
tkRICAL hALYSIS PRafECT APRIL lm

lttfu&RIPT bk8bll

BIFURCATION PROBLEMS FOR

DISCRETE VAFUATICINAL INEQUITIES

BY

H, D, MIITEUIANN

tbERKAL  hALYSIS  f+WECT
coIy1puTER SCIENCE DEPARTMENT

STANFORD IkuIVERSITY
STMFORD, CALIFORNIA 9605

.





Bifurcation problems for discrete variational inequalities

H. D. Mittelmann*~T

The buckling of a beam or a plate which are subject to obstacles is typical
for the variational inequalities that are considered here. Bifurcation is
known to occur from the first eigenvalue of the linearized problem. For a
discretization the bifurcation point and the bifurcating branches rray be
obtained by solving a constrained optimization problem. An algorithm is
proposed and its convergence is proved. The buckling of achmped beam sub-
ject to point obstacles is considered in the continuous case and some numeri-
cal results for this problem are presented.

MOS classification: Primary 73HO5, 65KlO; Secondary 65Ll5, 49Gl0, 65L15, 73K25

1. Introduction

In this work we are concerned with the numerical solution of nonlinear varia-
tional problems of the form

(1.1) g(u,) - kf(uo) - min (g(u) - kf(u)), k > 0
SC

where f and g are functionals on a Hilbert space H and XC C H isa cbsed convex
cone (0) cK + (0). A solution of (1.1) under suitable assumptions satisfies

(1.2) X(g’ (u,, tu - "0' 1. (f'(uo),u - uo,, vu=, x = k-1

where ( .,.) denotes the inner product in 8, i. e. a nonlinear variatiocal in-
eguality and bifurcation may occur for (1.2).

Instead of considering (l.l), (1.2) in an abstract setting we shall use here
and in the sequel a typical example from elasticity theory. Assume a beam is
clamped at the points x - 0, x = 1 and is supported from below respectively

I
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from above in the sets C, D C (o,l). We define

(1.3a) K - {~H~[o,il, u(C) Lo, u(D) 50)

where H2o is the usual Sobolev space including the zero boundary conditions
for u and u'.
Letfurtharbe

1
(1-m f(u) - lJ( l+u'24)dx,

'1

0
g(u)* + / lP2dx.

0

Then (l.l), (1.3) describes the displacement u of the beam under the action
of an axial force k - P. In the case C - D = fl this is Euler's famous beam-
buckling problem. It has been considered very frequently in the literature
and for more  recent work on the numerical solution of this problem we refer
t o  C5,171.

The above formulation is only one of the possible ways to treat the beam-
buckling problem. We have chosen this problem for the sake of simplicity.
It is possible without essential difficulties to treat other boundary con-
ditions in (1.3) or other problems as e. g. the buckling of plates.

The approximate solution of (1.2) was listed as an open problem in 1121
since no numerical literature on this subject was known to the authors.
A bifurcation theory, however, for problems of this form and particularly
for (1.3) was given in 161 and considerably generalized in I181 ; for other re-
lated work cf. 8. g. [l, 2, ?, 9, lo, 13, 15, 161.

In the following we shall look at discretizations of (l.l), (1.2) and give
a convergence proof for an algorithm solving these problems as well as the
corresponding linear eigenvalue problem. We thus propose and investigate
a numerical method for the computation of the bifurcation points and of the
bifurcating branches. Numerical results are finally given for a finite ele-
ment discretization of (1.3).



The contents of the following sections are

2. The discrete bifurcation problem
3. The numerical procedure
4. Convergence proof
5. Thebeamproblem
6. Discretization and results.

2. The discrete bifurcation problem

In the following we assume that (1.1) is reduced to a finite-dimensional
problem by a discretization method characterized by a parameter h > 0.
A finite difference method with mesh width h or a finite element method
with intervals of maximal diameter h yields

(2.1) Qh (x0) - kfh(xo) - min(gh(x) - kfh(x)), k > 0
5l

wherenowx &
0’ h' a finite-dimensional Hilbert space and again

5l C Hh
a closed convex cone with vertex 0.

In the following we shall assume that Hh may be identified with Euclidean
n-space and shall omit the subscript h. The corresponding variational in-
equality is therefore of the form (1.2)

(2.2) X(g’ (x0, ,x-x,, 2 (f’ (x0) ,x-x0) ’ x = k-l, VXEK,

Here and in the following we use g'-(x) = VgT(x), g*(x) = V2g(x).
From now on we assume that f(o) - g(o) - 0 and f'(o) = g'(o) - 0. For
all X > 0 thus (2.2) has the trivial solution.

