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ABSTRACT

Several algorithms have been proposed in the literature for the computa-

tion of the zeros of a linear system described by a state-space model

1x1 - A,B,C,D}. In this report we discuss the numerical properties of a

new algorithm and compare it with some earlier techniques of computing zeros.

The new approach is shown to handle both nonsquare and/or degenerate systems

without difficulties whereas earlier methods would either fail or would

require special treatment for these cases. The method is also shown to be

backward stable in a rigorous sense. Several numerical examples are given

in order to compare speed and accuracy of the algorithm with its nearest

competitors.

*
Information Systems Laboratory, Stanford University.

**
Information Systems Laboratory and Department of Computer Science,
Stanford University

This research was supported by the National Science Foundation under Grant
ENG 78-1003, and by the U.S. Air Force under Grant AFOSR-79-0094.



I. INTRODUCTION

During the past decade, considerable attention has been paid to

the computation of the zeros of a linear multivariable system and

especially to the development of reliable numerical software for this

problem. Zeros of a multivariable system play an important role in

several problems of control theory, such as, e.g., the study of regulation,

robust servomechanism design, and decoupling [l]-[5].

Consider the linear time invariant system

XX = A x+B unn nm (1)

y = Cpn x + DPm u

where x, u and y are the state vector, control vector and output vector,

respectively, and where X can be the differential operator or the delay

operator. The Smith-zeros [6] of the system matrix,

S(X) =

.
XI-A B-

(2)

are commonly called the invariant zeros of the system (1). When p = 0,

these are the input decoupling zeros of the system, and when m = 0, these

are the output decoupling zeros of the system. When the system is minimal,

these are the transmission zeros of the system (see [7] for an elaborate
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discussion). In the sequel we make no special distinction anymore

between these four types of zeros since they are all the zeros of a

special type of system matrix (2).

In this report we give a 'fast' implementation of a method that was

recently designed to tackle the computation of the zeros of an arbitrary

state-space system (1). We also compare our algorithm with those of

Davison and Wang [1],[8] and Laub and Moore 191, two methods with

'controlled numerical behavior.' We first briefly review the methods.

The first technique, due to Davison and Wang [1], uses the invariance

property of zeros under high gain output feedback to determine their

locations. Let the full rank output feedback u = pKy be applied to the

system (assume m = p, i.e., square system). Then the zeros as defined in

[8] are the finite eigenvalues of [A-B(D - + I.&%]. Equivalently,

the zeros are the generalized eigenvalues [9] of the system matrix,

.rXI-A B

sp =

i
-C D - +K

-1
.

(3)

where p = y Ai--H-l-BC and y is some 'large' number dependent on the

accuracy of the computer. Simple examples can be constructed (see e.g.

[9]> to show that the large gain pK introduces considerable loss of

accuracy and forces one to use up to quadruple precision. Since the

problem has to be solved for several values of gain PK, it makes the

algorithm rather inefficient and at times the distinction between the
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true zeros and the 'extraneous' ones may be difficult [1],[9]. In

addition,one has to come up with the random output gain matrix K for

each problem. In order to handle nonsquare systems, the associated

system matrix has to be augmented with randomly generated rows or columns

to make S,(x) square. This has to be solved for two different random

augmentations in order to determine the zeros.

The second method of computing zeros is discussed by Laub and

Moore [9]. The QZ algorithm is used to determine the generalized

eigenvalues of the square system matrix,

XI-A B

s(X) = i 1-C D

The finite generalized eigenvalues of (4) are the zeros of the system.

For the nonsquare case, similar techniques to those of Davison and Wang

[1] need to be used. Random rows and columns are added to S(x) in order

to obtain a square pencil which is then processed by the QZ algorithm.

(4)

. This method should be preferred over the previous one because of the

numerical stability of the QZ algorithm.

The above methods may both encounter some difficulties in distinguishing

the finite zeros from the infinite zeros (when the latter have a high

multiplicity) and, more importantly, S(x) has normal rank r < min(p,m) WI.
The third technique of computing zeros is based on principles

discussed in [lo]-[13]. The system matrix (4) can always be transformed

.“.’ /

by unitary transformations P and Q to the generalized (upper) Schur

form,
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P S(A) Q =

when

(5)

(i) (A -AB )r r and (AR-XB& are nonsquare pencils with no zeros

and revealing the right and left minimal indices of S(A) l

(ii) (A.-XB~)
1

is a regular pencil with no finite zeros and revealing

the infinite zeros of so > l

(iii) (A -XB )f f is a regular pencil whose generalized eigenvalues are the

finite zeros of S(A).

After this preliminary reduction, the QZ algorithm is applied to

the 'finite structure' pencil (Af-hBf). The overall procedure is proved

to be numerically backward stable in a strict sense, namely that the

computed zeros correspond exactly to a slightly perturbed system

{hI-~,~,~,~) where is E -close to and E is the machine

precision of the computer. This does not hold for the method in [l].

While the left and right minimal indices and the multiple infinite zeros

[lb] are also determined by the decomposition (5), they are exactly the

cause of the numerical problems in the two previous methods. This is

illustrated by some simple numerical examples later.

This third method is somewhat related to other approaches that can

be found in the literature [15]-[19]. These algorithms are more conceptual

methods and may run into numerical difficulties since they use possibly

unstable transformations. We therefore did not include them in our comparison.
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The organization of this report is as follows. In section II the

new algorithm for computing zeros is presented and compared with previous

methods. In section III we discuss the properties of the new algorithm.

In section IV several numerical examples are presented. Some concluding

remarks appear in section V. The appendices include the data used in

some of the numerical examples as well as a listing of the implementation

of the algorithm in FORTRAN.
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II. THE NEW ALGORITHM: SYSTEM MATRIX REDUCTION

In this section all matrices are assumed to be complex. For the
*

real case the algorithms require only minor modifications. A denotes

the conjugate transpose of A, and AT denotes the transpose of A.

II.1 Reduction Method:

In this section we present a method to construct a reduced order

system matrix,

sr 0) =

with Dr invertible and with

a given system matrix,

s(X) =

. m

AI-Ar 1 'r

(6)

S,(X) having the same (finite) zeros as

(7)

with no restrictions on (A,g,C,D). This algorithm is then used as the

heart of the algorithm for the computation of multivariable zeros. The

latter is based on the Kronecker canonical form of the pencil S(x)

[lo]-[13] but differs from it in that the special structure of the pencil

is exploited to the fullest in all the necessary computations.

