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Abstract

We developed a problem solving framework called ConClass capable of classifying
continuous real-time problems dynamically and concurrently on a distributed system.
ConClass provides an efficient development environment for describing and decomposing
a classification problem and synthesizing solutions. In ConClass, designed concurrency of
decomposed subproblems effectively corresponds to the actual distributed computation
components. This scheme is useful for designing and implementing efficient distributed
processing, making it easier to anticipate and evaluate the system behavior. ConClass
system has an object replication feature in order to prevent a particular object from being
overloaded. An efficient execution mechanism is implemented without using schedulers or
synchronization schemes liable to be bottlenecks. In order to deal with an indeterminate
amount of problem data, ConClass dynamically creates object networks to justify
hypothesized solutions and thus achieves a dynamic load distribution. We confirmed the
efficiency of parallel distributed processing and load balancing of ConClass with an
experimental application.

1 . Introduction

In this paper we describe a framework for the parallel solution of classification problems.
We developed a framework called ConClass (Concurrent Classification) on a distributed-
memory multiprocessor system. ConClass is based on the inherent parallel characteristics
of classification problems and is capable of solving real-time problems continuously and
concurrently.

Classification is one of the more commonly used problem solving methods and has been
used in diverse areas such as engineering, biology, and medicine. The classification
problem solving model provides a high-level structure for the decomposition of problems,
making it easier to recognize and represent similar problems. Classification is the act of
identifying an unknown phenomenon as a member of a known class of phenomena. The
process of identification is that of matching the observations of an unknown phenomenon
to the features of known classes. Classification problem solving is described in detail in
[Clancey 84, 85].

Most previous systems solve classification problems in series in terms of classification
processes and deal with static data [Buchanan 84, Bennett 78, Rich 79, Brown 82].
Related work on classification is based on static aspects as well [Cohen 85, Bylander 86].
Recent AI research has, however, focused on real-time problem solving such as that
surveyed in [Laffey 88]. For example, problems from the engineering field are dynamic in
domains such as continuous signal understanding and manufacturing diagnostics.

Our motivation was to develop a framework capable of describing and solving continuous
real-time classification problems in parallel. We implemented the ConClass system based
on the inherent parallel nature of classification problem solving.

Another area of our research interest concerned finding out the fundamental requisites of
parallel distributed classification and implementing an efficient framework based on such
intrinsic features. ConClass achieved efficient parallel computation and linear speedup
against the number of processing elements.

We developed ConClass on a simulated distributed-memory multiprocessor system called
CARE [Delagi 87a] using a distributed processing language called LAMINA [Delagi 87b].
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We implemented an experimental classification system in ConClass to evaluate the
performance of ConClass. This system classifies observed aircraft by using continuous
abstract radar signal data.

This research is a part of the Advanced Architectures Project at the Knowledge Systems
Laboratory at Stanford University, a section of which has been dedicated for research of
distributed processing [Rice 89].

In subsequent sections we describe the methodology of parallel classification problem
solving, the implementation of ConClass on a distributed system, and finally, an evaluation
using the experimental application.

2 . Parallel Classification Methodology

2 . 1 . Problem Decomposition

A classification problem can be structured as a directed acyclic graph whose nodes are
decomposed subproblems. A classification solution of decomposed subproblem can be
supplied to other subproblem solvers. A solver may synthesize other classification
solutions. Propagation of problem data and solutions is hierarchically organized in this
manner. Thus, classification problem solving can be organized intrinsically hierarchical and
distributed.

Platform
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   Origin
Estimation

Flight Course
 Recognition

Course
 Class

 Predicted
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Platform
Interface
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Information

Classifiers
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Figure 2.1.  Hierarchical Classification Configuration
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Figure 2.1 shows an example of a problem solving system which classifies aircraft
represented by radar signals. We denote such an aircraft problem object a platform. This
system solves classification subproblems such as aircraft type and flight course recognition
and then provides final classifications such as commercial, military, or a smuggler's
aircraft. Example solutions are shown in Figure 2.3. Attribute values of platforms change
over time and the classification state of the system varies according to these data. The
solutions may change due to global information such as flight plans and ground
circumstances as well. Classification system can accept different kinds of problem inputs
such as aircraft location and velocity, observed maneuverability, and radar signature.

Thus, classification problem solving has characteristics suitable for parallel processing
using decomposed subproblem solvers especially for continuous dynamic problems. We
implemented ConClass using such inherent characteristics.

