxp(  k(Af  + Ay)&)

=- ‘
(2 4.

The local truncation error  operators
Q,(k) are defined by

for the approximate solution operators Qf(k/2)  and

J-+(W) = &f(W) - exp(@A$z)
Es(k) = Qs( k) - ex~(k&&).

Note that for a second order scheme such as Lax-Wcndroff these are O(k3).  We can now compute
the truncation error operator for the split scheme. The numerical solution operator is

QAV)Q.Ak)Q~(k/2)  = (exp( $A$,) + E#/2))(exp(kAA) + E,(k))
X (~xP( &+%) + E#/2))

= cxp(@+3z)  cxp(kA,&)  exp(akAf&)
+ E,(k) + 2Ef(k/2)  + O(k”)

:. .

= eXP( k(Af + A)az) + Esplit (k)
+ E,(k) + 2Ef(k/2)  + O(k4). .

-The truncation error operator for the time-split method (TSM) is thus

ETsM(k> = Q~(W)Qa(k)Q~(k/2)  - exp(k(Af + A&%)
E,plit(k) + E,(k) + 2Ef( k/2) + O(k”).= (2 3).

For a given problem this error can be computed directly and used to assess the efficiency of the
time-split method relative to an unsplit method.

In order to illustrate some of the propertics of this method and the effect the splitting error
E,plit(k)  h*as on its utility, we restrict our attention to the case where Q,(k) consists of a single
step of Lax-Wendroff. For convenience we use LW(A,  k) to denote the Lax-Wendroff operator,

LW(A,  k) = I + kADo + lk2A2D+D-2
. -

.

where DO, D+ and D, are the standard centered, forward, and backward difference operators,
respectively. We thus have

Q,(k) = LJ+L k). (2.4~)

Fcs QAW we consider both
Q/W) = exp( $kA$,) (2.4b)

and
Qf(k/2) = (LW(Af, k/m))m’2 (2.4~)

for some even integer m. The situation (2.4b) occurs when the solution operator exp( 4 kA$,)  is
known exactly,  as in Problem 3. In (2.4~) Qf(k/2) consists of m/2 steps of Lax-Wendroff with
timestep k/m.  This might be appropriate when solving Problem 1, for example.
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I The standard error analysis for Lax-Wendroll  shows that for (2.4;~)  we have

E9( k) = Ey( k) = - ;(k”& - kh2A,)a; + 0(/c”).

When (2.4b) is used there is no error on the fast, scale and

E#/2) =  Ee;P(lc/2)  =  0.

Otherwise, when (2.4~) is used,

(2.5n)

(2.5b)

and so
Ef(k/2)  = Efw(k/2)  = - &($A;  - kh2Af)a:  + O(k”). (2.5~)

In this case WC must choose an appropriate value of m, the number of small timesteps used within
each large timestep. For fixed h, the error Ef ( /Lw k 2) does not approach zero as m + 00. From
(2.5~) it seems unreasonable to take m any larger than a value for which 11 -$A;11  = Ilkh2nfll.
This suggests taking

k
mw- II4 IIh l

(2 -6).
The proper choice of m may also be influenced by stability requirements. Determining the stability
of the operator Qf( k/2)&,(  k)Q/(  k/2) is in general a difficult problem, which will be considered
in some detail in section 5. It will be shown there that for some problems  the product operator 0

is stable provided Qf(lc/2) and Q,(k) are each stable independently. It is well known that for
Lax-Wendroff the stability condition on Qf(k/2)  is p(Af)k/mh  5 1, i.e., m 2 p(Af)k/h.  The m
given in (2.6) is consistent with this requirement. Also note that for k/h sz l/llAsll,  (2.6) becomes
m = ll4lllll4l*

When the splitting error E,,lit(k)  is negligible compared to the other terms in (2.3), the
truncation error for the split scheme becomes

E=-(k)  = E,(k) + 2E;(k/?)  + O(k”)
=- gk3(Az  + +A3f) - kh2(A,  + A&3:  + O(k4).

This error is roughly the same as we would obtain using (LW(A, k/m))“, i.e., Lax-Wendroff with
l small steps on the unsplit problem. The truncation error for the unsplit method can be derived in

the same manner as (2.5~) to obtain /

ELw(k)  = - &$(Af  + AJ3 - kh2(Af  + AS))@  + O(k4)

a - -t; -$A; - kh2(Af  + A&3;.
(2 7).

-

Thus we do almost as well by taking large steps with A, and small steps with A, as we would by
taking small steps on the unsplit problem. This can lead to considerable savings. If Qf(k/2)  =

6



exp(  i Kahn,) th e results are even more striking. Now the error (2.3) is simply

ETsM(k)  = E,(k) + O(k”)  = - $k’Ai  - kh2A,)$  + o(k”).

Comparing this to (2.7) shows that the split scheme is considerably more accurate. It also requires
less work, since now nothing is computed using small steps.

The results of the last paragraph are all based on the assumption that ISsplit  is negligible.
In practice Es,lit(  k) may easily dominate the discretization error E,(k) + 2Ef( k/2). in this case the
split scheme is less accurate than Lax-Wendroff with timestep k/m. Nonetheless the split scheme
may be preferable. It may be possible to use the split scheme with smaller k and h to obtain
better accuracy while still requiring less work than the unsplit scheme. The proper quantity for
comparison is the work required to obtain a given accuracy. This can be estimated and compared
for various methods as we now do. Under some mild assumptions, we will see that the methods
(2.4a,b)  and (2.4a,c are always more efficient than the unsplit scheme (providing we choose k/h. )
properly).

Work comparisons. We will compute expressions for the work required to obtain a solution
at time t = 1 with error at most r. All of the bounds below are rough order of magnitude bounds
which are sufficient for our present purpose. Suppose that

II4 - IMI = 4 11~811 = b
where b/a = E: << 1. Also suppose that llu,,, II x I. This is for convenience only, since it removes
one common factor from all of the bounds below.