The algorithms only use matrix reductions of the type
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U*A =

Ar )P

11

CI c *
; AV = [A 0]

d
0 P

w

where A is an arbitrary matrix of rank p and U and V are unitary

matrices compressing A to a full row rank matrix Ar and full column

rank matrix A
C’

respectively. Several techniques can be used for this

purpose; more details are given in section 11.2. The algorithm is stated

in an ALOGOL type language:

Algorithm REDUCE (A,B,C,D,m,n,p) result (Ar,Br,Cr,Dr,mr~nr,~r)

comment initialization;

AO:=A; BO:=B; Co:=C; DO:=D; Vg-n; 60:=O; po:=p; j:=l;
*

step j: comment compress the rows of D- j-l with U. and transform
J

simultaneously the rows of C
3 j-1;

aj {

Tj{

5j-l

0
-

-rj=O then go to exit-l.;

comment compress the columns of cj-l with Vj (?.
J-l=cj-l if Y") '

:=e .
j-l’j’ If -pj=O then go to exit-l;

uu if v,=O thengo to exit 2;--

comment update;

pj:=p.+c;  6.:=6,  +p.;
JJ J J-l J

A Bj-l j-l

H-1
cj-l :j-l

m
v. 0

-+.I

.

01 'm

j:=j+l; go to step j;-
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1

exit 1 : comment- {AIn-A,~,C,~) and {XIn -Ar,Br,Cr,Dr) have the same zeros;
r

k:=j-1; Ar:=Ak; Br:=Bk; Cr:'ck; Dr:=Dk; nr:=vk; pr:=aj; m,:=m;

stop;

exit 2 : comment {AI -A,B,C,D) has no zeros;- n

k:=j; nr :=o; stop;

Theorem 1: The systems {AIn-A,B,C,D} and {AI, -Ar,Br,Cr,Dr) have the
r

same (finite) zeros.

Proof: We prove the result by induction.

Step j of the above algorithm reduces the system matrix of

{AI -A
V

j-l,Bj-l~Cj_l’Dj_l~ to the form:
j-l

v; 0

K
0 u;

w

where S
j

has

transformed by

Pj (X>

AIvjwlwAj-l 'j-1

ik---+-

-Cj-l Dj-l
I

v 0j

I+!
0 Im

.
I

l

hIv -A. * B.
j Jl J

- c - c -
-C ', D--

j I j
0 1-s. 0 _

I J

(9)

full column rank p;. Using Si as the pivot, (9) can be

unimodular row and column transformations to,

. I
XIvjelmAj-l 1 'j-1
_ _ --a-*-----I I Qj(x> =

-Cj-l 1 D, j-l

.

XIV -A. Bj I
j J ' 0

-C
j Dj  I

c---w -I--

0 ' *Pj
I

(10)

and the systems {AI-Ak,Bk,Ck,Dk) for k = j-1,j have thus the same

Smith zeros. I
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The following algorithm shows how REDUCE can be used to compute

a pencil (XBf - Af) with only finite generalized eigenvalues which are the

zeros of the system {XI-A,B,C,D]. In order to compute the zeros, we

then use the QZ algorithm on (XBf - Af).

Algorithm ZEROS (A,B,C,D,m,n,p) result (Af,Bf,nf,rank)

step 1 :- comment reduce the system (A,B,C,D) to a new system (A ,B ,C ,D )r r r r
with the same zeros and with Dr of full row rank;

call REDUCE (A,B,C,D,m,n,p) result (Ar,Br,Cr,Dr,mr,nr,pr);

rank:=m ; if n =0 then go to exit;r-r-
step 2 :- comment reduce the transposed system {AT CT BT DT} to a newr' r' r' r

system (A ,B ,Crc rc rc' rcD ) with the same zeros and with Drcinvertible;

T 'I T Tcall REDUCE (Ar,Cr,Br,Dr,pr,nr,mr)  result (Arc,B,,,Crc~Drc~mrc~nr,~Prc);

i f  n
- rc

=0 then go to exit;

step 3 :- comment compress the columns of [Crc D,,] to [0 D,] and apply
L

the transformation to the system matrix;

nf:=nrc; if rank = 0 then go to exit;

Af 1 *[ II- - - - - -  .-
0 '

.-

1 Df

exit : stop;

.

Arc
w-w
Drc

.

.

Brc
- e-
Crc

m

.

1 1 0

- 1

I- - -
0 '

w;
I 0

Theorem 2: The(finite) zeros of the system {XI-A,B,C,D] are the

generalized eigenvalues of the 'finite' structure pencil

(ABf - Af) l
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Proof: In the first step of ZEROS the routine REDUCE yields a system

matrix

'XI -A ' Bn rr I r- a - w - - - -
l

-‘r I Dr-n’wmr r

with the same zeros as S(X) but with Dr of full row rank. In the

second step, thetransposed system matrix which still has the

same zeros, is reduced again by REDUCE to a system matrix of the form,

&c(X)  =

I
m

XI
“rC

-Arc ' Brc
I

m-1-- L- --

I
-'rc 1 Drc

\.
u d

n mrc rc

>

nrc

>
prc

(12)

where now Drc has full row rank. Note that had full column rank

originally and REDUCEdoes not decrease the rank of this matrix. Therefore

D has full column rank as well and thus is invertible. The third step

transforms Src(X) to9

nrc

rank

XI -A

i
"rc rc

--m-w.

-%c

-cI
I
1

Brc

Drc

n rankrc

w =
0 1 Df

-LyJ u-
>
rank

03)

nf rank
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where = nnf rc and rank = mrc = p,, and Df is, of course, invertible.

Since Src(X> has nrc = nf finite zeros (namely the eigenvalues of

i = Arc - 'rcD;fcrc) then the (n Xn >f f pencil (ABf - Af) has only

finite generalized eigenvalues, and they are the zeros of S(x). H

The zeros are now computed by the QZ method [20], which decomposes

(XBf - Af) into,

t 0 'nfnf l- %l *. L . . , .

. 0 'nfnf 1 (14)

where Q and Z are unitary.
a . .

The ratios Xi = p i = l,...,nf are then the (finite) zeros of S(X) l

ii
It should be noted that this path is to be preferred over the use of the

-1
QR algorithm on the matrix A = Arc-BrcDrcCrc,  because of the possible

bad conditioning of D,,.

Remarks:

(1) The reductions performed by ZEROS and REDUCE can be rewritten (up

to some permutations) as a decomposition of the type (5). Therefore the

infinite zero structure and the left and right null space structure can

also be retrieved by these algorithms [12]. In case S(x) was minimal,

these are also the infinite transmission zeros and left and right minimal

indices of the transfer function R(h) = C(hI-A>-lB + D [14]. Note also

that m = p = rank is the normal rank of the transfer function R(A).
rc rc

When rank = 0 then step-3 of ZEROS can be skipped and we get the standard

eigenvalue problem since Bf = I.
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(2) When the system (XI-A,B,C,D} is real, the transformations in

REDUCE and ZEROS are also real. However, the decomposition in (14)

has to be slightly modified so that Q and Z are real. Under orthogonal

transformations one can indeed only reduce (hB, - AF) to a block

triangular form [20]

Q(hBf - A$Z = A
Bl!

