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Abstract

A numerically stable algorithm is derived to compute orthonormal

bases for any deflating subspace  of a regular pencil AR-A. The

method is based on an update of the QZ-algorithm, in order to

obtain any desired ordering of eigenvalues in the quasi-triangular

forms constructed by this algorithm.

As applications we discuss a new approach to solve Riccati equations

arising in linear system theory. The computation of deflating subspaces

with specified spectrum is shown to be of crucial importance here.
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I. Introduction

The computation of deflating subspaces with specified spectrum has not

received a great deal of attention until it was recently applied to the

solution of the optimal control problem of a linear discrete time

system [51r15~.  Refore the development of reliable software for the

generalized eigenvalue problem c1311161, these problems were often

reduced to an equivalent standard eigenvalue problem and gave rise to

the computation of invariant subspaces with specified spectrum [8][141

C171[211.  Th e matrix involved in this standard eigenvalue problem does

not consist of given data but has to be computed, which, unfortunately,

requires inverses of possibly ill-conditioned matrices. In r51[151 the

use of a generalized eigenvalue problem is recommended as a safer

alternative, and the attention is drawn to the absence of appropriate

software for computing deflating subspaces of a regular pencil.

In this paper we try to fill this gap and we also exploit this new tool

in a class of related problems arising in linear system theory. We

thereby develop a new approach to tackle these problems in a

numerically sound way.

In the rest of this section we briefly review some notions that we will

need in later sections. The material covered here can be found e.g. in

rwlm1[1QlK?~l.

Notations will be as follows. We use uppercase for matrices and lower-

case for vectors and scalars. R and d: are the fields of real and complex

numbers, respectively. We use A* (resp. xJc> for the conjugate transpose

of a complex matrix A (resp.  vector x) and A’ (resp.  x’> for the trans-

pose of a real matrix A (resp.  vector x). 11. 112d enotes the spectral. norm
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of a matrix and the Euclidean norm of a vector. A complex (real) square

bG

c

L

I

c

matrix A is called unitary (orthogonal) when A*A=T (A’A=I). Wnen no

explicit distinction is made between the complex and real case, we use

the term unitary and the notation A* for the real case as well.

Recently, more attention has been paid to the generalized eigenvalue

problem (GEP) :

Ax = XBx (1)

where B is not necessarily invertible but where the pencil AR-A is

regular ,  i .e .  :

det.(XB-A)  fC, (2)

When the coefficients of the matrices A and B belong to &, there exist

unitary transformations Q and Z reducing the nxn pencil AB-A to the

upper triangular form :

@(AR-AU = A&i = X

nn

(3)

The ratios A.=: /^b1 ii ii are called the generalized eigenvalues of the

. pencil AB-A. The set {A 1 ,...,A  1 is called the spectrum of AB-A and isn
denoted by A(B,A); it may contain repeated elements. Notice that Ai
may be infinite (when ^bii =O) but it is never undetermined (i.e. Xi=U/U)

since 2 =^bii ii =O implies det . (A%-2) f U and hence det,.(XB-A)  : 0. As a

consequence the matrix iiiB-biiA is singular. The vectors x i satisfying

(2iiB-biiA)~. = LI (4)1
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are called generalized eigenvectors of XB-A corresponding to Xi.

If the eigenvalue Xi=&i/i;ii has a larger multiplicity than the number

of independent solutions xi of (4) then one can define generalized

principal vectors si of AR-A corresponding to Xi. Since we do not need

this concept in the sequel, we do not go into further details about it.

In the real case the decomposition (3) also exists but involves complex

matrices Q, Z, A^ and 6 when A(B,A) contains complex elements. Under

orthogonal transformations Q and Z, AR-A can be transformed to the quasi

upper triangular form :

0 \
Ii kk

(5)

where the diagonal pencils xBii-iii have sizes di=l or 2, and the iii

are upper triangular. If d =1 then A6i ,A^ )  is  real  (maybe inf inite) .ii ii
If di=2 then A(Bii ,iiii) contains two (finite) complex conjugate numbers.

The spectrum of AR-A is the union of the set.s A(Bii ‘iii), as can be seen

from an additional (unitary) reduction of (5) to (3).

’ An algorithm has been derived recently to obtain decompositions of the

type (3) and (5) in a numerically stable way r131.

When B=I, (1) boils down to the standard eigenvalue problem (SEP):

Ax = xx (6)

Tt is readily verified that the decompositions (?) and (5) then reduce

to the classical Schur decompositions of the real or complex matrix A,

respectively. We therefore call (3) and (5) generalized Schur decom-

positions of the regular pencil XB-A. Tn the sequel we drop the term

“generalized” when no confusion is possible from the context.
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dim.(BX +AX) = dim.X (7)

subspace S. Let X have dimension

of the unitary matrices Q and Z,

where dim.S denotes the dimension of a

R and suppose that the R first columns

partitioned as

z = cz,
v
R

!z,l ; Q = CQ, IQ,1 (8)
v w
n-R R rZ

The notion of eigenvector in the GEP can be extended to the notion of

deflating subspace X of a regular pencil XB-A, satisfying :

span the spaces X and AX+RX, respectively. Then it follows from (7) that
* *Q2AZ1=Q2BZ1=u,  o r  :

Q*cXB-A)Z  =A[; ;;;i -[fl;;-& (9)

nyk T ;a

Conversely, if (g)(c) hold then the columns of Z 1 span a deflating

subspace X according to (7). For R=l, X is an eigenvector of XP-A

corresponding to the eigenvalue A(Bll,~,,). For any R, A(6,,,illJ is a

subset of A(B,A) and is denoted as A(B,A)IX (t.he spectrum of XB-A

restricted to X). The deflating subspace X is uniquely determined by

. A(B,N Ix when this subset is disjoint from the rest of A(B,A) (X is then

spanned by the eigenvectors and principal vectors corresponding to the

spectrum A(B,A) Ix ). All this also holds for the real case.

For the case B=I, definition (7) of a deflating subspace reduces to the

definition of an invariant subspace X of A, since di.m. (X+AX)=dim.X is

equivalent to AX t X. Notice also that in the SEP. Q is equal to % in

(8>W.



It follows now immediately from (9) that the Z matrix in the Schur

decomposition (3) yields orthonormal bases for deflating subspaces of

dimension 1 to n-l, since the right hand side of (3) has a block

partitioning of the type (9) for !?,=l,...,n-1.  This also holds for the

‘real’ Schur decomposition (5) for these R that are conformable with the

block partitioning in (5), namely :

.
R = c’ d. for i=l ,...,k-1 (10)

j=l J

In this paper we consider the computation of a deflating subspace X with

prescribed spectrum A(R,A) Ix=(i-rl,.  . . ‘~~1. From the above it follows that

the R first columns of Z in (3) form an orthonormal basis for such a

space X if and only if the sets {Ai=iii/bii  li=l,. . ,R) and {ui Ii=1 ,. . ,&I

are equal except for the ordering of their elements. In the real case,

this also holds for the matrix Z in (5) when JL satisfies (IO). The

complex elements in (r-l fi=li
,..,k) must therefore appear in conjugate

pairs.