Definition 2.1 x > 0 is a bifurcation point of (2.2), if there are se-
quences OnI, {xnY, n = 1,2,..., solutions of (2.21, with An > 0, xncK-co)
andX/X ,x + 0 for n + =.0 n
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The following results are easy consequences of the theory for the
infinite-dimensional case in [6, X81.

Theorem 2.2 Assume that f, &C2(U(o)), U(o) C Rn an open neighborhood
of 0, f(0) - g(0) - 0, f'(o) - g'(o) - 0, (g"(o)%, x) L. Y II xiI28 Y ’ 08
Vxd and that there exists a YfK such that (f"(o)y, y) > 0. Then the
linearized variational inequality

(2.3) a (g” (0) X0’ x-x0' L (f"(o)x , x-x0), t/xfK
0

3

has a solution x0" - lo) , X0 > 0. X0 is the largest eigenvalue of (2.3)
and the largest bifurcation point of (2.2).

Theorem 2.3 In addition to the assumptions of Theorem 2.2 let (f'(x),x) > 0,
(g'(x) 8X) > 0, tlxEK - (01 andletthere exist strictly increasing functions
6,(t), continuous on [o,") with lim &i(t) = 0 and lim 6i(t) = +-, i = 1'2

t+3 t+--
such that 6,(11 x11) 2 g(x) 2 62(11 XIIL vxa.
Then for every p, 0 < p < QD, the problem

(2.4 f(xp) - max f(x), s
P - batn 8 g(x) <

KflS
_ $ e23

P

has a solution xp + 0 which also solves (2.2) with A = X(xp) -
(f'Jxp) 8X,)

and further holds lim x - 0, lim llxpll= +a~, lim X(x ) -
(g' (x,1 8 xp)' > O

P+Q p
x

P- P+o p 0 '

X0 as in Theorem 2.2, g(xp)  = $ p2.

There is a subsequence {xp3 with

(2.5) lim xP

P-to (g”(o)xp,Xp) II- xo - O’

x0 as in Theorem 2.2.

If (2.4) is uniquely solvable for everyp > 0 then p + {Cp,X(xp)) : 0 5 p < -1,

X
0

= 0, X(x0,  - a
0

is a continuous curve in #xJR, which extends to infinity.
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These theorems show that bifurcation occurs from the maximal eigenvalue X0
of (2.3) and that points xP

on the bifurcating branch may be obtained by
solving

(2.6) f(xp) - mcLx f(x)rP ' 0 , 3s = Ix-t", g(x) 1 2
masp P ‘IZP 1

3. The numerical procedure

In this section we consider the numerical solution of the linear eigenvalue
problem

(3.1) 1 (g” bho’ "-X0' 2 (f"(O)% o, x-xowx-

and the computation of the branches bifurcating from the maximal eigenvalue
X

I. e. we determine xp such that 0’

(3.2) f(x 1 * mbx f(x),P masp
xp in a neighborhood of x0 for small p > 0.

We restrict ourselves to the case that g is quadratic in x. A further restric-
tion to g(x) = (x, x), however, will not be made here because it would not
allow the treatment of the physical-problem (1.3) in the usual setting. In-
fluenced by this example we consider for K the set

K - {fix?, 0,(3.3) xi 2 iEJlr xi 2 o, ~EJ~),
J18 J2 C {L.,.,d, J =

1
{I

1
,...,I 1, J =nl

2
cj 1 '**-'jn2}-



In the recent paper [3] a gradient method was analysed for the solution
of (3.2) in case K = H, H an infinite-dimensional Hilbert 'space, and *

some references where given for earlier work on the approximate solution
of this unrestricted problem (in the sense that K = H).

We shall consider here the restricted problem but for dim (H) < m . We
thus prefer here the solution by first discretizing the continuous pro-
blem instead of first deriving a sequence of simpler continuous problems
(variational equalities respectively unconstrained optimization problems)
and then discretizing those. Since we have in mind applications as e. g.
(1.3) .we do not give a method to compute smaller critical values of the
functional f, for theoretical results in this case cf. [8] , but we con-
centrate on the physical relevant value X .