[
0

(15)

where the (ABii - Aii) blocks are 1x1 or 2x2. The generalized

eigenvalues of the 2x2 blocks are complex conjugate pairs and those of

the 1x1 blocks are real.

II.2 Details of Implementation

In order to take full advantage of the special problem at hand and

in order to increase numerical accuracy and speed, the structure of the

pencil must be fully exploited. Therefore we use Householder transforma-

tions for the row and column operations in these algorithms. Special

care is also taken to exploit the previously created zeros at each stage

of the algorithm. It is more convenient for the organization of the dataI

to deal with the matrix,

(16)
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At the beginning of step j (16) has the special form

Vj-l

aj-l

'j-1

and the x'si

-- ---0 L,---
* I

I- - a ‘1. - -_-
I
I
I
I-u

m

*

Vj-l

(17)
1-Ij-l

are--nonzero (when j = 1, we have Vo=n; 1-I 0 = p; PO = p;
*

OO = 0). Step j first performs an output transformation U, to- 3
compress D to full row rank. Therefore we first use o Householder

j-l j-l

transformations without pivoting (since xi's are nonzero) to reduce (17)to,

Vj-l

CT. j-1 {
Pj-l {

. I
I
I

I
* I

I
i

-em
x;.

---- --I
* ’*

‘X’ 1
0 'jli - - - 1

0 x 1
I

 
m Vj-l

*

*

(18)

i

'j-1

where again the xr's are nonzero. We then continue with Householder1

reduction with column pivoting to reduce X to trapezoidal form, yielding
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finally a

Vj-l

i

a.
J

{

3
{

where the

cow compression of Dj-l'

I
*

I

I

I

*

I-------LB--  - a- --

-w--

y1.- * I
1 *.

0 “Y, 1
w- a#-- Ia- --w-c - .-

I
0

-L----J’C-
m vj-l

(1%

i

'j-1

yi ‘S are nonzero and 0
j
=uj-l + rank(X). Step j then

continues with a state space transformation V,
J

to compress the columns

of C.. Therefore we use Householder transformations with row pivoting on ;yc..
1s

V
j

‘I

‘j (

u.
J
C

T.
J

'j-1

I
I I

I I
-0 -0 ----a-  - - LL - CII

I I

I
-0 -- L-C-IL-L--  e--w--

y1.. ; 1

'Yu * 1
* I

j I
Jc-rr --II- -- - L-I f ;-

0 I 0 zLI j
t
I. z1

-k-w-  \,
m V.

J 5

(20)
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where z 'si are also nonzero. The last p. columns and 'I
j

rows can
J

then be discarded giving (17) again for j updated by one. This process

is continued until no such reduction is possible anymore (see exit 1-

and exit 2 in REDUCE).-

In step 3 of ZEROS we also exploit the triangular shape of D--

by reducing a matrix of the form,

[

Brc
em -

Drc
i

to the form

t

*f
- -.

0

1
I *rc
I.-a -
I
1 'rc
I l I

1* I *
1= -*-----r-* * I *

@O “*I

II *
I- --
I Df
I I

=
I

* I *

(21)

(22)

For this we use Householder transformation without pivoting on the columns

of (21). For the construction of B f the same transformations are also

performed on the matrix [I
"rc

01.
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III.PROPERTIES OF THE ALGORITHM AND COMPARISON

Two important properties of our method are its numerical stability

and its speed.

1. Speed

In the sequel, one operation stands for a single addition and

multiplication (for the real or complex case). A Householder transform-

ation acting on a sxt matrix requires 2st operations. Using this, and

the assumption that mF P, we obtain the following operation count for

REDUCE. The row compression of D
j-1

requires at most 0. < m House-
J-

holder transformations, each working on matrices smaller than pj_l(vj_l+m)

I.pj-l(n+m) ( see (17),(18)). For this step we thus have less than

2P _j l(n + m)m operations (23)

The state space transformation to compress the columns of E
j

requires

P.
J

Householder transformation, each working on matrices smaller than

(~j-1 + ‘j-l”j 1 < (p + n)n for V., and (m + v- - J
j-l)Vj-l 5 Cm + n)n

for Vi (see (19),(20)). For this step we thus have less than

2pj(p + m + 2n)n operations (24)

If REDUCE requires k steps, then A = p1 + p2 + ... p
k is the amount by

which the state dimension is reduced. Using this and the fact that p, = m,

'k+l = 0 we have the total operation count of,

2(p + A)(n + m)m + 2A(p + m + 2n)n (2%
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for REDUCE. The routine ZEROS then uses less than the following number

of operations,

- for step 1 ; less than:-

2((p + A,)(n + id) P + A1 (p + m + 2n)n) operations (26)

with *1 = n - n .r

- for step 2 ; less than:-

2{(m + A,)(n + p,)p, + A2 (m + p, + 2n)d operations

with A2 = n - nr rc ; P, Im.

- for step 3 ; less than:-

2{ (nrc + mrc>(nrc+ l)mrc' operations

(27)

(28)

with mrc 2 m.

This last step indeed requires mrc Householder transformations working

on matrices smaller than (nrc + mrc)(nr,+ 1). Denoting A = Al + A2 =

n - nrc as the number of state reductions, and M = max{p + n,m + n} = p + n

we obtain the reduction to (ABf - Af> in less than

2A(n+m)m + 2A(m+p+2n)n + 4p(nCm)m

+ 2(n+m)(n+l)m  < 2A(4M +2mM} + 2mM2 + 4pm-

5 6(A+p)M
2

operations. (29)
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This operation count is a rather generous upper bound. Notice that

A+p=M-nrc is the total reduction of the dimension of S(X)

to the pencil (XBf - Af). ZEROS thus requires less than 6M2 operations

per deflation, while the QZ method used on S(X) directly,would

require approximately 25M2 operations per deflation [ 91. Furthermore,
the operation count of the QZ method compared favorably to Davison and

Wang's method [9].

2. Numerical Stability

An important property of the proposed method is its backward

stability. For the unitary transformations performed in REDUCE (see

(9)), the follow ng result can be proved [Zl].i In the presence of rounding

errors, the right hand side of (9) is exactly equal to

i;;

j I O

[ 1

I
-m-m- -

I

0 ;iJ:

J

. where U
i and V i

-
1 -

XI -x -

‘j-1 j-l I Bj-l
- - - -  --.-.f---

-c
I -

I) j-l I Dj-l

0

I.m I

-- =

.
I ’

hIv-A. ; *'Bj
jJ-, '- - - - - T--

I I

- C 1 *j 1 D-I
- - - - 7 -7 -.

