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Abstract

In a recent paper we showed that error curves in polynomial Chebyshev
approximation of analytic functions on the unit disk tend to approximate perfect
circles about the origin 1241. Making use of a theorem of Caratheodory and
Fejer, we derived in the process a method for calculating near-best approximations
rapidly by finding the principal singular value and corresponding singular vector of
a complex Wankel matrix. This paper extends these developments to the problem
of Chebyshev approximation by rational functions, where non-principal singular
values and vectors of the same matrix turn out to be required. The theory is based
on certain extensions of the CarathBodory-FejBr result which are also currently
finding application in the fields of digital signal processing and linear systems
theory.

.

.*

.

It is shown among other things that if /(tz) is approximated by a rational
function of type (m, n) for c > 0, then under weak assumptions the correspond-
ing error curves deviate from perfect circles of winding number m + n + 1 by
a relative magnitude 0(P+n+2) as 6 + 0. The “CF approximation” that our

- method computes approximates the true best approximation to the same high rela-
tive order. A numerical procedure for computing such approximations is described
and shown to give results that confirm the asymptotic theory. Approximation of
e” -on the unit disk is taken as a central computational example.
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1. INTRODUCTION

Let S G {z E C:lzl = 1) be the complex unit circle, let D I_ {z E C:lzl <
1) be the open unit disk, and let f) = D U S . Let R,, be the space of rational
functions of type (m, n) that have no poles in D ; that is, the set of rational
functions with at most m finite zeros and at most n finite poles, with all of the
poles outside of the unit disk. Let 11 a 11.. be the.supremum norm over S . Here
is the rutionul Chebysheu opprozimation  problem: given f analytic in D and
continuous on tj , find a rational function rk, E R,, such that II f - rA,,ll =
inf,ERm,,  II f - tll . Such a 6est upprozimation exists for any f , m, n, but it
need not be unique when n > 0 [18]. Where clarity permits we will usually drop
the subscripts m, n of r& and similar functions.

For given f and any r, the image of S under f - r describes some
curve in the plane, which we call the error curve  corresponding to r . A best
approximation r* is a function whose error curve can be contained in a disk of
minimal radius about the origin. This work began with the observation, based
on numerical computations, that for smooth f , the error curve corresponding to
r* often approximates closely a perfect circle about the origin of winding number
m+ n + 1 , and that this near-circularity phenomenon becomes more pronounced
as m + oo [24].

For example, consider approximation of e’ on the unit disk. Figure 1 shows
error curves corresponding to Pad6 and Chebyshev approximations of type (1,l) .
Both curves have winding number 3, but whereas the first one varies in radius
considerably, the second one evidently approximates a circle to within a fraction
of a percent. The plot is typical for smooth functions f . If you’ve seen one
Chebyshev approximation error curve plot on the unit disk, you have (almost)
seen them all.

Let us quantify such near-circularity by defining
\ * = II1 - til - minzEs I(/ - Ml-

Ilf - 41 (1 1).

as a measure of the relative deviation of an error curve from a perfect circle. Then
for each pair (m, n) in the range 0 5 m, n 5 3, the winding number of e8-r&
on S is in fact exactly m + n + 1, and Table 1 shows the remarkable decrease
of a with m.

1



--..
N

.2817

.
< >
.0848

Figure 1. Error curves for rational approximation of type (1,l)
to ez on the unit disk. Error curves for Pad6 (left) and Chebyshev
(right) approximation are shown plotted on the same scale. The
latter varies in radius by less than l%, and this figure decreases
rapidly if the degree of the numerator is increased, as shown in

. Table 1.

n=O 1 2 3

m=O
1
2

3

I 3 C-1) I 3 (-1) I 2 C-1)
I 5 (-3) I 7 (-3) I 2 5 (-3) I
I 4 (-5) I 1 (-4) ? ?\

5 (-6) 5 (-7) ? ? -

Table 1. Relative deviation ~1 from a perfect circle (eq. (1.1))
of error curves of best approximations GA to ez on the unit disk.
Various m,n . Some figures uncertain.



A previous paper 1241 analyzed the near-circularity phenomenon for the case
of Chebyshev approximation by polynomials - n = 0. The purpose of this
paper is to extend that analysis to rational approximation.

We begin in Section 2 with preliminary definitions and propositions. An
extended approximation space &,, I> R,, is defined, and RouchB’s theorem
is applied to show that any approximation with a nearly circular error curve
must be close to best. (Too many papers in complex Chebyshev approximation
invoke the Kolmogorov criterion in places where RouchPs  theorem would sufIice.)
The approximation problem associated with ii,, is solved in Section 3, and it
is shown that the solution is always characterized by a perfectly circular error
curve (Theorem 3.2). This is the extension of the Carathdodory-Fej6r  Theorem,
based upon the singular value decomposition of a Hankel matrix of Maclaurin
series coefficients of j, that this work is founded upon. Section 4 is devoted to
describing the asymptotic behavior of ikn, the best approximation out of &,,,,
on S to a function I(Ez) , as E --) 0. The purpose is to show that for small c , P’--.
comes very close on S to a rational function in R,, . Such a function is derived
from i’ in Section 5 and named the ‘CarathCodory-FejCr  approximation” rgm .
It is confirmed that PI and 3* become almost equal on S as c -D 0, hence that
re/ has a nearly circular error curve, hence that it is close to best. .

At this point it has been established that rcl is near best in the sense that
Ilf - tellI is not much bigger than 11 j - r*ll . If rC/ has a nearly circular
error curve, however, one can show further that in fact Ilr’l - PII must be
correspondingly small. The required a posteriori estimate is applied in Section
6 to establish the most important conclusions of this paper: that at least in
the asymptotic limit c + 0, best approximations are approximated exceedingly
closely by the CF approximation (Theorem 6.2), and best approximation error
curves are exceedingly close to circular (Theorem 6.3). Section 6 also contains a
summary and a discussion of these results.

.

’ An extensive amount of numerical experimentation has accompanied this
theoretical work. Though most of our theorems are asymptotic, the CF method
is astonishingly successful in many ordinary approximation problems on the unit
disk. Section 7 describes an efficient method for the numerical computation of
?* a n d  ref. In Section 8 the problem of approximation of ez is considered
numerically. Section 9 concludes the paper with some final remarks.
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2. PRELIMINARIES

The sets S , D, b, the space R,, , and the norm II . II have already been
defined, along with the best approximation t* E R,, (not necessarily unique)
with respect to II .I/ to a function f .

