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Abstract. The linear equation %xX + xux = 0, 0 < x < 1, is proposed as a

model for investigating interesting features of the behavior of difference me-

thods for realistic multidimensional nonlinear elliptic problems, especially

Navier-Stokes problems. We give an analytic and experimental comparison of

several difference schemes for this model problem. An unusual scheme for the

Navier-Stokes equations is suggested by these results. An experiment shows that

this scheme performs better than a more obvious one.
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1. Introduction.

This report attempts to elucidate some of the interesting and poorly

understood phenomena that have been observed when solving steady nonlinear pro-

blems, including Navier-Stokes problems,-.by finite-element and finite-difference

methods. The phenomena in question include unwarranted oscillations (especially

of derivatives of the solution) which are most severe in boundary layers, a

relationship between accuracy and a cell Reynolds number, a relationship between

difficulty in obtaining solutions to the discrete equations and a cell Reynolds

number, and spurious multiple solutions of the discrete equations. We find that

difference schemes for the linear two-point boundary value problem

(1 1a
--.

Lu : Qlxx + xux = 0

(lb) u(0) = 1 9 u(l) = 0

exhibit similar features and offer possible explanations.

Examples of difficulties with discretitations of fluids problems a-

bound. They include nonphysical solutions ( 1[ 1 [] , [5] , [7] ) and failure of

the given methods to find any solution 6 . The second problem is often the

result of a limit point in the solution curve of the discrete equations; an
.

example is given in Section 4 of this paper.
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We consider four difference schemes for (1): an upwind scheme, the

standard, centered, second-order scheme, and two other centered second-order

schemes. We give extensive numerical results, and also analyze their behavior

as E + 0 for fixed mesh spacing h. We find that the standard centered

scheme has solutions which grow without bound; a condition h/K < const. is

required to bound them. The form of this condition is reasonable: the solution

to (11, Uou) = 1 - erf(x/E)/erf(l/E)  varies rapidly in a boundary layer

of thickness O(z). All the other schemes yield bounded solutions for fixed

h and small E. One of them, however, appears to be more accurate.

Abrahamsson, Kreiss, and Keller 3 investigated difference methods--. 13
f o r  cuxx +  Cux = 0. For this problem the boundary layer thickness is O(e),

and a cell Reynolds number restriction h/s 5 const is necessary for a nonos-

cillatory solution.

A more obvious one-dimensional model for Navier-Stokes is the steady

Burgers' equation &uXX - uux = 0. (Our concern with multiple solutions, a non-

linear phenomenon, argues for this model.) Kellogg, Shubin, and Stephens 1
III

showed that any reasonable three-point second-order-accurate centered scheme leads

to multiple solutions unless a condition h/c 2 const is imposed. The solu-

tion has boundary layers O(E) in thickness, so this isn't surprising. They

also showed that an upwind scheme can give spurious multiple solutions,

wh=ich is.

We do not believe that these pessimistic results hold for Navier-

Stokes problems. First, boundary layers in Navier-Stokes are O(&) thick

(E-l = Reynolds number) 2 .[J Second, we give numerical results in Section 4

for the driven cavity flow that do not exhibit these problems. We use two

second-order, centered schemes. One seems to give a unique solution for
.

h/a 5 const. The other appears to have a unique solution for all h and E
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and is more accurate than the first. This nonobvious scheme was suggested by

the best of the schemes for (1).

Some notation for finite differences will be useful. Let h > 0 be

given. For a function u(x), let

O+u(x) 5 (u(x+h) - u(x))/h

OJJ(x) z (u(x) - u(x-h))/h

O+OJ(X) : (u(x+h) - 2u(x) + u(x-h))/h2

00 u(x) 5 (u(x+h) - u(x-h))/2h .

We shal'L.consider schemes that approximate U(Xi) for a uniform grid

'i = ih, 0 2 i < n + 1, where h = l/(M).
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2. Difference Schemes for the ModelProblem.

We consider four schemes for (1): an upwind scheme, two centered

schemes of "convective" type, and a centered scheme of "divergence" type. All

four treat the term uxx the same way:

(3) & ux X s ~D+DJJ(x) .

The schemes differ in their approximation to xux:

Scheme 1.

(4 1a xux(x) u" xO+u(x) .

Scheme 2.

W xu,(x) z xDOu(x) .

Scheme 3.

(4 1C xux(x) t (x+)o,u(x) + (x+D-u(x) .

Scheme 4.

(44 xu,(x) f DJxu)(x)  - u(x) .

Scheme 3 can be derived by applying Galerkin's method to a variational

form of (1) using continuous piecewise - linear approximations, the usual "hat

- function" basis, and one-point Gauss quadrature (the midpoint rule) to evaluate

the integrals. Scheme 4 is based on the identity xux = (xu), - u.