We will first analyze the unsplit Lax-Wendroff method LW(A, k). Suppose that W is the
work required to compute LW(A,  k)Ui at a single point zm. Then the work required to advance
the solution on a unit z-interval by one unit of time is W/kh = XW/k2  if k = Xh. The error
committed in one time unit using the unsplit method is bounded by

II((LW(A,  Wk - ~XP(A&))~ll

1L ,(~k311413  + kh”ll4) + O(k4))
5 $k2(a3  + u/X”)  + O(k3).

Since we require an error = r, we set

ik2(a3  + a/X2)  = T

giving
k2 = ”

u(a2 + l/P)’

Thus W(T; A), the work required to achieve a given accuracy r using Lax-Wendrolf with stepsize
ratio X, is given by

XW
W(T;X) = F

7



WC have not yet spccilicd X. Choosing X to minimize ‘uJ(~-; A) gives X =
w(7) is

l/o and the minimum work

a”W.
W(T) = 37 for unsplit Lax-Wendroff. (2 8).

Now consider the split method (2.4a,b). Let Wa be the work required to apply Lax-Wendroff on
the slow scale and WT”
Typically IVTS M

the work required to computed cxp(kA$,)Uk. Set WTSM = Ws + WT”.
x W. The error over one unit of time for the split scheme is bounded by

IlOQr(k/2)Q,(k)Q,(k/2))“’ - eq@WJ) u/I
15 jT1IE.,lit(~ ).u + &( k)u + 2Ef( k/2)u + 0( k”)lj

For (2.4b),  Ef(k/2)  = 0. From (2.5a),

I IJw)u

The splitting error is bounded using (2.2),

1 5 $k(k2b3  + h2b)
= i k3(b3  + b/A2).

. IIEsplit(k)U(I < ik3(a2b + d2)
5a ‘$k3a2b,

although it may be much smaller for some problems. Since our results depend very much on the
size of this error, we will suppose for now that

IIEsplit(k)u~l L gk3u
for some CT, so that

$&,l~~(k)u  + E,(k)ull  5 ik2(a  + b3 + b/X2).

In order to obtain accuracy r we must take

k2 = ”
u + b3 + b/A’

so

w(r;X)  = XWTSM/k2 -

= X(a  + b3 + b/A2)y. ‘(2.10)

The optimal stepsize ratio X now depends on the size of the splitting error and is given by

so that

w(7).= ~i(izF)~ for the time split method (2.4a,d).

(2.11)
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If Q < b3 (e.g. when Af apd A, comrnutc), then (2.11) gives X x l/b and

W(T) =
62 I,I/TS M

37 l

(2.12)
_

When WTS M = W this is better than (2.8) by a facl;or of c2, mcaning greatly improved eGcicncy.
Note that when (T = 0 the only error incurred is the error in using Lax-Wendroff on the slow scale.
From our previous discussion of Lax-Wendroff it is clear why X = l/b is optimal in this case.

On the other hand, if the splitting error is asbad  as (2.0) indicates, then 0 = a2b  and X x l/a
in (2.11) giving

abWTSM
w(T) = 37 l

This is still an improvement over (2.8), although now only by a factor of E. Note that now X is
chosen appropriate  to the fast scale, even though the fast part of the problem is solved exactly,
in order to reduce the error due to splitting. Indeed, if we try to use X = l/b when 0 = a2b,  we
obtain no improvement over (2.8). For this reason it is advisable to always use small time steps
with th’c time-split method (2.4a,b) unless E,pii,(k)  is known to be very small, in which case even
greater cficiency is achieved by using larger timesteps.

Now consider the method (2.4a,c)  where Lax-Wendroff is used for both operators. In this case
WT S M = Ws + mWf where Wf is the work requried to apply Lax-WendroiT  on the fast scale. We
are assuming that Wf << Ws = W. We will take m R Xa as suggested in (2.6). Using (2.5~) we
find that

* $IEsplit,(k)U  + Es(k)u  + 2Ef(k/2)ull  < Qk2(a  + b3 + b/X2 + a3/m2  + a/X”).

-We then obtain

W(T; X) = X(a  + b3 + b/X2 + 2a/X2)  w8 +6;awf

= X(a  + b3 + 2a/X2)  w’ ‘sfawf for (2.4a,c). (2.13) .

The optimal A now depends-on the relation between Wf and Ws and is more difficult to solve for.
We will discuss three possible choices of A: X = l/a, X = l/b, and X = l/a.

When X = l/a, m = 1 and we are simply alternating between LW(Af,  k) and LW(A,,  k). In
general we would not expect this to be any more efficient than using the unsplit method LW(A,  k).
Indeed, we find that

w(r; l/a.)  = ((a + b3)/a  + 2a2) ws Lwf

-a
2 ws-+ Wf *

37
regardless of the size of o. This is better than (2.8) only if Ws + Wf < W, which is generally not
the case for the problems we are considering. (Note that this is the case, however, in the LOD
method, where we alternate between solving one-dimensional implicit problems in different space
dimensions.)

For X = l/b increased efficiency is possible if the splitting error is small. From (2.13),

W(T;  l/b) = (a/b + 2b2  + 2ab)
w + $Wf

67

= (a/b  + 2ab)  w8 iTfwf.
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sllpposc  that WI + cw, - ryW for some 7 2 l/Z. Then iv= + %lYf  = ?fW and so

W(T;  l/6) =  (a0/6~  +  2a’)16;. (2.1 4)

This is better than (2.8) w 1cuever 0 < ab2/7. In this case the time-split method is more efficient.1
For example, if CT = 0, (2.14) is better than (2.8) by a factor of 7.

Unfortunately, if 0 = a26 as in (2.0), then

~(7;  l/b) =
a2(wIg  + %Wf)

ST

which is no better than (2.8) and may bc worse if w/ > EW.
Now consider an intermediate stepsize  ratio, X = l/m. From (2.13),

< ,3&l/2 ws + m Wf
27

lf
wJ++pwf

= 6a2
27

regardless of the size of CT. This is better than (2.8) if Wf + &Wa  < #W, which will generally be
true.