Let G be the set of functions which are analytic and bounded in 1 < lzl 5
bo and zero at z = 00 ; that is, with expansions of the form xFL_, zh that
converge and are bounded outside the closed unit disk. A function g E G need
not extend continuously to S, but it will have a non-tangential limit almost
everywhere there [IS]. By means of these limits we will apply the norm 11 l II in
the obvious way to g and to sums of the form g + f , where f is defined on S l

For any n 2 0, define

where R,, still includes only rational functions whose poles lie outside the disk
D. Further, for any m 2 0, define .

It is not hard to see that fimn is precisely the set of functions-that are bounded
on S and can be written in the form ’

a Note that it is not the case that k,, = R,,,,,  + G I unless m > n - 1.
An important tool beginning in Section 4 will be the Podeopprorimotion  of

type (m, n) to f , denoted rk,, . This is the (unique) rational function of type
(mi ?z) whose Maclaurin series matches that of f to as high an order as possible.
An excellent reference on Pad6 approximation is the survey by Gragg [9]. We will
also speak of *the” Laurent series of an analytic function q!(z). Whenever we do,
# will be analytic on S , and the Laurent series intended is the one that converges
in a neighborhood of that circle. Its coefficients are given by Cauchy integrals on
S , and are readily computed numerically by the Fast Fourier Transform (Section
7) .
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A limiting case for the rational approximation problem was already given in
[16] and in [24]. Here and throughout this paper, the ‘winding number” is with
respect to the origin.

Proposition 2.1 (circular ---I best). Given f analytic on D and continuous
on D , suppose the error curve of some function t E R,, is a perfect circle about
the origin with winding number > m + n + 1. Then r is a best approximation
to f out of R,, . However, this situation can occur only if / is a rational
function.

Proof [24). The first assertion is a consequence of RouchB’s  theorem and
the definition of a best approximation, The second follows from the symmetry
principle and the fact that any function meromorphic  in the extended plane must
be rational. 1

The argument by Rouchb’s theorem extends immediately to give a bound
on IIf - r*li in the case where the error curve of r is not exactly circular but
nearly so. This proposition is an analog of the de la VaMe Poussin theorem in
real approximation 118).

Proposition 2.2 (nearly circular * near best). Given f analytic on D and
continuous on D, suppose the error curve of some function r E R,,,,,  does not
pass through the origin and has winding numer 2 m + n + 1. Then

z; I(/ - WI 5 IIf - r’ll s II! - rll* I

A similar argument is valid for approximation out of ft,,,, . We will need
-this result in the next section.

Lemma 2.3. Given f analytic on D and continuous on D, suppose the
error curve of some function ? E 8,, does not pass through the origin and has
winding number > m + n + 1. Then

Proof. The second inequality follows from the best approximation property
of ?* . For the first, suppose to the contrary that for some ? E R,,, .

IV - ?‘I1 < 5; I(! - F)(z)l*
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Without loss of generality we may assume F’ is continuous on S, for if it is not,
the inequality will still hold for some function t”(k), where R > 1 is sufficiently
close to 1 . Then clearly P - 7’ has the same winding number as I- F , which
i s  > m + n + l . Now it is easy to see that ? - t” belongs to &+n,z,, . -
However; such a function can have winding number no greater than m + n, for
it is meromorphic in 1 < lzl ,< 00 with at most 2n + (m + n - 2n) = m + n
poles there. This contradiction finishes the proof. g



3. THE EXTENDED BEST APPROXIMATION F’ E R,,

The Chebyshev approximation problem in R,, has no closed form solution,
but the same problem in R,, does. Here we present that solution. The theory
has a clear beginning in the seminal paper of Carathhodory and Fej4r in 1911 (51,
which considered the polynomial case & = n = 0. This original theory was
rederived and extended a short while later by Schur in 1918 120). The extension
to rational approximation (m = n # 0) was first accomplished by Takagi in
1924 (231,  who built upon the work of Schur. Later, essentially the same results
were rediscovered by Akhieser in 1931 [2,3], and rediscovered again by Clark in
1968 (61. The most general, complete, and correct exposition can be found in the
recent work of Adamian,  Arov, and Krein [l].

Our own presentation will avoid functional analysis, and as a result it is
closer in spirit to the development of Takagi than to that of Adamian,  Arov, and
Krein. Various minor modifications have been made, however, and in particular
the language of singular value decompositions is used. The extension to m # n
is’new, and important for the applications that follow, but mathematically trivial.

Let / be a polynomial f(z) = co + 0 l l + c& , and let I+ denote the
Hankel matrix

’ Cl c2 . .

c2

0
(A matrix is Haakel  if its entries are constant along cross diagonals.) HI is.
symmetric but if the ck are not real, it is not Hermitian. Let

Hj = UCVH

be a singular o&e decomposition of IQ ; i.e. let the above equation hold with
u, v unitary and c of the form diag(al,~2,...,0&  ~1 2 02 2 l 2 a~ 2
0 . (Because of the symmetry of HJ , we may require V = D, but this is
not necessary in the formulation that follows.) Then here is a kind of reverse

.
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generalized CarathCodory-Fej& theorem (labeled ‘proposition” because it will be
extended further in Theorem 3.2). We will give a parti.al  proof based on a winding
number argument.

Proposition 3.1. The polynomial j(z) = CO $- l b. + cKzK has a unique best
approximation ?i,, out of R,,,, . The error is

.

II! - VII = G+r(Hj  1

(where o,+ 1 s 0 if n + 1 > K ), and the error curve is a perfect circle about
the origin whose winding number is exactly 2n + 1 if on+1 is simple. T* is
given by

f( 1
u1 +u2%+oe*+uK%K-1% - F’(z) = un+lzK

V~+VK~~X+-~+V~X~~~
(3 1)l

where u = (~1,. .I; U# is the (n+l)st column of U and 0 = (vi,. . ., v~)~ is
the (n + 1) st column of V in any singular value decomposition Ht = UCVH .

Proof’. A complete proof is given in [l]. The following argument proves
everything but uniqueness under the additional assumption that all of the singular
values of Hf are distinct.

Let ?* be whatever function is defined by (3.1); we will show that it belongs
to ii,, and is a best approximation of that class. Without loss of geaerality let
us assume U = a, and indeed V = 0. We may do this because the symmetry of
IQ implies u = wei4 and u = 8e’# for some vector UJ , and the factor 8 will
drop out in the quotient of (3.1). The right hand side of (3.1) is now a constant

* times zK times a finite Bloschke product,

and fherefore it is a rational function of type (2K - 1, K - 1) that maps S onto
a perfect circle of radius on+1 .