O 1 4.1 0. Jl

of the &mputer, zhen
are still unitary and if e is the machine precision

si;

[

j-l

cj-l

ii-j-l

iij-l

A Bj-l j-l

Cj-l Dj-lII 2

< TI ‘E
- j

Aj-l

Cj-l

- 19 -



with II a constant depending on the dimension of the matrices. Note
j

that in (30) the coefficient of X is not perturbed because no computations

are actually performed on it (the *'s in (30) are not computed). The

errors performed in each step of REDUCE can be worked back to the original

matrix S(X) without affecting their norms because unitary transformations

do not change the II IIl 2 norm of a matrix. When doing this for the two

calls of REDUCE in ZEROS, we obtain the equality,

-*
U

XI-A

-c
m

--
with U,V unitary and,

[

A
c

* where IIRED is the sum of the

=

. m
* * * *

0 AI-Arc Br, *

0 -'rc Drc *

0 0 0 *
m I

A B
<l-I l E- RED C D

2

(32)

(33)

IIj's in (31). A similar error analysis of

step 3 in ZEROS and the QZ decomposition of (AB -A ) yields,- f f

- 20 -



= x

m I 1
A(I+E,)-x ' XE +B

rc ;
b rc

a - - - - - - - L -  --aI

‘Q * ’ -. I. .
0 B

I *I
nfnf '--C-L- f --

. 0 to.

---
with Q,Z,W unitary and

'rc

'rc

1

I -

.

Arc

Crc

i

z
- -

0

Brc

Drc

<-

2

-r- -
I Df -

I IE,I I 2 ’ I Iql I 2Lfl,’ E

for some expressions nrc and lie.

[

Arc
-I l E

rc Crc

Brc

Drc

(35)

2

(36)

Note that the coefficient of X is perturbed, but that its rank

is unaltered because of the special structure of the transformations in

(32) l Because of (36), there exists then a column transformation (1 + F)

. with II IIF 2 < 3 ne E such that,

X(I+E,)-Arc 1 hEb+grc -
I----------a
I

-Gc I 'rc
I I

(I+F) =

.
x1-z ' irc 1 rc

VW c +--

I -
4, 1 Drc

(37)
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with

Arc Brc[ ICrc Drc
[

'rc

'rc

'rc

Gc
I

I(

2

'rc+ 3 fle) E

7
A Brc rc

[ ICrc Drc

2

(38)

This error can again be worked back to the original matrix S(A). We
a

finally obtain that the ratios hi = *
f3

are the exact zeros of a system
ii

IhI-&%,&D} such that,

where

ii = ITRED + IIrc + 3 l-I e (40)

Note that the expression 6 is a rather generous upperbound. One can

' estimate ?I experimentally (see next section) and it is fair to say that

i is close to 1 for matrices of reasonable size (ni20). For larger

matrices, it is recommended to use fl2 computations [Zl] in the Householder

transformations in order to keep ii close to one.

Additional Features:

The method described in section II requires no assumption on

(A,B,C,D) and requires no special treatment for different cases as opposed

to [l] and [9]. It handles the case where r < min(m,p) very effectively
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and has no difficulty with high multiplicity zeros at infinity under

small perturbations. The examples in section IV illustrate these

advantages over the other two methods.

Our method has no problems in the presence of a Kronecker structure

(left and right null space when r < min{m,p) and infinite zeros)

because it separates a pencil (hBf-Af) with only a finite structure from

the original system matrix SW l This allows us to determine zeros of

ungenerical system matrices, e.g., when r < min(p,m} while the other

two methods cannot handle this case properly.

The 'degenerate' case has been pretty much neglected in the past

because of its ill-posedness. Recently more attention has been paid to

the degenerate problem and justifications have been given, from a

numerical and physical point of view, for computing zero of degenerate

systems (see [13],[22]).

Another nice property of our approach is that no problem dependent

parameter and/or matrix is needed as in method [l]. Moreover, the method

is direct and does not require two runs and/or a (delicate) sorting of

the 'extraneous'I zeros in the nonsquare case.
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IV. EXAMPLES

All the examples considered are real. The computations were

carried out on the IBM 370/3033 at Stanford University. We used tBe FORTRAN H

Extended Compiler, OPTIMIZE(Z) and all computations were performed in double

precision (REAL*8). The driver program RGG of EISPACK [24] was used to

call the QZ algorithm and singular values were obtained using the routine

DSVDC of LINPACK [ZS]. For each example, we also compute the singular

values 0,'s of the system matrix,I

S(ho) =

m

X01-A B

at each computed zero X
0.

We refer to the ratio,

RBA =
o(n+rank)

-. "1

(41)

as the 'relative backward error.' Note that according to the backward

error analysis,RBA is of the order of ibE. Indeed,

o(n+rank>

Hence,

X01-A

-E

A B

@(A )}
o(n+rank) O

z ii%
C D

= 0 (431

=: ii% qS(ho>l (44)

This allows us to estimate the value of i?. Note that an e-small
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backward error does not imply that the zeros are also computed up to E

accuracy. This also depends on the conditioning of each separate zero [Zl].
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EXAMPLE 1: This example is the 16th order linearized model of the FlOO-PW-100

jet engine used as the theme problem for the International Forum on Alternatives

for linear multivariable control [26]. The data for this example appears in

Appendix I. Since D has rank 4, there are fifteen zeros. The following shows the

computed zeros to thirteen significant digits.

Zeros

-829.2490955651110 < E

789.8985828158399

141.2294550203129

- 50.46757476394580 !I j1.0319141604160423297

49.63760103236723-

- 13.76530730452916 + j9.110214747547156

.6659561616385485

- 6.710651036803525

- 2.003403155575229

- 23.13366516893961

- 20.55602749379905 + j1.417353350011828

< E
< E
-c E
< E

< E
< E
< E
< E
< E
< E

- 18.95850189406822 < E

EXAMPLE 2: This is a 9th order model of a boiler system [27] and the data

is shown in Appendix I. The zeros along with the corresponding relative back-

ward errors, are as follows:

Zeros

-26.39513728882773 < E

- 2.957771985292086 + j.3352672071870191 < E

.7486064441907556 < E

-’
i

.09403261020202233 < E

- .009546070612163396 < E
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EXAMPLE 3: This is a 6th order example from [l] with,

A =

C =

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0

I

1 0

B
=

0 0 0 0 1 0

=I

0 0
.