We conclude that the method (2.4a,c) is more eflicient when X is chosen correctly. If the
splitting error is known to be small then X = l/b can be used. Otherwise smaller timesteps should
be used, e.g. X = l/m. Very small timesteps, X = l/a, should never be used.

Here we have not dealt with.the advantages of the split scheme resulting from the possibility of
choosing the stepsize  ratio on each scale so that the k3 and kh2 terms in each of the Lax-Wendroff
errors nearly cancel out. When this can be done, the splitting may be even more advantageous
than indicated here.

.

.

Block triangular systems. Since the efficiency of the split scheme is limited primarily by
the splitting error, it is interesting to investigate how this error depends on the coupling between
fast and slow scales in a simple model system. Suppose that the matrix A is of the form (1.10)
with IlA,2ll = LY 5 1 and that the splitting (1.11) is used. Here A 12 is the coupling between fast
and slow scales. If A12 = 0, the problem is uncoupled and Es,lib(k)  = 0. In general, from (2.2),

E split (k) =-- @I,( $4Az  - 2A12A22)
0 I

a: + O(k”).

‘I’LUS IIEsplit(k)~ll x ak3/24e2.  The‘ efficiency- of the splitting depends on the size of cy. In the
notation used above, we have

a = l/c, b = 1, Q = icra2b.

For unsplit Lax-Wendroff, (2.8) gives
1w

wb) = 737’ (2.15)

The time-split method (2.4a,b) is always more efficient if we choose

x = (1 + $.XPb)-‘12.

For example, if a! = 1 we should use X = 2/a = 2~ in order to reduce (2.15) by a factor of E. The
maximum efficiency indicated in (2.12) is achievable only if a! 5 e2, in which case taking X = 1
reduces (2.15) by a factor or c2.
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Ibducing  the splitting  error. For block t~iaugular  systcrns in which Al2 is nol sulIicicntly
sm:~ll,  iI, is possible to rcducc l,he coupling t,hrough  a change of variables so that the optimal
ellicicncy can be achieved. A change of variables amounts to replacing ‘u by ti = /?u for some
nonsingular matrix B. The system ut = Au, then becomes tit = BAD-‘a,.  Clearly, if B is
chosen to be the cigcnvcctor matAx of A then the problem cdmpletcly decouples into independent
scalar equations. We are seeking something less expensive which only decoupl’es the fast and slow
scales. Thus we want a matrix B such that

(2.16)

with llCt1ll  = llC22ll = 1. In the block triangular case, it suficcs to consider B of the form

B= I B12[ 10 I’
B-1 _ 1 4312 .I 10 I

T h e n  ’
- ‘Al&2 + 42 + B12A22t

J422 1 . . .
and so Bl2 should be chosen to solve

1
-All&2 - Bd22  = 42
e:

(2.17) . ’

-in order to completely decouple the fast and slow scales.
In the present context solving for B12 from (2.17) is not worthwhile. In order to achieve

optimal eficiency we need only reduce the coupling by one or two factors of E. Further reductions
do not gain anything once the Lax-Wendroff errors dominate. This suggests taking

B12 = &&412 (2.18)

so that . .

where
A(,‘,) = EA;-,‘A~~A~~. . -

We now have IlA’,‘,‘ll x ~a! provided I~A~~l~  m 1. The coupling is thus reduced by a factor of
E through the use of a very simple change of variables. The above process can be repeated to .
obtain additional factors of 6. This change of variables has been suggested by Kreiss[S]  in a similar
context.

For full systems of the form

A= [++;l ii;]

we can obtain a similar reduction in the size of both off-diagonal blocks and again reduce the
splitting error by several orders of magnitude. In this case we consider B of the form

11.



It is easy to verify that the lower corner of A is annihilated by taking L to satisfy
1
-I&ill - A22L  - LA12L  + AQ1  = 0.
c

The matrix K can then be chosen as before to remove the remaining upper corner. This results
in a system of the form (2.16). This particular transformation is discussed more completely by
O’Malley and hndcrson[l4]. Again, however, we are not inter&cd here in completely annihilating
the corners, but rather in reducing them by a factor of E. This is easily accomplished by taking

K = dr11A12
L- -EA~~A;-,‘.

Example 8.1 in section 8 illustrates the use of the change of variables for a triangular system.

3. Stability of the time-split method -

In lhis section we investigate the stability of the time-spl
coeffrcicnt  problem on the entire real line, --oo < x < 00

it method when applied to a constant
or, alternatively, on a finite interval

with periodic boundary conditions. When Q;(k/2)-=  Qf(k), as is true for the splittings (2.4), for
example, Cauchy stability of the Strang splitting (1.8) is equivalent to stability of the first order
splitting

un+l = Q,(k)Qf(k)Un.
For simplicity we restrict our attention to this splitting, and set Q(k) = Qs( k)Qf(k).

In general the stability of Q,(k) and &f(k) does not imply stability of Q(k). Instead stability
must bc checked directly. In fact, (3.1) can be unstable even when &f(k)  and Q,(k) are exact
solution operators for well-posed hyperbolic problems as the following example shows.

Example 3.1. Let

T h e n  t h e  p r o b l e m s  ut =  Afuz,  ult =  ASu, a n d  ut = (Af + A,)u, are all well-posed, strictly
hyperbolic problems for any value of the parameter ~1. Let

.

QAk) = exp( k&h), &s(k) = exp( kA&).

and let G,(<, k/2) and G,(c, k) be the corresponding amplification matrices. For the exact solution
o p e r a t o r s ,  -

Gf M, m = exp(ik[Af)

.
-[

eike pi sin k(=
0 , ,-W I

and
G&i, k) = exp(ikcA,)  .

. cos kc i sin kJ
=

isin kt Icos k[ l .

we hmw  P(Gf (E, k/2)) = P(G(& k)) = 1 for all [ and k. On the other hand, the amplification
matrix G(& k) for the time-split method (3.1) has p(G( 6, k)) = 1 for all c and k only if ]p] 5 2.
When lp] > 2, the method is unstable. Figure 3.1 shows graphs of p(G( & k)) for p = 5,10.