0

We make the following assumptions. Let f in (3 .l) be continuously dif-
ferentiable on H and let g be of the form

(3.4a) g(x) ‘- 2L (8x8 XL

where B : H + H is a linear, symmetric and positive definite operator.
Further let there exist a.M > 0 such that

(3.4b) (f'(x + h) - f'(x), h)iM l[hll< vx, hEH

(3.4c) (f'(x + h) - f'(x), h) > 0, Vx, hEHr h + 0

(3.4d) f(0) - 0

(3.4e) f'(o) = 0

The norms used here and in the following are the Euclidean norm for AH
and the spectral norm for matrices AEL(H).
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We need some further notations. Let G = (gl'...,gn +n ), where gk =
1 2

ei I
k

k = l,...,n and g m
1 n +k -e eQCRn the It-thunitvector. Then K in (3.3)

1 jk'
may be rewritten as

For any &lRn let I(x) - {ic{1,...,2n),  gJTx = 0) and define GI = (gi)iEI,
SE*I n - GIG; t En the m identity = xk denote Ik = I(xk) I

Gk = %, and Q, analogously. Finally
h

B TB
(3.5) Pk * En - 5clsc

(\tQkB\' B '

L

matrix. For x
we introduce

where (.,. )B denotes the scalar product induced by B and

(3.6) \ = PkQkrk, rk = f*(xk) .

We observe that g"(o) - B and hence with A = f"(0) the maximal eigenvalue

X0 and the corresponding eigenvector may be computed from

(3.7) x0 h max (Axt x) - mx
K-{o) (BG x) KfNS,

f (Ax, xl .

This problem is a special case of (3.2) and it suffices therefore to give
an algorithm for that problem. -

The algorithm

Let xl&naSp be arbitrary. Set k - 1 and pk = 0, PkE{O,ll



Step 1 Determine Ik and terminate the iteration if G TV < o and .k k-
11 Qk"kll, - '*

.

Step 2 Compute IyJ = max {l\il, ‘GkkT~li > 0).
If ((Qk \t r k )B  � I\& 1  l 1 1  Pk uk llB  a nd vk  = 0 o r  l~Qk uk l~ $  0) then

set I - '4 - {a) and determine 3 % %

k k kP, k' Uk otherwise let '4k = Ik, Sk = Pk'

h = 5'
step 3 Compute pk = 9 Sk ?ik rk

1
and determine Gk as the maximal ad-

missible steplength in direction pk.

Step 4 Set ak -min(Zk' iikL iik 3 1 Xk+CLk' 'k
2Mcond(B) ' x+1 = IIXk+akJB '

where cond (B) - lbll . II B-71 l

Set 'k+l -
l,ifak=$
0, otherwise t k=k+landgotoStepl.\

The following convergence result will be proved for this algorithm.

Theorem 3.1 Let the assumptions (3.4) be satisfied for problem (3.1).
Assume that the set

Q = {x*m3Sp, G*Tu* 2 0, llQ*u*ll = 0)

is finite and that G*Tu* < 0 for all flea . Then the sequence {xk',k = 1,2,...,
generated by the above algorithm converges to a point x*EQ .

The points ti are Kuhn-Tucker points of the first order of f with respect
to the given constraints. In general, -of course, we cannot be sure that

E xk 1 converges against the maximizing x*.
0

An easy consequence of Theorem 3.1
guaranteeing this will be stated at the end of the next section.

With the constant stepsize 2k in Step 4 the above algorithm is more of the*
retical interest. In the computations presented in the last section the step-
size was chosen by the Goldstein-Armijo rule (cf. e. g. [14]). This still
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f(xk+l) - fbq - (f'(Xk +mk+l- "k))' )cc+1- X,)

+-fQk +'I(s+1- xk" + f'(q # f(\+1- xk)' + (f'(\) F xk+l- 5'

(4.2)
> -_ M II\+l' y$+ (f' '"k" \+I- xk)

2 - M IlBlpll \+l- x& + (flf ‘5’ ’ \+I’ J$)B .
Bl- rk

+ 'k' xk+l- \'I3 'k = 2MIb-'iI

Hence we have

f@k+l) - fbq 1 dk("k + Ykt \+ akPk-

2MlF II
where ' - 11 \*$?k$' '

and we show next that the second term on the

righthand side is nonnegative. Observing that (x ,p 1k kB = 0 this relation

may be rewritten as

(4.3)

.
We have

(4.4)

. and

(4.5)

(l - II\*,&&W + (yktxk)B) + ak(yk,pklBLO.

2M IIB-lIl (Yk’Pk)B  = llp,t f

From (3.4b) and the fact that IlxJg = 1 we conclude that

lhdl
2 1



Hence
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(1 + (Y)&B) 2
lb,lP

2 2(1 + (y,,x,),) f 2MYI/ Bll l ilB-i$2

the last term being nonnegative and thus

akII Bll (’ + (yk’\)Bp 2
1 + (Yk’\)B a,b?kl12

Al B-l II + 4M21/B-li12

which gives
I

I (1  + a ill p k li2 il Bll> (1  + (yk @ ⌧k )B)2 2 (1  + (yk #\)B  + -$ $ -)� l

TakQq the square root on both sides and using (4.41, (4.5) we finally arrive
at

.