Multiply both sides of (3.1) by the denominator QK + 0-e f- t21zK-’ . This
yields an equation

[(CO + ' ' ' +CKzK) -i'(%)](aK+~'~tfsl%K-l)  =u~+l%K(U1+.'*+UK%K--l)
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in which each side must be a polynomial of degree at most 2K - 1. It turns
out that the polynomial ?‘(z)(c~K + ‘0 l + &zKol) has degree only at most
K - 1, however. For if we ignore this term and compare coefficients of zk for
k = 2K - 1,2K - 2,. . ., K , we get the system of equations

CKfh = h+luK
CK-lfjl + eKa2 zs h+luK-1

This system (in reverse order) can be written H/O = ubn+l , and therefore it is
satisfied since HI = lYEoH.

Thus ?* must be a rational function of type (K - 1, K - 1) representable
with denominator OK + l a* + flltKgl . Suppose that it has v poles in 1 <
121 5 00 counted with multiplicity. Then 7’ can be written in the form g+rvv ,
where tyy E R,, and g is analytic in 1 < lzl 5 00 and gero at 00. Now
if. UK + . l . + &zK-* happens to have any zeros on the circle S , then the
numerator ul + 0.. + uKZKol has these as zeros also, so they cancel in (3.1).
Therefore g is bounded in 1 < 1%) < co, which implies g E G and i’ E &,, .

Let p be the number of poles oTi’ in 0. Then the right hand side of (3.1)
has winding number T =K+v-port  S. Since u+&K-1,wehave
r 2 2~ + 1 . It follows now by Lemma 2.3 that i;’ is a best approximation to j
in R,, .

Thus each of 01,. . ., bK is the error corresponding to a best approximation
*in R,, for some u with 0 5 u 5 K - 1. By the assumption that the G
singular values of Hf are distinct, these values of v must be distinct and increase
monotonically with tz . Hence we can only have v = n, and the theorem is
proked. 1

Proposition 3.1 gives a constructive description of best approximations to
polynomials out of the sets &,, . It is quite easy to extend this result to
approximation out of R,, . First, if m < n, we naturally proceed by finditig

.

the best approximation it:,
right-shifted Hankel matrix

to f’ E Porn f out of &. This will invdlve the
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( 1H,!' G

0
...
co I

.
l

.

CK

. . .

CO

Cl

CO

Cl

Cl
CK

CK

CK’

.

0
(K+uxK+d

(u > 0) I

with u = n-m . Since zn-m has constant modulus on S , it is easy to see that
-+f Z -.+ff PornI must be a best approximation to f out of ii,, , and that
thmeneires;?nonding  error curve is a perfect circle with winding number m + tl + 1
if @,,+I (H$?Om))  is simple.

m

Second, if m > n, we again proceed by finding a best approximation Pi:
to f’ II P-“/. This time i’ may possess terms of negative degree, but these
have no influence on the approximation problem because they are absorbed in G ,
and &, = R,, + G . Thus we now make use of the lefbshifted Hankel matrix

.,

H( ); G

’ Cl-v c2-” l l � CK

cz-u .
b.

.
. 0
. . 0

b CK

We may sum up these results in the main theorem of this section.

. Theorem 3.2 (solution of extended approximation problem). The polynomial
f( 1z = c o  +  � l  l  +  c K%K has a unique best approximation rk,, out of &. -
The error is

III- i’ll = o,+l(Hym)).
(where on+1 E 0 if n + 1 > K + n - m), and the error curve is a perfect circle
about the origin whose winding number is m + n + 1 if ~,,+l is simple. ?’ is
given by

- F’(z) = on+12
Ku1 + ‘** + tbK+n-m%K+n-m-l

UK+n-m $ - l * l + UIZK+n--m-l
(3 2).
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where U = (Uy,. . .,UK+~-~)~  and U = (111,. ..rUK+n-rn) T are the (n +
1) st columns of U and V, respectively, in any singular value decomposition
H( n - m )

/ =UCVH. i

The contrast between Theorem 3.2 and the situation for ordinary rational
approximation is great: in the latter problem uniqueness is not assured, existence
proofs are nonconstructive, and the error curve cannot be very satisfactorily
characterized. This is why introducing the extended approximation problem is so
fruitful.

Note that if K = m-f 1 and ~,,+l(Hf’-~)) is simple, then i;’ must have
n poles in 1 < lzl < 00, which according to (3.2) implies that none can lie inside
D . Therefore ik,, E Rmn , SO ?' = r* . Thus Theorem 3.2 gives the exact
solution of the Chebyshev approximation problem in this case. (This problem
goes back to Chebyshev. See [3], p. 278 and [18], p. 166.)

The restriction that 1 must be a polynomial has been adopted for simplicity.
Adamian,  Arov, and Krein prove an extension of Proposition 3.1 for approxima-
tion of an arbitrary function f E P’(S), and here the singular values of an
infinite Hankel matrix come into play [l]. The uniqueness and winding number
assertions are no longer so simple. For functions f that are analytic in a neigh-
borhood of I>, this kind of result can presumably be derived from Theorem 3.2
by considering limits as K approaches 00. In practice, we will normally be given
a function of this kind, such as e’ t and will truncate it to a polynomial at some
terti zK . It is also possible to base a constructive theory on the assumption that
/ is rational of some type (K, K) . For this approach, and for a presentation of
Proposition 3.1 in the language of linear systems theory, see for example [21].

.

Theorem 3.2 provides an immediate lower bound for rational best approxima-
tion errors. In most cases this is much tighter than other lower bounds that have
been published:

Theorem 3.3 (Q is a lower bound). Let f be analytic in a neighborhood of
D and let Q = limK,, a,+1 from Theorem 3.2; or let 1 be analytic in D and
belong to L*(S), with tr defined as the (n + 1) st singular value of the infinite
Hankel matrix H)f"-") with K = 00. Then

Q I Ilf - OI* . (3 3).
Proof. (3.3) follows from Theorem 3.2 and the inclusion Rm, C Rm, . The

11



limit in the first hypothesis must exist, and must be a lower bound for Ilf - PII,
since under that hypothesis f is the uniform limit on D of its partial Maclauria
sums. For the second hypothesis, see Adamian, Arov, and Krein [l]. 1
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4. ASYMPTOTIC BEHAVIOR OF 7’ AS c + 0

Throughout this section we shall assume the following setup. Let i(z) =
co + Cl + ’ l l

-/z CKZ~ be a polynomial of degree K , and assume cK # 0
for convenience. (For applications the assumption that ] is a polynomial is
unnecessary, and it will be removed in the next section.) For given c > 0, define

If Ck E 0 for k < 0 and k > K , then for any e > 0, f has the Laurent series

(4 1).

Let m 2 0 and n,, 2 0 be fixed nonnegative integers, and assume:

AssumptIan A. The Pad6 approximant rP,,, of 1 has n finite poles, and its
. Taylor series agrees with / exactly through the term of degree nc + n .