In spite of this example, there are some very important classes of splittings for which the
individual stability of Qf (k) and Qs( k) does imply the stability of Q(k). It is useful to delineate
such classes, since the stability of Qf(k)  and Qs( k). is o cn easy to determine, whereas the stabilityf t
of Q(k) may be quite tedious to determine directly.

12
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Figure 3.1. Spectra1 radius of the amplification matrix G(e, k) OP example 3.1 for ~1 = S,,iO, as
a function of tk between -r and ?r.

Block triangular systems. One such case is the block triangular system of equations

with the splitting (1.11). Tlle solution v does not depend on U. In solving for u, the computed v
enters essentially as a forcing function. The schemes Q,(k) and &f(k)  will be of the form

.
(3 2).

Suppose that &II(k)  and &22(k) are stable schemes, and in particular, that there exist a norm 11 l 11
and a constant cy >_ 0 such that

IlQdk)ll < 1 + CA for all k suficiently small. (3 3).

All of the following estimates will be in this norm. We also suppose that

IIQ12WlI  5 k~IP+VII

\
* 8

(3 4).

for some constant M. These assumptions are satisfied for the methods (2.4) *provided the Lax-
Wendroff operators are stable. WC then have the following theorem.

13



wnll 5 ~Tw”II + IP+vOll)
llVnll I ii’zw”ll

for nk < T. Here KT and k~ are constants dcpcnding only on the fixed time T.

Proof. When the full scheme cn+’ A Q,(k)Qj(k)cn is written out WC obtain

un+l = Q,,(k)Un + Qu(k)Q&)V”
V n+l = Qz2(k)Vn

(3.5a)
(3.5b)

(3.6a)
(3.6b)

The bound (3.5b) follows immediately from (3.6b) and the stability of &22(k).  Moreover, by
linearity, an identical bound holds for the linear combination of solutions-D+V”,  i.e.,

ll~+Vnlf _< k’Il~+v”II*

Using this togeChcr with (3.4) in (3.6a) gives

llfJn+’ ll < IlQ~Wll(ll~“ll + kM~TliD+V”I()*

When iterated 72 times this gives

llu”ll 5 IIQdW’ll~“ll + kM~~(II&l~(k)ll~-~ + llQll(k)ll”-2
+ l l l + llQ~~(k>ll + ~)ll~+V”ll- (3 7).

BY (3.3), IlQll(k)ll” L (1 + a@” I eaT if nk 5 T. Using this in (3.7) gives

IIWI 5 eaT (lluoll + TMiirTl~~+voII)
for nk < T, which is of the desired form (3.5a). 1

Simultaneously normaliaable  matrices. Stability also follows dircc tly when Af and A, .
arc normal matrices (a normal matrix is one which commutes with its transpose). This includes,
for example, symmetric matrices and scalar problems. In fact,  i t  suflices  that  A, and A, be
simultaneously normalizable, i.e., that there exist some nonsingular matrix S such that SA,Sel
and SAf S-’are both normal. Thus, the case of simultaneously diagonalizable A, and A, is also
covered. This is a consequence of the following, even more general, theorem.

THEOREM 3.2. Let Al, AZ, . . :, A,,, be constant matrices. Approximate each solution operator
exp( k;iA&) by some operator Qi(ki)  with amplification matrix G#). Suppose there exists some
norm II l II for which

Il%wll I 1 G, j = 1,2,.  . ., m. (3 3).

Then the scheme
un+l = Ql(kl)Q2(kz)~..Q,(k,)Un (3 4).

is stable.

Proof. Let G( [) = Gl(t)G2(r)***G,(J).  Then powers of G(t) are uniformly bounded in the
norm II l II since\ IIGWII I ll(=Ml”

I wl(rN* l l IIGmll)”
5 1,.

It follows. that (3.4) is stable. 1

14



COltoI~ I,fWY Suppose thcrc  exists  some rfonsingrflar  matrix S srjch that SAjS-’ is normal b
for j = I., 2, . . ., m antf lf~at lhe amplificalion  malriccs  G,(r)  satisfy

4 @i(J)) 5 1 V(, j = 1,2,. ..,m ‘ii) SGJ OS-’ j = 1,.2,. . ., m (3 .5
is also normal for all t, 1

Then the scheme (*?.4)  is stable.

Remark: Condition (3.5ii)  is satisfied if Qj( kj) is thc exact solution operator or one or more
steps of Lax-Wendroff.

Proof. Since the 2-norm of a normal matrix is equal to its spectral radius, conditions (3.5)
give

Il~~i(w-‘ll2 = p(SG;(E)S-‘)  = ,o(Gi( 6)) 5 1.

It follows that the hypothesis of Theorem 3.2 is satisfied in the norm II l II defined by

IlAll  = IlSM-‘112.

This completes the proof. a -‘. 4

4. The Leapfrog Duhamel method. * .

As mentioned in the introduction, the time-split method does not immedihtely-lend itself to use
with multi-level difference schemes. We now present a new method with the same basic philosophy

-as the time-split method but which uses leapfrog on the slow time scale.
Using Duhaniel’s principle (i.e., variation of parameters) WC can write the solution to (1.3) as

/

t+k
u( z, t + k) = exp(2kA$,)u(z,  t - k) +

t - k
exp((t + k - ++%)AJ~&,  7) do*

If we now approximate the integral by the midpoint rule we abtain

U(Z, t + k) = exp(2kA&)u(z,  t - k) + 2k exp(kA@&Lu&, t)
#

= exp(kA$,)[exp(kA@&@, t - k) + 2k&u&, t)]=

Replacing u,(z, t) by the standard centered difference operator and approximating exp(kAfa=)  by
Qf(k)  gives the Leapfrog Duhumel  method, -

.

U“,+’ - Q#)[Q#)U:-’ + Xn.(o;+l  - U;.m.J. (4 1).