The three centered schemes are closely related. In fact, all lead to

tridiagonal systems

T u = f , s = 1,2,3,4 ,S-

.

where Ui approximates U(Xi) , 1 5 i 2 n . (We take u, = 1 and Un+l = 0

as boundary conditions.) Let

I (5) T, = &A+Bs ,



where

A=k

-2 1
i

\\\

0

1
0 1 -2

m

is due to the approximation for &uxx, and B, represents the approximation to

xuX. Then

(6 )a

and
B3 =B2+FA

First, examine the actual behavior of the schemes. Figures 1-8 exhibit

their error as a function of c and n , for F: = 1, 10e2, 10a4, and 1O'6, and

n = 16, 32,..., 1024. The discrete R" - norm

and R2 - norm

II IIe a~
--

. II IIe 2 = (2 (e(Xi))2))i
i=O

are shown. Several points should be emphasized. These discrete error measures

give no information about the quality of approximation in the boundary layer

when fi << h. The apparent growth of the error with decreasing h in Figures

1,4,5, and 8 is an artifact of this effect. For grids sufficiently fine to re-

solve the boundary layer, observe that the upwind scheme is not competitive with

the centered schemes, and that scheme 3 is substantially more accurate than

either of the other centered schemes.

When E: + 0 for fixed h, or, equivalently, as h + 1 for fixed E,
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the schemes behave differently. Scheme 1 and 4 find the "outer solu-

tion*' u z 0. Scheme 2 apparently "blows-up" as E -f 0, Scheme 3 doesn't get the

. outer solution, but neither does the error blow-up. Rather, it approaches a bound

which depends on n, but not E.
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2.1 Properties of the differential equation.

A variational form of problem (1) is obtained in this section. The

existence and uniqueness of solutions of (1) follow from the Lax-Milgram theorem

using the Ha-ellipticity of a bilinear form. This, in turn, holds because the

symmetric part M = (L+L*)/2 of the operator L 'is just ~3: - 4, which is

H&elliptic.

Let H1 be the space of continuous functions on [ 30,l with square-

integrable first derivative. Let Hi E IusH1lu(0) = u(1) = 03, and

Hi z {u~H'lu(O) = 1, u(1) = 0). We associate with (I) the problem

(VI): Find UCH~ --such that

+ xuxv)dx = 0

for all v&H:.

Let u. be an arbitrary element of Hi (for example, uo(x) = l-x).

Then Hi z {w+uolwcH;,. Thus, (Vl) is equivalent to

(V2): Find weHi such that

a(w + uo,v) = 0

. for all v&Ha. Equivalently, since a( , ) is bilinear,

a(w,v) = - duo,v)

for all veHb.

Define norms

II IIu 1 z u; x + u2(x))dx ,( 1

u~=Hl. Note that the mapping- v+a(uo,v) is a bounded linear functional on H1:



by the Cauchy-Schwartz inequality,

laboddl IElI uo,Ilr llvll1 + lb 0 II 1 lb II 0

f Wllr l

Also, for v&Ha,

. - a(w) = ~llv, 11: - (xvxv)dx

= 4lv, 11; + 4 lb II20

This lower bound on a(v,v), together with (7), allows the Lax-Milgram theorem

4 I)13 to be used, showing that (V2) has a unique solution. The key is that for

smooth v (vEH~~H~),

/

1

a(v,v) = o (cvxx + xvx)v dx

/

1

=
0

(Mv)v dx

where

M:v + E vxx -+J

is the symmetric part of the operator L.
. We call M the symmetric  part of L because if L = M + N, then M

is self-adjoint: for all u,vcHb,
1

I

1
Mu v dx = / u Mvdx

0
0

(just integrate by parts), and N:u + xux + +u is skew-adjoint: for all

u,v~H&

/
1

/

1

Nu v dx = - u NV dx .o o



Such a decomposition is unique.

3. An analysis of the methods. -.

In this section we consider two questions about each scheme:

Question 1.

Is the symmetric part,

M,(h,E) E $ T, + T;
c I

,

negative definite? In otherwords, does a bound

MS(h,4 5 6th) < 0

hold uniformly as E + 02

Question 2.

Does there exist a bound

llTs-ll I f K(h)

uniform as E + O?

The significance of question 2 is clear - bounds on IlT -1 11 are an

essential part of the error estimates of all the schemes.

Question 1 is motivated by the consideration of nonlinear problems.

