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ABSTRACT

Several algorithns have been proposed in the literature for the conputa-
tion of the zeros of a linear system described by a state-space nodel
{AI - ABCD}. In this report we discuss the numerical properties of a
new al gorithm and compare it with sone earlier techniques of conputing zeros.
The new approach is shown to handle both nonsquare and/or degenerate systens
without difficulties whereas earlier nmethods would either fail or would
require special treatment for these cases. The nethod is also shown to be
backward stable in a rigorous sense. Several numerical exanples are given
in order to conpare speed and accuracy of the algorithmwith its nearest

competitors.
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| NTRODUCTI ON

During the past decade, considerable attention has been paid to
the conputation of the zeros of a linear nultivariable system and
especially to the developnent of reliable numerical software for this
problem  Zeros of a nultivariable system play an inportant role in
several problems of control theory, such as, €.0., the study of regulation,
robust servonechani sm desi gn, and decoupling [1]-[5].

Consider the linear time invariant system

= 1
AX Ann x+Bnmu (1)

where x, u and y are the state vector, control vector and output vector,
respectively, and where A can be the differential operator or the delay

operator. The Smith-zeros [6] of the system matrix,

Xl - A B |}n
s(\) = (2)
-C D |}p
A — s
n m

are commonly called the_invariant zeros of the system (1). Wen p = 0,

these are the input decoupling zeros of the system and when m= 0, these

are the output decoupling zeros of the system Wen the systemis mninmal,

these are the transmission zeros of the system (see [7] for an el aborate




discussion). In the sequel we nake no special distinction anynore
between these four types of zeros since they are all the zeros of a
special type of system matrix (2).

In this report we give a 'fast' inplenentation of a method that was
recently designed to tackle the conputation of the zeros of an arbitrary
state-space system (1). W also conpare our algorithmwth those of
Davi son and Wang [1],[8] and Laub and Moore [9], two nethods with
‘controlled nunerical behavior.' W first briefly review the nethods.

The first technique, due to Davison and Wang [1], uses the invariance
property of zeros under high gain output feedback to determine their
locations. Let the full rank output feedback u = pKy be applied to the
system (assunme m=p, i.e., square system). Then the zeros as defined in
[8] are the finite eigenvalues of [A-B(D~- % K_l)_lC] . Equivalently,

the zeros are the generalized eigenval ues [9] of the system matrix,

X -A B

sp(k) = (3)

where p = y H%HT and y is some 'large’ number dependent on the

accuracy of the conputer. Sinple exanples can be constructed (see e.g.
[9]) to show that the large gain pK introduces considerable |oss of
accuracy and forces one to use up to quadruple precision. Since the
problem has to be solved for several values of gain pK, it makes the

algorithm rather inefficient and at times the distinction between the



true zeros and the 'extraneous' ones may be difficult [1],[9]. In |
addition,one has to cone up with the random output gain matrix K for
each problem In order to handl e nonsquare systens, the associated
system matrix has to be augnented with randomy generated rows or colums
to make Sp(k) squar e. This has to be solved for two different random
augnmentations in order to determne the zeros.
The second nethod of conputing zeros is discussed by Laub and
Moore [9]. The Q algorithmis used to determine the generalized

ei genval ues of the square system nmatrix,

- a

XI-A B

The finite generalized eigenvalues of (4) are the zeros of the system
For the nonsquare case, simlar techniques to those of Davison and Wang
[1] need to be used. Randomrows and columms are added to S(X) in order
to obtain a square pencil which is then processed by the Q algorithm
- This method should be preferred over the previous one because of the
nunerical stability of the Q algorithm »
The above nethods may both encounter sone difficulties in distinguishing
the finite zeros fromthe infinite zeros (when the latter have a high
multiplicity) and, nmore inportantly, S(A) has normal rank r < mn(p,m [6].
The third technique of conputing zeros is based on principles
di scussed in [10]-[13]. The systemmatrix (4) can al ways be transfornmed

by unitary transformations P and Q to the generalized (upper) Schur

form



ﬁAr—)\Br * * *
0 Af—)\Bf * *
P S(A) Q= (5)
0 0 Ai—)\Bi *
L 0 0 0 AQ—ABQ |
when
() (Ar-ABr) and (AR—ABQ) are nonsquare pencils with no zeros
and revealing the right and left minimal indices of S(A).
(ii) (Ai-ABi) is aregular pencil with no finite zeros and revealing
the infinite zeros of S(A).
(iii) (A*-Aﬁ ) is a regular pencil whose generalized eigenvalues are the
finite zeros of S(A).
After this prelininary reduction, the QZ algorithmis applied to
the 'finite structure' pencil (Af—ABf). The overall procedure is proved

to be nunerically backward stable in a strict sense,

namely that the

comput ed zeros correspond exactly to a slight

{\1-A,B,C,D} where [

A B

cC D

~ Per
A B
] is e-close to | _
C D

turbed system

} and ¢ is the nachine

preci sion of

the conputer.

Thi s does not

hold for the nethod in [1].

Wiile the |eft

and right

m ni mal

indices and the multiple infinite zeros

[14] are also determined by the deconposition (5), they are exactly the

cause of the nunerica

illustrated by sone sinple nunerica
This third nmethod is somewhat
be found in the literature [15]-[19].

met hods and may run into nurerica

unstabl e transfornations

W therefore did not

include them in our

problems in the two previous nethods
exanpl es |ater

related to other

This is

approaches that can

These algorithns are nore conceptua

difficulties since they use possibly

conpari son



The organization of this report is as follows. In section Il the
new algorithm for conputing zeros is presented and conpared with previous
met hods. In section Il we discuss the properties of the new algorithm
In section IV several nunerical exanples are presented. Sone concl uding
remarks appear in section V. The appendices include the data used in
the inplenmentation

some of the numerical examples as well as a listing of

of the algorithm in FORTRAN.



II. THE NEWALGORITHM  SYSTEM MATRI X REDUCTI ON

In this section all matrices are assuned to be conplex. For the
*
real case the algorithms require only nminor nodifications. A denotes
the conjugate transpose of A  and AT denotes the transpose of A

I1.1 Reduction Method:

In this section we present a nethod to construct a reduced order

system matrix,

jAI-A "B
[ r
s, (A =]--..-- - (6)
_Ct : Dr

with Dr invertible and with S,.(A) having the same (finite) zeros as

a given system matrix,

A-A | B

S(X) =[--------- (7)

-C D

with no restrictions on (A,B,C,D). This algorithmis then used as the
heart of the algorithmfor the conputation of multivariable zeros. The
latter is based on the Kronecker canonical formof the pencil S(A)
[10]-[13] but differs fromit in that the special structure of the pencil
is exploited to the fullest in all the necessary conputations.