The term inside the brackets is essentially leapfrog for the problem ut = Asuz  since Qf( k)Un-’ M
exp(-kA,&)U”.  If &f(k) is an 0(k3)  approximation to -exp(kAfa,)  then (4.1) provides an O(k3)
accurate approximate solution, even for noncommuting Af and A,. This will be shown in section
5 where the method is analyzed in more detail.

We pay a price for using a scheme involving three time levels, since (4.1) requires two applica-
tions of the operator Qf(k). 0 ne of these is needed only to provide the proper values at time rt- 1.
Nevertheless, this method may be useful, particularly in cases where cxp(kA&)  is known exactly
and thus is easy to apply.

15



.

5. Accuracy  of the Leapfrog  Duhamel  method

The l,capfrog 1Iuharnel  schcrnc can be analyzed in terms o f’ the error in the midpoint rule
directly from its derivation. We prefer to build upon the results in section 2 by rewriting Leapfrog
Duharnel as a splitting.

Fir@ consider the standard leapfrog scheme on ut = &u,,

U n+l =  Un-1  +  2kA,D0Un.

The truncation error is given by

[u(z,  t - ic) + 2kA,Dou(z,  t)] - u(z,  t + k)
= [(I + 2kA,&  exp(kA,d,))  - exp(2kA,&)]u(q  t - k).

For conformity with section 2, we define the operator &,(2/c) by

Qs(2k) = 1 + 2kA,&  exp(k-4.,&).

Note that this is not the actual finite difference operator for leapfrog, since in general U” is not
exactly equal to exp( kAs&)Un- I, but it is the proper operator for computing the local truncation
error, in which U”-’ and U” are replaced by the true solution values. We can now define the
truncation error operator for leapfrog on stepsize  k by

EtF(k)  =  Q,(2k)  - exp(2kA,&)  =  O(k3).

The Leapfrog Duhamel scheme is

(5.1)  .

Un+l =  Q#)(Qj(k)ll-’ +  2kA,DoUn) (5 2).

where Qf (k) is some approximation to exp(kA@,)  with error operator

Ef(k)  =  Qf(k)  - exp(kA$,)  =  O(k3).

To obtain the truncation error for Leapfrog Duhamel we replace’Un-l and U” by ~(5, t - k) and
u(q t) in (5.2). The right hand side then becomes .

Q#)[l+ 2kAsD o ex~(kAB,)Qf_‘(k)]Qf(k)u(Z,  t - k)

= &#)[I + 2kA,Do exp(k&&)  + 2kA,Do(exp(kAa,)Q71(k)
- exp(  k&&>)]  Qf (k)u( z, t - k)

= [Q#)Q$k)Q#)  +2k&f(k)n.Do(exp(klia,)
- exp( kA,&)  exp( kA$,)  - exp( kAa,)Ef  (kj)]u( z, t - k).

(5 3).

Thus the Leapfrog Duhamel operator can be viewed as a splitting of the form Qf (k)Q,(2k)Qf(  k)
plus some additional error terms which are O(k3).  Let E,‘,li, (k) denote the error operator for the
first order accurate splitting

Efplib(  Ic) = exP( kAaZ) - cxp(kA,a,)  exp(kA,a,) = O(k2).
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Observing  that

the operator in (5.3) becomes

exp(kA,&)~~~(k) = O(k3),

Qf(k) = I+ O(k),
Do = a, + O(k2),

,

Qf(k)Qa(zk)Qf(k) + 2kAs’,Efpli,(k) + O(k”)*

Using (2.3) we obtain an expression for the truncation error operator for Leapfrog Duhamel,

ELFD(k) = (Qf(k)Qs(2k)Qf(k) + 2kA,a,B,‘,li,(k) + O(k”))
- exp(2kA3,)

= EspliL(2k)  + EfF(k)  + 2Ef(k)  + 2kA,3,ELpli,(k)  + O(k4).

For A, and Af constant WC have

ELpli,(k)  = f k2(AfA,  - A,Af)aJ  + O(k3)

.
so

E,plit(2k) + 2kA,a,E,‘,,i,(k)
= - +k3(A;A s - 2AfA,Af  + A& .

.+ AzAf  + A,AfA,  - 2AfA;)a$

The splitting error in Leapfrog Duhamel is thus roughly 8 times as large as the corresponding error
in the time split method with Lax-Wendroff. The work comparisons of section 2 can be repeated
for Leapfrog Duhamel with similar results.

6. Stability of the Leapfrog Duhamel method

At present the stability .analysis  for Leapfrog Duhamel covers only the case in which Af and
A, are simultaneously diagonalizable,

XAfX-’ = Mr, XA,X-1  = M,

where Mf and M, are diagonalizable matrices. We assume that &f(k)  is stable and is also
diagonalized by X. This is true for Qf(k)  = exp(kAfd,)  or for &f(k)  = (LW(Af,  k/m))“’ with
p(Af)k/mh  5 1.. Let qf(k) b -c a single diagonal element of XQ,(k)X-’ and pS a diagonal element
of M,. Tt suffxes to consider the scalar equation

U n+l =  g;(k)U+  +  2kqf(k)p,DoUn. (6 1).

Let g#) be the amplification factor corresponding to I. By assumption, lgf( 01 5 1 for all E.

THEOREM 6.1. Suppose IXpsI  5 1, where X = k/h. Then the amplification factor g(E) for
the scheme (6.1) satisfies

ISM = Ma*
17



Proof. The amplification factor is dcrivctl by letting

K-L = g”( [)ei-

in (6.1). We obtain the equation

s(E) = &W’(E) + 2~~gf(~)Ps  sin Jh

which can be rewritten as

(O(E)O;1(E))2 - 2ws sin [h(g( <)gy’( t)) - 1 = 0.

Solving this quadratic equation yields

If lXpJl 5 I, the square root is real and so -

. and hence
.

km - brM
as  c la imed.  1

Note that when the exact solution operator is used.for qf(k) we have Igr([)l = 1 Ad hence
IsM = 1 for all c. In this case Leapfrog Duhamel is nondissipative.