Suppose a nonlinear equation F(u,E) = 0 has a "basic'* solution UO(E) such

that the linear problem Fu u~(E),E v
[ I

= 0 has only the trivial solution for all

E ' 0. Then we can "continue" the solution u&) to arbitrarily small values

of E without any bifurcation or limit points occuring. A sufficient condition

for this is that the symmetric part of the operator Fu up(c),&[ 1 be negative

(or positive) definite in some appropriate sense - for a second-order differen-

tial operator with Birichletboundary conditions, the associated bilinear form



should be H&elliptic.

Now suppose the original problem is to be approximated by a family of

discrete problems Fh(u,c) = 0. Then it is desirable that for h sufficiently
hsmall these problems possess solutions Us that are (locally) unique as

& + 0. Again, the invertibility of the Jacobian matrices Fh U;(E) Eu [ 19 suffices

for existence and local uniqueness, and definiteness of the symmetric part of

F," suffices for invertibility. Moreover, uniform definiteness precludes the

possibility that the solution blows up as c + 0, is essential if the condition

number of the Jacobians is to be bounded, and is desirable if iterative methods

will be used to solve the discrete problems.
--.

Here are the answers to question 1. In each case, T, = EA + B,, so

MS
=eA+Cs '

where

c, = +(B, + B’I) .
3

Scheme 1.

B, =

1
-2 2 0
O\
\n

-n
-1

By the Gershgorin theorem, Ct $, - +, so MI I, - 4. (A is negative definite.)
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Scheme 2.

Therefore, M2 = (E - $A - &I. This is negative definite for h sufficiently

E -'A -4.1.

small; in other words we have a "cell Reynolds number" condition for negative

definiteness. In fact, if E > h2/4, then MS < - %. If (E - h?/4) < 0, then

definiteness depends on whether or not (E - h2/4) XL > &, where Xl is the

(negative) eigenvalue of A of largest magnitude. It is well known that

Al =
-4 n-l =’ 2
r (sin y 4 9 so the condition for definiteness is this. If

I
>’& =<

then

negative definite
M2 is negative semidefinite

indefinite

Scheme 3.
.

c3 = -%I .

Thus, this scheme gets the symmetric part exactly right, in view of (8). M3

is: uniformly negative, and its eigenvalues approach Jri as E -t 0.

Scheme 4.

cl+ =F A-41 .

Again, the symmetric part is uniformly negative definite. For small E, how-

ever, M4 is a poor approximation to the operator M.

Here are the answers to question 2. In each case the question is

addressed by obtaining an upper bound on llT-lll 2, the spectral norm of T-l,
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or showing that none exists. Of course,

II=+ II2 = yl ‘?; 1 llTx II 9x 2=

where, for x = (XI, x2, .T . .. . . . 'n)
Ilx 11: p xx; .

Mower, IjT-1
112 = l/al where 0 < of 5 CJ~ <. . . . 2 a,, are the singular values

of T.* Finally, since T = CA + 8, the singular values of T converge, as
E + 0, to those of B. Thus, question 2 is answered in the affirmative if a

lower bound on the smallest singular value of B can be obtained.

Scheme 1.

The Taussky theorem
[1
8 states that ifan eigenvalue lies on the boundary of the

union of the Gershgorin disks, then it is a point of intersection of all the

disks. Since the disk of the last row of BlBT doesn't include zero, and zero
Tis on the boundary of the other disks, BrSl is positive definite.

- Scheme 2.

B,B'I =

Permute rows and columns so that odd numbered equations and unknowns precede all

Values of ATA,
The singular values of a square matrix A are the positive roots of the eigen-

which are the same as those of AAT.



-120

even numbered equations and unknowns. The resulting permuted matrix has the form

PB2B;PT =

Since all row sums of Bz2 are nonnegative and the last strictly posi-

tive, B22 is positive definite (by the Taussky theorem). As for 611, when

n is odd it is singular and when n is even it is positive definite. To see

this, note that when n is odd,

--.
Bll =

1
-3

-3 .
(J

b-2)
2

J

and Bil Z T= 0 where 2' (n, n/3, n/5,..., n/(n-2), 1) . When n is even,
iB(j), Tj-W .

t II (j-2R)2,  j = 1,3 ,...,  n-l, where /B (J)I is the determinant
R=O

of the leading principal submatrix of order (j+1)/2. The cases j = 1,3 are

trivial. For jL5, expand by cofactors to show that

. = ((j+2)*jm(j-2)...1)2 ,

using induction on j. Since B(n-l) = BI1 has positive determinant and cannot

have a negative eigenvalue, it is positive definite.

Scheme 3.

(Bj + tz I) is the skew-symmetric matrix

N3 zJ/

‘0
-3

3

0
. 2n

n- 0
-1 I .



Since

is bounded uniformly in c and h.