II \ + akPkllB (l + ‘yk’?r,,; z ’ + ‘ykt\‘B + ak(yk&k)B

which proves (4.3).

Combining (4.2) and (4.3) we obtain with (3.4~)

(4.6) f(xk+l) - f(s) 2 (f'(\L Jck+l- \)

2 Al \+I- +I2 10 l

In order to show (4.1) we estimate using (4.5)

>
akllpkl~z(l-akM cond (WI

- lb$ + "kpkls

For 11 xk + akpk'L a uifom upper bound L is easy to obtain, hence C$ 2 k yields

f(xk+l) - f (x,) '
a$P,IP

2L
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which proves (4.1) in the case pk - 1. .

If pk -Oand?
and '4

k + 'k then Ip,,l- &al and thus 11 pkll 2 I\& If uk - '

k = Ik then pk = Qkuk and because of the strategy in Step 2 we must have

II lk'k - (Pk'rk)B 2 !\,I lb, IL

and h-cc lbkll L 11 Blr1'21u,glwhich completes the proof of the lemana.

Proof of Theorem 3.1 Let $1, ipk), {Ik} be generated by the above algorithm.
As in [ll] we distinguish two cases. Ass&e that there is an infite subset JZN
with pk = pk+l = 0 for kfJ. Because of the compactness of 3s and the finiteP
number of constraints in K an infinite subset Jock may be chosen such that

\ + -&KfUSp and Ik i Ie = I(G) for kao. Since f(xk+l) - f(xk) 10 from
(4.6) for k I, 1 and f(x,+l) - f(5) 1 cl maxtll  pkll , Ih,,l)2 for kEJot we have=

skZk is a continuous function of xk for fixed index set I and hence QI; - 0,
.

3 PO,11 where 3 = P Q GI I , 2 = f(G).'This implies ;;fn. If there is a jEi-I

then rkj + 0 for k + QD, kEJo and hence f
j

- 0 while ?
j
must not vanish under

the assumption G*Tu* < 0 for *En . We conclude I - I .

From (4.6) we have g 11%+1- xJ - o and f(xk+l) 1, f(xk)' Since f has

only finitely many local maxima on KfKiS
P , p > 0, which are strict maxima

according to (3.4~) and because ?k 3 I for kEJ0' k z kl we finally obtain

that the whole sequence ixk', k = 1,2,... must converge to i and that

'k Z I for klk,.

In the case that for all k z k. there is uk = 1 or pk+l = 1 the proof
may be completed combining the above arguments and those of the corres-
ponding part of the proof of Theorem 2 in 1111 , to which we refer.



- 13 -

The ascent property (4.6) allows to state the following simple consequence
of Theorem 3.1.

Corollary 4.2 In addition to the assumptions of Theorem 3.1 we assume that
X0 is the largest critical value of f with respect to KnaSP and that there
is no other critical value in (X0-e, X0), E > 0. If f(xl) > X - E then

0
the sequence k& k = 1,2,... generated by the above algorithm converges
to xoEKnaSp with f(xo) = x0.

5. The beam problem

In this section we return to the problem of the compressed clamped beam
and we first consider to some extent the linear eigenvalue problem, i. e.
we search for X, ufrc, K as in (1.3a),such that

1 1
(5.1) x.1 U" (v-u) "dx 1, Illa (v-u)' dx

0 0

for all SIC. We restrict ourselves here to the case that the sets C, D
are finite

CUD - {x,, . . . . s'

where O - x  <x0 1 . . . < 5 < s+l * 1 . For the variational inequality
of second order

1 ‘1 -
(5.2) x 1 J (v-u)' dx 1, Ju(v-uklx,

0 0

u,vfIc = CuEH1[o,ll, u(x ) > 0, i - 1i - ,...,N) a description of all the eigen-
values and c&responding eigenfunctions was given in 141 . For the problem
(S.l), where the situation is different, it is not our aim here to do the
same. Instead we consider only problems with a few obstacles.
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In the usual way it can be shown that (5.1) is equivalent to the following
set of conditions

(5.3a) Ad4)+ u" = 0 on (~p~+~), i = 0, . . . , N,

(5.3b) u(0) = u'(0) - u(1) = u'(l) = 0,

(5.3c) u, u' und u" continuous in xit i = l,...,N,

f2 0, if xZEC,
(5.3d) urn (xi+ 0) - u"' (xi- 0)

(5.36) (u'" (xi+ 0) - u'" (xi- o))u(xi) '= 0, i = l,...,N,

(5.3f) u(xi,F 0, if xlEC, u(xi) 2 0 if-xiED.