0 0 0 0 0 1 0 0

0 0 0 0 0 0
-
r

-: ; : F-Y :] D = [: ;]

Zeros
RBA a8 Lz---z

5

-.6823278038280190 < E

.3411639019140096 + j1.161541399997251 < E

.9999999999999997 < E

EXAMPLE 4: This is a fifth order model of a drum boiler [28] with,

'-0.129 0.000 0.396x10-' 0.250x10-' 0.191x10-'~

o.329xlo-2 0.000 -o.779xlo-4 o.l22xlo-3 -0.621

A = 0,718x10-' 0.000 -0.100 0.887~10-~ -0.385~10'

i 0.411x10-' 0.000 0.000 -0.822x10-' 0.000

0,361~10-~ 0.000 o.35oxlo-4 0.426~10-~  -0,743x10-',

c

0.000 0.1

0.000 39xlo-2 10.359xl0-4

3: 0.000 -0.989d2

o.249xlo-4 0.000

\ 0.000 -o.534xlo-5,

I 1 0 0 0A - “1
w - 0 1 0 0 0 1
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The zeros and the relative backward errors are:

Zeros
RBA o7Z-Z

o1
L

-.368051203603595

-.06467751189941505

< E

< E

EXAMPLE 5: Consider the system with,

S(A) =

A.
-IL.

0

' -1
. 0 ’

. I 0. ... I l
. .

.
.. I l

L1  ⌧ 1 0

- - -  - w----

16

@orrasponding  to the transfer function H(s) = 1 .
S15

If we perturb the

(16,16) element by the order of machine precision (E z 10
-16 ), then the

QZ algorithm will yield one zero at infinity and the rest are located on a circle

-l/nwith radius E . Our algorithm has no such difficulty and will indicate that

there are no finite zeros.

EXAMPLE 6: None of the previous algorithms can handle the case where the system

is degenerate. Consider the case where,
.

.

S(X) =

x-2 1 0 ' 0

0 A 010

1 0 x 11
- - -.---w-L-,

0 1 0 : O I

This pencil has right and left Kronecker indices equal to one.
0

The QZ algorithm [9] will indicate degeneracy (i.e., a -d eigenvalue).

Theoretically one should not trust any of the other computed ratios as some of them

could be arbitrary. But practically speaking only special perturbations
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could alter the true zero at 2. More about this can be found in [21]-[22].

Our algorithm will extract the singular part of S(X) and will yield a regular

pencil containing the single zero at 2.

EXAMPLE 7: Consider the system,

S(X) =

with Kronecker right and

A 0 ; 0 1
0 xl1
-0-e 1- -
1 0 I 1

t J

left indices equal to one. The QZ algorithm will indicate

degeneracy whereas in fact there are no zeros as detected by our algorithm.

Davison and Wang'-s method [l] will find two zeros at 0.

EXAMPLE 8: This is the model of an electrical network [29] with,

A =

m
-2 1 0 0 0 0

1 -2 1 0 1 -1

0 1-2 1 0 0

0 0 l - l 0 1

0 -1 0 0 0 0

0 1 0 -1 0 0m .

B =

m

1

0

0

0

1

-0 ,

C =
c

0 0 0 10 0 1
"7 jiRBA= -= E

Zeros 5

-.9999999999999994 + j.1821927265261758x10-7 < E

The system actually has two zeros at -1.0, but note that the error is of the order

of Em which is to be expected because of the presence of a 2x2 Jordan block.
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The system has input decoupling zeros at,

Zeros

-4.999999999999955

-2.999999999999988

and no output decoupling zeros.

EXAMPLE 11: Consider the rectangular system [31],

-2
0
0
0
0

-6
-5

2
6 -
?--

-7
-4

2
5
7-&

7
5
0

I

5
0

RBA %l---q;~
a1

< E

< E

The system has a left Kronecker index equal to one, no right Kronecker index

and two zeros at infinity. The normal rank is equal to two.

Zeros

-3.000000000000000

3.999999999999972

RBA
"7=- -L
9

< E

< E
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V. CONCLUSIONS

We have presented a new algorithm for computing the zeros of a linear

multivariable  system. The algorithm is superior to previous methods in that

it effectively deals with all cases. It is backward stable and more efficient

compared to earlier techniques. The algorithm also yields the normal rank

of the transfer function matrix, and has the potential of yielding more

information about the structure of the given system. It has been successfully

implemented on the computer.
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APPENDIX I

Jet engine (example 1):

FlOO ?lODEL ALT=O.O PM=83

THE A YATRTX
-4.328 .1714 5.376 4r)1.6 -724.6
-.4402 -5.643 127.5 -233.5 -434.3
1.038 6.073 -165.0 -4.483 1049.
.5304 -.1086 131.3 -578.3 102.0
.8476E-02 -.1563E-01 .5602E-01 1.573 -10.05
.8350 -.1249E-01 -.3567E-01 -.6074 37.65
.6768 -.1264E-01 -.9683E-01 -.3567 80.24

-.9696E-01 .8666 16.87 1.951 -102.3
-.8785E-02 -.1636E-01 .1847 .2169 -8.420
-.1298E-03 -.243OE-03 .2718E-02  .3214E-02  -.1246
-1.207 -6.717 26.26 12.&9 -1269.
-.2730E-01 -.4539 -52.72 193.5 -28.09
-.1206E-02 -.2017E-01 -2.343 8.835 -1.248
-.1613 -.2469 -24.05 23.38 146.3
-.1244E-01 .3020E-01 -.1198 -.L321E-01 5.675
-1.653 1.831 -3.822 113.4 341.4

-1.933 1.020 -.9820
26.59 2.040 -2.592

-82.45 -5.314 5.097
-9.240 -1.146 -2.408
.1952 -.8804E-02 -.2110E-01

-19.79 -.1813 -.2962E-01
-.8239E-01 -20.47 -.3928E-01
29.66 .5943 -19.97
.7003 .5666E-01 6.623
.1039E-01 .8395E-03 .9812E-01
103.0 7.480 36.84
2.243 .1794 9.750
.9975E-01 .8059E-02 .4333
1.638 .1385 4.486

-.4525 19.81 -1249
-27.34 -2.040 -.6166

.9990 1.521 -4.062 9.567 10.08 -.6017 -.1312 .9602E-01
11.32 10.90 -4.071 -.5739E-01 -.6063 -.7488E-01 -.5936 -.9602E-Cl

-.9389E-02 .1352 5.638 .2246E-01 .1797 .2407E-01 1.100 .2743E-01
-3.081 -4.529 5.707 -.23i6 -2.111 -.2460 -.4686 -.3223
.2090E-02 -.5256E-01 -.4077E-01 -.9132E-02 -.8178E-01 .3428E-01  .4995E-02  -.1256E-01