.
(If the assumption is true for any c, of course, it is true for all c .) Let the Taylor
series of 9 be

P(z) = E cpzy, (4 2).
It==--00

with ck E 0 for k < 0; for ali sufficiently small c (so that the poles of YP lie
outside b ), (4.2) is also the Laurent series for YP. (This means, with respect to

- S ; see Section 2.) Both {ck} and {ci} are independent of c . For given c > 0,
let P* be the best approximation out of k,,, to f on S given by Theorem 3.2.
Let ?;+ have the Laurent series

i’(r) = (4 3).
k----or,

f ) rp, ?* ) and the coefficients 1; depend on c, but we shall indicate none of
this in the notation.

This section is the foundation of all the asymptotic results that follow. Its
main purpose is to show that when z is smhl, the Laurent coefficients (cb -E;)@

13



of f - F* decrease geometrically in size as k decreases from m + n + 1 towards
-00 (Lemma 4.3). To show this, we begin by showing that T’ is close to 9,
making use of the nonvanishing of a Hankel determinant implied by Assumption
A (Lemma 4.1). From this and a winding number argument based on the Blaschke
representation of Theorem 3.2, it is shown that as L + 0, all the poles and zeros of
f - ?’ either approach 0 like E or approach 00 like l/e (Lemma 4.2). Lemma
4.3 then follows by Cauchy’s estimate.

The Hankel determinant argument of Lemma 4.1 is central to our results.
Though we state it here not in full generality but only in the context of relating
?* to I*, the same reasoning will be appealed to twice more in Section 6 to
relate r* to P and rcf to P . The idea is that in the presence of a condition
like Assumption A, near equality of the first m + n Maclaurin coefficients of
two functions in R,, or iz,, implies near equality of the remainder of the
coefMents. The argument is a sharpening of one used by Walsh in Theorem 1 of
I251 . --.

Lemma 4.1. Assume the conditions of Assumption A. For each c Jet t* and
P* be represented in the form

P(z) =
dOp  + l l l + dp,(cz)”

1 + er(6z)  + l l l + eP,(<z)n

and, as in (2.3) ,

P’(z) = l � l + 2:& z)-� + a ; + � l + a ;(@

1 + ig c z) + . � l + c �;(u)� l

(4 4).

(4 5).

. (The numerator of (4.5) is understood to converge in 1 < lzl < 00, while its
denominator has all its zeros in lzl > 1. Other than this we make no a priori
asssmptions about these representations, for example that they are unique or that
common factors have been cancelled.) Then as e + 0,

.
I -*ek - $1 = o(4 l<k<n,- - (4 6).

IG+n+1- &+n+r I = w, (4 7).
and

5 p;c”l = o(,,+n+O). (4 8).
k=m+n+2 I

14



Proof. Assumption A implies the bound

Ilf - tq = O(cm+n+l)

as E --) 0, and this implies in turn

q&+1 = IfI- ?‘If. = o(cm+n+l 1 1 (4 9).

since i;’ must be at least as good an approximation to 1 as tP. Combining
these bounds yields

II -tr - dl = O(em+n+l 1 .
Therefore by Cauchy’s estimate we must have

I 2; - q = o(p+“+‘-h)

for all k , and in particular

I E; - cl;l = o(c) Vk~t78+8. (4.10)

Equating (4.2) and (4.4) and multiplying through by the denominator of
(4.4) leads to an identity between the numerator polynomial of (4.4) and a
convergent power series. Terms in this identity can be equated in powers of
z . Carrying this out for powers zrn+l through z”+~ leads to the system of
equations

. p cpm - n + 1 CPm
.

.
.

0 ’

C!k CPm + n - 1

The matrix here is a Hankel matrix,

.

By Assumption A, V has a full n finite poles, hence a pole at infinity of
order at most m - tz . It follows from the theory of Hankel determinants that
the matrix in (4.11) is nonsingular [13, Theorem 7.5.ej.  This implies that the
coefficients ey, eP‘**t n, which constitute the solution of (4.11) , are unique after
all, as indeed could have been made clear on simpler grounds.

.
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The same term-by-term identification can be carried out for ?’ . By equating
(4.3) and (4.5) we derive a second Hankel system

. . (4.12)0
-I
%+tB

Now here is the key argument. Since the matrix (4.11) is nonsingular, its
condition number is finite. Moreover, from (4.10) it follows that in any norm
both the right hand sides and the matrices of (4.11) and (4.12) differ by only
O(c) as c + 0. Combining these facts implies that (4.12) also has a unique
solution for all sufficiently small c, and furthermore that (4.6) holds.

To prove (4.7) and (4.8), we observe that additional coefacients of i;’ satisfy
the recurrence relation

--.
-2;+, = i;-n+lE:, + l ** + z;c �; Vkzm+n, (4.13)

whichdescribes additional rows that might be added to the system (4.12). (4.7)
follows directly from (4.6), (4.10), (4.13) (with k = m + n), and the parallel
relation to (4.13) relating the Pad4 coefficients <cP> and (e;} . (4.13) also implies

Combined with (4.6) and (4.10),  this implies that the coefficients Z; satisfy a
* bound of the form

I?;1 5 const.( const.)k Vk>m+n

uniormly in C, for all sufficiently small C, and this implies (4.8). 1

,

Lemma 4.2. Assume the conditions of Assumption A. Then there exists a
constant /J > 0 such that for all sufticiently small c, f-i’ has exactly n poles
a n d  K - m - l zeros in 1 < 121 < 00, and they all lie in P/E < lzl < 00.

Proof. Lemma 4.1 established that the coe5cients of the two polynomials
l-j-e~z+-+e$zn and l+E;z+.*j-Z~z” differ by only O(c) as c + 0. Since
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the first one has a full n zeros, so must the second, for all sufficiently small c l
Moreover, their zeros {cf} and {CT} must coalesce as c + 0, with a worst-case
convergence rate of

If; - spl = o(dn)

in the event of n-fold multiplicity. Resealing  by C, it follows that the zeros of
1 + z;(U) + ‘*a + z;(H)” converge to those of 1 + ef(,,> + . l . + eP,(Cz)” at
a rate O(cllnol ) . The latter have modulus greater than peol , where p is any
number smaller than the moduli of all poles of P when c = 1. This proves the
claim about pole location, taking any p L p .

To determine the location of the zeros of f - ?’ , we use a winding number
argument. Let 11. IIF denote the supremum norm over the circle about the origin
of radius r . Applying Cauchy’s estimate to (4.9) as in the last proof, we derive

bk - c’;l < const. X P+n+l--L.