For the sake of completeness we sketch the proof. We integrate (5 -1) by parts

N xi+l
c I (d4) + u")(v-u)dx
ho 'Xi

N
- x 1 (u" by4 -

C-1
u" (xi-o) ) (v' (Xi) - u' (Xi) 1

N
+x1 (u”

* i=l
(xi+o)’ u’* (xioo)) (v(xi)’ u(xi) )L.O.

Choosing I&K such that the last terms vanish we see that Au (4) + u,' is orthogonal
tow=v- uEH~~xi,xi+ll'  f * 0 ,...,N which yields j5.3a) and the first term
vanishes. We have no restrictions on v,(xi), i * l,...,N for VfK. If the last
term and all but the i-th in the second term is lrpade zero then we conclude
that this must vanish, too, i; e. u" &as to be continuous. Finally, if
u (x,) + 0 for an i = 1 ,...&I then we choose v such that v(x,) = 0 respectively
v(xi) = 2u(xi) and v(xj) = 0, j i i, yielding (5.3e) while in the case
u(xi) = 0 the condition on v(xi) gives (5.3d).

A simple computation shows that the sets

- ck(l-cos(zkx)), CkEpl' = =-(01,
(5.4a) p -2

k f2 ,z =z (0)
k k k = 2klr, k = 182 I-**)
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up' (x) =
X)Z~ Co, $1,

(5.4b) (1)Xk 1.2 (1)- ( zk , k - 1,2,..., zk = zk ,

(1)
=1 < q < . . . the solutions of f - tan (3

are eigenfunctions and corresponding efgenvalues of the unrestricted problem
(K - H) and hence they are also solutions of (5.1) if they fit the condition
(5.3f). In Table 1 we have listed the first ALi', i - 1,2 .

k x(o)
k

p
k

Table1

.02533o2959 .o1238192o7

.oo63325740 .oo4189o42o

.oo28144773 .oo21o26o96

.oo15831435 .oo12635336

u-1The first four Ak , i = 0,l according to (5.4)

In order to find eigenfunctions of (5.1) which are not solutions of the
unrestricted problem we consider the simplest case N = 1. Combining the
solutions on [o, xl] and lx,, l] such that they satisfy (5.3a) - (5.3~)
and vanish in x1 yields

y$x) = ck[(l-cos(zkxl))(sin(zkX)- 2~~x1 - (sin(zkxl)-zkxl)  (~-COS(Z~X))  10

. (ZkX1 COS(Zkiil) - sin(zk+ 1 on b, x,1,
. &Sal

up = Ckl(l-cos(sk~l))(sin(zk(l-x)) - zk(l-x))

- (1-cos(zk(l-x)))  (sin(zkZl) - zkX1) I (zkxl cos(zkxl)- sin(zkxp

on [x1' 118

where G l= 1 -1 x 1' x1 +T' Xk - q2, Zk, k = 1,2 ,..., the solutions of
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(2x1 sin(zx1) -2(1-c0s(2x1)))  l czxl cos(z~1) -

(5Sb) sin(&l)) - (2(1- cos(zGl)) - zX, sin(zG1)) .

(2~~ cos(zxl)  - sin(zxl)).

If Xl = f then there are the eigenfunctions and corresponding eigenvalues
(1)

uk
, ,:l)

(0) x (0)

' U2k ' 2k ' k - 1,2,... . Additionally we have

up - ck[(l-cos 2 =k 1 (sin(zkx) - zkx) - (sin 2 'k - 71 'k (l-cos(zkx))]

(5.6) on 10, +I 8

up - \ (1-x) on 1 +=, 11 ,

where =k - 2 z:') , k - l,... and Xk i zi2 . All these eigenvalues are
arranged in decreasing order as X (2) , k = 1,2,... with the eigenfunctions (2)

If Xl + +
k (0)there again remain certain of the eigenfunctions uk , u (1 ) uk  l

k .