The algorithns only use matrix reductions of the type



@

Allp
r
UA = [... ; AV = [A 0] (8)
()
0 P

where A is an arbitrary matrix of rank p and U and V are unitary

matrices conpressing Ato a full row rank matrix Ar and full colum
rank matrix Ac, respectively. Several techniques can be used for this
purpose; nore details are given in section 11.2. The algorithmis stated
in an ALOGOL type |anguage:

Al gorithm REDUCE (A B,C,D,mn,p) result (Ar’Br’Cr’Dr’mr’nr’pr)

conment initialization;

Ayi=As By :=B; Cy:i=C; Dy:=D; V. =nj 60:=0; Moi=ps J:i=1;

0 0 0 0
*
step_j: coment conpress the rows of D with U_ and transform
E— j- ]
simul taneously the rows of Cj_l;
o.{] c. .|D
j -7 - *
: = U,|C, lD, ; if T,=0 then go to exit 1;
(] | o jpat 3'1} =T e S
j j-1 .
conment conpress the colums of C. with v, (C, ,=C, if 0.,=0);
LOTIET. conp j-l 3 (J'l i-1 i )3
0 S. :=E, V,; ~ ifp.,=0 then go to exit 1;
[ J] =13 Py e @0 20 -
- W i f \)j=0 then go to exit.2;
V., P,
J J

comment updat e;

,i=p,t0.; &.:=6. +p.;
R R R R IR
v{la =*|s. v 1o |la 3. ||v. ‘ 0
h| h| Jol.o1 3 j-1}1 3-1}|_3J .
Al c. =|bp, 0 ‘I C. D. 11 ’
uJ{ 3 3 - Cj]—ll Dy_1 0 ‘ -

S J

vV, .

i i om

j:=j+l; go to step j;



exit_1: comment {I_-A,B,C,D} and {XI nr_Ar’Br’Cr’Dr} have the sanme zeros;

ki=j-1; A :=A ;B :=B,; C :=C,; D _:=D;

n =y =0 .3 m :=m;
r oV Pr 0j’ b ?

stop,

exit 2 : comment {AIn—A,B,C,D} has no zeros;

k:=j; nr::o; st op;

Theorem 1: The systems {AI_-A,B,C,D} and {\I -A ,B ,C ,D_} have the
e n nr r r Y r

sane (finite) zeros.

Proof : We prove the result by induction.

Step j of the above algorithm reduces the system matrix of

{AI\)J._l-Aj-l’Bj_l'Cj_lsDj_l} to the form:

. ™ Ir h AL, AL % 13J
v.lo||at.  -A, o B, _|{v.]o i3
hj Vi1 -1 73-1]1 3 - ¢ - ¢C - --
. = -Cj : % Dj (9)
0 |U -C. D. 0 |I
j D-Il D—Il 1 0 1.3 0
RIAL AL - =S,

wher e Sj has full col umm rank P, Usi ng s, as the pivot, (9) can be

transformed by uninodular row and colum transformations to,

A, -A| B |
- C D
AIVj_l AJ—l : Bj-l 3 i II
1SN CN N e Q. =7 -~~~ o (10)
] -C. ! D J .
j-1 , - 0 l
P3
\
L [ o

and the systens {AI-Ak,Bk,Ck,Dk} for kK =j-1,j have thus the sane

Snmith zeros. M



The followi ng algorithm shows how REDUCE can be used to conpute

a pencil ()‘Bf - Af) with only finite generalized eigenval ues which are the

zeros of the system {AI-A,B,C,D}. |In order to conpute the zeros, we

then use the @z algorithm on “‘Bf - A

f)'

Algorithm ZEROS (A B, C,D,mn,p) result (Af,Bf,nf,rank)

step_1 : comment reduce the system (A B,C,D) to a new system (Ar’Br’cr’Dr)
with the same zeros and with Dr of full row rank;
call REDUCE (A B,C,D,mn,p) result (Ar’Br’Cr’Dr’mr’nr’pr);
rank:=mr;, if nr=0 then go to exit;
step_2 : coment reduce the transposed system {A?, C::, BrT' DrT} to a new
system {Ar o Brc’ Crc' Drg wWith the same zeros and with Drclnvertlble;
- octBn (A__,B__,C__,D ) ;
cal | REDUCE (Ar,Cr,Br,Dr,pr,nr,mr) result re?Bre?Yre 2 Pre B e 2 Pre’ ?
i f=0 then go to exit;
L L =L DL
step_ 3 : comment conpress the colums of [C..D..] to [0 D.] and apply
the transformation to the system nmatrix;
ngi=ng g if rank = 0 then go to exit;
| ! - ' )
*
Af I ArC 'Brc qu* 110
""L"‘ R T IR I PR PR N P "' W;
0 D¢ Drc:Crc o !o 010
exit : stop; )

Theorem 2. The(finite) zeros of the system{AI-A,B,C,D} are the

general i zed eigenvalues of the 'finite' structure pencil

(AB; - AJ).

- 10 -



Proof: In the first step of ZERCS the routine REDUCE yields a system

matri x
"Xl -A V' B In
n. T ! T r
sr(A) =l-a-w---- : (11)
-C D I
r ,' r r
n
r r
with the sanme zeros as S(X) but with Dr of full row rank. In the
second step, thetransposed system matrix Sz()\), which still has the

same zeros, iS reduced again by REDUCE to a system matrix of the form

i
- |
X nee Are ‘ Be }nrc
Src(A) = |== =~~~ ‘IL- -- (12)
“Cre i Drc }prc
{
— \—\I—J
an n}lC

where now D.. has full row rank. Note that Dri had full colum rank

originally and REDUCE does not decrease the rank of this matrix. Therefore

Do has full colum rank as well and thus is invertible. The third step
transforns Src()\) to,
[ . | =
- - *
nrc{ Ko A B¢ ABe-Ag | }nf
rc ]
— e M e -l-- —— W = - — """"'-- (13)
; )
rank.{L -Cre ‘ DrC 0 | Df rank
, , . ) —
N e r ank ne r ank

- 11 -



wher e ne =Npo and rank = m. =P, and Df is, of course, invertible.

Si nce Src(A) has n. = ng finite zeros (namely the eigenval ues of

A=A -8B D—lC ) then the (n,xn ) pencil (AB_ - A) has only
re rc rc rc ff f f

finite generalized eigenvalues, and they are the zeros of S(x). u

The zeros are now conputed by the Qz nethod [20], which deconposes

(>\Bf - Af) into,

Q(AB, - AZ = A - (14)

LO n_n

where Q and Z are unitary.

a.,
The ratios A, = ?1—1_ i = 1,_,,,nf are then the (finite) zeros of S(A).
i . .
ii
It should be noted that this path is to be preferred over the use of the

. A -1 ,
QR algorithmon the matrix A = A.,-B_.D__C.., because of the possible

bad conditioning of D.,.

Remar ks:

(1) The reductions performed by ZEROCS and REDUCE can be rewitten (up

to sone permutations) as a deconposition of the type (5). Therefore the
infinite zero structure and the left and right null space structure can
also be retrieved by these algorithns [12]. In case S(A) was mini mal,
these are also the infinite transmi ssion zeros and left and right nininal
indices of the transfer function R(A) = C(M-A)_lB + D [14]. Note al so
that m = p . =rank is the normal rank of the transfer function R(}).