This implies that for lzl = p/c, where /J is any fixed positive number,

I(C& - z;)(tzyl < const. x tm+n+1(C//9)-k,

and from this the bound

m+n
II c (c& - Z;)(~z)~llp,~  < const. X @m+n (1 - c//Y)
k=-00

(4.14)

. follows provided c < /9 . Now since the poles of f - ?’ all lie outside (zl = p/e )
we also have

ICk - c’;l < const. X pok Vk>m+n+2 (4.15)

for some const. > 0, and from this a complementary bound

*I[
” k=m+n+Z

follows, this time for any 18 with O<p<p.
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- B/P) w9



(4.7) implies that the degree m+ n + 1 term of f - i’ , on the other hand,
satisfies

I(cm+n+l - ~~+n+l)(rz)m+n+l I Izz cm+n+l  - ‘k+n+llPm+n+l + O(c)
uniformly for 121 = /3/c. If /3 is fixed small enough, this estimate must be
greater than the sum of (4.14) and (4.16), for all sufficiently small E . This implies
that f - F’ has the same winding number as (cz)~+~+~ on lzl = /3/r, namely
m+n+1.

Now I- ?’ is the finite Blaschke product given in formula (3.2) of Theorem
3.2. Its winding number on any circle is the number of poles minus the number of
zeros in the region of the extended plane outside that circle. Outside lzl = P/C,
f-r’ has K poles at infinity (since CK # 0 ), n finite poles (proved above); and
hence by (3.2) at most (K+n-m-1)--n  = K--m-l zeros, which correspond
by symmetry to poles of 1 -F’ in the unit disk. Therefore on lzl = /3/c, 1-F’
must have winding number at least (K + n) - (K - m - 1) = m + n + 1,
and it can only be”that small, as we have just shown that in fact it is, if a full
K - m - 1 zeros lie outside lzl = P/C. 1

Lemma 4.3. Assume the conditions of Assumption A. Then there exist ‘.
constants M < 00, 7 < 00 such that for all su5ciently small e,

for all integers -oo<k<m+n+l.
Proof. This result follows from Lemma 4.2 and the Blaschke product repre-

sentation of Theorem 3.2. By Lemma 4.2, for some fixed /3 and all sufficiently
small  E > 0 ,  f - ?* must have n zeros 11 ,...,c~ in 0 < lzl < e//3 and.
K - m - 1 zeros ca+l,. . ., cK+n-mm- 1 in B/C < Izl < 00. From Theorem 3.2,
we may write I- F*. as

‘. (f - P)(z) = t7ZK $;zYl)K

Consider the size of this expression on the circle lzl = 243. Easy estimates
show that on this circle the four factors

18



have magnitudes O(P+“+l)  (by (4.9)), O(rK) , O(P), and O(r-(K-m-l)),
respectively. Combining these bounds gives

(f - P)(z) = O(r2m+2n+2) on 121 = 2&3.

By Cauchy’s estimate there follows

I(ck - E;)ckI = O(r2m+2”+?) x (2cfp

uniformly for all k , which proves the theorem with 7 = 2/a. 1

A final corollary will be needed for the a posteriori argument of Section 6.

Lemma 4.4. Assume the conditions of Assumption A. Then as c --) 0,

(I - i’)(z) = (cm+,+1 - c;+n+J(fS)m+n+l + 0(~“+“+1)

uniformly on S . -C’
Proof. From Lemma 4.3 it follows easily that the magnitude on S of the

stim of all terms of degree 5 m + n in the Laurent expansion of f - r’* is
O(P+a+2)  as c + 0. (4.8), on the other hand, implies the same for the sum
of all terms of degree >, m + n + 2. The claim follows from these observations
and (4.7). g
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ill. *I.

5. THE NEAR-BEST APPROXIMATION rC/ E R,,

The purpose of studying the extended best approximatian  P’ E R,, is to
derive from it a nearby approximation rC/ that belongs to R,, . The foregoing
asymptotic results will show that, at least if 1 is smooth, such an rC/ can be-.
chosen that is nearly equal to f’ on S .

If nz = n, then F’ can be written in the form (2.1)

where rnn f R,, and g E G. In this case a natural choice for re/ would be
. r”n/n -C rnn . A generalization of this choice can be defined in any problem in

which m 2 n - 1. Let Pk,, be expanded as in (4.3) in a Laurent series with
respect to S . Then if m 2 n - 1, the nonnegative degree terms of this series
must define a rational function belonging to R,, . For m >, n this follows from
(2.1) and (2.2), which imply in this case that the nonnegative degree portion of
the series can be written in the form P-‘&, + Pm-n-l, where ~~~~-1 is
a poynomial of degree at most m - n - 1. This sum is in R,, . The case
m n-= 1 is similar. For m < n - 1, h,, # R,, + G , however, as was
remarked in Section 2, and because of this, truncating negative degree terms in
-*fmn does not in general yield a function in R,, .

To make possible a uniform treatment for any m and n, therefore, we shall

*,

define reI by a different truncation. Let ?k, be written as a quotient as in (2.3).
tef will be construtted by simply dropping all terms of

*numerator:
pf 2 =0

a ; + l � + a ;*m

mn - 1-t z;z+ l ‘a + Q”’

(Indegenerate  cases with fewer than n finite poles outside

negative degree in the

(5 1).

b, tef is not uniquely
defined.) This choice of rc/ will prove sufficient for deriving asymptotic results
concerning near-circularity of the error curve of I* .

The Carath6odory-FejCr theory of Section 3 was developed only for polyno-
mials f , although it was remarked that comparable statements hold for arbitrary
functions f E Loo(S). For asymptotic results with c + 0, however, any func-
tion that is analytic in a neighborhood of the origin becomes arbitrarily close
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to a polynomial as c + 0, so there is no need to restrict the consideration to
aT

polynomials. Specifically, given ] analytic at z = 0, let f be the degree-
(2m + 2n + 2) partial sum of its Maclaurin series, and define f(z)*= &z) as
before and fT(z) = iT(cz). Then

II/ - fTll = O(c2m+2n+3) (5 2).

as c --) 0. From now on define f’ and ref to be the rational functions obtained
by applying the CF theory and (5.1) to fT . (K is then the degree of the largest
nonzero term in ITI at most 2m + 2n + 2 .) The bound (5.2) is small enough so
that the strength of our subsequent asymptotic theorems will not be aflected by
the f )--) IT truncation. In a particular computational example, of course, one
might choose K larger than 2m + 2n + 2 and expect a slight gain in accuracy.

With these definitions it is straightforward to derive the asymptotic behavior
of the error curve of tc/ from previous results:

--.
Lemma 5.1 Let 1 be analytic at the origin and assume the conditions of

Assumption A. Then as c + 0,

(9 (1 - r’f)(z) = (cm+,+1 - C~+n+l)(L%)m+n+l + o(crn+n+l)
uniformly on S , and

(ii) Ilf - rq - mii I(j - r’f)(z)l = O(c2m+2n+3).

