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A new method for the numerical solution of the first
biharmonic problem in a rectangular region is 3utlined.
The theoretical Somplexity of the method is N4 + O(N)
storage and 0O(N¢) arithmetic operations. (In order
to achieve a prescribed accuracy on an N by N grid.)
Numerical results from a computer code that requires
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aN2 +: bN logN + O(W). operations with b << a , are

presented using both a scalar and a vector computer.
Extensions and some applications of the method for
solving eigenvalue problems and certain nonlinear pro-
blems are mentioned.

I. INTRODUCTION

Consider the (first) Dirichlet problem for the biharmonic

operator in a square S :

-Azu(x,y) = f(x,y) (x,y) € S
u(x,y) = g(x,y) (x,y) e 3S (1)
un(x,y}~= h(x,y) (x,y) € 3S.

Here u denotes the normal derivative of u with respect
to the exterior normal. Let S be covered by a regular grid
with N2 interior gridpoints. The biharmonic operator is

approximated using the 13-point stencil

combined with quadratic extrapolation near the boundary. This
scheme has truncation error |ju = uhH of order h? where

h = 1/(N+1) . The discrete problem can be written as
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where A 1is defined by the discretization defined above and
b 1is a function of the data £, g 'and h .

Many methods for the numerical solution of the above
linear system have been proposed. They can roughly be classi-
fied as follows:

i) Iterative methods working on the matrix A.

ii) Direct methods working on the matrix A.

iii) Iterative methods based on reducing the biharmonic
‘problem to a coupled system of two second order
equations involving the Laplace operator.

iv) Direct methods taking advantage_of the fact that A

2 + V‘[ where L is the discrete

can bé%sblit into L
Laplace operator and V has low rank.

The first approach i) can be found in many early papers
on the subject (6), (13). Its main disadvantage is related to
the fact that A has condition'. number proportional to N4
resulting in slow convergence of the iterative techniques.

Approach ii) is discussed in (2), (12) and (15). The
theoretical complexity of a direct method is O(N3) arithmetic
operations and O(NzlogN) storage locations using for
example nested dissection. This and other sparse matrix
@ethods for the problem were studied and compared in (15).
fhis study indicates that the constants in the above estimates
are quite large and that a regular band solver is competitive
even when the number of unknowns approach one thousand. A
block elimination scheme is discussed in (2), while a band
solver is being used in (12). Both these methods require a
prohibitive amount of storage if N 1is large and they have a

typical running time proportional to N4 , unacceptable for

fine grid calculations.



The third and fourth approach is essentially two different
ways of looking at the same underlying problem. A method
based on iii) above was introduced by Smith in (lé). It had
a running time of 0(N3) . Thishwas later improved to
o(°/?) by Ehrlich (9) and Smith (17), (18). A drawback is
the need to estimate iteration parameters.

The last approach iv) was pioneered by Golub (11l) and a
refined implementation is given by Buzbee and Dorr (5). This
implementation, which is a direct method, requires O(N3)
arithmetic operations. Despite being an 0(N3) method it
/2,

proved very competitive with the O(N5 methods on realis-

tic problems because those methods have an actual cost of

5/2 with ¢ rather large.
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Based on the above results it was concluded in (14) that
the solution of the first biharmonic problem was an order of
magnitude more difficult than the solution of Poisson's
equation, even on parallel computers. The results of this

paper show that the problems have the same complexity when a

prescribed accuracy is desired.
II. OUTLINE OF THEORY

A brief description of the theory behind the new method
will now be given. For a more detailed analysis with proofs
and computer algorithms see (3) and (4).

Define the elementary matrices

R = Tridiagonal [-1,2,-1]NxN

and

T = Diagonal [l,0,...0,l]NxN .



The matrix A can be written

A=((I®R + (R®I)1%+ 2(T®I) +2(I8T
where I is an N by N identity matrix and standard tensor
product notation is used. Notice that the matrix
L=(I®R) + (RO I)
is the standard 5-point difference approximation to the
Laplace operator. |
Let
B=12+2(T01).
Solving linear systems involving this matrix is no more diffi-
cult than solY;ng Poisson's equations. Several O(Nz) methods
for this problem are known (1), (8) and sﬁch a method muét be
used in order to obtain an o(Nz) ‘method for the present pro-
blem. (Alternatively, an o(NzlogN) method can be used,
resulting in an overall operation count of o(NzlogNI
The matrix 2(I ® T) can be written

2(I@T) =200

where U 1is an N2

by 2N matrix.
Using this and the generalization of the Sherman-Morrison
formula (7) gives

al=slr-2vctu 7Y

where

_ T -1

It is clear that the original problem can be solved efficient-

ly if there is a way to solve the linear system of equations

involving the matrix C in no more than (Nz) operations.
Define a real norm&iized sine transform of a vector

x € R® by the relation



Let S be block number k in the block diagonal matrix

k
: T
R(I 9 QN) B(I® QN) R

where R 1is the permutation matrix defined by

R(D® E)YRT = E® D.

Similarly, define §k to be the corresponding block when

X b4

B is replaced by L2. Let Px = { l} and Py [ 1
. X2 Y2

contains the odd numbered components of x, while X,

] where

X1
contains the even numbered components.

The following theorems have important implications for the

construction of efficient numerical methods.