7. Boundary data for the intermediate solutions.

For general initial boundary value problems we must be able to generate the appropriate
boundary values for the intermediate solutions which arise in the use of a split scheme. We have
developed a general methodology for defining the proper boundary data which will be illustrated
here for constant coefficient problems at an inflow boundary. More general problems can also be
handled, as will be reported on elsewhere. The procedure will be demonstrated for the time-split
method (2.4a,b), but can also be used- for the other methods previously described.

First consider the scalar problem .

ut =’--(I + +z z 2 0,t 2 0
40, t) = g(t) t>o (7 1).

with the splitting
A ,  = - 1 ,  A ,  =-E. *

. Take k = 2h and use the method of characteristics solution for Af and Lax-Wendroff on A, .
There is no need to use a Strang-type splitting, since the operators commute, and thus the split
scheme is simply

U; = Via2 m = 2,3,...

uz-’ = u:, - +iJ;+l  - u;q, + 24u;+,  - 2u; + u;-1.) (7 2).

m = 1,2,...

18



The Vdll(? of cl;+ is given by the boundary conditions,

n+lu() = g(h+ 1).
For the splitting (7.2) we must also provide Ui and U;. In general with k = ph for some integer
p 2 1, WC would riced to supply r/i, UT,. . ., Ui-r.

In order to generate boundary data we consider Uk as an approximation to u*(z~, &,+I)
where the continuous function u*(z, t) satisfies

* *
Ut = -u, x > 0, t 2 t,

u*(x, ha) = u( x, ha) x 2 0. (7 3).

Then, using the differential equations governing u and u*,
g(t). Consider Ui. We want

we can express Vi and UT in terms of

u; = t&*(0,  tn + k)

= U*(O, tn) + kuf(O, tn)+  ik2uib(0,  tn) + . . .
= U*(Ot in) - kuz(O,  tn) + ik2u:,(0,  tn) + l l l

(7 4).

Mere we used (7.3) to express ui in terms of u:. But since u*(x, in) = u(x, tn) for all x, this
relation can be differentiated with respect to x, giving u&, tn) = u,(x, tn) and similarly for higher
derivatives. So (7.4) becomes

G = ~(0, L) - kuz(O,  L) + tk2uzz(0,  t,,) + l l 0.

We can now use the original.equntions (7.1) governing u to rewrite,this  in terms of t-dcrivatives.of
21. Since

we obtain
Gi = u(0, tn) + &  Ut(O, tn) + $ & )2Utt(0,  tn) +  � � l .

= ~(0, tn +  k / (  1  +  E ) )
(7  5)

.

= g(tn +  k / ( 1  +  e))*

This is the desired boundary data.
For such a simple example it is easy to verify that this is the correct boundary value. According

to the scheme (7.2) we would really like l

U; =  U:, =  u ( - i h ,  t,,).

Of course u is not officially defined for x < 0, but using the differential equation (7.1) it can easily
be extended from the boundary. Since (7.1) has characteristics with slope l/(1 + E), we Gnd that

u(-2h,  tn) = ~(0, tn + 2h/(l + E)) = g(tn + kl(l + t))
exactly as in (7.5) .

We can compute U; in the same manner. We want

u; = u*(h,  L+1)

= u*ub  L+1/2) where  tn+1/2 = t, -I- k/2. .
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WC now proceed as before,

u; = U*(O,  in) +  $ k sf(O, tn) +  ik 2~~ft((), t,,) +  l  .  -

=  u(0, t , )  -$ k uz(O, tn) +  ik 2u,,(0, tn) +  l  l  l

=
u(O,  tn) +

ii$ G ut(09  tn) + $ & )Utt(?,  tn) + l l .*
(7 6).

�= g(tn + @/ ( l + c )).

To summarize our procedure, we switched from t-derivatives of u* to x-derivatives of u*.
Since these were evaluated at time t,, they were identical to the corresponding x-derivatives of
u. We then switched back to t-derivatives of u along the boundary, which allowed us to USC the
known boundary conditions for u. Clearly this procedure will not work so neatly when we deal
with variable cocffrcients,  systems of equations, or inflow-outflow boundaries. Nonetheless, these
same ideas, combined with a little ingenuity, lead to sufficiently accurate approximate boundary
conditions for a wide variety of problems.

Constant coefficient systems. Next consider the system of equations

ut =  A u x = (Af + A&, x 2 0, t>o
40, t) g(t) 2 0. (7 .= t 7),

We assume that A and A, have strictly negative eigenvalues. In general A, and A, do not commute,
so we will have to use a Strang-type splitting. There will be at least two intermediate solutions,
say

u* = cxp(ikA@,)U”

U** = exp(kA,a,)  exp( $+%)~“~ (7 8).

Of course there may be many more if exp( 6 k&3,) is itself approximated by several steps of Lax-
Wcndroff,  but they can be handled similarly. The general principle should be clear from considering .
(7 8). .

Again let u*(x, t) be a continuous function satisfying

*
UZlt = Api x 2 0, t 2 tn
u*(x, tn) = u(z, tn) x 2 0. (7 . 9)

We then want .

u; = u*vh t,+1/2).
= u*(O,  tn) + ;ku;(O,  tn) + gk2u,*,(0,  t,J + . . .
= ~(0,  tn) + 4kApz(O,  t,,) + ;k2A;u,,(o,  t,,) + . . .
= ~(0, tn) + &kAjA-‘~(0,  t,,) + $k2,4;A-2u&  tn) + . . .

.
= g( tn) + +kAfA-’ g’( tn), + $ k2AyAB2g”(t,)  + l l 0,

(7.10)

We assume that the boundary is non-characteristic so that A is invertible. In general Ui must
now be approximated by the first few terms of (7.10). If we keep only the lirst two terms we will
have boundary data with O(k2) errors. This is sufficient to retain the O(k2)  global accuracy of
Lax-Wendroff (see Gustafsson(71).  It may, however, increase the error constant considerably and
partly offset the benelit obtained by using the split scheme. Consider, for example, a case in which
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II VII 523  1 and ll~l~11  535 c. In this case Lhc error IF”“’(k)u is like ck3 at most and the resulting
global error, assuming 71, is smooth, will bc like c:X,m2. In order to achieve the same accuracy in the
boundary data we will have to include the third terrn of (7.10) as well (or at least its dominant
part). In some such cases it happens that

A++ = I+ O(c) f o r  j  =  1,2,....  .