When rank = 0 then step-3 of ZERCS can be skipped and we get the standard

ei genval ue probl em since Bf = 1.

- 12 -




(2) Wen the system {AI-A,B,C,D} is real, the transformations in
REDUCE and ZERCS are also real. However, the deconposition in (14)

has to be slightly nodified so that Q and Z are real. Under orthogonal
transformati ons one can indeed only reduce ()\Bf - Af) to a bl ock

triangul ar form[20]

B < r -

QB - AZ = A} . - (15)

where the ()\Bii - Aii) bl ocks are 1x1 or 2x2. The generalized
ei genval ues of the 2x2 blocks are conplex conjugate pairs and those of

the 1x1 bl ocks are real.

[1.2 Details of |nplenentation

In order to take full advantage of the special problem at hand and
in order to increase nunerical accuracy and speed, the structure of the
pencil nust be fully exploited. Therefore we use Househol der transforma-
tions for the row and columm operations in these algorithns. Special
care is also taken to exploit the previously created zeros at each stage
of the algorithm It is more convenient for the organization of the data

to deal with the matrix,

........ (16)

- 13 -



At the beginning of step j (16) has the special form

- { ]
|
|
* *
VJ I < ‘
|
] F Lo— - -
|
g *
- {—----_l (17)
* 1.
. x| j-
pj—l 'xc :
0 i1
—'-__v"-"- - o~ J‘-h
m v

and the )f's are--nonzero (when j = 1, we have Vo= By = P Py = P3

00 =0). Stepj first performs an output transformation

conpr ess Dj-I to full rowrank. Therefore we first use O

transformations without pivoting (since x. 's are nonzero) to reduce (17)to,

Q¥

. to

Househol der

~ |
|
|
|
V. < * { *
j-l |
L o ) (18)
.X-’ —————— ‘ —————
o L. x|
i-1 'x0 _____ |
{ o "j-1 | * Hio1
|
pJ'l 0 X |
\—# D —— o —/
m AV

where again the xI"s are nonzero. W then continue wth Househol der

reduction with colum pivoting to reduce X to trapezoidal form vyielding

- 14 -




finally a ixcow conpression of Dj )

— . -
" ]
]
Vv |
-l < * | *
|
L '
S (19)
y \
OJ, 1". * | *
’--"__-‘\_-—Q‘.w—‘--- M.
T, { 0 C. i-1
J ]
-\ AN J) -
e ~
m \)j-l
where the yi's are nonzero and oj = Oj-l + rank(X). Step j then

continues with a state space transformation V,J to conpress the colums

~ ~

of Cj. Therefore we use Househol der transformations with row pivoting on Cg'

j-1
M \
f' :r ‘ -1~
{ {
| !
* * v,
' 1
S Y R A
| ]
P.
J {,_a__,_'----_--_-'.-_a (20)
| N
o] yl"y * l * {
J oy f B o
Sl Bl
T 0 ' 0 z'p 3
J \ j
' Z
| L 1 -
—_— < A
v
m ] P

- 15 -



wher e zi's are al so nonzero. The |ast p colums and T, rows can
J

I
then be discarded giving (17) again for j updated by one. This process

is continued until no such reduction is possible anynore (see exit 1

and exit_2 in REDUCE).

In step_3 of ZERCS we also exploit the triangular shape of D_
L

Cc
by reducing a matrix of the form

1
Brc ' Arc * tox
AR S S
| = | * ! (21)
Dre v Cpe * to*
\ } * |
e - O * ! -
to the form
~ \ o '
| * * { *
Af |
__._'._....... = -—-»~L-*—..-—v- (22)
' [ *
0 | D¢ o 1 *
L o *
! *

For this we use Householder transformation w thout pivoting on the colums

of (21). For the construction of Bf the sane transformations are also

performed on the matrix [I 0].
Ore

- 16 -
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[11.PROPERTIES OF THE ALGORI THM AND COVPARI SON

Two inportant properties of our method are its numerical stability

and its speed

1. Speed

In the sequel, one operation stands for a single addition and
mul tiplication (for the real or conplex case). A Househol der transform
ation acting on a sxt matrix requires 2st operations. Using this, and

the assunption that m < p, We obtain the follow ng operation count for

REDUCE. The row conpression of Dj 1 requires at nost %,_5 m House-
hol der transformations, each working on matrices smaller than pj l(vj 1+m)
j_pj_l(n+m) (see (17),(18)). For this step we thus have less than

(n + mMmoperations (23)

2pj_1

~

The state space transformation to conpress the colums of Cj requires
P,J Househol der transformation, each working on matrices smaller than

(v, . +V < (m + n)n
j-1 =
*
]

for VvV,

. v, < + n)n for V., and (m + v, .
J_l) 1 2 (p ) : J—l)vj—l

(see (19),(20)). For this step we thus have less than
ij(p + m+ 2n)n operations (24)

I f REDUCE requires k steps, then = + + ... '
q p A Py T Py P 1S the amount by
which the state dinension is reduced. Using this and the fact that p =m
(o}

pk+1 = 0 we have the total operation count of,

2(p + A(n + Mmm+ 2A(p + m+ 2n)n (25)

-17 -



for REDUCE. The routine ZERCS then uses less than the follow ng nunber
of operations,
- for step_1 ; less than:

2{(p+A)(n + mm + A (p + m+ 2n)n} operations (26)

with Ay =n-on
- for step_2 ; less than:

2{(m + A2)(n + pr)pr + A2 (m + pr-FZn)n} operations 27)
W th A2 =n-mn.;p <m

- for step_3; less than:
2{(n, 4+ m ), + D} gperations (28)
wWth m. < m

This last step indeed requires m., Householder transformations working

on matrices smaller than (nrc + mrc)(nrc+ 1). Denoting A = Al + A2 =

n-n. asthe nunber of state reductions, and M= max{p + nm+ n} =P +n

we obtain the reduction to ()\Bf - Af) in less than
2A(n+m)m + 2A(m+p+2n)n + 4p(ntm)m
+ 2(ntm) (D) m < A{4MP+2mM} + 20M° + hpmM

< 6(A+p)M2 oper ati ons. (29)

- 18 -



This operation count is a rather generous upper bound. Notice that
A+p=M-n., isthe total reduction of the dimension of S(X)

to the pencil (}\Bf - Af). ZERCS thus requires less than 6l\/l2 oper ations
per deflation, while the QZ nmethod used on S(X) directly,would
require approxinmately 25M2 operations per deflation [ 9]. Furthernore,
the operation count of the Q nethod conpared favorably to Davison and

Wang' s net hod [9].