The parallel processing in ConClass is designed using decomposed classification
subproblem solvers. The ConClass system represents those problem solvers as parallel
processing elements and allocates them directly on computational hardware components.
This decomposition scheme makes designed concurrency effectively correspond to actual
parallel computation. The scheme makes it easier to anticipate and evaluate the system
behavior for obtaining efficient concurrency. We call a decomposed problem solver a
classifier. We call the problem solving network consisting of the classifiers the classifier
network. A classifier whose classification is derived by other classifiers is denoted a super-
classifier of those classifiers. A classifier whose solutions is synthesized in other classifiers
is called a sub-classifier of those classifiers. Classifiers can act concurrently and
dynamically when problem data and solutions are propagated over time.

Problems in ConClass may be created dynamically such as an aircraft platform captured by
a radar system. In addition, ConClass is capable of manipulating multiple sources of a
continuous problem. ConClass has an object which links problem objects to the entrance
classifiers. We call the linking object an interface-object. When a problem is created
dynamically, the problem object receives references to the entrance classifiers from an
interface-object and starts sending them problem data.

A classifier has known classes of phenomena into which problem objects are classified as
solutions. We call such a class a classification-category. If a classifier succeeds in
classifying, it sends the solution to its abstract classifiers, that is, super-classifiers. The
abstract classifiers classify the problem by using the solution and propagate their
classification solutions in the same manner. Each classification computation is a
decomposed subproblem solving mentioned above. The ConClass classification system
may have more than one of the most abstract classifiers to obtain different kinds of
solutions to the entire classification problem.

2 . 2 . Load Distribution

The research goal of ConClass is to implement efficient distributed processing as well as to
develop a framework for describing and decomposing classification problems. In order to
distribute decomposed problem solvings, we have two schemes: replication of objects and
dynamic distribution of problem solving tasks.

A classifier acts when it receives a solution from its sub-classifier and when the sub-
classifier changes the solution. Therefore, classifiers that are lower in the hierarchy usually
execute a larger amount of classifications than those higher in the hierarchy. Even in the
same level of the hierarchy, classification computations may differ between the classifiers.
In order to achieve efficient load balancing to such objects which can have varying
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execution burdens, ConClass replicates classifiers and interface-objects. The replicated
objects have the same functions and need no communication between themselves. A
problem object's data are assigned to the replicated objects by hashing their object
identifications. The number of replicated objects can be determined by domain knowledge,
statistics, and user design. Although ConClass does not perform dynamic replication of
objects currently, it is possible to replicate objects at execution time because problem
solutions between replicated objects can be independent.

ConClass manipulates an unknown number of problem objects which are dynamically
created. Increasing the number of these objects may cause the classifier network to become
overloaded. Therefore, ConClass uses the classifier network to produce hypotheses of
individual problem objects as solutions and creates another network to maintain these
hypotheses. A hypothesis is a classification solved by one of the most abstract classifiers.
ConClass executes classifications to justify the created hypotheses on the dynamically
created network. We call such a created network an instance network. Instance networks
are organized for individual classification problem objects independently. Classifications
after a hypothesis is formed are computed on the different network so that this scheme
provides dynamic load distribution. We call the classification process to make hypotheses
the initial hypothesis formation and call the justification of hypotheses the dynamic
hypothesis maintenance.

Initial Hypothesis Formation:

smuggler

a platform
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Figure 2.2.  Initial Hypothesis Formation

A hypothesis formed by one of the most abstract classifiers is called an initial hypothesis.
When the classifier network succeeds in forming an initial hypothesis, the classifier



5

instantiates the classification-category corresponding to the hypothesis as a newly created
computation object. This production scheme of an initial hypothesis for a given problem on
the classifier network is the initial hypothesis formation as shown in Figure 2.2. We call an
instantiated object of a classification-category a classified-instance.

Dynamic Hypothesis Maintenance:

One of the most abstract classifiers, which forms a hypothesis, makes its sub-classifiers
instantiate the classification-categories which derive this hypothesis. These classifiers
propagate the instantiation of classification-categories to their sub-classifiers in the same
manner. When the entrance classifiers make classified-instances, the problem object which
receives the hypothesis obtains links to those classified-instances. The reason for creating
classified-instances backwards in this method is so that only required classified-instances
are instantiated. The set of created classified-instances is an instance network.
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Figure 2.3.  Dynamic Hypothesis Maintenance

Problem data is propagated through its instance network to justify the classification
solutions in the classified-instances. If a classification of a classified-instance gets
disproved, the classified-instance discards itself, propagates the negated solution to its
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super-classifiers and super-classified-instances, and notifies its sub-classifiers of its
elimination. These sub-classifiers discard their classified-instances which have derived only
the disproved classification solution. If a sub-classified-instance derives another
classification solution, it is retained. If a super-classified-instance is discarded by the
negation, it executes the same procedure. When the most abstract classified-instance is
discarded, the hypothesis as a problem solution is denied. This scheme of instantiating,
justifying, and discarding an instance network is the dynamic hypothesis maintenance as
shown in Figure 2.3.