We can then retain O(ck2)  accuracy simply by taking

G = g(tn+l/2) + $k(AfR-’ - I)g’(tn)* .

This will be illustrated in Example 7.1 .
Now to find boundary values fo U**. The easiest way to proceed is to note that

CJ** = exp(- $kAfjz)Un+’

which prornp ts us to define u**(x, t) as the continuous solution to

u;*(x,  t) = Ap;*(x,  t) x 2 0, t 5 tn+t

. u**(x,  L+1) = +, L+1) x  2 0 .

We now solve this backwards in time for

Proceeding as in the derivation of (7.10) we obtain

LJ;* = g(tn+l) - +4&g’(tn+1) 8+ 1 k2AyAe2g”(tn+l)  + l l l

x g(t,+1,2)  - @(A+-’ - I)g’(tn+l).

Example 7.1 Consider

U

V

(7.11)

where 3 = (u, v)*. We have. chosen a strip problem to illustrate that outflow boundaries are
frequently trivial to handle with a split method. Take

For this problem the splitting error is

J?3split ( k )  =  - ik3[-;;i2  A::]$.
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.

If we use Lhc time-split method (2.4n,b)  then, according to (2.11), the optimal stepsize ratio is

.  where  E = max IcjI. For k = 2h and h = l/M, (2.4a,b)  becomes: ,

UL =Uk--l, m =  1,2 ,..., M

Vk=Vz-,, m=2,3 ,..., M

-e **
Kn =LW(A,,k)t?~, m =  1,2 ,..., M - l

4 n+l
UO = s(tn+1)

U,n+l = UzBl, m =  42 ,..., M
V,n+l = Vz-,, m  =  2,3 ,..., M

Notice that no boundary conditions whatsoever need to be speciiied at the outflow boundary x = 1.
On the inflow side we still need to specify fii, Vi, fii*, and VT+‘. l?or ths problem,

A;A-2 ’ 4 + ElC2 361= (2 - v2J2 1262 4 + 4W2 1
= I + O(E).

and we can retain O(ck2) accuracy by taking ,

+*
UO = g(tn+1/2)  + ik(AfA-’ - I)d(L)

(7.14)
= S(L+1/2)  +

Similarly we use
+ **
UO = g(tn+,/,)  - $k(AfA-’ - I)g’(L+t)*

In order to implement the split scheme, we also need V;. and Vi’+‘. We want Vi =
v*(h,  L+l/2)  = v*(O, tn+1,4)  and so the appropriate value comes from the second equation of

d*(O,  L+1/4)  w g(L+l/4)  + aktAfA-’ - l)d(tfi)

i.e., .
*

Vl = g2(ka+l/4)  +  ~@&j(2E2d(tn)  +  E1E2gk(tn))

where g = (gr , g2)*. Similarly,

n+l
Vl = g2(ha+3/4)  - ‘&(2c2dl(L+l)  + E1E2!.71Z(tn+l))* *

Computations conl’irm that these boundary conditions preserve O(ek2)  global accuracy in the
split scheme. Actually, for this particular example with k = 2h, even greater accuracy can be
achieved. Computing E,(k) from (2.5a) shows that the O(ck3)  t erms exactly cancel the O(ck3)
terms in EspliL(k)  , and that the total truncation error ETSM(k)u  is actually O(r2k3),  giving O(c2k2)
global accuracy. Higher order boundary conditions can be derived which maintain this accuracy,
but this cancellation of errors is a fluke which does not occur in general. .

.
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Stability for the initial boundary value problem. ‘I’hc boundary approximations derived
hcrc a11 depend only on the given boundary function g(t) and its dcri vatives. Suppose the time-
split, method used in the interior is Cauchy stable. Then lhe stability ol’ the resulting scheme
for the initial boundary value problem follows directly from the theory of Gustafsson, Krciss and
Sundstrijm[8],  if we modify their stability definition 3.3 by using an appropriate Sobolev n,>rm of
the boundary data on the right- hand side.

8. Computational results.

In this section WC give various examples of splittings and present the results of some numerical
experiments. The first example is a 2 X 2 upper triangular system of the form (1.11). We’
demonstrate the effects of the splitting error and its reduction by the use of a simple change
of variables as discussed in section 2. (

The second example is a variable coeficient scalar equation in which the coeficicnt has small
variations around some large mean value. We give an expression for the splilting error in such
problems.

In example 8.3 we consider the one-dimensional shallow water equations. In some cases this
system can be broken up into a constant fast part arid a quasilinear slow part in conservation form.

Exanlple 8..1.  This problem is designed to illustrate the effects of the splitting error. Consider

[ 10 1Ut =
0

lU2 1 for 0 < x 2 1, t > 0 (8 1).

with initial conditions
“111(% 0) = u2(q 0) = f+w--1/2)2

and periodic boundary conditions

‘1Lj(O, t) = Uj(l, t) t 2 0, j  = 1,2.

Figure 8.1 shows the results  after 236 time steps using Lax-Wcndroff with h = l/50 and k = h/10
on the unsplit problem. Figure 8.2 shows the results based on the splitting

We used k = h = l/50 with I

QJk) =  JQWL, k), &f&/2) =  (LW(A,,  k/lO))5.

In this case E,(k)  = Ef(  k/2) = 0 by a judicious choice of k/h and m. The second component ~2
is computed exactly and the errors in ~1 are due entirely to the splitting error.

If the change of variables suggested in (2.18) is applied twice to (8.1) with E = 0.1, we obtain
the new variable

a1 = Ul - (E + E2)U2  = 211  - 0.11212

and (8.1) becomes
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If WC solve this system with lhe same spl it scheme as bcforc and then transform back to the original
v:\riablcs by u1 = til + 0.1 tug, the errors in u1 arc reduced to 0( lo-“) as seen in figure 8.3.