The problem thus reduces to obtaining decompositions of the type (3)

, and (5) but with prescribed ordering of the eigenvalues occurring on

diagonal. In the next section we show how to solve this problem by

deriving a method to interchange the order of the eigenvalues in the

decompositions (3) and (5), which were previously obtained by the

QZ-algorithm. The method is proved to be numerically stable. In section

III we apply this new tool to derive new methods for solving Ficcati

equations arising in linear system theory. In these methods, deflating

subspaces with specified spectrum (namely all the eigenvalues inside

the unit. circle or all the eigenvalues in the left half plane) have to
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be computed. In Section IV we give some numerical examples and a FORTRAN

program implementing the reordering js given in Appendix.
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II. Reordering

It is clear that the 1x1 and 2x2 diagonal blocks in the decompositions

(3) and (5) can be reordered in an arbitrary way by using a method to

interchange two consecutive blocks only. This idea was e.g. used in the

SEP to obtain standard Schur forms with an arbitrary ordering of the

eigenvalues [8][17][21].The  method described hereafter can be viewed

as a generalization of it to the GEP.

We thus want to find unitary transformations Q and 7 such that

Q*AZ = Q*

Q*BZ = Q*

A11 A12

i-i]O A22
Z =i=

51H0
Pl2 z

IB22

=^B=

i ii11 12H-lA
O A22ii i11 12r-cl*
O R22

Ula)

(Mb)

where ACE ll,All~=~~~22,^A22) and A~R22,A22~=A~~ll,~ll~,  and where the

dimensions dl and d2 are either 1 or 2.

I Moreover, we want the transformations Q and 7 to be numerically stable.

In order to prove this we use a standard error analysis [?3] of

(possibly complex) transformations of the type:

G*y = G* y1[I [I= ^yl

y2
0

where G is the (possibly complex) Givens transformation :

(12a)

C -5
G = [ 1 ., cc+s5= 1 (12b)

S c
constructed to annihilate y2. Let c, s (defining G) and j$be the

computed versions of c, s and i1 ,respectively , and let E be the machine
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precision of the computer, then a backward error analysis yields (for a

standard construction of such transformations):

E* ( y+ey ) y1= [I0 : II ey II26 6 l E IIY II 2 (13)

Here we assume that the 0 element is not computed but put equal to zero.

Wnen performing the transformation G*z=^z for an arbitrary vector z, we

have similarly:

G*(z+eZ) =
5 1

[I ;yz Ilezl12~ 6*41412
2

(14)

In the sequel-G. .=J
denotes the class of matrices representing Givens

transformations between columns or rows i and j. We prove that by using

transformations in this class for the reduction (111, the backward error

can be bounded with respect to

A = max ~llAl12911BI12~ (W

Case T: d =d =I:
1 2

This may occur in both decompositions (7) and (5). We thus assume that

the matrices can be complex. We have the following configuration :

Q*AZiQ*~~‘:~~Z=~~‘1:~=~ Ma)

b b-
Q*Rz = Q* l1 12

[ -
0 b

22

We can assume without loss

(16b)

of  general i ty  that  (b22 lb/a,,1 ( i f  this  is

not the case the role of A and R should be interchanged).

A construction of Q and Z such that the order of the eigenvalues is
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interchanged, follows then immediately from (8)(c). Indeed, we have

A(b 22’a*2)=A(~ll’~ll > if the first column zl of Z is an eigenvector of

hB-A corresponding to A(b22,a22) or :0
(a22B-b22A)Z = HI*0

Notice that the last row of H=(a22B-b22A)  is zero :

H

(17)

(18)

In order to obtain (17) we thus can choose a ZE Gl2 annihilating xl in

(18). It follows from (17) that Bzl and Azl are parallel, and (16)  is

then obtained by choosing a QE G12  annihilating x2 in Fzl:

The assumption (b221/)a221=l~lll/~~ll~~l  implies that bll#O , and Q*Azl

can then only be parallel to Q*Bz 1 if Q*AZ is indeed upper triangular.

We now prove the numerical stability of the method. As in (13)(14),

I computed elements are denoted by upper tilden (1). Using the analysis

(13)(14)  above, it is easy to prove that a11 the E+l,..,c below are

of the order of the machine accuracy E of the computer.

An error analysis of (17)(18) yields :

(a22B-b22A+F)Z  = for IIF II2 = &lb22R-b22A  Ii2

and of (1W :

for I/J$, II2 = E2 lb 11 2

(20)

(31)



We prove that there also exists a backward error Ea such that5
Q*(A+E,)Z = l1

2
IL2[ 1o ;la22

for lIEall  = E3(IA II2

An error analysis of Q*AZ using (14) yields

(22)

2
11

3
Q*(A+E$ = l21 1si 5

for IIEJl2  = QIIA II2
21 22

(33)

We only have to prove that g21-CA in order to obtain (22) by putting

2 21 equal to zero.

Let us therefore denote the (2.1) elements of Q*(a22A-b22A)?,  Q*P? and

Q*Aj by ~1, n2 and n3, respectively. They clearly satisfy the relation :

a224p&l3 = ‘71 (24)

From (20) and (31) it follows that :

e

I

In11 d 3{la22 Ill~l12+lb22111AIl  1
2

In21 < E61/Pl12
j34 d p-l,1 + +I12

Using (25) and the assumption lb221>/a221 in (24) we obtain :

(25a)

(25b)

(2%)

< c6A +c5{A+A] = c8A (26a)

(36b)

This shows the importance of the assumption Ib221&la22/  in order to

guarentee the stability of the algorithm. In case lb221<la2219  Q is
constructed to reduce A to triangular form instead of R, and a similar

analysis is then possible.
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Case II: d,=2,  d,=l:

We now have the following configuration (all matrices are real) :

Q’AZ = Q’

Q’RZ = Q’

-a 11 a12 a13

a21 ‘22 a23
i, o a33

‘b 11 b12 b13

’ b22 b23
u lJ b33

z =

Z =

-A ii 2all 12 131
’ ‘22 ii 23

I

=A^ (27a)

’ ‘32 2 33

i;

11

i;

12

ii

13
’ ‘22 c;

123 4

0 o i;,3 1

(27b)

We assume that Ib331qa331* If this not the case, we can always inter-

change the role of‘A and E! by transforming the first two columns of A

and the last two columns of 2 in order to annihilate a21 and S32 and to

create b21 and b32.