-.1953E-01 -.1622 -.643gE-02 -.2346E-01 -.2201 -.2514E-01 -.3749E-02 -.3361E-91
.1878E-01 -.2129 -.9337E-02 -.3144E-01 -.2919 -.3370E-01 .8873E-01  -.4458E-01
.2253E-01 .1791 .8371E-02 .2645E-01  .2560 .2835E-01 -.3749E-01 .3635E-01

-49.99 .6760E-01  39.46 .4991E-02 .8983E-01 .5349E-02  .O .1372E-01
-.6666 -.6657 .5847 .6654E-04 .1347E-02 .7131E-04 .O .2057E-03
.2854 2.332 -47.65 .3W6 3.065 .3624 -.4343 .4681

-9.627 -9.557 38.48 -50.01 .lOll .1203E-01 -.4686E-01 ,1715E-01
-.4278 -.4245 1.710 -2.r)OO -1.996 .5349E-03 -.1999E-02 .7544E-03
-4.414 -4.354 17.66 -3.113 -3.018 -19.77 -.4999E-01 .1509E-01
-.1127E-02 -.676OE-02 .1835E-01  -.9981E-03 -.1347E-01 -.1070E-02 -20.00 -.2057E-02
.5004 -.1437 -2.416 -.1373 -1.078 30.63 19.89 -50.16

THE B MATRIX

-.4570E-01 -451.6 -105.8 -1.596 851.5
.1114 -546.1 -6.575 -107.8 3526.
.2153 1362. 13.46 2O.lb -.6777E+05
.3262 208.0 -2.888 -1.653 -269.1
.9948E-02 -98.39 .5069 -.1940 -94.70
.2728E-01 71.62 9.608 -.3160 -184.1
.1716E-01 71.71 8.571 .7989 -515.2

-.7741E-01 -141.2 -.8215 39.74 1376.
.3855E-01 -7.710 -.4371E-01 -.1024 -6684.
.5707E-03 -.1144 -.6359E-03 -.1432E-02 -99.02
5.727 -1745. -8.940 -17.96 .8898E+05
.1392 -24.30 -.2736 -.3LO3 -6931.
.6172E-02 -1.082 -.1183E-01 -.1452E-01 -307.7
.6777E-01 16.60 .3980 .2311Z-01 -2588.
.1880E-02 9.147 -.8241 .8984E-01 -32.31
.1677 435.8 -89.94 4.900 -295.5
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ml? c MATRIX

.4866 -.6741 5.392 95.42 24.03 19.52 .8190 -.4492

.1383E-01  .2789E-05  .O .O -.1081E-01 -.55456-04 .4722E-04 .O

.O .O .O .O .O .o .O .O

.7418E-04  .5496E-05  .4790E-05  .1478E-03  -.1504E-01 -.6503E-04 .8820E-04 .4999E-05

.1538E-04  .1201E-03  -.2579E-02 -.1609E-03 .1618E-01  -.107lE-02 -.9561E-04 -.5503E-05

.5195 -8437 -1.863 .5709E-01  .4815 3.428 2.161 .7681E-01

.O .O .O .O .O .O .O .O

.O .O 1.000 .O .O .O .O .O

.3434E-05  .2727E-04  .1128E-05 .4002E-05  .3673E-04  .4290E-05 -.4958E-05 .5609E-05
-.3732E-05 -.2996E-04 -.1234E-05 -.4380E-05 -.4024E-04 -.4721E-05 .5324E-05 -.6103E-05

THE D MATRIX
-.6777E-01 -420.5 32.97 -1.824 1245.
.1282E-03 -3353 .6804 -.5605E-04 -.1199E-01
.O .O .O .O .O
. lr)30E-S15 -.1193E-01 -.5806E-02 .6015E-04 .4463&01
.8109E-CJS .2328E-01 .1178E-03 -.5538E-02 -.1039

Boiler (example 2):

MATRIX A

-3.93 -3. 15*10-3 0 0 0 4.03x10 -5 0 0 0
3.68x102 -3.05 3.03 0 0 -3.77x1o-3 0 0 0
2.74~10~ 7.87~10-~ -S.96x1O-2 -0 0 -2.81x10-' 0 0 0

-6.47~10-~ -s.2ox1o-5 0 -2.s5*lo-1 -3. 35*1o-6 3.60~10-~ 6.33x10-' 1.94xIo-4 0

3.85~10~ l.73x101 -1.28~10~ -1.26~10~ -2.91 -l.os~lo-l 1.27~10' 4.31*10x 0

2.24x104 1.80~10' 0 -3.56~10~ -l.o4x1o-4 -4.14x1o-1 9.00x101 5.69x10' 0
0 0 2.34~10-~ 0 0 2.22x1o-4 -2.03~10-~ 0 0
0 0 -1.27 1 .oox1o-3 7.&6~10-~ 0 -7.17x10-* 0
-2.20 *-3

0
-1.77x10 o -8.44 -1.11xlo-4 1.38x10-' 1.49x1o-3 6.02~10-~ -1 .00x10-xo

B=

r 0 0 7

0 0

1.56 0

0 -5.13x 1o-6

8.28 -1.55

0 1.78

2.33 0

0 -2.45x10-'

& 0 2.94x10+,

[
0 0 0 0 0 1 0 0 0

c= 0 0 0 0 0 0 0 0 1 1
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1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
.1 3 .
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42:
43.
44.
45.
46.
47. .
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.

SUBROUTINE ZEROS(A,B,C,D,M,NMAX,N,PMAX,P,MAX,EPS,BF,AF,NU,
*RANK,SUM,DUMMY)

c*** THIS ROUTINE EXTRACTS FROM THE SYSTEM MATRIX OF A STATE-SPACE
c*** SYSTEM (A(N,N>,B(N,M>,C(P,N>rD(P,M)}  A REGULAR PENCIL
c*** {X.BF(Nu,Nu)-AF(Nu,NU~} WHICH HAS THE NU INVARIANT ZEROS OF
c*** THE SYSTEM AS GENERALIZED EIGENVALUES. THE ROUTINE ZEROS
c*** REQUIRES THE SUBROUTINES REDUCE, HOUSH, PIVOT, TRl AND TR2.
c*** THE PARAMETERS IN THE CALLING SEQUENCE ARE (STARRED INPUT
c*** PARAMETERS ARE ALTERED BY THE SUBROUTINE) :
c*** INPUT:
c*** *A,B,C,D THE SYSTEM DESCRIPTOR MATRICES
c*** M,N,P THE NUMBER OF INPUTS, STATES AND OUTPUTS
c*** PMAX,NMAX THE FIRST DIMENSION OF C,D AND A,B RESPECTIVELY
c*** MAX THE FIRST DIMENSION OF AF,BF
c*** EPS THE ABSOLUTE TOLERANCE OF THE DATACNOISE LEVEL),IT
c*** SHOULD BE LARGER THAN THE MACH. ACC.*NORM(A,B,C,D)
c*** OUTPUT:
c*** BF,AF THE COEFFICIENT MATRICES OF THE REDUCED PENCIL
c*** NU THE NUMBER OF (FINITE) INVARIANT ZEROS
c*** RANK THE NORMAL RANK OF THE TRANSFER FUNCTION
c*** WORKING SPACE:
c*** SUM A VECTOR OF DIMENSION AT LEAST MAX{M,P}
c*** DUMMY A VECTOR OF DIMENSION AT LEAST MAX{M,N,P}
c***