Scheme 4 (cdd).

8 -2 -4

Again, the Taussky theorem shows that B4Bz is positive definite.

4. Navier-Stokes Equations.

The driven cavity problem, a standard test problem in numerical fluid

a dynamics, is to solve the equations governing the flow of a viscous uncompressi-

ble fluid in a square, two-dimensional box with a wall that slides over the

fluid. Figure 9 shows the flow and the boundary conditions.

The equations are

(8 1a a2 + a2-AY=w ,  A r -  -
ax2 ay2

UN &Au = uwX
+ VWY

where Y is the streamfunction, w the vorticity, and c the kinematic vis-

cosity. (:) is the velocity field,
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(;, = ( �Y) l

+X

The vorticity can be eliminated from (8b) using (8a); a single equation

for the streamfunction,

A2Y - $(YyAYx - YxAYy) = 0 .

The appropriate boundary conditions are shown in figure 9.

A standard finite-difference scheme for (8) is (assuming as uniform

grid)

--_ cAu=Dh OY y Dox" - Dox y DoY f.'J 9

where Dox Y = (Y(x+h,y) - Y(x-h,y))/2h  9

Day Y = (Y(x,y+h) - y(x,y-h))/2h 9

Ah Y = (Y(x+h,y) + \ir(x-h,y) + Y(x,y+h) + Y(x,y-h) - Y(x,Y))/h2 .

The boundary conditions are implemented in an obvious way: Y = 0 at gridpoints

on the boundary, and the normal derivatives at the boundary are approximated by

either + DoxY or + OoyY as appropriate. Thus, e.g.,

a 4LO) i AnY(x,O) = 2Y(x,h)/h2  .

The difference equations were solved over a range of values of the

Reynolds number R z l/e, using several different grids. Results for 20 x 20,

30 x 30, and 40 x 40 grids are given in figure 10, which shows IlY 11, : max IYijI.‘-.
i,j

The curve labeled "best known results" was obtained with very fine grids, at

least 100 x 100. The values shown agree very well \;rith those of other calcula-

tions using fine grids 11[ 19 1121* Details will appear later 10 .[3
Several facts stand out, All grids produce inaccurate results; the

courser grids are less accurate at a given Reynolds number than the finer. On
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the 20 x 20 grid there is, apparently, only one solution for all values of R

shown, but on the other two grids there are values of R (an interval) for

which three solutions to the difference equations were found. The

curves were traced by a continuation procedure of Keller which has no trouble at

limit points, where the solution path turns around (as it does on the two finer

grids.)



-169

Motivated by the results for one model problem, we investigate the

difference scheme

dhO = JdD,yY(x+Ww~D+x~  ‘:, Day ‘YbAW~-x~

- Dox ‘y(x~~+kh)D+~~ - Dox y(x,~-WD_yw)

where Y(x+ish,y) = k(Y(x,y) + Y(x+h,y) and Y(xJsh,y), Y(x,y++h),  and Y(x,~-kh)

are defined similarly. Thus, for example,

u(xWw) = Y;(x+Mw)

-T & (Y(x,y+h) - Y(x,y-h) + Y(x+h,y+h) - Y(x+h,y-h)) .

Note that this scheme has the same stencil as the previous scheme.

These difference equations were solved on 20 x 20 and 30 x 30 grids.

The results shown in figure 11 are substantially better than those for the pre-

vious scheme. Not only are the solutions more accurate, there are no spurious

multiple solutions on the 30 x 30 grid. This scheme appears to be significantly

better, at least for computations of modest accuracy on fairly course grids. A

comparison of results for fine grids is planned. Compare also the results for

'Reynolds number 40 shown in Table 1.



** cc
s&mes&me gridgrid II II,II II,YY error in llylll,error in llylll,

oldold 4040 .09982.09982 .78.78 x loo4x loo4

newnew 4040 .10003.10003 .57.57 x loo4x loo4

old

old

121

121

.10060.10060
t

Table 1. Errors at Re = 40.
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FIGURE 1 L-norm OF error, Scheme 1
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FIGURE 2 L-norm of error, Scheme 2
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FIGURE 3 L=-norm of error, Scheme 3
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FIGURE 4 L-norm of error, Scheme 4
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FIGURE 5 L2-norm OF error, Scheme 1
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FIGURE 6 L2-norm of error, Scheme 2
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FIGURE 7 L2-norm of error, Scheme 3
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Y=O
Y=l

Y =o
Yx=O

Y =o
Yy=O

Y =o
I,=0

Fig. 9. Driven cavity: boundary conditions.



FIGURE 10

Driven  cwity solutions with old scheme
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FIGURE 11

Drlverxavlty solutions with new scheme
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