Tt follows again from (8)(c) that A(b33,a33)=fl(~ll,~ll) if the first

column z 1 of Z is an eigenvector of XB-A corresponding to A(b33,a33).

Therefore we have (with R any invertible row transformation):

R’(a33B-b33P)Z = (28)

Notice that the last row of H=(a33B-b33A)  is zero and that we can choose

REG,, to annihilate the (2.1) element of H. We then have

R’H =
x2 x x
0 x1 x
0 0 0

(29)

Tn order to obtain (28) we thus can choose Z=Z Z with Z =G1. 2 1 23 and

Z EG 12 annihilating x and x2 1 2’ respectively. Q is then constructed to
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c

have B=Q’BZ in upper triangular form. We therefore take Q=Ql.Q2 where

Q EG1 23 is chosen to annihilate the (?,2) element created by Z1 (i.e.

QiBZl is upper triangular) and where Q2~ G,, is chosen to annihilate

the (3,l) element created by Z2 (i .e.  QiQiBZlZ2  is upper triangular).

8 now satisfies (27b). Since, /b331/)a331=lC;lll/l^all(>/l,  we have ^bll#O

and because of (261, Q’Azl and Q’Bzl are parallel. This ensures that

LQ~AZ a l so  sa t i s f i e s  (27a).

We now prove the numerical stability of the method.

Using (13)(14) it can be checked that all. the C, i=1,..,4 below are of

the order of the machine accuracy E. An error analysis of (28)(29)

yields :

@(a33R-b33A+F)z ‘z =1 2 for II Fii2=Edi “33B-b33A  112 (30)

and of the constructed product QLQ:BZ,Z,
I L

for IIE&= q~ll2

We prove that there also exists a backward error E such thata

Q;Q;(A+Ea’?lZ2 =

L

wall 5 12 i i ’13
-” a22 5 23

0;; ;;32 33.

An error analysis of Q;O;AZlZ2  yields

Q;Q;(A+E )Z 2 =
c 12

for 11 Ea 11 2= E 3lb II2

for llEcll =EqllAl12

(31)

(12)

(33)
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We only have to prove that the elements ail, i=2,3 are c-small, in

order to obtain (32) by putting ai1 =O, i=2,3. This is easily proved

using a similar reasoning to (24)-(26). Here again the assumption

Ib331>1a331  is crucial in the proof of backward stability. Therefore,

in the case Ib33i<la331  the role of B and A have to be interchanged.

Case III: d,=l, d,=2:

This case is dual to the previous case and can be reduced to it by

pertransposition (transposition over the anti-diagonal).

Case IV: d,=d,=2:

A detailed configuration of (11) is then

Q’AZ = Q’

all
a21

0

0

z =

ii
*

11 a12
2 ^a21 22

0 i,

Q’BZ = Q’

.

bll b12 b13 b14

0 ob
33 b34

0 i,

* *
a13 a14
^a 23 2 24
; 33 i 34* iia43 4 4

* '22 623 624

=i ENa)

(34b)

where all the elements are real and F and 6 are invertible. In order to

have A(R ,,,A,,,=A& ll,ill) the first two columns of Z must span the

deflating subspace of AR-A corresponding to h(F22,A22)  or, equivalently,

the two (complex) eigenvectors corresponding to the eigenvalues x2 and

5;, o f  MB A 1. Such a Z also satisfies22' 22
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t

( A21-B-1A) (X21-B-1A)Z  =

and could be constructed through (35).

* (15)

Unfortunately, this approach is

not recommended from a numerical point of view because of the occurrence

o f  R-1 and of the product (X,I-B-‘A) (x,1-B-1A) . An error analysis of

(YV would yield a negligible relative error for this product but not

for A and B individually.

A different approach is therefore recommended here, namely the double

shift QZ-step. Implicitly this is a double shift QR-step working on the

matrix AR-1 , but the actual implementation avoids the construction of

AB-1 and works instead directly on B and A [13]. For our 4x4 pencil (34)

the scheme can be implemented economically with Givens rotations:

-Construct Q1 ~~~~  and Q2~ Cl2 according to t,he ‘double shift technique’

and construct zl EG 23 and Z2= G 12 such that Q’Q’BZ 7 is upper2 1  1 2
triangular. Q;Q;AZlZ2  and Q;Q;BZlZ2  then look like:

x x x x

x x x x

x4 x x x

x3 x5 x x

x x x x

0 x x x

0 0 x x

0 u 0 x

(16)

-Construct Q3= G Q =G34’ 4 23 and Q5cG 34 annihilating x
3 ’ x4 and x5’

respectively, in 136). Construct z3~G z =G34’ 4 23 and Z~E G 34 such

that Q’BZ, with Q=QlQ2Q3Q4Q5  and z=Z Z Z Z Z1 2 3 4 5 ’ is upper triangular.

Q’AZ is now upper Hessenberg and Q’BZ upper triangular. This form is

clearly maintained by a QZ-step.
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In order to obtain (3b) we want moreover that a^ 32=0 and A(i22,A^22)=

NR 11,All). According to the properties of the double shift method [131,

this will be the case when ~~l,?$=A(Bll,All) is chosen to determine the

double shift (i .e. Ql and Q2), and if in addition a32#U. Since in (34)
the latter is not satisfied we first perform a QZ-step with random shift

such that a32#0, and we then perform a second QZ-step with double shift

based on IAl.711.

The numerical properties of the QZ-step are discussed in 1111. The

algorithm is backward stable, but under the presence of rounding errors

the element 2
32

may not be neg1igibJ.e. Several QZ-steps with double

snift {X,,xl) are then performed and s
32 is shown to converge very fast

to zero C131. Only in pathological cases more than one step is required

to obtain (a32(6Ea.

Operation count

The combination of a pair of left and right Givens transformations Qi,

Z . 11 requires approximately 12n operations (1 operation q  l addition +

1 multiplication). The number of operations for the different cases is

then (for Case TV we assume only 2 QZ-steps are needed):

Case I: 12n

Case II and III: 32n (average)

Case IV: 120n

Since Cases II and III correspond to 2 interchanges of eigenvalues and

Case IV to b interchanges, we finally have an average of 20n operations

for interchanging two adjacent eigenvalues.

When a deflating subspace with specified spectrum {pl,...,J.-~~]  has to be

computed and a QZ decomposition is already available, then at most
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c

c

R.(n-R)<n2/4  such interchanges are required (namely when all vi,i=l
1  l l 1

R

are in the bottom right corner). 3A reasonable estimate is thus 5n ops.

for computing a specific deflating subspace from a QZ decomposition,

while the latter requires approximately 25n 3 ops..