The sign of the factor c may be chosen such that r,k (2) satisfies (5.3d).
In Table 2 we have listed the first ten of the resulting eigenvalues and
the corresponding eigenfunctions for xlEC, i. e. we have given the range in
which ck in (2)

uk may vary, if XlEC.

k Ak(2) (x1 - $1 'k
p
k ( 3x1 = 7 'k

1

2

3

4

5

6

7

8

9

10

.0253302959 “; .0253302959

.o123819207 R' .o14662o91o

.~a~63325740 R’ .0123819207

.0041890420 R' .oo7o3189o8

.0030954802 "J .0063325740

.0028144773 "; .0041944379

.oo21o26o96 R' .oo4189o42o

.ool5031435 R' .0028144773

.0012635336 R' .0021035607

.0010472605 "l .oo21o26o96

Table 2 The first AL2), ck for C = {xl}, D = fi .

“i
“;
R;
R'

“i

R:
R’

R’

1RI
R’
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In the case x1 = f the largest eigenvalues correspond to eigenfunctions
(1) 1

of the unrestricted problem. The eigenfunction u2 , c2En;, for x1 = 7
is also a solution in the case C - {$ , D - @ and it still is if we
e. g. .add the condition D = 21-1 to exclude the solution u (0)

3 1 , CfRi .

It is then, however, not the solution to the largest eigenvalue, which
is ui2) (2)to the eigenvalue A2 - 0.146620910. This solution satisfies
(5.3) but it is not a solution of the unrestricted problem. In Figure 1

(2)we have plotted u2 (2)
,U3 l

Figure1

Formulae (5.5), (5.6) are valid for 0 < xi < 1 and in Table 3 we have

listed the largest eigenvalue for varying x1.

1
z .0168642027

15 .0183671473

1
z .o194295691

17 .0202150233

1z .0200177576

Table 3 Largest eigenvalue for varying xlEC, D = {$I .
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For 0 < x 1 < 1 and X > 0 we define

w(X) = w(x;xQ - u (2) “’ (x1 + 0) - uf2)‘“(xl- 0)

where u(~) is the function (5.5), (5.6) to the given x1 and zk - X -l/2 ,

Ck - 1. w(X) has simple zeroes at the X which coincide with X (0)
k i , A(?

j
For 0 < x 1 (2)2~ the value of X2

and e. g. t(Ai2)

(x1) varies in the range A:')2 Ai2)< A:O)

'; T) is positive as a computation shows. We can thus state

Lemma 5.1 For 0 < 1 1x1 IT '5'< x < 1) the functions 'u 1 according to (S-S),
(5.6) with c CR'1 + (c16RI) are eigenfunctions of (5.1) where C = {x,) .

Continuing this argument we can explain the choice of ck in Table 2. If e. g.

%l = $ and the eigenvalue is derived from (5.6) as e. g. Ak2', Ai:' in Table 2,

then w(Ak, 2 = -2";c" ($ - 0)h = 4c 3k k sin2 'kz (7) . Hence ckEn; has to be chosen
in this case.

- We did not exclude the case Cf)D + $? . If e. g. C = D = {xl) then (5.3) shows
that also the third derivative of an eigenfunction must be continuous. The
form of the eigenfunction shows that the fourth derivative is continuous to-
gether with the second and only the eigenfunctions of the unrestricted problem
remain. If x - E

1 Q 8P<9fP8qERf then we have the'eigenfunctions and -values
(0)

uk , k- j(p + qL j = L2,*** (1)For certain x1 also some of the uk

are eigenfunctions.

The branch bifurcating from the solutions of (5.1) may be computed from

(5.7) f(u,) = max f(u)
maSp

K, f and g as in (1.3). We refer to theoretical results of 161 . It may,
however, not be expected that analytic expressions for u , A(up) could be

P
derived. For the largest eigenvalues the existence of a continuous branch
extending to infinity is assured by the results in 16, 181. Hence in the
following we concentrate on the maximal eigenvalue for the restricted case
and compute the branches.
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6. Discretization and results

As in 3. it suffices to consider the problem (5.7). We use a finite element
method to obtain a finite-dimensional problem. Instead of doing this in an
abstract setting we again give a concrete application. In order to discretize
(1.3), (5.7) we use a subdivision of fo,l] : 0 - x C x1 < . . . < xN = 10
which for the sake of simplicity we assume to be equidistant with distance h.
We use the Hermite cubic finite element functions uh. In (1.3b) it is also
necessary to integrate numerically. On each subinterval [xi, xi+ll,
i - op.., N-l we use the Q-point Gauss-Lobatto formula with x , xi+l as
two of the nodes. We obtain a problem-for the vector y - yhclEl 2iN-2 of unknowns
q ⌧l) f q ⌧,) I l l l 8 q ⌧ &  l For the second integral in (l.3b) we have

(6.la) Qh (Y) * + YT

.