While instantiating and discarding an instance network, the problem may vary
continuously. When a classifier receives a solution from its sub-classifier after creating an
classified-instance, the problem data for the corresponding classification-category is
forwarded to the classified-instance. After a classifier recognizes an instantiation in its
super-classifier, it sends the problem data to the super-classified-instance directly. If a
classified-instance is eliminated, the problem data is forwarded to its classifier. A
classified-instance is acting for a while for the data forwarding even after it is discarded.
The classified-instance is actually discarded when its sub-classifier discards its reference.

A problem which has a hypothesis may succeed in forming another hypothesis so that the
classifier network continues to work classifying the problem. In this circumstance a
classifier does not invoke classifications for the instantiated classification-categories.
Therefore, the classifier network can reduce its computation load after the hypothesis has
been formed. When a problem has more than one hypothesis simultaneously, those
classified-instances needed for both of these hypotheses are shared on the same instance
network.

An instance network is organized only after a solution is formed in one of the most abstract
classifiers, in order to create longer-lived classified-instances. Less abstract classification
acts more frequently due to the problem propagation scheme of ConClass. If a classifier
lower in the hierarchy instantiates a classified-instance, it may be quickly eliminated by a
reclassification. Creation of such an ephemeral distributed object is expensive to manage.

3 . Implementation of ConClass

3 . 1 . Computational Environment

We developed ConClass on a simulated distributed-memory multiprocessor system called
CARE [Delagi 87a] on a Lisp machine, Explorer1, and implemented ConClass in a
distributed processing language called LAMINA [Delagi 87b].

CARE is a distributed-memory, asynchronous message-passing architecture. CARE is
simulated by a general, event driven, highly instrumented system called SIMPLE. CARE
models 1 to 1000 processor-memory pairs communicating via a packet-switched cut-
through interconnection network. Message delivery between processing elements is
reliable, but messages are not guaranteed to arrive in the order of origination.

LAMINA is the basic language interface to CARE and consists of Common Lisp [Steele
84] and Flavors [Weinreb 80] with extensions. The extensions provide primitive
mechanisms and language syntax for expressing and managing computational locality in
each processing element and concurrency between processing elements. Three styles of

1 CARE currently runs on Explorer, Symbolics, Sun-3, and DEC Station 3100.
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programming are supported: functional, shared-variable, and object-oriented. ConClass
system is implemented in the object-oriented language subset of LAMINA where we
represented ConClass objects such as classifiers by means of LAMINA objects.

Application (Conceptual)

Application Specification (Specification Language)

Specification Representation (System Language)

System Specification (Internal Language Object)

Executable Code

Application Developer / Input Interface

ConClass   Compiler

System Compiler

Initializer

Figure 3.1.  Representation Specification Hierarchy

3 . 2 . Problem Description and Solving

Figure 3.1 shows the hierarchy of representation specifications and execution components
in ConClass system. ConClass provides application developers with an environment for
describing and decomposing classification problems. Figure 3.2 shows an example
classifier definition in the application specification. The ConClass compiler translates
application descriptions to object definition representations.2 The initializer initiates
LAMINA objects according to the definitions and allocates them on CARE processing
elements.

ConClass system provides a development environment where application developers can
specify classifier definitions and relationship between classifiers and interface-objects.
Classification in a classifier is composed of classification-categories. A known class of
phenomenon into which unknown phenomena are classified is defined by describing
templates in the classification-category. A template is a conjunction of attribute values used

2 We do not have the ConClass compiler implemented to date. We specified the experimental system
described in section 4 directly in the object specification representation. However, the scheme for
representing and decomposing problems was efficient for development.
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in the classification-category and its classifier. An attribute can specify its condition by
means of a value, a set of values, or a range of numerical values. A template succeeds in
matching a problem object when the problem object's attributes satisfy the template value
conditions. An attribute is problem data or a classification solution brought by the other
classifiers or problem objects. An attribute can also be computed from other attributes anew
in a classifier. A classification-category may have more than one template and it succeeds in
classifying if the conditions of one of the templates are satisfied.