In order to obtain all possible orderings of eigenval-ues  in the QZ

decomposition, and thus all possible deflating subspaces (if no eigen-

values are repeated), n! such interchanges are required [q]. This is

to be expected since it is a combinatorial problem.
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III. Riccati equations

In this section we apply the above ideas to the solution of certain

Riccati equations arising in linear system theory. We first briefly

restate the four problems we will focus on and we refer to the

literature for a more complete discussion. We will everywhere assume

that the matrices involved are real since this is usually the case in

practice. Extensions to the complex case are trivial.

Problem I . Optimal control: continuous time case ~1~1C111~121C241

Given the stabilizable system

i(t) = A x(t) + B u(t)
nn nm

find the control u(t)=-Kx(t)  minimizing the functional

I

co

J =
0

[x’(t)Q,,x(t)  + u’(t)Rmmu(t)l  dt

(37)

(38)

where (A,Q) is detectable, Q)O and R>O.

When R is invertible this problem reduces to the computation of the

unique nonnegative definite solution P of the algebraic Riccati equation

Q + A’P + PA - PBR-1B’P = 0 (39)

K .is then equal to R-1B’P. Equivalently [121, one can comnute  the

invariant subspace Xs of the matrix

A -RR-lB’
H = [ 1-Q -A ’

(40)

where A(H) (x contains all the stable eigenvalues (i.e. Re(A)<O) of H.

[I S

If x1 is a basis for this subspace then P=X X-1

x2
2 1 '
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Problem II. Optimal control problem: discrete time case [51[7ir151
------------------------------------------------------------------

Given the stabilizable system

Xi + l =  Fnnxi  +  Gnmui

find the control ui =-Kxi minimizing the functional

co
J = C rx;Qnnxi + ufRmmuil

i=O

(41)

(42)

where (F,Q) is detectable, Q>O and F>O.

When R is invertible r71, this problem can again be converted to the

computation of the unique nonnegative definite solution P of the

(discrete time) algebraic Riccati equation :

P = F’PF - F’PG(R+G’PG)-1G’PF + Q (43)

K is then equal to R-1 G’P. This is also equivalent to solving for the

‘stable’ deflating subspace Xs of the pencil [51lI151

(44)

where this time the stable eigenvalues are those inside the unit circle.
X

I f. [I1 is a basis for Xs then P=X,Xil.

x2

Problem III. Spectral factorization: continuous time case rzi
-------------------------------------------------------------

Given an mxm ‘posit ive  real’ rational matrix Z(s), i.e.

Z(s)+Z*(s) > 0 i n  Re(s)>o (45)

find a ‘spectral factorization’



Z(s)+Z’Gs) = R(s).R’(-s)

20.

(46)

where R(s) has only stable poles (i.e. Re(s)<O).

When Z(s) is given by a minimal realization C(sIn-A)-lB+D and (D+D’) is

invertible, then this problem reduces to the computation of the unique

positive definite solution of the algebraic Riccati equation PI:

B(D+D’)-1B’+P~A-B(D+D’)-1C]~+rA-R(D+D’)-lC~P+PC~(D+D’)-lCP=~ (47)

This is again equivalent to the computation of the stable invariant

subspace X of the matrix
S

A-R(D+D’)-1C B(D+D’)-1R’
H =

-C’(D+D’)-1C -[A-B(D+D’)-lC]’
I

Given an mxm ‘positive real ’ discrete time

z(z)+z*(z) 20 for

find a spectral factorization

Problem TV. Spectral factorization: discrete time case [1][4]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

matrix 7(z), i.e.

lzl>l

(48)

(49)

z(z)+z’(z-L )=R(z).R’(z-l) (50)

where R(z) has only stable poles (i.e. poles inside the unit circle).

Again, wnen Z(z) is given by a minimal realization H(z1 -F)-‘G+J  andn
(J+J’) is invertible,the problem can be reduced to the computation of

the unique positive definite solution P of the (discrete time) Riccati

equation PJI:

P = FPF’ + (G-FPH’-)(J+J’-HPH+(G’-HPF’) (51)



G

(c

.

In analogy to (43)(44), one can prove that this is equivalent to

computing the stable deflating subspace X of
S

I -G(J+J’)-1G’ F-G( J+J’ )-1H 0
x

0 F’-H’(J+J+G
1-L -H’(J+J+H I 1

This, however, was not found in the literature.

c

L

21.

(52)

Note that in order to be able to write down the Riccati equations,

certain matrices need to be invertible. This also holds for the

equivalent SEP’s and GEP’s, since they are derived from the Riccati

equations. Yet, if the matrices to be inverted happen to be badly

conditioned, each of these approaches may encounter serious numerical

difficulties when computing these inverses. We now present a way to

circumvent this by an embedding trick.

Let D be invertible in the pencil

P m

(53)

then

[ 1 -By].[ ;;If I] = [ ~(E-BD-l:;;A-RD-lc)  I] (54)

Let U be an orthogonal transformation reducing with ‘yn

mxm and invertible. Partition U conformably with (51)’ then we have

II11 “12I 1 .
U
21 1J22

=
xii-x 0

I I* ?j (W
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Since the rows of [U lllUl,1 a n d  [ I I-BD-'1 both are a basis for the

left null space of B

11

1 they are related by an invertible row trans-
D

formation which clearly must be U :
11

Ull[ T l-BD-ll = ~U,,N,,l (56)

From (54) and (55) it then follows that

Ul~~(E-BD-lF)-(A-BD-lC)] = &i (57)

Therefore, the deflating subspaces of AR-A and of ACE-BD-lF)-(A-BD-1C)

are the same. According to (71, deflating subspaces of a regular pencil

are indeed not affected by an invertible row transformation on the

pencil. This trick was originally applied in [331 (with E=I and F=O)

for developing a stable way to compute the deflating subspaces of

AI-(A-BD-1C)  or, in other words, the invariant subspaces of A-BD-% .

This can now be applied to the above four problems. In each of them

the pencil (53) takes the form (we always have p=2n)

Problem 1 :

1: 0 0
h [ 0 1 0 -

0 0 0

I

Problem II :

Problem III :

x

[ 0 0 I: 0 0 I 0 0 0

0 -G

T 0

0 R 1
A0 B

0 -A' C'

C -B' D+D'

(58)

(59)

(60)
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Problem IV :

h (61)

For each of these pencils a 2nx2n pencil Ai-A can thus be derived via

(55) and it,s stable deflating subspace Xs is the one required in the

above four problems. This procedure does not involve the inversion of

a possibly ill-conditioned matrix. Only orthogonal transformations are

used as well in the construction of AE-i as in the computation of the

def lat ing subspace Xs. This guarentees the numerical stability of the

method. Unfortunately this is not completely satisfactory yet, since

the performed errors do not necessarily respect the structure of the

pencils (58)-(61).  A (unsuccesful) attempt to restrict the orthogonal

transformations to those respecting the structure of the matrices they

act upon, can be found in the literature for Problems I and III but in

the formulation (40) and (481, respectively Ml.
a

L

c

A important remark here is that in the new formulation (58)-(61)  no

inverses occur anymore and that perhaps this new formulation also gives

the correct answer when these inverses do not exist. This would follow

from limiting arguments if both the exact solution of the problem and

. the computed solution from the GEP’s (58)-(61) are continuous. This is

true for the eigenvalue problem if the spectrum n<E,i> IX is separated
S

from the rest of the spectrum of Xp-A PO], and this holds under the

assumptions made in each problem (stabilizability, detectability,

positive realness). The continuity of the solution PCs) of Problem TIT

is discussed in [2 ,p.?431. ‘It also holds for the more general ‘minimal

factorization problem’ [31 for which the above embedding trick was
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originally derived [221. It is therefore reasonable to assume that it

also holds for the other three Problems. This is still under current

investigation.