2. Nunerical Stability

An inportant property of the proposed nmethod is its backward
stability. For the unitary transformations performed in REDUCE (see
(9)), the foll owing result can be proved [21]. In the presence of rounding

errors, the right hand side of (9) is exactly equal to

r~ ; 1" ' - , 5 ' I | I
—* — — — , [
V. 1+ 0 Al -A: | U B, . 0 AL -A * B,
b vj_l J-l | j-1 J : \)j " { N]
N | Bl R e ] I IR R
| - ! | |
—%
- 0 T . D.
5 0 'Uj.J _ CJ'l | j—lj L | g -CJ | -*-' _J-
- i
0 —l -S.t 0
| Jy -
(30)
where U and VL are still unitary and if € 1S the machine precision
of the computer, then
~ - =
A B, : A B,
Aj-| BJ-I Aj-l BJ-I j-1 j-1
- < Qe (31)
[4 D. C D
LCJ-I DJ-| CJ-I Dj—l j-1 j-1
. -1 2

- 19 -



with Hj a constant depending on the dinension of the matrices. Note

that in (30) the coefficient of A is not perturbed because no conputations
are actually performed on it (the *'s in (30) are not conputed). The
errors perforned in each step of REDUCE can be worked back to the original
matrix S(X) wthout affecting their nornms because unitary transformations
do not change the I+, norm of a matrix. Wen doing this for the two

calls of REDUCE in ZERCS, we obtain the equality,

* * * *
L AI-A B _ 0 AI-A.. By, * (32)
u N _ v =
-C D 0 —Cre Dyo *
0 0 0 *
with UV uni tary and,
A B A B l A B
- < ° (33)
cC D C D b C D
2 2
- where Teen is the sum of the Hj's in (31). A simlar error analysis of

step 3 in ZERCS and the QZ deconposition of (ABg-A¢) yields,

- 20 -



p— | N, | 7 r 1
~ ! A | +B 7 |
Q |0 MI+E)) ArC « AEB z 0
--—r- a." """ = - e - ﬁ = _P-
il Y /
0 I re | Drc 0 ! I
L - ' -/ - ]
r ' - ~ ! -
811 * | 41 * !
. [ « . .
=2 0 Bn n | ) 0 o n |
£f ! Dgle
- e e e o r" - e W o o - r...-
L 0 U - 0 [ D¢

> |

|
>
w
>

re Brc rc rc rc

Crc re rc rc rc

HE M, , HEI, <T° e

for sone expressions Hrc and He.

Note that the coefficient of A is perturbed, but that

its rank

(34)

(35)

(36)

is unaltered because of the special structure of the transformations in

(32), Because of (36), there exists then a colum transformation

Cwith ||F|]|, <3 T_e such that,

~Cre | Dre “Cre
\

- 21 -

—_— [} — * ~
A(I+E)-A.. | AE +B_ M-

s mm e s s (14F) = [ = e

(I + F)

(37)



~ - r~ ~
Arc Bre Are  Bre Acc Bre
- - - < (I_+ 30 )¢
- re e
Ge  Dre Cre  Drc Ce Dre
(38)
This error can again be worked back to the original matrix S(A). W
a
finally obtain that the ratios Ai = B-i—i— are the exact zeros of a system
i
{\1-A,B,C,D} such that,
A B A B . A B
- <TI e (39)
C D C D c D
2 2
wher e
= + + 31 40
I Tegp ¥ Mie e (40)

Note that the expression ﬁ is a rather generous upperbound. One can
“estimate I experimentally (see next section) and it is fair to say that
]~I is close to 1 for matrices of reasonable size (n<20). For | ar ger
is recommended to use fI2

cl ose to one.

matrices, it conputations [21]} in the Househol der
transformations in order to keep i

Addi ti onal Feat ures:

The nmethod described in section Il requires no assunption on

(A/B,C D) and requires no special treatment for different cases as opposed

to [1] and [9]. It handles the case where r < min{m,p} very effectively

- 22 -



and has no difficulty with high multiplicity zeros at infinity under
smal | perturbations. The examples in section IV illustrate these
advant ages over the other two nethods.

Qur method has no problems in the presence of a Kronecker structure
(left and right null space when r < min{m,p} and infinite zeros)
because it separates a pencil (ABf-Af) with only a finite structure from
the original system matrix S()x). This allows us to determ ne zeros of
ungenerical system matrices, eg,wien r < min{p,m} while the other
two methods cannot handle this case properly.

The 'degenerate’ case has been pretty much neglected in the past
because of its ill-posedness. Recently nore attention has been paid to
the degenerate problem and justifications have been given, from a
nunerical and physical point of view, for conputing zero of degenerate
systens (see [13],[22]).

Anot her nice property of our approach is that no problem dependent
paraneter and/or matrix is needed as in method [1]. Moreover, the method
is direct and does not require two runs and/or a (delicate) sorting of

the 'extraneous' zeros in the nonsquare case

-23 =



['V. EXAMPLES

Al the exanples considered are real. The conputations were
carried out on the 1BM370/3033 at Stanford University. Ve used the FORTRAN H
Ext ended Conpiler, OPTIMZE(Z) and all conputations were performed in double
preci si on (REAL*8). The driver program RGG of EI SPACK [24] was used to
call the @ algorithm and singular values were obtained using the routine
DSVDC of LINPACK [25]. For each exanple, we also conpute the singular

val ues oi's of the system matrix,

0
S(A) = (41)
o

at each conputed zero )\o. W refer to the ratio,

o
RBA = M (42)
"1
as the 'relative backward error.' Note that according to the backward
error analysis,RBA is of the order of II*e. Indeed,
A I-A B
° = 0 (43)
O(n+rank) 5
-C D
Hence,
A B
o {s(A)} = T'e z Te g {S(A)} (44)
(n+rank) o c D

2

This allows us to estimate the val ue of I~I. Note that an e-small
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backward error does not inply that the zeros are also computed up to €

accuracy. This al so depends on the conditioning of each separate zero [21].
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EXAMPLE 1. This exanple is the 16th order l|inearized node

jet engine used as the thene problem for the International

for linear nmultivariable control [26].

Appendix |. Since D has rank 4, there are fifteen zeros.

computed zeros to thirteen significant digits

Zer os
-829. 2490955651110

789. 8985828158399
141. 2294550203129

- 50.46757476394580 * j1.0319141604160423297

- 49.63760103236723

- 13.76530730452916 + j9.110214747547156

.6659561616385485
- 6.710651036803525
- 2.003403155575229
- 23.13366516893961
- 20.55602749379905 + j1.417353350011828
- 18.95850189406822

EXAMPLE 2: This is a 9th order nodel of a boiler system[27] and the data

is shown in Appendix |I. The zeros along with the corresponding relative back-

ward errors, are as follows:

Zeros

-26.39513728882773

- 2.957771985292086 * j.3352672071870191
.7486064441907556
.09403261020202233

- .009546070612163396

- 26 -

The followi ng shows the

of the F100-PW-100

Forum on Alternatives

The data for this exanple appears in




EXAMPLE 3: This is a 6th order exanple from([1l} with,

-
01 0000 [0 0.1
001000 0 0
000 O0O0OO 1 0

A= 1000010 8 = | o o
000 0O 1 00
000 O0O0DO 0 1
r - -
11 0 0 0 0
¢ = 0 1 -1 D - 1,
" i ]
g
RBA = 8. Ie
Zer os 01
-.6823278038280190 < ¢
.3411639019140096 + j 1. 161541399997251 < ¢
.9999999999999997 < e