Thus the error curve of r cf is nearly circular with a relative deviation in radius
that is O(E m+n+2), and it has-winding number exactly m+n+l for sufficiently
small C.

Proof. (i) and (ii) follow from Lemma 4.4 and the exact circularity of
f T - -+r on S, respectively, together with (5.2) and the bound

II -*r - pq = 0(++2n+3) (5 3).

a s  c-,0. Let us establish this bound. By (4.5) and (5.1), P’ - ret has an
expansion of the form

(
r* l l l + ;i’2(4-2 + a’,(&-1 *
r - r’!)(z) =

1+ z;(U) + ” ’ + z;(U)” l

(5 4)l
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From (4.6), each E; is bounded as c + 0, which implies that the denominator
of (5.4) behaves like 1 + O(C) on S as c + 0. Therefore (5.3) will follow if

II* l l + ;i,2(LZ)-2 + a r _,c ,,,-y  = O(c 2m+2n+3). (5 5).

Now by (4.3) and (4.5) we have readily

rend from this, the boundedness of the I;, and Lemma 4.3, (5.5) follows. 1

By Proposition 2.2, Lemma 5.1 implies the very strong result

Proposition 5.2 ( tCJ is near best). Let f be analytic at the origin and assumg
the conditions of Assumption A. Then as e + 0 a

--. Ilf - req - llf - rq = 0(62m+2n+3)

.and thus 11 f -r”fll exceeds the minimal error by a relative magnitude O(bm+r+2)
as c+O.g
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6. MAIN ASYMPTOTIC RESULTS

At this point an approximation rcj to f has been constructed whose error
curve is nearly circular. Now we will show that it follows that IIref - PII is
nearly zero, hence that the error curve of P is also nearly circular. As in the last
section, here i is any function analytic at 0, and f(z) E f(@ .

A lemma is needed on the behavior of the denominators of r* and teI .

Lemma 6.1. Let f be analytic at the origin and assume the conditions of
Assumption A. For each c > 0, write rCI = pet/@ and r* = p’/q* with qc/
and q* normalized to have constant term 1. Then as c + 0,

qqz) = 1+ O(6) (6 1).

and
q’(4 = 1+ WI (6 2).

--.
uniformly on S .

Proof0 qej is also the denominator of P’ , so (6.1) follows from.(4.5)  and (4.6)
of Lemma 4.1. (4.6) was derived by means of Hankel determinants by comparing
f’ to rp . The only facts about ?’ used for this were P’ E A,, and the best
approximation property Ilf - ?‘I1 5 II{ - Pll. As both facts hold also for r* ,
the same argument proves (6.2). 1

Lemma 6.1 suggests that asymptotically as c + 0, rational approximation
becomes less and less nonlinear. This fact enables us to show that llr’ - r’/ll is
small by the same a posteriori argument used for polynomial approximation in

.
WI .

Theorem 6.2 (tcf M P ). Let 1 be analytic at the origin and assume the
conditions of Assumption A. Then as c + 0,

II rC/ - r’ll = o(p+2n+3). (6 3).

ProoC Let AC = c,+,+l - cL+~+~ ; from Assumption A, AC # 0. By
Lemma S.li,

(I - m4
.

ACT+“+’= 1+ W), (6 4).
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and by Lemma 5.C this function varies in modulus by only O(C~+~+~) on
S . Since P is a best approximation to 1, it follows that adding (PI -
r’)(z)./[Ac(c~)m+n+~]  to (6.4) can increase the modulus of (6.4) by no more than
Ohm+n+2) at any point on S . In particular, we must have

I (rcf - Al) = O(Em+n+2  .
ACT+“+ 1 1 ‘*. .

uniformly over all points where the argument of this quotient has modulus less
than, say, r/4. Since tef -P = (pef q4 -p’qef )/qef q* , and since (qcf q*)(z) =
1 + O(E) as c + 0 by Lemma 6.1, it follows that

Wf Q* - P*Qcf )tz) = O(am+nf’)
Ac(cz)“+“+’

uniformly over all points where this quotient is real and positive. Now this quotient
is a polynomial P in 20-I of degree at most tn+ n+ 1 with constant term 0 . It
follows (Lemma 5,124)) that the image of lz-‘I 5 1 under P covers completely
the disk about 2-l = 0 of radius 2-‘m+n+1)llPll . This necessitates the bound

II PC/Q* - P’Qcf
ACT+“+ II

_ qcm+n+2) 1

hence
IIp’f q* - p*qcf II E o($m+2n+a),

and hence (6.3), again since (qefq’)(z) = 1+ O(c). 1

Lemma 5.1 and Theorem 6.2 imply immediately

Theorem 0.3 (the error curve of r* is nearly circular). Let f be analytic at
the origin and assume the conditions of Assumption A. Then as c + 0 1 for ali
sufficiently small C, the error curve of t’ has winding number exactly m+n+l ,
an;l

IIf - r*II - lf’9 ](f - r*)(z)] = 0(E2m+2”+3). 1
t-

Summary of asymptotic results. Let us summarize what we have established,
or could readily establish with additional combinations of the foregoing argu-
ments, about asymptotic approximation of a function f analytic at the origin
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that satisfies Asssmption A. As 6 + 0

11,ll = O(l), (6 5).

whereas

Ilf - 41
II1 - fPII

IV - ref 11
= O(a m+n+l) -- but not O(C~+“+~).

(6.6a)
(6.6b)
(6.6c)

ref and r’ have relative contact O(C) on the scale of these errors,

II rp - r’ll = O(fm+n+z), (6 7).

while ret and r* have relative contact O(em+“+‘),

II tef - r’ll = qpm+2a+ye (6 8).

For sufficiently small c, r* and YP and rCf all have exactly n finite poles, and
all of their error curves have winding number exactly m+n+ 1. The error curve
of rp deviates from a circle by a relative radius O(c),

. IV - rPll - z; I(j - rP)(z)l = O(bm+n+2), . (6.9)

and those of rCf and r* deviate by a relative radius O(C~+“+~),

IV - ref II -
= op+2n+q.

(6.100)

. IV - r’ll - min I({ - t*)(z)1 J .6s (6.lOb)

Discussion. The agreement (6.7) of P and YP was essentially established by
Walsh [25], though not stated in this form, It is likely that Walsh also knew of
the following corollary, which follows from the winding number results for j - r*
by the argument principle, but he seems not to have published it:

Corollary. Let 1 be analytic at the origin and assume the conditions of
Assumption A. Then for all sufficiently small c, r’ interpolates f at exactly

. nt + n + 1 points in D, counted with multiplicity. 1
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This extends a result of Motzkin and Walsh (IS] for polynomial approximation,
discussed also in (241.