During the elaboration of this research, the author’s attention was

drawn to the work of A. Emami-Naeini and G. Franklin lI61. Via an

independent approach they arrive to the same form (59). No proof is

provided, though, that the method also works for singular R.
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IV. Computations

In this section we give two examples illustrating the reordering of

eigenvalues in order to compute a certain deflating subspace with

prescribed spectrum. We use a PDPll-34  computer with double precision.

The machine precision is then E= 1.5 li)-17. Two routines are used for the

reordering of the Schur form (see the Appendix for a listing).

EXCHQZ exchanges two adjacent blocks in a real Schur form and ORDER

uses this routine to reorder all the eigenvalues inside the unit circle

to the top or bottom of t.he real Schur form, depending on the value of a

parameter IFIRST. This last routine is easily adapted for any region

which is symmetric with respect to the real axis. This condition is

necessary because the pencils considered are real and complex conjugate

eigenvalues need thus to stay together in the real Schur form.

Example I
----a----

A-XB =

u’u u 0 u u LJ 1. - I-- - -101.3 .2,4 6 0 0 0

ol -.2 .3; 0 0 0 .5 0-w-v --
0 0 0 QLO 2 0 3
0 0 0 ofiio 0 0

0 0 0 0 ‘-o-;-4-;.;;  0
0 0 0 0 01-10 4 10- - - - - -
0000000:2

-A

.
1h.l u u 0 u u 0'

--I-- - -1op 0,o 0 0 0 0

010 II0 0 0 0 0
o-o-o;i]o 0 0 0

0 0 0 0,Ko 0 0

0 0 0 0 -ohs-; 0

0 0 0 0 o;o 110--
0 0 0 0 0 0’ 0,-l-. , -

(62)

The first four eigenvalues { U, .3-j.?, .3+j.2, .5) are inside the unit

circle. The last four ones I 03, 4-j5, 4+j5, 21 are outside the unit

c i r c l e . Calling ORDER with IFIRST=l  interchanges the order of these sets

of eigenvalues. The first four columns of the transformation Z required

for this, then span the unstable subspace X of A-XBr
U
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U. clUcr()UUOoOlJUuUUUUd  1)U 0.  iAJuuuuu0uudlJOuddd  u3 u.  ciuui)l~ouituu~Juuu~~ud  00 U.4472135954999579d  Uu
0.uui)i,uouuuc,~cli;ilutid i)U u.l~J7~~17h8Q~??Q~~&d b\) u.u5306~~Q~~S61P~38d-ul o.UUUJUuuUUUuutiui'Lfd  00
O.UuuUuu~~,~)u~u~li,JC)d UU -~.6'/r7q~!f,3~/552u335d-v1 -o.l2354334u3QP2?17d  uU u. oyJuuuuu\KJwuJJlJd  uu
0. UU~UU~J~)~~UU,J,J,J~U~~  03 u,lo?~,c;~56267R~,1'~2d  CJJ -U.l$92533259759~J3ud LOU 0. UU(JUJJi)uJUlIu~U,J\J~  U3

0.1 UUUcJ)!JclULJ\Jc)UUUlJ~~d  Ul 0. 3iJUO~JUUUc~JU\‘IJC)ili)c1  UJ u. Oc)U3\JiJWUU\JU\!~JUUd  UiJ U. CJUUUU~~UUUU3UUulJUd  (3U

0, cjU~u~cj~Jc,uuU;~~,uircld  uu -u. 14s',?3'13788u'lvcrsd UU -U.961~,81493'14c1569ud  UC) U. UUUUUVU~JUU:!~JJ3i13d  uU

0. UuolkJU&kJUUUUUUUd  UU -u. ~752817 1 d:rio84  194116 uu U.l389224423&12769d  uu 0. c)UUUUJUUUWUOUUC,d  i)U

0.  UUUUcwui)UULJLJuL~Ul’d  ou U. iJUUUUUilL)UiJUUOclUilC(  UU (.).30v0c)i)UUiJUv~,J~UUd  uU U.[~944?71%99991',9c! uu

When again calling ORDER but now with IFIRST=- we retrieve the

ordering of A-XB and the four first columns of the updated Z look

l ike

This is E:-close  to the real stable deflating subspace Xs of A-XB, which

is spanned by
I4 l

[I

This result is to be expected because of the

O4
numerical stability of our method and because the space Xs of A-XB  is

well conditioned. Wnen the gap between the spectrums A(E,A)Ix and
S

A(B,A) Ix is large, both spaces X and X are indeed well conditioned
S U

(se'e [;lUl;).

Example IX
- - - - - - - - - -

Consider Problem IT with

F=[; -;],G=[;],Q= 1 0 0 1 *R= 0u 1 [ I (63)
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The pencil (59) then looks like

(64)

An orthogonal row transformation can then be constructed in order to

L construct a deflated pencil AE-A following (55):

c (65)

The QZ-algorithm permutes the two Last columns of (65) to obtain the

real Schur form :

c

c

which displays the eigenvalues {a, a) 0, 01. Tn order to obtain the

stable subspace X S XLiio f we reorder these eigenvalues and obtain as

a basis for X,:
I .

0 --n/z

-&C-/z 0

1

+@(E)
0 -/F/z

-4-/z 0I

X
1 =[Ix2

(67)

L

We then find, up to machine accuracy, the answer P=I .One can check that
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this is the correct answer to Problem IT, by using another method 171.

This example illustrates that the embedding trick gives a correct

result even when R is singular. Moreover, the problem is perfectly well

conditioned as well for the construction of 1%?i, as for the computation

of Xs and P.