EXAMPLE 4: This is a fifth order nodel of a drumboiler [28] with,

"_0.129 0.000 0.396x10" 1  0.250x10""  0.191x10" 1)
0.329x1072  0.000 =0.779x10"} 0.122x107° -0.621
A= | 0.718x10"7  0.000 -0.100 0.887x10"° -0.385x10"

0.‘411x10-1 0.000  0.000 -0.822>t10-1 0.000

0.361x10"3  0.000 0.350x10™*  0.u26x10™* -0.743x10"")

0.000 0.1
0.000 0.359x10""
ISR RV
. 1 0
2= | 0.000 -0.989x102 .. 0 0 0 }
- 0 i 0
0.249x10"%  0.000 - - b0 0
0.000 -0.53ux10">
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The zeros and the relative backward errors are:

0; .
RBA = — = ]I ¢
o
Zeros 1
-.368051203603595 < €
-.06467751189941505 < ¢
EXAMPLE 5:  Consider the system with,
1 - N
A -1
|
-1 . ° 1 0
s(A) = . D] )16
0 | ,':,‘- A
0- . ..0 1 ' 0 J
S -
. 1
corresponding to the transfer function H(s) = —z. [If we perturb the
S
-16

(16,16) el enent by the order of machine precision (e x 10 ), then the
Q algorithmw Il yield one zero at infinity and the rest are located on a circle
with radius -Ieln. our al gorithm has no such difficulty and will indicate that

there are no finite zeros.

EXAMPLE 6: None of the previous algorithms can handle the case where the system

is degenerate. Consider the case where,

x-2 1 0 ' 0
0 A 0 10
s(v) =
1 0 P |
L S A
J
0 1 0+ O

This pencil has right and left Kronecker indices equal to one.

0
Ay ei genval ue) .

Theoretically one should not trust any of the other conputed ratios as sone of them

The QZ algorithm[9] will indicate degeneracy (i.e

could be arbitrary. But practically speaking only special perturbations
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could alter the true zero at 2.

- 29 -

More about this can be found in {21]-[22].

Our algorithmwill extract the singular part of S(X) and will yield a regular
pencil containing the single zero at 2.
EXAMPLE 7:  Consider the system
|-
A 0,0
{
SX) = |0 a1
.- - g -
1 011
' -
with Kronecker right and left indices equal to one. The Q algorithmwill indicate
degeneracy whereas in fact there are no zeros as detected by our algorithm
Davi son and Wang'-s method [1] will find two zeros at 0
EXAMPLE 8: This is the nodel of an electrical network [29] with,
2 1 0 0 0 0 1
1 -2 1 0 1 1 0
0 1-2 1 0 0 0
— B =
A= o 0 I -1 0 1 0
0o -1 0 0 0 0 1
0 1 0 -1 0 0 _0
C = [ 0 0 0 10 0 1
RBA= E-Zzﬁe
Zer os 1
-.9999999999999994 + j.1821927265261758x10-7 < €
The system actually has two zeros at -1.0, but note that the error is of the order
of M2 hichis to be expect ed because of the presence of a 2%2 Jordan bl ock.



EXAMPLE 9: Consider the system with,
A, } -1
0 |
-1 - ,.05
S(A) = ?15
|
0 | 0
-1 X v 0 {J
—_———m - g = -
L O 0 1 + 0
This system has a zero at 20. However, if we perturb the (16,16) element by ¢,
the QZ algorithm will yield a zero at « and the rest are located on a circle -
with radius E-l/n. The eigenvalue at 20 is also absorbed in this 'cluster'

and cannot be discerned from the rest anymore. Our algorithm will compute the

zero at 20 with no &ifficulty.

EXAMPLE 10: This example is taken from [30].

[0 0 0 -24 ) ] (135 18 14 20 |
0 0 -50 O . O 117 42 25 33
1 0 -35 ) 33 30 13 15
oo a0 s 6.2 2
. 00 0 -30- o "4 10 ‘50 .32'
A = O 1 0 0 -61. O p=! 6 17 20 32
0 1 0 -41- 2 8 2 8
-0 0 1 -11. 0o 1 0
R I R e s e
O : O -23 14 -10 6 54
| . -0 -9 | | 2 -2 1 10|
[0 0 0 1 o0 ]
c = 0 0 0 0 1
0 0 00 0 0
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The system has input decoupling zeros at,

RBA=6-]*]-'-~ﬁe
Zeros 1
-4.999999999999955 < €
-2.999999999999988 < €

and no output decoupling zeros.

EXAMPLE 11: Consider the rectangular system [31],

-2 -6 3 -7 6] -2 7]
0 -5 4 -4 8 -8 -5
t=|0 2 0 2 =2/, B=|-3 0
0 6 -3 5 —6 T
-2 —_ —
0 -2 2 -2 5] -8 0
0 -1 2 -1 -1
C={1 1 1 0 0

001
-1 . bp=|o0
o o

The system has a left Kronecker index equal to one, no right Kronecker index

and two zeros at infinity. The normal rank is equal to two.

U7 -
RBA='E—3H€
Zeros 1
-3.000000000000000 < €
3.999999999999972 < €
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V. CONCLUSIONS

We have presented a new algorithm for computing the zeros of a linear
multivariable system. The algorithm is superior to previous methods in that

it effectively deals with all cases. It is backward stable and more efficient
compared to earlier techniques. The algorithm also yields the normal rank

of the transfer function matrix, and has the potential of yielding more
information about the structure of the given system. It has been successfully

implemented on the computer.
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APPENDIX I

Jet engine (example 1):