12 0 -6 3h
0 4h2 -3h h2
-6 -3h 12 0 -6 3h
3h h2 0 4h2 -3h h2

.
.

.
-6 -3h 12-

and for the general integrand F(5) in the first term

(6. W fh(Y) =+
N-l
1 I2 F(Y~~) + 5(F(zi

i-o
(l)) + F(i:2’,,]

where (3
zi

(1)= Y2i+ 2YJEI + 3y2 Et2) I j
1 i = 1828

(1)
Q - t (yzi+l- yzi-1) - 2y2i - yzi+2,

$2)i = $ (Qi4- YZi+l) + y2i + Y2i+28

Y

y1 - +1 -4) *y2 * 1 - yl,115 y-1 = '0 = ‘2N- 1 = y2N =o.
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We shall use the

F(%) - q--

of determining a

notation f (1)h (y) when F(ul') = $ uh2 and fh2) (y) when
1. Obviously we have fh(l) (y) = ~(f,Y0,uh8 UhL The problem

YoE=
2N-2

With

fh(Yo) = max f (y)
nash hP

\ * Eyfa2N-2 I Y2i-1Lo if Xi% Yqiol 50 if xiED, i = l,...,~)

aSi = {fiR2Nm2 12f g&d - p ?P ’ O)

may now be solved by the algorithm of section 3.

We remark that in the finite-dimensional case it is easy to describe the set
of all solutions by considering the eigenvalues and -vectors of the general
eigenvalue problem Ay - XBy together with those for certain submatrices of
6andB.

In the following we shall restrict ourselves in the choice of numerical examples
as we did in the continuous problem in section 5.

(1)The functional fh (y) has a finite number of critical points with respect to

KnaSl and in general the algorithm converges only locally. If e. g. h = $ ,

C = {$I , D = {$ and we choose the vector y(O) - (1, Of -1, OjT after norma-

lization according to 115 (OQB =‘ 1 as starting vector then fh(1) $0)) =.olllllll~x (1)
s 1

and the sequence (yW ) generated by our algorithm converges to a solution of

the form of u:l). The starting vector y (0) = (o,o,-l,o)T , however, which has
(2)the same function value, lea& to u1 . Since we are interested in bifurcation

from the largest eigenvalue for restricted problems we look at this case in more

(2) (1)detail. Denoting Alh = fh (y,) and recalling that uh($) = 0 we list in Table 4

the values of the approximate solution for different h and the exact solution
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which is normalized by choosing

c1
s ( j[u (23"]2dx)-1'2 =,l~,'~'l,'

0 l

h

13 .a1432293 0.133851 9.043313 .oSo98o
1 3
7; .o1459822 0.138142 - .042493 .056045

1 .*12 .01465767 9.137874 0.042402 .o55918

UC. . o 1466209 0.137853 - .o42396 .0559 lo

Table 4 Approximate and exact values for C = {+I, D = $1

We have then computed the solutionsy (2)

hp

of (6.2) with fh * fh , i. e. points

by starting with the approximate solutionon the branch bifurcating

of the eigenvalue problem

In Table 5 we have listed

and using an increasing sequence cp,), k = 1,2,.-• .

the values of PM - ( Xh (yhp)P8 i. e- of the

axial force applied to the beam, and %P at the same points as in the last

table (h = i ). We have Pho - 68.5015. .

P pm

1 68.9679 0.138252 0.042496 .055980

2 70.3172 0.277074 -.085001 . 111859

5 78.3242 0.702718 0.212236 .277923

10 98.0209 -1.43655 0.421930 -552830

Table 5 Approximate values for the buckled beam
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In order to show the change in the solution and to check (2.5) we list the

values of - 1
uhP = F uhp for h = i and for p = 0 that of the eigenvalue pro-

blem in Table 6.

0

1 ,

2

5

10

Table 6

-.138142 - .042493 .056045

-.138252 0.042496 .o5598o

0.138537 -.042501 .055930

9.140544 0.042447 .055585

-.143655 0.042193 .055283
l

.

Normalized values on the bifurcating branch

It presented no difficulties to follow the branch up to larger values of p

but then, of course the variational inequality (5.1) ceases to decribe the

actual behavior of the beam.

Finally we have plotted the buckled beam for two different values of the force
and the branch for 0 2 p 5 lo.

Figure -2

Figure 3

We have seen that both problems which have been attacked in this paper,namely
the approximate computation of bifurcating branches for nonlinear variational
inequalities and the determination of the bifurcation points may be solved
satisfactorily. Already for rather crude discretizations, the computations
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were performed in BASIC on a cbm 3032, reasonable accuracy was obtained
in the solution of the linearized problem.