We finally want to draw the attention to the fact that the number of

operations required for the construction of X2-i from the pencils (58)-
(611,  is comparable to the amount of work required to construct the

pencils (4~)(04)(48)(52).  From then on the new approach takes the same

amount of computations for Problems IT and IV and only slightly more

(less than the double) for Problems I: and III. The stability of the

method and its better conditioning therefore make this new approach

particularly attractive.
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Appendix

subroutine order(a,b,z,nmax,n,eps,fail,ifirst,ind)
impl i c i t  real*8 (a-h,o-z)
l og i ca l  fa i l
dimension a(nmax,n),b(nmax,n),z(nmax,n),ind(l)

c Given the upper triangular matrix b and upper Hessenberg matrix a
c with 1x1 or 2x2 diagonal. blocks, this routine reorders the diagonal
c blocks along with their generalized eigenvalues by constructing
c equivalence transformations qt and zt. After reordering, the eigenvalues
c outside the unit circle appear first if ifirst=l and last if ifirst=-1.
c Order requires the subroutine exchqz. The parameters in the calling
c sequence are (starred parameters are altered by the subroutine) :
C *a,*b the matrix pair whose blocks are to be reordered.
C *Z upon return this array is multiplied by the column
C transformation zt.
C nmax the first dimension of a, b and z
C n the order of a, b and z
C eps the required absolute accuracy of the result
C *fai l a logical variable which is false on a normal return,
C true otherwise (when exchqz fails)
C ifirst an integer equal to +1 or -1 (see above)
C *ind an integer working array of dimension at least n

fail=.true.
num=0
l=O
Is=1

c*** determine size and stability of blocks ***
10 l=l+ls

if(1.gt.n)  go  to  50
is=- ifirst
ll=l+l
if(l1.gt.n) go  to  30
if(a(ll,l).eq.D.d0) go to 20

c* 2 x 2  b l o c k  *
ls=2
if~dabs(a(l,l)*a(ll,Il)-a(ll,l)*a~l,ll)).~t.dabs~b~l~l~*b~ll,ll~~)

3t i s = i f i r s t
go to 30

c* 1x1 block *
2cI Is=1

,if(dabs(a(l,l.)>.lt.dabs(b(l,l)))is=ifirst
3c7 num=num+l

ind(num)=ls*is
go to 10

c*** reorder blocks ***
50 12=1

i=iI
60 i=i+l

if(ind(i).gt.CI) go  to  7!‘)
12=12-ind(i)
go to 60

70 k=i
8(‘, 12=13+ind(k)
85 k=k+l

if(k.gt.num) g o  t o  100
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if(ind(kLgt.0)  go  to  80
c* interchange block k before block i *

istep=k-i
ls2=-ind(k)
1=12

d o  90 ii=l,istep
i f i r s t=k - i i
lsl=ind(ifirst)
l=l-lsl
call exchqz (a,b,z,nmax,n,l,lsl,ls2,eps,fail~
if  ( fai l )  return

90 ind(ifirst+l)=ind(ifirst)
ind(i)=-ls2
i=i+l
12=12+1s2
go to 85

1XI fail=.false.
return
end

subroutine exchqz(a,b,z,nmax,n,l,lsl,ls2,eps,fail)
implicitreal*g (a -h , o - z )
dimension a(nmax,n),b(nmax,n),z(nmax,n),u(3,3)
l og i ca l  fail,atl.tb

c Given the upper triangular matrix b and upper Hessenberg matrix a
c with consecutive 1~1x1~1 and 1~2x1~2 diagonal blocks (lsl,ls2.le.3)
c starting at row/column 1, exchqz produces equivalence transforma-
c tions qt and zt that exchange the blocks along with their generalized
c eigenvalues. Exchqz requires the subroutines rote, rotr and giv.
c The parameters in the calling sequence are (starred parameters are
c altered by the subroutine):
C *a,*b the matrix pair whose blocks are to be interchanged
C *Z upon return this array is multiplied by the column
C transformation zt.
C nmax the first dimension of a, b and z
C n the order of a, b and z
(I 1 the position of the blocks
C Is1 the size of the first block
C ls2 the size of the second block
C eps the required absolute accuracy of the result
C *fai l a logical variable which is false on a normal return,
C true otherwise (when a(l+ls2,1+ls2-1) cannot be assumed
C zero)

fail=.false.
ll=l+l
ll=lsl+ls2
i f  ( l l . g t . 2 )  go  t o  50

c*** interchange 1x1 and 1x1 blocks ***
f=dmaxl(dabs(a(ll,ll)),dabs(b(ll,ll)))
altb=.true.
if(dabs(a(l1,ll)Lge.f)  altb=.false.
sa=a(ll,ll)/f
sb=b(ll ,I.1 j/f
f=sa*b(l,l)-sb*a(l,l)

c* compute z *
g=sa*b(l,ll)-sb*a(l,ll)
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c a l l  giv(f,g,d,e)
c a l l  rotc(a,nmax,n,l,ll,l,ll,d,e)
c a l l  rotc(b,nmax,n,l,ll,l,ll,d,e)
c a l l  rotc(z,nmax,n,l,ll,l,n,d,e)

c* compute q *
i f  (altb) c a l l  giv(b(l,l),b(ll,l),d,e)
i f  (.not.altb) c a l l  giv(a(l,l),a(ll,l~,d,e)
c a l l  rotr(a,nmax,n,l,ll,l,n,d,e)
c a l l  rotr(b,nmax,n,l,ll,l,n,d,e)
a(ll,l)=O.dO
b(ll,l)=O.dO
return

c*** interchange 1x1 and 2x2 blocks ***
50 13=1+3

i f ( l s l . eq .2 )  go  t o  100
g=dmaxl(dabs(a(l,l)),dabs(b(l,l)))
altb=.true.
if(dabs(a(l,l)).lt.g) go  to  60
altb=.false.
c a l l  giv(a(ll,ll),a(l3,11),d,e)
c a l l  rotr(a,nmax,n,l.l,12,ll~n,d,e)
c a l l  rotr(b,nmax,n,ll,l2,Il,n,d,e)

c** compute q and z **
60 sa=a(l,l)/g

sb=b(l,l)/g
d o  80 j=l,?

lj=l+j
do 80 i=1,3

li=l+i-1
80 u(i,j>=sa*b(li,lj)-sb*a(li,lJ)

c a l l  giv(u(3,l),u(3,?),d,e)
c a l l  rotc(u,3,3,1,2,1,3,d,e)

c* ql *
c a l l  giv(u(l,l),u(2,1),d,e)
u(2,2)=-u(1,2)*e+u(2,2)Sd
c a l l  rotr(a,nmax,n,l,ll,l,n,d,e)