F100 MODEL ALT=0 O PLA=83
THE A MATRIX
-4.328 L1714 5.376 4nl.6 -724.6 -1.933 1. 020 -.9820
-.4402 -5.643 127.5 -233.5 -434.3 26.59 2.040 -2.592
1.038 6.073 -165.0 -4.483 1049. -82.45 -5.314 5.097
.5304 -.1086 131.3 -578.3 102.0 -9.240 -1.146 -2.408
.8476E-02 -.1563E-01 .5602E-01 1.573 -10.05 .1952 -.8804E-02 ~.2110E-01
.8350 ~.1249E-01 -.3567E-01 -.6074 37.65 -19.79 ~.1813 -.2262E-01
.6768 ~-.1264E-01 ~.9683E-01 -.3567 80. 24 ~-.8239E-01 -20.47 -.3928E-01
-.9696E-01 ,8666 16. 87 1.951 -102.3 29. 66 .5943 -19.97
~.8785E-02 ~.1636E-01 ,1847 L2169 -8.420 .7003 .5666E-01 6.623
—~.1298E-03 -.2430E-03 .2718E-02 .3214E-02 -.1246 .1039E-01 .8395E-03 .9812E-O1
-1.207 -6.717 26.26 12.49 -1269. 103.0 7.480 36.84
-.2730E-01 ~-.4539 -52.72 193.5 -28.09 2.243 L1794 9.750
-.1206E-02 -.2017E-01 -2.343 8.835 -1.248 .9975E-01 _.8059E-02 .4333
-.1613 -.2469 -24.05 23.38 146. 3 1.638 .1385 4. 486
-.1244E-01 .3020E-01 -.1198 -.4321E-01 5.675 -.4525 19.81 .1249
-1.653 1.831 -3.822 113. 4 341.4 -27. 34 -2.040 ~.6166
.9990 1.521 -4.062 9. 567 10. 08 -.6017 -.1312 .9602E-01
11. 32 10. 90 -4.071 -.3739E-01 -.6063 -.7488E-01 -.5936 -.9602E-C1
~-.9389E-02 .1352 5.638 .2246E-01 .1797 .2407E-01 1.100 .2743E-01
-3.081 -4.529 5.707 -.2346 -2.111 -.2460 -.4686 -.3223
.2090E-02 -.5256E-01 ~.4077E-01 -.9132E-02 -,8178E-01 .3428E-01 .4995E-02 -.1256E-01
—.1953E-01 -.1622 —.6439E-02 -.2346E-01 -.2201 -.2514E-01 -.3749E-02 -.3361E-0N1
.1878E-01 -.2129 -.9337E-02 -.3144E-01 -.2919 -.3370E-01 .8873E-01 -.4458E-01
.2253E-01 .1791 .8371E-02 .28453E-01 ,2560 .2835E-01 -.3749E-01 .3635E-01
-49. 99 .6760E-01 39. 46 .4991E-02 .8983E-01 .5349E-02 .0 .1372E-01
~-.6666 -.6657 . 5847 .6634E-04 ,1347E-02 _7131E-04 .0 .2057E-03
.2854 2.332 -47.65 L3406 3. 065 .3624 -.4343 L4681
9.627 -9.557 38.48 -50.01 .1011 .1203E-01 -.4686E-01 .1715E-01
-.4278 -.4245 1.710 -2.000 -1.996 .5349E-03 -.1999E-02 _.7544E-03
4,414 -4.354 17. 66 -3.113 -3.018 -19.77 ~.4999E-01 .1509E-01
-.1127E-02 —~,6760E-02 .1835E~01 -.9281E-03 -.1347E-01 -.1070E-02 - 20. 00 -.2057E~02
. 5004 -.1437 -2.416 -.1073 -1.078 30.63 19. 89 -50. 16
THE B MATRI X
~.4570E-01 -451.6 -105.8 -1.596 851.5
L1114 -546.1 -6.575 -107.8 3526.
.2153 1362.  13.46 20.14 -.6777E+05
.3262 208.0 -2.888 -1.653 -269.1
.9948E-02 -98.39 .5069 -.1940 -94.70
.2728E-01 71.62 9.608 ~-.3160 -184.1
.1716E-01 71.71 8.571 .7989 -515.2
~-.7741E-01 -141.2 -,8215 39.74 1376.
.3855E-01 -7.710 -.4371E-01 -.1024 -6684.
.5707E-03 -.1144 -.6359E-03 -.14322-02 -99.02
5.727 -1745. -8.940 -17.96 .8898E+05
L1392 -24.30 -.2736 -.3403 -6931.
.6172E-02 -1.082 -.1183E-01 -.1452:-01 -307.7
.6777E-01 16.60 .3980 .23112-01 -2588.
.1880E-02 9.147 -.8241 .89842-01 -32.31
L1677 435.8 -89.94 4.900 -295.5




THE C MATRIX

4866 -.6741 5.392 95. 42 24.03 10.52 .8190 -.4492
.1383E-01 .2789E-05 .O .0 ~.1081E-01 -.3345E-04 .4722E-04 .O
.0 0 0 0 0 0

. . . . . .0 .0
.7418E-04 ,5496E-05 .4790E-05 ,1478E-03 ~,1504E-01 -.6303E-04 ,8820E-04 .4999E-05
.1538E-04 .1201E-03 -.2579E-02 ~-.1609E-03 .1618E-01 -.1071E-02 -.9561E-04 -.5503E-05

.5195 .8437 -1.863 .5709E-01 .4815 3.428 2.161 .7681E-01

.0 .0 0

. 0 .0 .0 .0 .0
.0 0 1.000 .0 0 0 0

. . . . .0
.3434E-05 .2727E-04 .1128E-05 .4002E-05 .3673E-04 .4290E-05 ~.4958E-05 .5609E-05
-.3732E-05 -.2996E-04 -.1234E-05 -.4380E-05 ~,4024E-04 -.4721E-05 .5324E-05 -.6103E-05

THE D MATRI X

~.6777E-01-420.5 32.97 -1.824 1245.
.1282E-03 .3353 . 6804 -.5605E-04 ~.1199E-01
.0 0 .0 .0 .0

(1030E-05 ~.1193E-01 -.5806E-02 .6015E-04 .4463E-01
.8109E-05 .2328E-01 .1178E-03 -.5538E~02 -.1039

Boiler (example 2):

MATRIX A
23.93 3ass10” o 0 0 4.03x100° o 0 0
3.68x102  .3.05 3.03 0 0 e o ) )
2.74x10)  7.87x10°2  -s.96x10°2 0 0 281007 0 0 0
-6.47x10"2  _s.20a10"% 0 s2.55x0°Y  3.3sx107¢  z.e0x1077  6.33a07  1.eax0? o
- 1

3.85x103  1.73x00  -c1.28xa0  -1.26x0*  -2.01 aosxio”d 1.2mael 4u31x10 0
2.24x10% 1.80x10 0 .s.56x10)  -1.0ax10%  -4.1ax20°!  o.c0x0!  s.e9xre0! 0
0 0 2.34x10°3 0 0 2.22x107%  -2.03a07! 0 0
0 o 0 -1.27 1000 7.86x10° 0 7072 0
-2.20 L7703 -8.44 aaixi0”t 13sxa0”S  1.49x0d  e.02x1073  -1.00x107 10

o 0 1

0 0

1.56 0

0 -5.13x 10°¢

c 000001000
B=|82 -1.55 =
000000001

0 1.78

2.33 0

0 ~245x1072

-5
L0 294x107% ]
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C**%
C %% %
CRE%
C**%
C***
C* % *
%% %
CEX%
C**%
C* %%
C**%
C*%%
Cx%%
C* %%
C*x%
C**®*
C* %%
C % %%
C* %%
C**%
C¥%%
C % % %

SUBROUTI NE ZEROS(A,B,C,D,M,NMAX,N,PMAX,P,MAX,EPS,BF,AF,NU,
*RANK,SUM, DUMMY)