IMPLICIT REAL*8 (A-H,O-Z)
LOGICAL ZERO
INTEGER P,PMAX,PP,RANK,RO,SIGMA
DIMENSION A(NMAX,N),B(NMAX,M),C(PMAX,N),D(PMAX,M),AF~MAX,l),

*BF(MAX,l),SUM(l),DUMMY(l)
MM=M
NN=N
PP=P

C* CONSTRUCT THE COMPOUND MATRIX i B A 1 OF DIMENSION (N+P)X(M+N)
C* IDCl

IF(MM.EQ.01 GO TO 15
DO 10 I=l,NN

DO 10 J=l,MM
10 BF(I,J)=B(I,J)
15 DO 20 I=l,NN

DO 20 J=l,NN
20 BF(I,J+MM)=A(I,J)

IF(PP.EQ.0) GO TO 45
IF(MM.EQ.0) GO TO 35
DO 30 I=l,PP

DO 30 J=l,MM
30 BF(I+NN,J)=D(I,J)
35 DO 40 I=l,PP

DO 40 J=l,NN
40 BF(I+NN,J+MM)=C(I,J)

C* REDUCE THIS SYSTEM TO ONE WITH THE SAME INVARIANT ZEROS AND WITH
C* D FULL ROW RANK MU (THE NORMAL RANK OF THE ORIGINAL SYSTEM).
C*

45 RO=PP
SIGMA=0
CALL REDUCE(BF,MAX,MM,NN,PP,EPS,RO,SIGMA,MU,NU,SUM,DUMMY)
RANK=MU
IF(NU.EQ.0) RETURN

C* PERTRANSPOSE THE SYSTEM.
NUMU=NU+MU
MNU=MM+NU
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61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.

NUMUl=NUMU+l gi
MNUl=MNU+l
DO 50 I=l,NUMU I,I

DO 50 J=l,MNU
50 AF(MNUl-J,NUMUl-I')=BF(I,J)

IF (MU.EQ.MM) GO TO 55
PP=MM
NN=NU
MM=MU

C* REDUCE THE SYSTEM TO ONE WITH THE SAME INVARIANT ZEROS AND WITH
C* D SQUARE INVERTIBLE.
C*

RO=PP-MM
SIGMA=MM
CALL REDUCE(AF,MAX,MM,NN,PP,EPS,RO,SIGMA,MU,NU,SUM,DUMMY)
IF(NU.EQ.0) RETURN

C* PERFORM A UNITARY TRANSFORMATION ON THE COLUMNS OF IhI-A B 1 IN
C* IXBF-AF xl 1 -C D l
C* ORDER TO REDUCE IT TO 1 0 Y1 WITH Y AND BF SQUARE INVERTIBLE.
C*

MNU=MM+NU
55 DO 70 I=l,NU

DO 60 J=l,MNU
60 BF(I,J)=O.DO
70 BF(I,I+MM)=l.DO

IF(RANK.EQ.0)  RETURN
NUl=NU+l
11 =NU+MU
Jl=MNU+l
IO=MM
DO 90 I=l,MM

10=10-l
DO 80 J=l,NUl

80 DUMMYtJ)=AF(Il,IO+J)
CALL HOUSH(DUMMY,NUl,NUl,EPS,ZERO,S)
CALL TR2(AF,MAX,DUMMY,S,l,Il,IO,NUl)
CALL TR2(BF,MAX,DUMMY,S,l,NU,IO,NUl)

90 11=11-l

c***
c***
c***
c***
c***
c***
c***

RETURN
END
SUBROUTINE REDUCE(ABCD,MDIMA,M,N,P,EPS,RO,SIGMA,MU,NU,SUM,

*DUMMY)
THIS ROUTINE EXTRACTS FROM THE (N+P)X(M+N) SYSTEM [ B A 1

t B'A'I [DC]
A (NU+MU)X(M+NU)  'REDUCED' SYSTEM [ D'C'] HAVING THE SAME
TRANSMISSION ZEROS BUT WITH D' OF FULL ROW RANK. THE SYSTEM
{A',B',c*, D') OVERWRITES THE OLD SYSTEM. EPS IS THE NOISE
LEVEL. SUM(MAX{P,M)) AND DUMMY(MAX{P,N)) ARE WORKING ARRAYS.

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER TAU,P,RO,ROl,SIGMA
LOGICAL ZERO
DIMENSION ABCD(MDIMA,l),DUMMY(l),SUM(l)
MU=P
NU=N