It is interesting to see that although the best approximation t’ need not
be unique, (6.8) implies that it is nearly so: if r; and r; are any two best
approximations for each c > 0, then

II r; - r;ll = O(E 2m+2n+3
1 .

Our presentation has described approximation on the fixed disk D of a
function that grows smoother as c + 0, but obviously the results pertain equally
to approximation of a fixed function 1 on the shrinking disk ]z] 5 c. This
was the setting considered by Walsh. Ke showed then that as c --) 0, P + V
uniformly on any compact set not containing poles of r* 125). Our arguments
duplicate this conclusion, showing that r* - P = O(c) on any such compact
set. A third application of the argument of Lemma 4.1, in fact, shows the much
stronger result that te/ - r* = O(C~+,+~)  on such sets. This is another way
of expressing the fact that whereas Padd approximation captures anaIyticaIly the
first term in an asymptotic description of r’ , CF approximation captures the
first 112 + n + 2 terms.
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7. NUMERICAL COMPUTATION OF ?’

Here we sketch how the coefficients of P’ as a quotient of the form (2.3)
can be computed numerically. Additional details, in the context of digital filter
design, are given in [ll]. -.

Step 1. First, one must decide at what degree K to truncate the Maclaurin
series of f , and then find the K + 1 required coefficients. In realistic applications
the series may converge fairly slowly on b , so we must assume that K may be
fairly large: say, between 10 and 100. If the Maclaurin coefficients are not known
analytically, they can be computed by the Fast Fourier Transform [14, 83.11.

Step 2. The most time-consuming part of the problem is to find the (n+ 1) st
singular value and vector of the K + n - m by K + n - m Hankel matrix--.
H Z H(n-m). The most straightforward approach to this is to compute aI
full singular value decomposition of H by unitary reduction to bidiagonal form
followed by a QR iteration, an algorithm developed by Golub and Kahan and
implemented in both EISPACK[22] and LINPACK. This will take O(K3) floating
point operations. However, our problem is special in three ways: H is Hankel, it
is triangular, and we only need one singular value and vector. One would like to
take advantage-of as much of this structure as possible. If the coefficients of 1
are real, then an additional fact to be exploited is that the singular value problem
reduces to an eigenvalue problem.

. Unfortunately, no methods are currently known that take substantial ad-
vantage of general Hankel (or Tocplita) structure in singular value or eigenvalue
problems. We have contented ourselves with reducing the O(K3) time constant
by computing only some eigenvalues and one eigenvector of H via Sturm se-
quencing and inverse iteration [22), in the case where f has real coefficients.
Even this saving is not as great as one would like, however, for while we seek the
(n + 1) st eigenvaIue  of H in magnitude, the Sturm sequence approach isolates

* eigenvalues according to magnitude and sign. Thus we are forced to search both
ends of the spectrum of H in order to determine which eigenvalue it is that we
want. EISPACK provides routines for this.
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Step 3. Now one must extract the coefficients of ? from (3.2). Let us write
the denominator of the Blaschke product in (3.2) in the form qin(Z)qoub(Z),  where
qin and qout are polynomials with all zeros inside and outside D, respectively.
Then the denominator of i’ is precisely qout, or may be taken to be such in
the degenerate case in which a zero of qout is cancelled by an identical zero
in the numerator of the Blaschke product. Thus to find the denominator of
?’ , we need to find the polynomial subfactor of & + l * . + &zk--’ containing
precisely those zeros outside D. For this we have used an excellent technique
proposed by Henrici (14, $3.21 based on forming the logarithmic derivative of
tik  + l � + ii,2�y1 and computing certain of its Laurent coefficients, making use
of the Fast Fourier Transform. The accuracy of this procedure depends on the
%er o 8 o f o k  + � l � + & zk -� lying no t too close to S , but this is a limitation one
can live with, as the CF method itself will give poor approximations when some
of these zeros have magnitude close to 1. .*

Once qaut is known, the numerator of ?’ can be found by multiplying (3.2)--.
by Qo,,t . The resulting equation gives 7’q,k in the form of a Laurent series that
converges in lz] > 1, which is precisely the form that we seek. The fastest way
to compute desired coefficients of this Laurent series is by means of another FFT.

Sfep 4. Finally, rC/ is formed by dropping the terms of negative degree in
the numerator of ?’ .

The total time required for these computations depends strongly on K . For
approximation of eL , K = 20 is ample to give rcf accurate to ten places when
nt and n are small, and the computation requires roughly.0.1 sets on an IBM

. 370/168. A typical time for a function with a less quickly converging power series
might be 1 second.
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8. NUMERICAL EXAMPLE: APPROXIMATION OF es ON THE UNIT DISK

To illustrate the foregoing results, let us see how the CF method performs
in approximating ez . Because the Maclaurin series of c* decreases so rapidly,
K = 25 is equivalent to K = oo for our numerical purposes. Will will talk as
if K = 00 . Combining Proposition 2.2 and Theorem 3.3, therefore, we get the
simple bound . .

&a+1 5 tte=  - r’ll s IV - ~‘~ll (8 1).

provided the error curve of t‘c/ has the expected winding number m + n + 1.
(Clearly it does, although this has not been proved for all m, n .)

0 Sample computations ior- (m, n) = (1,l)
Consider approximation of type (1,l). The simplest candidate is the Pad4

approximant,
1+ .5z

W) = 1D*5z* (8.2a)
--.

The corresponding error (to the accuracy shown) is

II e’-&II  = .282. (8.2b)

The error curve, as shown already in Figure 1, is not close to circular.
Next, we compute the extended best approximation F’ by the method

described in Section 7. It is

-,+
*11  =

l + .00000983z-2+ ..00024668z-' +.99613054+.58955195z (83. a) .
l - .43416584z

. with corresponding error

II e” - Ql = Q(H$))=  .08455. (8.3b)

The error curve here winds 3 times, and is a perfect circle (assuming K = 00 ).
Now by truncating negative powers we get

~;#I =
.99613054 + ,58955195z

1 -.43416584z  ’
(8.4a)  .

with error
.

II e” - r;{(I < .08493. (8.4b) .
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Evidently rC/ approximates e* to within 0.5% of the minimal error. Its error
curve is circular to within a relative deviation of less than 1%. The Pad4 ap-
proximation (8.2),  in contrast, is non-optima1 by more than a factor of three. If
we were to inrease m, the comparison would become even more striking.

r

For a true appraisal of rC/, we need to camp are it to the best approximation
t+ . In general, computing I* numerically to the high accuracy required for this
comparison is a difficult matter. The Rimes algorithm for rational Chebyshev
approximation on a real interval, for example, does not extend to complex ap
proximation. Stephen Ellacott 17) has tackled this problem with Lawson’s al-
gorithm, but as we have discussed elsewhere [24), Lawson’s algorithm ceases to
converge precisely as the error curve approaches a circle. Because of this problem,
Eliacott’s  coefficients for P are generally are not as close to correct as the more

.