TH S ROQUTI NE EXTRACTS FROM THE SYSTEM MATRI X orF A STATE- SPACE
SYSTEM {A(N,N),B(N,M),C(P,N),D(P,M)} A REGULAR PENCI L
{A.BF(NU,NU)-AF(NU,NU}} WHCH HAS THE NU INVARI ANT ZEROS OF
THE SYSTEM AS GENERALI ZED ElI GENVALUES. THE ROUTI NE ZERGS
REQUI RES THE SUBRCUTI NES REDUCE, HOUSH, PIVOI, TR1 AND TR2.
THE PARAMETERS IN THE CALLI NG SEQUENCE ARE (STARRED | NPUT
PARAMETERS ARE ALTERED BY THE SUBROUTI NE)

| NPUT:
*A,B,C,D THE SYSTEM DESCRI PTOR NMATRI CES

M,N,P THE NUMBER ofF | NPUTS, STATES AND QUTPUTS

PMAX,NMAX THE FIRST DIMENSION OF C,D AND A,B RESPECTI VELY
MAX THE FIRST DI MENSI ON OF AF,BF

EPS THE ABSOLUTE TOLERANCE OF THE DATA(NOISE LEVEL),IT

SHOULD BE LARCER THAN THE MACH. ACC.*NORM(A,B,C,D)

QUTPUT:

BF,AF THE COEFFI CI ENT MATRI CES OF THE REDUCED PENCI L

NU THE NUMBER OF (FINITE) | NVARI ANT ZERGCS

RANK THE NORVAL RANK OF THE TRANSFER FUNCTI ON

WORKI NG SPACE

SUM A VECTOR OF DI MENSI ON AT LEAST MAX{M,P}

DUMWY A VECTOR OF DI MENSI ON AT LEAST MAX{M.,N,P}

IMPLICI T REAL*8 (A-H,0-2)

LOE CAL ZERO

| NTEGER P, PMAX,PP,RANK,RO,SIGMA

DI MENSI ON A (NMAX,N),B(NMAX,M),C(PMAX,N),D(PMAX,M),AF(MAX, 1),
*BF(MAX, 1),SUM(C1),DUMMY (1)

MVEM

NN=N

PP=P

C* CONSTRUCT THE COVPOUND MATRIX | B A | OF DI MENSION (N+P)X(M+N)

c*

10
15

20

30

| pCc |
IF(MM.EQ.0) GO TO 15
DO 10 I=1,NN
DO 10 J=1,MM
BF(I,J)=B(I,J)
DO 20 1=1,NN
DO 20 J=1,NN
BF(I’J+NN)=A(IpJ)
IF(PP.EQ.0) GO TO 45
IF(MM.EQ.0) GO TO 35
DO 30 1=1,PP
DO 30 J=I, MV
BF(I+NN,J)=D(I,J)

35 DO 40 1=1,PP

40

D

2QQ

45

DO 40 J=1,NN
BF(I+NN,J+MM)=C(I,J)

REDUCE THI S SYSTEM TO ONE WTH THE SAME | NVARI ANT ZEROCS AND W TH

FULL ROW RANK MJ (THE NORVAL RANK oF THE ORI G NAL SYSTEM).

RO=PP
SIGMA=0

CALL REDUCE(BF,MAX,MM,NN,PP,EPS,RO,SIGMA,MU,NU,SUM, DUMMY)
RANK=MU

IF(NU.EQ.0) RETURN

C* PERTRANSPOSE THE SYSTEM

NUMU=NU+MJ
MNU=MVIFNU
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61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.

[ ——

NUMU 1=NUMU+1 o
MNU 1=MNU+1
DO 50 1=1,NUMU L
DO 50 J=I, MNU :
50 AF(MNU1-J,NUMU1-I)=BF(I,J)
|IF (MU.EQ.MM) GO TO 55
PP=MV
NN=NU
MVEMU
REDUCE THE SYSTEM TO ONE WTH THE SAME | NVARI ANT ZEROS AND W TH
D SQUARE | NVERTI BLE

% QQ

RO=PP- VWM
S| GVA=VM
CALL REDUCE(AF,MAX,MM,NN,PP,EPS,RO,SIGMA,MU,NU,SUM, DUMMY)
IF(NU.EQ.0) RETURN
C* PERFORM A UN TARY TRANSFORMVATI ON ON THE COLUWNS CF 1A1-a B I IN
c* |ABF-AF xI | -C D |
C- ORDER TO REDUCE IT TO I O Y] WTH Y AND BF SQUARE | NVERTI BLE.
C*
MNU=MW+NU
55 DO 70 1=1,NU
DO 60 J=1,MNU
60 BF(I,J)=0.D0
70 BF(I,I+MM)=1.D0
IF(RANK.EQ.0) RETURN
NU1=NU+1
11 =NU+MJ
J1=MNU+1
| O=MM
DO 90 1=1,MM
I10=I0-1
DO 80 J=1,NU1
80 DUMMY(J)=AF(I1,I0+J)
CALL HOUSH(DUMMY,NU1,NU1,EPS,ZERO,S)
CALL TR2(AF,MAX,DUMMY,S,1,I1,I0,NU1)
CALL TR2(BF,MAX,DUMMY,S,1,NU,I0,NUT)

90 11=11-1
RETURN
END
SUBROUTI NE REDUCE(ABCD,MDIMA,M,N,P,EPS,RO,SIGMA,MU,NU,SUN,
* DUMMY)
c*¥x* TH S ROUTINE EXTRACTS FROM THE (N+P)X(M+N) SYSTEM [ B A ]
C* % % [ B'A'] [ bcC |

c*¥%¥* A (NU+MU)IX(M+NU) 'REDUCED SYSTEM { p'c'] HAVING THE SAME
c*%x¥ TRANSM SSI ON ZERCS BUT WTH D OF FULL ROW RANK. THE SYSTEM
c*** {A',B',C',D'} OVERWRITES THE OLD SYSTEM EPS IS THE NO SE
c*%% | EVEL. suM(MAX{P,M}) AND DUMMY(MAX{P,N}) ARE WORKI NG ARRAYS.
C**%

IMPLICIT REAL*8 (A-H,0-2)

| NTEGER TAU,P,RO,R01,SIGMA

LOE CAL ZERO

DI MENSI ON ABCD(MDIMA, 1),DUMMY(1),SUM(1)

MU=P

NU=N

10 IF(MU.EQ.0) RETURN

RA =RO

MNU=M+NU

NUMU=NU+MUJ

IF(M.EQ.0) GO TO 120
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121. RO1=RO1+1

122. | ROMENU

123. IF(SIGVA. LE. 1) GO TO 40

124. c*¥xx COVPRESS RONS CF p. FIRST EXPLO T TRI ANGULAR SHAPE #*%*
125. M =S| GVA- 1

126. DO 30 1coL=1,M1

127. DO 20 J=1,R01

128. 20 DUMMY(J)=ABCD(IROW+J,ICOL)