10 IF(MU.EQ.0) RETURN
ROl=RO
MNU=M+NU
NUMU=NU+MU
IF(M.EQ.0) GO TO 120
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121. ROl=ROl+l
122. IROW=NU
123. IF(SIGMA.LE.l) GO TO 40
124. c*** COMPRESS ROWS OF D. FIRST EXPLOIT TRIANGULAR SHAPE ***
125. Ml=SIGMA-1
126. DO 30 ICOL=l,Ml
127. DO 20 J=l,ROl
128. 20 DUMMY(J)=ABCD(IROW+J,ICOL)
129. CALL HOUSH(DUMMY,ROl,l,EPS,ZERO,S)
130. CALL TRl(ABCD,MDIMA,DUMMY,S,IROW,ROl,ICOL,MNU~
131. 30 IROW=IROW+l
132. c*** CONTINUE WITH HOUSEHOLDER WITH PIVOTING ***
133. 40 IF(SIGMA.NE.0)  GO TO 45
134. SIGMA= 1
135. ROl=ROl-1
136. 45 IF(S1GMA.EQ.M)  GO TO 60
137. DO 55 ICOL=SIGMA,M
138. DUM=O.DO
139. DO 50 J=l,ROl
140. 50 DUM=DUM+ABCD(IROW+J,ICOL)*ABCD~IROW+J,ICOL~
141. 55 SUM(ICOL)=DUM
142. 60 DO 100 ICOL=SIGMA,M
143. c*** PIVOT IF NECESSARY ***
144. IF(IC0L.EQ.M)  GO TO 80
145. CALL PIVOT (SUM,DUM,IBAR,ICOL,M)
146. .IF(IBAR.EQ.ICOL)  GO TO 80
147. SUM(IBAR)=SUM(ICOL)
148. SUM(ICOL)=DUM
149. DO 70 I=l,NUMU
150. DUM=ABCD(I,ICOL)
151. ABCD(I,ICOL)=ABCD(I,IBAR)
152. 70 ABCD(I,IBAR)=DUM
153. c*** PERFORM HOUSEHOLDER TRANSFORMATION ***
154. 80 DO 90 I=l,ROl
155. 90 DUMMY(I)=ABCD(IROW+I,ICOL)
156. CALL HOUSH(DUMMY,ROl,l,EPS,ZERO,S)
157. IF(ZER0) GO TO 120
158. IF(ROl.EQ.1) RETURN
159. CALL TRl(ABCD,MDIMA,DUMMY,S,IROW,ROl,ICOL,MNU~
160. IROW=IROW+l
161. ROl=ROl-1
-162. DO 100 J=ICOL,M
163. 100 SUM(J)=SUM(J)-ABCD(IROW,J)*ABCD(IROW,J)
164. 120 TAU=ROl
1 6 5 . SIGMA=MU-TAU
'166. c*** COMPRESS THE COLUMNS OF C ***
167; Il=NU+SIGMA
168. MMl=M+l
169. Nl=NU
170. IF(TAU.EQ.l) GO TO 140
171. DO 135 I=lrTAU
172. DUM=O.DO
173. DO 130 J=MMl,MNU
174. 130 DUM=DUM+ABCD(Il+I,J)*ABCD~Il+I,J)
175. 135 SUM(I)=DUM
176. . 140 DO 200 ROl=l,TAU
177. RO=ROl-1
178. I=TAU-RO
179. 12=1+11
180. c*** PIVOT IF NECESSARY ***
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181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221. -
222.
223.
224.
225.
226. .
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.

150
c***

160
170

190

200

210

220

c***
c***

10

c***
c***
c*s*
c***

10

IF(I.EQ.1) GO TO 160
CALL PIVOT(SUM,DUM,IBAR,l,I)
IF(IBAR.EQ.1)  GO TO 160
SUM(IBAR)=SUMtI)
SUM(I)=DUM
DO 150 J=MMl,MNU

DUM=ABCD(I2,J)
ABCD(Ii?,J)=ABCD(IBAR+Il,J)
ABCD(IBAR+Il,J)= DUM

PERFORM HOUSEHOLDER TRANSFORMATION ***
DO 170 J=l,Nl

DUMMY(J)=ABCD(I2,M+J)
CALL HOUSH(DUMMY,Nl,Nl,EPS,ZERO,S)
IF(ZER0) GO TO 210
IF(Nl.EQ.1) GO TO 220
CALL TR2(ABCD,MDIMA,DUMMY,S,l,I2,M,Nl)
MNl=M+Nl
CALL TRl(ABCD,MDIMA,DUMMY,S,O,Nl,l,MNl)
DO 190 J=l,I
SUM(J)=SUM(J)-ABCD(Il+J,MNl~*ABCD(I1+J,MNl~

MNU=MNU-1
Nl=Nl-1
RO=TAU
NU=NU-RO
MU=SIGMA+RO
IF (ROiEQ.0) RETURN
GO TO 10
MU=SIGMA
NU=O
RETURN
END
SUBROUTINE PIVOT(NORM,MAX,IBAR,Il,I2)
THIS SUBROUTINE COMPUTES THE MAXIMAL ELEMENT (MAX) OF THE
VECTOR NORM(Il,..., 12) AND ITS LOCATION IBAR
REAL*8 NORM(l),MAX
IBAR=Il
MAX=NORM(l)
Ill=Il+l
IF(Ill.GT.12)  RETURN
DO 10 1=111,12

IF(MAX.GE.NORM(I)) GO TO 10
MAX=NORM(I)
IBAR=I
CONTINUE

RETURN
END
SUBROUTINE HOUSH(DUMMY,K,J,EPS,ZERO,S)
THIS ROUTINE CONSTRUCTS A HOUSEHOLDER TRANSFORMATION H=I-S.UU'
THAT 'MIRRORS' A VECTOR DUMMY(1,. .,K) TO THE JTH UNIT VECTOR
. IF NORM(DUMMY)CEPS, ZERO IS PUT EQUAL TO .TRUE.
UPON RETURN U IS STORED IN DUMMY
REAL*8 DUMMY(K),S,ALFA,DUMlrEPS
LOGICAL ZERO
ZERO=.TRUE.
S=O.DO
DO 10 I=l,K

S=S+DUMMY(I)*DUMMY(I)
ALFA=DSQRT(S)
IF (ALFA.LE.EPS) RETURN
ZERO=.FALSE.

- 42 -



i,

241.

L

c

c

242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.

c 269.
270.
271.
272.
273.
274.

DUMl=DUMMYtJ)
IF(DUMl.GT.O.DO)  ALFA=-ALFA
DUMMY(J)=DUMl-ALFA
S=l.DOI(S-ALFA*DUMl)
RETURN
END
SUBROUTINE TRl(A,MDIMA,U,S,I1,12,51152)

C*** THIS ROUTINE PERFORMS THE HOUSEHOLDER TRANSFORMATION H=I-S.UU’
C*** ON THE ROWS Xl+1 TO 11+12 OF A, THIS FROM COLUMNS Jl TO 52.
c***

REAL*8 A(MDIMA,l),U(I2),S,INPROD,Y
DO 20 J=Jl,J2

INPROD=O.DO
DO 10 1=1,12

10 INPROD=INPROD+U(I)*A(Il+I,J)
Y=INPROD*S
DO 20 1=1,12

20 A(Il+I,J)=A(Il+I,J)-U(I)*Y
RETURN
END
SUBROUTINE TR2(A,MDIMA,U,S,I1,12,51,52)

c*** THIS ROUTINE PERFORMS THE HOUSEHOLDER TRANSFORMATION H=I-S.UU’
c*** ON THE COLUMNS Jl+l TO Jl+J2 OF A, THIS FROM ROWS 11 TO 12.
c***

REAL*8 A(MDIMA,l),U(J2),S,INPROD,Y
DO 20 1=X1,12
INPROD=O.DO
DO 10 J=l,J2

10 INPROD=INPROD+U(J)*AO
Y=INPROD*S
DO 20 J=l,J2

20 A(I,Jl+J)=A(I,Jl+J)-U(J)*Y
RETURN
END

c
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