- c a l l  rotr(b,nmax,n,l,ll,l,n,d,e)
c* zl *

i f  (altb) c a l l  giv(b(ll,l),b(ll,ll),d,e)
i f  (.not.altb) c a l l  giv(a(ll,l),a~ll,ll),d,e)
c a l l  rotc(a,nmax,n,l,ll,l,l2,d,e)
c-all rotc(b,nmax,n,l,ll,l,l?,d,e)
call. rotc(z,nmax,n,l,ll,l,n,d,e)

c* q2 *
c a l l  giv(u(2,2),u(3,2),d,e)
c a l l  rotr(a,nmax,n,11,12,l,n,d,e)
c a l l  rotr(b,nmax,n,ll,l2,l,n,d,e)

c!* z2 *
i f  (altb) c a l l  g i v  (b(12,11),b(12,12),d,e)
i f  (.not.altb) c a l l  giv(a(12,11),a(l3,12),d,e)
call rotc(a,nmax,n,ll,l2,1,12,d,e)
c a l l  rotc(b,nmax,n,ll,~?,l,l?,d,e)
c a l l  rotc(z,nmax,n,ll,l2,l,n,d,e)
i f  (altb) g o  t o  90
c a l l  giv(b(l,l),b(ll,l),d,e)
c a l l  rotr(a,nmax,n,l,ll,l,n,d,e)
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c a l l  rotr(b,nmax,n,l,ll,l,n,d,e)
90 a(12,1)=O.d0

a(12,11)=O.d0
b(ll ,l)=O.dG
b(l?,l)=O.dO
b(12.11 )=G.dO
return

c*** interchange 3x3 and 1x1 blocks ***
100 if(lQ.eq.2) go to 150

g=dmaxl(dabs(a(l2,12)),dabs(b(l?,l2)))
altb=. true.
if(dabs(a(l2,12)>.lt.g) go to 120
altb=. false.
c a l l  giv(a(l,l),a(ll,l),d,e)
c a l l  rotr(a,nmax,n,l,ll,l,n,d,e)
c a l l  rotr(b,nmax,n,l,ll,l,n,d,e)

c** compute q and z **
12cJ sa=a(12,12)/g

sb=b(12,12)/g
do 130 i=l,?

li=l+i-1
do 130 -j=1,3

lj=l+j-1
130 u(i,j)=sa*b(li,lj)-sb*a(li,lj)

c a l l  g i v  (u(l,l),u(2,l),d,e)
ca l l  r o t r  (u,3,3,1,2,l,?,d,e)

c* zl *
ca l l  g iv  (u(2,2),u(2,3),d,e)
u(l,?>=u(l,?)*e-u(l,3)*d
c a l l  rote (a,nmax,n,11,12,1,12,d,e)
call rote (b,nmax,n,l-1  ,l?, 1,12,d,e)
c a l l  rote (z,nmax,n,ll,l2,l,n,d,e)

c* ql *
i f  (altb) c a l l  g i v  (b(ll,ll),b(l2,ll),d,e)
i f  (.not.altb) c a l l  g i v  ~a~ll,ll),a~l2,ll~,d,e~
ca l l  r o t r  (a,nmax,n,11,12,l,n,d,e)
ca l l  r o t r  (b,nmax,n,11,12,l,n,d,e)

. c* 22 *
ca l l  g iv  (u(l,l),u(l,2),d,e)
c a l l  rote (a,nmax,n,l,ll,l,l2,d,e)
c a l l  rote (b,nmax,n,l,ll,l,l2,d,e)
c a l l  rote (z,nmax,n,l,ll,l,n,d,e)

-c* q2 *
if(altb) c a l l  giv(b(l,l),b(ll,l),d,e)
if(.not.altb)  c a l l  giv(a(l,l),a(ll,l),d,e)
c a l l  rotr(a,nmax,n,l,ll,l,n,d,e)
c a l l  rotr(b,nmax,n,l,ll,l,n,d,e)
if(altb)  g o  t o  100
c a l l  giv(b(ll,ll),b(l2,11),d,e)
c a l l  rotr(~,nmax,n,ll,l?,ll,n,d,e)
c a l l  rotr(b,nmax,n,ll,l2,ll~n,d,e)

140 a(11 ,l)=cJ.dO
a(l2,1)=O.d0
b(ll,l)=O.dO
h(12,1)=LdO
b(12,ll  )=O.dO
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return
c*** interchange 2x2 and 2x2 blocks ***

153 13=1+3
ammbmm=e(l,l)/b(l,l~
anmbmm=a(ll,l)/b(l,l)
amnbnn=a(l,ll)/b(ll,ll)
annbnn=a(ll,ll)/b~ll,ll~
bmnbnn=b(l,ll )/b(ll,ll)
d o  180 itl=1,3

u(l,l)=l.da
u(2,lkl.dtl
u&l)=l.dO
do 180 it2=1,10

c” ql,q2 *
c a l l  giv(u(2,l),u(3,l),d,e)
c a l l  rotr(a,nmax,n,11,12,l,n,d,e)
c a l l  rotr(b,nmax,n,ll,l?,ll,n,d,e)
u(2,1)=d*u(2,l)+e*uC?J~
c a l l  giv(u(l,l),u(2,l),d,e)
c a l l  rotr(a,nmax,n,l,ll,l,n,d,e)
c a l l  rotrfb,nmax,n,l,ll,l,n,d,e)

c *  zl,z2 *
c a l l  giv(b(12,11),b(12,12),d,e)
c a l l  rotc(a,nmax,n,ll,l2,1,13,d,e)
c a l l  rotc(b,nmax,n,ll,l3,1,12,d,e)
c a l l  rotc(z,nmax,n,ll,l2,l,n,d,e)
c a l l  giv(b(ll,l),b(ll,ll),d,e)
call  rotc(a,nmax,n,l,ll, 1,13,d,e)
c a l l  rotc(b,nmax,n,l,ll,l,ll,d,e)
c a l l  rotc(z,nmax,n,l,ll,l,n,d,e)

c* q?*z3,q~,z4,q5,z~  *
c a l l  giv(a(l2,l),a(l3,l),d,e)
c a l l  rotr(a,nmax,n,12,13,l,n,d,eJ
c a l l  rotr(b,nmax,n,l.2,13,l.2,n,d,e)
c a l l  giv(b(l.3,12),b(l3,13),d.e)
c a l l  rotc(a,nmax,n,13,13,1,13,d,e)
c a l l  rotc(b,nmax,n,12,13,1,13,d,e)
c a l l  rotc(z,nmax,n,12,13,l,n,d,e)
call giv(a(l1 ,I.) ,a(12,1) ,d,e)
c a l l  rotr(a,nmax,n,ll,l?,l,n,d,e)
c a l l  rotr(b,nmax,n,ll,l2,ll,n,d,e)
c a l l  giv(b(l?,ll),b(12,12),d,e~
c a l l  rotc(a,nmax,n,ll,l2,1,13,d,e)
c a l l  rotc(b,nmax,n,ll,l2,1,12,d,e)
call1 rotc(z,nmax,n,ll,l2,l,n,d,e)
c a l l  giv(~(l2,ll),a(l3,ll),d,e)
c a l l  rotr(a,nmax,n,12,13,ll,n,d,e)
c a l l  rotr(b,nmax,n,l2,13,12,n,d,e)
c a l l  giv(b(l3,12),b(l3,13),d,e)
c a l l  rotc(a,nmax,n,l2,1?,1,13,d,e)
c a l l  rotc(b,nmax,n,12,13,1,13,d,e)
c a l l  rotc(z,nmax,n,12,13,l,n,d,e)

c* test of convergence *
if(dabs(a(l.3,l.l)).le.eps)  g o  t o  190
allbll=a(l,l)/b(l,l)
a12b22=a(1,11)/b(11,11)
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a2lbll=a(ll,l)/b(l,l)
a22b?2=a(11,11)/b(ll,ll)
b12b22=b(l,ll)/b(11,ll)
u~l,l~=~~ammbmm-allbll)*~annbnn-allbll)-amnbnn*anmbmm