For the numerical treatment of similar problems in higher dimensions, as
e. g. the buckling of plates, the efficiency of the algorithm should be
increased. For variational inequalities a preconditioned cg-method was
considered in 1111. The nonlinear restriction ufaS in (5.7) should even-

P
tually be handled in an indirect way. We would,suggest an augmented Lagrangian
method. Especially for the following of the branch good starting values for
this algorithm will be available after the linear eigenvalue problem has
been solved. Finally, another question-which was not considered here is
the convergence of the discrete approximations for h * 0.



- 24 -

References

[ l] Do, c.:

I 21 Do, c.:

r 31

I 41

.

I 51

r 61

I 71

1 81

1 91

Bifurcation theory for elastic plates subjected
to unilateral conditions. J. math. Analysis App.
6o(1977), 435-448

Nonlinear bifurcation problem and buckling of an
elastic plate subjected to unilateral conditions
in its plane. In: Contemporary developments in
continuum mechanics and partial differential equa-
tions (ed. de La Penha, G. M.; Medeiros, L. A.) Am-
sterdam-New York-Oxford: North Holland Publishing
company (1978) 112-134

Kratochvil, A.; Necas, J.: Gradient methods for the construction of
Ljusternik-Schnirelmann critical values.
Revue Francaise Automat. Informat. Recherche Opera-
tionelle R 14(198o) 43-54

Kucera, M.; Necas, J.; Soucek, J.: The eigenvalue problem for variational

.

Langford, W. F.:

Miersemann, E. :

Miersemann, E.:

Miersemann, E . :

E .:Miersemann,

inequalities and a new version of the Ljusternik-
Schnirelmann theory. In: Nonlinear Analysis (ed.
Cesari, L.; Kannan, R.; Weinberger H. F.) New York-
San Francisco-London: Academic Press (1978) 125-143

Numerical solution of bifurcation problems for ordinary
differential equations. Numer. Math; 28 (1977) 171-190

Verzweigungsprobleme fiir Variationsungleichungen.
Math. Nachr. 65 (1975) 187-209

Verzweigungsprobleme fir Variationsungleichungen mit
einer Anwendung auf die Platte. Beitr. zur Analysis 9

(1976) 65-70

&er hdhere Verzweigungspunkte nichtlinearer Variations-
ungleichungen. Math. Nachr. 85 (1978) 195-213

tuber nichtlineare Eigenwertaufgaben in konvexen Mengen.
Math. Nachr. 88 (1979) 191-205



- 2s -

rw

WI

WI

WI

1141

WI

c 163

WI

1181

Miersemann, E.:

Mittelmann, H. D.:

.
Mittelmann, H. D.;

Naumann, J.; Wenk, H . - U . : On eigenvalue problems for variational inequa-

uber positive MSsungen von Eigenwertgleichungen mit
Anwendungen auf elliptische Gleichungen zweiter Ord-
nung und auf ein Beulproblem far die Platte. 2. Angew.
Math. Mech. 59 (1979) 189-194

On the efficient solution of nonlinear finite element
equations II. Numer. Math. to appear

Weber, H.: Numerical methods for bifurcation problems -
A survey and classification. In: Bifurcation problems

and their numerical solution (ed. Mittelmann, A. D.;
Weber, H.) Base1 - Boston - Stuttgart: Birkhduser Verlag
(1980) l-45 -

lities. An
Rend. Mat.

Ortega, J. Mm; Rheinboldt,  W.

Riddell, R. C.:

Riddell, R. C.:

Weber, 8.:

Zeidler, E.:

in several
C .: Iterative solution of nonlinear equations
variables. New York: Academic Press 1970

Eigenvalue problems for

application to nonlinear plate buckling.
9 Ser. 6 (19761439-463

inequalities in a cone.
333-355

Eigenvalue problems for
inequalities. Nonlinear
(1979) l-33

nonlinear elliptic variational
J. functional Analysis 26(1977)

nonlinear elliptic variational
Anal., Theory Methods. Appl. 3

Numerische Behandlung von Verzweigungsproblemen bei
gewdhnlichen Differentialgleichungen. Numer. Math. 32
(1979) 17-29

Lokale und globale Verzweigungsresultate ffir Variations-
ungleichungen. Math. Nachr. 71 (1976) 37-63



Figure-legends

FirstFig. 1 two eigenfunctions in the case C = I$ , D = {$I

Fig. 2 Approximate deflection of the buckled beam. P =6*-9679 and P = 70.3172

3Fig. Bifurcation diagram obtained for h = $ .
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