The Leapfrog Duhamel scheme can be applied to this system with similar results. The same
change of variables can clearly be used to reduce the splitting error in this scheme as well.

Example 8.2. For problems of the form

ut = (a + c+))u,

= -;k30[(20  + a(z))a”(z)  - 4(a’(~))~  - 3a(z)a’(z)d,]&  + O(k”).

with a constant and la(z)1 << Ial, the splitting error operator corresponding to Af = a, A, = at(z)
is

E split (k) = exp( i kd,) exp( ka( z)&) exp( 3 kc&) - exp( k(a + (Y(z))~~)
1

.= -12k3a((+a  + a(z))d(z)  - (a’(~))~)&  + O(k4).

For the Leapfrog Duhamel scheme the splitting error is

’ Espiit(2k)  + 2ka(  x)a,Efplit(k)
= Esplit(2k)  + 2k~(z)a,(&k2a~‘(~)8,  + O(k3))

The Lax-Wendroff and leapfrog errors on ut = a(z)%, are respectively .

EtW( k) = -+“,(z)[a2(,)a:  + 3+~)c+)d~  + ((a’(~))~  + +ju”(x))&]

+ ;kh2a(z)af  + O(k”)

and
EtF(k)  =  2Efw(k)  +  O(k”).

For the test problem
ut = (1 + 0.1 sin(27rz))u, on [o, 11

u( x, 0) = sin(47rz) O<z<l

40, t) = u(1, t)

a comparison of the errors shows that the splitting error for either scheme with k = 4h should ,be
of roughly the same size as E,(k) and considerably smaller than the error for the unsplit operator
with the same spatial step and reduced time step k = h/2. Thus we expect the split scheme with
the true solution operator used on ut = u, to be more accurate than the unsplit scheme. This is
confirmed by the computational results in Table 8.1. Note that in this case the improved accuracy
was obtained using only about one eighth the work rcquircd for the unsplit scheme.

If Lax-Wcndroff is used on the fast scale, Qf(k/2)  = (LW(Af,  k/8))“,  the corresponding error
2Ef(k/2)  is roughly the same size as the error in the unsplit scheme. This error dominates in the
resulting split scheme and so we get roughly the same accuracy as in the unsplit scheme. This is
also illustrated in Table 8.1.

Example 8.3. The one-dimensional shallow water equations can be written as

[;I, = -[; :][;]z * (8 2).
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where V(z, t) is the velocity and (b = yh with h(z, t) the height and 9 the gravitational constant.
Typically (b(z,  t) = 4 + qY(z, t) where 6 is constant and

.With  the change of variables

the system (8.2) becomes

The natural splitting is then
-l/2 0 1

Af =+ 1 o[ 1
A&, 4) = -$-1’2 ;,[ 1’ .

U

We have II&II << IlA,II- The matrix A, is constant and the method of characteristics can easily
be used for Qf(Ic/2) . Furthermore, the problem on the slow scale can he written in conservation
form. Since 4; = q5’, WC have

&[;I, = (-(&-““[  $]>.

-For the numerical experiments we used the initial conditions

. u(x,o) = 0
4(x, 0) = 16 +.O.l sin(2Tx) O<x<l

and took & = 16. We again used periodic boundary conditions and compared Lax-Wendroff on the
unsplit problem with k = h/20 to the split scheme with k = h on the slow scale and the method
of characteristics for Qf(k/2)  . For h = l/100 the results are shown in table 8.2. Again the split
scheme outperforms the unsplit scheme. The errors were reduced by a factor of 100 while at the
same time the work was reduced by roughly a factor of 10.

Acknowledgments. We wish to acknowledge Gunilla SkSllermo’s  participation in the early
phase of this project. Her examples and comments helped to steer us in the right direction.
Computer time was provided by the Stanford Linear kccclerator Center of the U.S. Department
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Figure 8.1. True and computed solutions at t= 4.72 for example 8.1. The first component, 2~1,
is on the left and the second component, ~2, is on the right. The schemes used are:

top: Unsplit Lax-Wendroff
middle: Time-split method (2.4a,b)
bottom: Time-split method with change of variables
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Table 8.1. Max-norm errors for example 8.2 at various times t. The schemes used are:
#1: unsplit Lax-Wcndroff with k = h/2
#2: Leapfrog Duhamcl with k = 4h, &f(k)  = exp(ka&)
#3: Time-split method (2.4a,b) with k = 4h
#4: Time-split method (2.4a,c)  with k = 4h, m = 8.

h t #l #2 #3 #4

l/50 0.48 6.619(-2)  1.336(-2) 2.147(-3) 6.470(-2)
0.96 1.342(-l)  1.949(-3) 4.598(-3)  1.315(-l)
1.52 2.058(-l)  1.414(-2) 7.193(-3)  2.016(-l)
2.00 2.685(-l)  3.434(~3) 9.617(-3)  2.623(-l)

l/l00 0 . 4 8 1.677(-2) 3.356(-3)  5.581(-4)  1.635(-2)
. 0.96 3.389(-2)  4.130(-4)  1.166(-3) 3.320(-2)

1.52 5.314(-2)  3.365(-3)  1.845(-3) 5.197(-2)
2.00 6.971(-l)  2.028(-4)  2;437(-3) 6.818(-2)

Table 8.2. Max-norm errors for u and ~II in example 8.3 at various times t. The schemes used
are:

#1: unsplit Lax-Wendroff with h = l/100, k = h/20
#2: Time-split method (24a,b)  with k = h = l/100.

t

0.25

0.50

0.75

1.0

#l #2

3.983(  -4) 2.952(  -6)
3.354( -5) 2.338(  -7)

8.059( -4) 5.882(-6)
1.2481-4) 9.386( -7)

1.232(-3) 8.793( -6)
2.683(-4) 2.085(  -6)

1.687(-3) 1.166(-5)
4.829(-4) 3.628( -6)
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