& +anmbmm*bmnbnn*allbll)/a21bll+al2b22-allbll*bl2b22
U~?,l~=~a22b2?-a11bl1!-a21bll*bl2b22-(ammbmm-allbll)

Q -(annbnn-allbll)+anmbmm*bmnbnn
180 u(3,l)=a(l?,l1)/b(ll,11)

fai l=.true.
return

10 a(12,1)=CI.d0
a(12,ll  )=O.dO .

a(13,1)=O.dfl
a(13,11)=O.d0
b(ll,l)=O.dO
b(12,1)=LdO
b(12,11)=O.d~
b(13,1)=O.d0
b(13,ll )=O.dO
b(13,12)=0.d0
return
end

subroutine rotc(h,nmax,n,ll,l2,ml,m2,d,e)
real*8 h(nmax,n),d,e,s

c This routine performs the Givens rotation I e d 1 on columns 11,12
c  o f  h(nmax,n), this from rows ml to m2. I-d e 1

d o  10 i=ml,m?
s=d*h(i,ll)+e*h(i,lZ)
h(i,l.l)=e*h(i,ll)-d*h(i,12)

10 h(i,l2)=s
return
end

subroutine rotr(h,nmax,n,ll,l2,ml,m2,d,e)
real*8 h(nmax,n),d,e,s

c This routine performs the Givens rotation I d e 1 on rows 11,12
c  o f  h(nmax,n), this from columns ml to m2.

d o  10 j=ml,m2
s=d*h(ll,j)+e*h(l?,j)
h(l2,j)=-e*h(ll,j)+d*h(l2,j)

10 h(l1, j)=s
return

I-e d

subroutine giv(a,b,d,e)
implicit real*8 (a-e)

c This routine computes d=a/sqrt(a*a+b*b) and e=b/sqrt(a*a+b*b)
c=dmaxl(dabs(a),dabs(b))
d=a/c
e=b/c
c=dsqrt(d*d+e*e)
d=d/c
e=e/c
return
end



36.

References

I31

I21

E31

II41

I31

161

r71

II81

B. Anderson, <?. Moore, "Optimal filtering", Prentice Hall, New
Jersey, 1979

B. Anderson, S. Vongpanitlerd, "Network analysis and synthesis.
A modern svst,ff\lnq  allroachl(, Prentice Hall, New Jersey, 1972- L-- I _- 2-C..

H. Bart, I. Gohberg,  M. Kaashoek, P. Van Dooren, t'Factorizations
of transfer functions", to appear in SIAM J. Contr. R Opt.

M. Denham, "On the factorization of discrete-time rational Spectral
density matrices.", IEEE Trans. Aut. Contr., Vol AC-20, ~~-535-537,
Aug. 1975

A. Emami-Naeini, G. Franklin, "Design of steady state quadratic
loss optimal digital controls for systems with a singular system
matrix", in Proceedings 13th Asilomar Conf. Circ. Syst. R Comp.,
pp.370-374,  Nov.  lQ7Q

A. Emami-Naeini, G. Franklin, "Deadbeat control & tracking", in
preparation

G. Franklin, J. Powell, "Digital control of dynamic systems",
Addison-WesJey,  New York, 1979.

G. Golub, J. Wilkinson, "Ill-conditioned eigensystems and the
computation of the Jordan canonical form", SIAM Rev., Vol. 18,
pp.578-619,  O c t .  1976

S. Johnson, "Generation of permutations by adjacent transposition",
Math. Comp., Vol. 17, No 83, pp.X?2-385,  1963

T. Kailath, "Linear systems", Prentice Hall, New Jersey, 1980

H. Kwakernaak, R. Divan, "Linear optimal control systems",
Wiley-Tnterscience, 1972

A. Laub, "A Schur method for solving algebraic Ficcati  equations",
IEEE Trans. Aut. Contr., Vol AC-34, pp.q11-931,  Dec. 1979

C. Moler, G. Stewart, "An algorit'nm for generalized matrix eigen-_
value problemf',  CJAM J. Num. Anal., Vol. 10, pp.241~256,  April 1973

C. Paige!, C. Van Loan, "A Hamiltonian-Schur  decomposition", Int.ern.
Pept., Dept. Comp. Sc., Cornell Univ., New York, 1979

T. Pappas, A. Laub, N. Sandell Jr., "On t'ne numerical solution of
the discrete time algebraic Riccati equation'", to appear in TEEE
Trans. Aut. Contr.

G. Peters, J. Wilkinson, ."Ax=XFx and the generalized eigenproblem",
SIAM J. Num. Anal., Vol. 7, pp.479-442,  Dec. 1970



e 37.

e

L

c

f17l A. Ruhe, "An algorithm for numerical determination of the structure
of a general matrix", BIT, Vol. 10, pp.196-316,  1970

L'181 G. Stewart, "On tne sensitivity of the eigenvalue problem Ax=hBx",
SIAM J. Num. Anal., V o l .  9, pp.669~686,  D e c .  1972

[19] G. Stewart, ffIntroduction  to matrix computationff,  Acad. Press,
New York, 1973

[ati1 G. Stewart, "Error and perturbation bounds for subspaces associated
with certain eigenvalue problemsff, SIAM Rev., Vol.15, pp.727-764,
Oct. 1973

r211 G. Stewart, "Algorithm 506: HQF3 and EXCHNG. Fortran  sub-
routines for calculating and ordering the eigenvalues of a
real upper Hessenberg matrixff, ACM TOMS, Vo1.2, pp.275-280,
Sept. 1976

II221 P. Van Dooren, "The generalized eigenstructure problem in linear
system theory", subm. to IEEE Trans. Aut. Contr.

1331 J. Wilkinson, "The algebraic eigenvalue problemff,  Oxford University
Press, London, 1965

[241 M .  Wonham, _'Inn a matrix Ficcati equation of stochastic controlff,
SIAM J. Contr., Vol.6, pp.681-697,  N o v .  1968