129. CALL HOUSH(DUMMY,RO1,1,EPS,ZERO,S)

130. CALL TR1(ABCD,MDIMA,DUMMY,S,IROW,R01,ICOL,MNU)
131. 30 IROW=IROW+1

132. c**¥%¥  CONTI NUE WTH HOUSEHOLDER W TH Pl VOTI NG *%*%
133. 40 IF(SIGMA.NE.0) GO TO 45

134. SIGVA= 1

135. RA =RA -1

136. 45 1F(siGgMA.EQ.M) GO TO 60

137. DO 55 | COL=SI GVA, M

138. DUMEQ. DO

139. DO 50 J=1,R01

140. 50 DUM=DUM+ABCD(IROW+J, ICOL)*ABCD(IROW+J,ICOL)
141. 55 SUM(ICOL)=DUM

142. 60 DO 100 |1 COL=SI GvA M

143. cx¥¥*% Pl VOl | F NECESSARY **¥%

144 . IF(ICOL.EQ.M) GO TO 80

145. CALL PIVOT (suM,DUM,IBAR,ICOL,M)

146. .IF(IBAR.EQ.ICoL) GO TO 80

147. SUM(IBAR)=SUM(ICOL)

148. SUM(ICOL)=DUM

149. DO 70 | =1, NUMJ

150. DUM=ABCD(I,ICOL)

151. ABCD(I,ICOL)=ABCD(I,IBAR)

152. 70 ABCD(I,IBAR)=DUM

153. c*¥¥¥ PERFORM HOUSEHOLDER TRANSFORMATI ON *%%

154. 80 DO 90 1=1,RO1

155. 90 DUMMY(I)=ABCD(IROW+I,ICOL)

156. CALL HOUSH(DUMMY,RO1,1,EPS,ZERO,S)

157. IF(ZERO) GO TO 120

158. IF(RO1.EQ.1) RETURN

159. CALL TR1(ABCD,MDIMA,DUMMY,S,IROW,RO1,ICOL,MNU)
160. IROW=IROW+1

161. RO1=RO1-1

162. DO 100 J=ICO., M

163. 100 SUM(J)=SUM(J)-ABCD(IROW,J)*ABCD(IROW,J)
164. 120 TAU=RO1

165 . S| GVA=MJ- TAU

"166. c¥¥%¥ COVMPRESS THE COLUMNS OF C **x

167; I1=NU+SIGMA

168. MM1=M+1

169. N1=NU

170. I F(TAU. EQ 1) GO TO 140

171. DO 135 1=1,TAU

172. DUMEQ. DO

173. DO 130 J=MM1,MNU

174. 130 DUM=DUM+ABCD(I1+I,J)*ABCD(I1+I,J)

175. 135 SUM(I)=DUM

176. . 140 DO 200 rRO1=1,TAU

177. RO=RA -1

178. | =TAU- RO

179. I12=I+11

180. c¥¥% PlVOTl | F NECESSARY *x%
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181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.

150
C % %%

160
170

190

200

210

220

Cr**
C* %%

10

C**%
C* %%
CHr¥E*
C***

10

IF(I.EQ.1) GO TO 160
CALL PIVOT(SUM,DUM,IBAR,1,I)
IF(IBAR.EQ.I) GO TO 160
SUMCIBAR)=SUM(I)
SUM(I)=DUM
DO 150 J=MM1,MNU
DUM=ABCD(I2,J)
ABCD(I2,J)=ABCD(IBAR+I1,J)
ABCD(IBAR+I1,J)= DUM
PERFORM HOUSEHOLDER TRANSFORNVATI ON #*%*
DUMMY(J)=ABCD(I2,M+J)
CALL HOUSH(DUMMY,N1,N1,EPS,ZERO,S)
IF(ZERO) GO TO 210
IF(N1.EQ.1) GO TO 220
CALL TR2(ABCD,MDIMA,DUMMY,S,1,I2,M,N1)
MN1=M+N1
CALL TR1(ABCD,MDIMA,DUMMY,S,0,N1,1,MN1)
DO 190 J=1,1
SUM(J)=SUM(J)-ABCD(I1+J,MN1)*¥ABCD(I1+J,MN1)
MNU=MNU-1
Ni1=N1-1
RO=TAU
NU=NU- RO
MJ=SI GVA+RO
IF (RO.EQ.0) RETURN
GO TO 10
MJ=SI GVA
NU=0O
RETURN
END
SUBROUTI NE PIVOT(NORM,MAX,IBAR,I1,1I2)
TH S SUBROUTI NE COMPUTES THE MAXI MAL ELEMENT (MAX) OF THE
VECTOR NORM(I1V1,...,I2) AND |ITS LOCATI ON IBAR
REAL*8 NORM(1),MAX
IBAR=1I1
MAX=NORM(1)
I11=I1+1
IF(I11.6T.I2) RETURN
DO 10 1=111,12
IF(MAX.GE.NORM(I)) GO TO 10
MAX=NORM(I)
IBAR=1I
CONTI NUE
RETURN
END
SUBROUTI NE HOUSH(DUMMY,K,J,EPS,ZERO,S)
TH' S ROUTI NE CONSTRUCTS A HOUSEHOLDER TRANSFORVATI ON H=I-s.uu'
THAT 'M RRORS A VECTOR puMMY(1,..,K) TO THE JTH UNIT VECTOR
. | F NORM(DUMMY)<EPS, ZERO IS PUT EQUAL TO .TRUE.
UPON RETURN U IS STORED I N DUMW
REAL*8 DUMMY(K),S,ALFA,DUM1,EPS
LOE CAL ZERO
ZERC=. TRUE.
S=0 DO
DO 10 1=1,K
S=S+DUMMY(I)*DUMMY(I)
ALFA=DSQRT(S)
IF (ALFA.LE.EPS) RETURN
ZERC=. FALSE.
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241.
242.
243.
244 .
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.

C:k**
C:k**

CxE*

10

20

C* %%
Cx¥%
C**%

20

10

DUM1=DUMMY(J)

IF(DUM1.GT.0.D0) ALFA=-ALFA

DUMMY(J)=DUM1-ALFA

S=1.D0/(S-ALFA*DUM1)

RETURN

END

SUBROUTI NE TR1(A,MDIMA,U,S,I1,12,J1,J2)
TH'S RQUTI NE PERFORMS THE HOUSEHOLDER TRANSFORVATI ON H=I-S.UU'
ON THE ROAS 11+1 TO 11412 OF A, TH S FROM COLUWNS g1 TO Je.

REAL*8 A(MDIMA,1),U(I2),S,INPROD,Y
DO 20 J=91,432
| NPRCD=0. DO
[D 10 I=1,12
INPROD=INPROD+U(I)*A(IT+I,J)
Y=I NPROD* S
DO 20 I=1,12
ACTIN+I,J)=ACI1+1,J)-U(I)*Y
RETURN
END
SUBROUTI NE TR2(A,MDIMA,U,S,I1,I12,J1,J2)
TH S ROUTI NE PERFORMS THE HOUSEHOLDER TRANSFORVATI ON H=I-S.UU'
ON THE COLUWNS JI +I TO J1+d2 OF A, TH'S FROM ROA5 11 TO 12

REAL*8 A(MDIMA,1),U(J2),S,INPROD,Y

DO 20 I=T1,1I2

| NPROD=0Q. DO

DO 10 J=1,J2
INPROD=INPROD+U(J)*AC(I,J1+J)

Y=I NPROD* S

DO 20 J=1,32
ACI,J140)=A(1,J1+J)-U(J)*Y

RETURN

END
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