. easily computed coefficients of the approximations ret M r* are, for m 2 3. (In
defense of Lawson’s algorithm, however - it does get near a best approximation
quickly, and the last fraction of a percent is unimportant for most purposes.)--.

For the case (m, n) = (1,l) , Ellacott’s computation is sufficiently accurate,
and we have checked it against a *brute force” computation by a general-purpose
optimization program. We find

4&> =
.99625 + .58952z

1 - a434142
(8.5~)

with error
II e’- &II = 0.08480. ’ (8.5b)

A comparison of (8.5) with (8.4) suggests that in practice, rC/ can be expected
.to approximate r* very closely. Note that (8.5b) lies between (8.3b) and (8.4b),
as it must.

In this example lle’-r”/ll would fall all the way to ,08481, and the relatively
poor constant term in the numerator of re/ would rise to .99624, if the choice
of ‘& first considered in Section 5 were used rather than the one finally adopted

. there for convenience of generalization. Undoubtedly the first choice is better, in
practice, when m 2 n .

l Dependence on m and n
Let the measure a of relative circularity of equation (1.1) be applied to

ret for various m, n. Table 2 shows the results. Note the general agreement
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n = O 1 2 3

m = O
1
2

3

.
1 C-1) 6 C-1) 6 C-1) 3 C-1)
4 (-3) 1 (-2) 1 C-2) 9 (-3)
3 (-5) 1 (-4) 6 (-5) 7 (-5) 1
5 (-6) 5 C-7) 2 C-6) 3 (-7)I I

.

Table 2. Relative deviation cx from a perfect circle (eq. (1.1))
of error curves of CF approximations rcf to ez on the unit disk.
Various m,n .

n=O 1 2 3
\ .

m=O 1.25836 65707 .39659 05141 .Q527 04209 .g2919 04410

1 .55752 90694 .08454 87259 .01295 01410 .00186 66235

2 .17737 38152 .01459 00251 .00139 32413 .00013 47402- - - m - -

3 .04336 8926832 .00218 6196115 .00014 2307100- - .ooooo 9931757- - - -I

.

Table 3. on+l = lie2 - z&l! for various m,n (see (8.1)).
Underlined digits are known to agree with corresponding digits of
best approximation errors IIeZ - r&II .

E Ilf - rCfII

4 .170 (+2) .723 :461
2 .810 .123 .296
1 .849 (-1) .978 (-2) .314

l/2 .104 (-1) .594 (-3) .312
l/4 .130 (-2) .349 (-4) .307
118 .163 (-3) .215 (-5) .306

Table 4. Relative deviation a from a perfect circle (eq. (1.1))
of error curves of CF approximations rcf11 to ecZ on the unit disk.
Various E .
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between the numbers of Table 2 and those of Table 1. This is an indication that
at least for the present problem, the CF method is an effective approach to the
phenomenon of near-circularity. It may appear worrisome that in both tables at
is roughly independent of n, for this seems to contradict the asymptotic results
of Section 5, The explanation is that the constants in those results increase with
n . Dependence on n is always more difficult to analyze than dependence on m. .
in rational approximation, because it is there that the nonlinearity lies. As it
happens, in this example ~11 begins to decrease steadily if n is increased further.

To sum up how close to best rCf may be, Table 3 shows lie8 - T’ 11 as a
function of m and n for m, n < 3. Thus the (m, n) entry in the table is
just the (n + 1) st singular value of a Hankel matrix H$-m) . Digits in which
II e* - ?‘I1 is known to agree with jlez - PII (usually on the basis of (8.1)) have
been underlined.

l Asymptotic behavior for (m, n) = (1,l)
Finally, it is G’asy to confirm that as t + 0, Ilee* - rcfII A m&s Iec* -

r”/l = qp+2n+3) , as predicted in Lemma 5.1. Table 4 lists lice* - re’/ and
the same a as in Table 2 as a function of c for (m, n) = (1,l). The final column
shows that as expected, cx decreases like @I+2 = @. Moreover, it shows that
the constant involved is small. Evidently D is already a small disk a s far as the
smoothness of e8 is concerned.
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9. ADDITIONAL REMARKS

The phenomenon of nearly circular error curves has been observed by a few
people over the years, but not speculated about in print until [24). Since the
tendency to near-circularity is so strong, it is likely that interesting features of the. .
Chebyshev approximation problem have been overlooked as a consequence. The
approach described here does not yield a satisfying explanation of #why” error
curves are nearly circular, but perhaps the results it leads to can at least make
this phenomenon a recognized feature of the Chebyshev approximation problem.
Any such feature must have theoretical and practical consequences. One practical
consequence, as mentioned in the last section, is that Lawson’s algorithm is not
suitable for computing Cheybshev approximations to high accuracy.

That is the geometric aspect of this work; the other theme has been the
algebraic one, namely the remarkable connection with Blaschke products and
the singular value analysis of a Hankel matrix of Maclaurin coefficients. The
Carathbodory-Fej& theorem and related results belong traditionally to the study
of function theory on the unit disk, and are only recently being borrowed for other
purposes. The papers of Adamian, Arov and Krein [I] are currently inspiring
active work in systems theory by Bettayeb, Bultheel, de Wilde, Cenin, Kung,
Silverman, and perhaps others [4,8,11,17,21].  Problems in systems theory reside
naturally on the unit disk, however, whereas in approximation theory they need
not. At least some of the techniques described here can be transplanted to more
general regions by a conformal map, as for example in Theorem 12 of [24], but
algebraic simplicity is lost in the process. It remains to be seen how fruitful such
transplantation can be.

For the disk there is no doubt of the power of the CF approach. The great
weakness of the theorems proved here is that with the exception of Theorem 3.3,
they are entirely asymptotic. If non-asymptotic results can be found that capture
the true strength of CF approximation, the method might become a powerful
theoretical tool. For example, it might then be easy to prove strong theorems
about best approximation in the more difficult asymptotic cases m + 00 and
n -3 00 . Some conjectures along this line can be found in the book by Meinardus
[18, e.g. (9.14)].  Many of the estimates in this paper have been far from best

.
,
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possible, so it has not appeared worthwhile to tackle these problems, as was done
for the polynomial case in [24].

Most surprisingly, it turns out that the CF method extends with no loss of
algebraic simplicity to approximation by real functions on a real interval. Now a
Hankel matrix of coefficients in an expansion in Chebyshev polynomials is needed.
For m > n, in fact, the CF method is even more powerful in real approximation
than in complex approximation. The reai’ CF method is presented by Gutknecht
and Trefethen in 112) and discussed further by Gutknecht in [lo].
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