Theorem 1.
Solving the linear system Cx = y 1is equivalent to solv-
ing the two linear systems

Tax) = %) =y, - ¥
where
N
8 .2 km -1
T, = I + =—+ Y sin S
1 N+1 k=1,3... N+1 "k
N
8 .2 km -1
T, = I + —= ) sin® == s
2 N+1 k=2.4... . N+1 "k

Theorem 2.

Let Ti denote Ti or T2 and let 51 be the corres-

]

ponding matrix defined using Sk instead of Sk . Then



o T .
11) Fll ()

C) (Fi2; Fi2

and F+? are in the

L T (F

L ~ - -
QTiQ(QTiQ) P =1 -

P(QT; Q)

where all the singular values of Fll

interval

0 S'o < 0.8.

Theorem 1 and 2 are proved in (3).

Since linear systems involving ii can be solved easily
and since a matrix-vector product Tix .can be formed at a
cost of C(Nz) arithmetic operations, it follows that the
conjugate gradient method can be used to solve linear systems
having coefficient matrix Ti. (Steepest descent would also
work.) Moreover, the number of iterations required to achieve
a prescribed accuracy is constant, independent of the grid

size N.
III. COMPUTER IMPLEMENTATIONS

A large number of different computer implementations of
the above ideas are possible. Which one is best will depend
on the computer used and also on the underlying application.

For a discussion of different.alternatives see (3).

N = 255 N = 511
SOLV FFT SOLV FFT
IBM 370/168 7109 4324 - -
CRAY-1 OFF=v 1804 882 - -
CRAY-1 ON=v 251 548 878 2148

FIGURE 1. Time in milliseconds to solve the
biharmonic equation on an NxN grid.



It is possible to design implementations that are well
suited for parallel and vector computers. In order to illus-
trate this, a particular computer implementation was used on
an IBM 370/168 and also on the CRAY-1l computer. Figure 1
displays some preliminary timing results.

Remarks:

i) The total solution time is the sum of the time spent
in a fast Fourier transform routine (FFT) and in the
remainder of the code (SOLV).

ii) The FORTRAN H(OPT=3) compiler was used on the 168
while the CFT compiler on the CRAY-1 was used with and
without the vectorization option. (ON=v and OFF=v)

iii) The same FORTRAN code was used in all three cases with
the single exception that a special vector innerprod-
uct routine (written by Oscar Buneman) was used in
the vectorized run.

iv) The iterative part of the algorithm was terminated
when the 2-norm of the residual fell below 10710,
(This typically takes less than 10 iterations.)

v) No attempt was made to optimize the‘Fourier transform
part of the code. (The time spent in this part of the
code can be substantially reduced, by doing the
Fourier transforms in parallel.) The table should
illustrate the practical behavior of the new algorithm;
it does not represent a fully optimized implementation.

vi) It is estimated that the N=255 case would take at
least 50 times longer using any of the earlier methods

mentioned (aside from the difficulties of running

previous algorithms in core for this grid size).



IV. EXTENSIONS AND APPLICATIONS

The handling of NxM grids (N ¥ M) is straightforward.
It is also possible to solve more general fourth order‘pro—

blems having separable lower order terms in addition to the

to solve the following generalization:

Azu + aAu + Bu = £ in R
u=g on 3R (2)
u_ = h on 9R

where o and B8 are two scalar parameters, and R is a

a =0) i

fa

a Rayleigh
iteration to compute a few of the eigenvalues of the bihar-
monic operator. Due to the cubic rate of convergence, this
method is more satisfactory than the method reported in (2).
Figure 2 shows the lowest eigenfunction near a corner. The
entire plot is inside the 4 cells closest to the corner in
the picture shown at the beginning of this paper. This re-
veals the existence of nodal lines near the corner and also
gives a good description of the eigenfunction in this area.
The presence of this phenomenon has been suspected, but due
ﬁo the gridsize limitations of earlier algorithms, it has not
been clearly demonstrated before. The theory outlined in
Part II can be used to analyze this behavior also in the con-
tinuous case.

The existence of an efficient biharmonic solver makes it
a useful computational tool in the construction of numerical
methods for more complicated fourth order problems much in
the same way as fast Poisson solvers have been used in the

past ten years. As an illustration consider the driven cavity
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model problem for the nonlinear, time dependent Navier Stokes
equation (19). Introducing a stream function V¥ in the usual

way., the equation was solved using

A" Y, . =% A VY

R
. R(WY.A Wx ?x A wy)k 2 AY

k+1

where k denotes the current time level. Notice that this
again is a special case of (2) (this time with B8 = 0). This
problem was solved in a square region with Reynold's number
R = 200 and boundary conditions ¥ = 0 and ?n = 0 except
at the side y = 1 where

, - sin t 0< t< w/2

Tn--l t > n/2 .
This corresponds to an-acceleration of the moving wall up to
the standard velocity used in the stationary case. A 31 x 31
grid was used and 500 timesteps each of length 0.01 were
used. (This is smaller than required for stability with this
Reynold's number.) The run required approximately one minute
on an IBM 370/168 and the velocity fields are shown in Figure
3a at two different time levels. It should be mentioned that
the above scheme is unsatisfactory for large Reynold's number,
due to the fact that the nonlinear term is fully explicit.
The flow is not stationary at time 5, but changes very slowly
'into a final state after.time equal 20 with a main vortex
¥ = .,105 at coordinates (.41, .66) in agreement with

stationary calculations.
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