#| classifier-definition |#
(Speed
  :Classification-Categories (Slow-Current-Speed
                              Medium-Current-Speed
                              Fast-Current-Speed
                              Slow-Max-Speed
                              Medium-Max-Speed
                              Fast-Max-Speed)
  :Classifier-Inputs ((X-Position Input-Interface)
                      (Y-Position Input-Interface)
                      (Z-Position Input-Interface)
                      (X-Velocity Input-Interface)
                      (Y-Velocity Input-Interface)
                      (Z-Velocity Input-Interface))
  :Classifier-Database ()
  :Classifier-Attributes (Current-Speed Max-Speed)
  :Super-Classifiers (Track-Type Current-Platform-Behavior)
  :Interface-Objects (Input-Interface)
  :Output-Objects ()
  :Locations (25 26 27 28)
  :Dynamic-Site-Positions ())
    
#| classification-category-definition |#
(Slow-Current-Speed
  :Classifier Speed
  :Category-Inputs ()
  :Category-Database ()
  :Category-Attributes ()
  :Classification-Templates
  ;;; templates: (template ... )
  ;;; template: (template-slot ... )
  ;;; template-slot: (var (capture-values lock-values)
                                      (capture-confidence lock-confidence))
  ;;; values: (:set value ... ),
                   (:range (:open value) (:close value)),
                   (:range t (:open value)), ...
  ((1.0 (Current-Speed ((:range (:open :infinity-) (:close 5000))
                        (:range (:open :infinity-) (:close 6000)))
                     (.7 .5)))))

Figure 3.2.  Sample Classifier Definition

Problems manipulated in ConClass can be continuous and dynamic. If problem data causes
attributes to vary around the threshold of template conditions, a classification may change
frequently. Therefore, a template condition can be specified by a set of two kinds of values
which we call capture value and lock value. A capture value and a lock value are used when
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unknown problem objects are classified and when classified solutions are justified,
respectively. The range of a lock value needs to be larger than that of a capture value.

Classification solutions and attributes can carry confidence values. When a template's
condition is satisfied, its classification confidence is the minimum value of attribute
confidences in the template. A template can specify a minimum requirement on its
confidence value, which must be satisfied for a successful classification. If the conditions
of more than one template are satisfied, the classification confidence takes the maximum
value of those template confidences. Some kinds of symbolic confidences are allowed to be
used. This scheme is one of the most conservative methods to calculate confidences. A
detailed description of confidence is illustrated in [Buchanan 84].

When a classifier succeeds in classifying, if it is one of the most abstract classifiers, it
instantiates an initial hypothesis. Otherwise, it propagates the classification solution with
specified attribute values to its super-classifiers. When a classification confidence is
changed significantly, the change is propagated to the super-classifiers or to the super-
classified-instances.

Application developers describe definitions of classifiers involving classification-categories
and relationships between classifiers and interface-objects. Developers also define attributes
of interface-objects. Developers need to define procedures for evaluating attributes and
those confidences used in matching problem objects to the templates. ConClass generates
the definition of a classified-instance according to the definitions of the corresponding
classification-category and its classifier. The example shown in Figure 3.2 is the definition
of a classifier with one of its classification-categories, which is to classify aircraft speed.
This is a definition used in the experimental application described in Section 4.

3 . 3 . Special Internal Controls

ConClass does not use physical synchronization schemes which may result in a saturation
effect. ConClass incorporates embedded control features to manage a variety of
asynchronous aspects of distributed processing.

We can use managers or schedulers responsible for creating and maintaining dynamic
objects, synchronizing different processes, and coordinating searches. However, such
agents may limit the system throughput when managing synchronization. Our related work
reports various problems about such scheduling [Noble 88, Muliawan 89]. Schedulers can
be overloaded, however, there are no clear-cut rules for the decomposition of such objects.
ConClass uses no scheduler objects and handles no physical synchronization between
objects.

In ConClass, variation of a problem object is propagated on the classifier network and
instance networks by classifying and reclassifying the problem. The creation and
elimination of instance networks are achieved by means of the propagation of creation and
discard requests of classified-instances between objects, respectively. These propagation
schemes do not require synchronization. However, such propagations may occur
simultaneously and cause state conflicts in an object. For example, a classifier may receive
a request for a classified-instance creation from its super-classifier while its sub-classifier is
sending a message of disproving the classification. Each object of ConClass manages
various requests efficiently considering the state transitions of instantiation and use no
synchronization which may make other objects idle.

Classifiers and interface-objects are represented by means of LAMINA objects as described
above. Classifiers and interface-objects communicate with each other using the message
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passing facilities of CARE and LAMINA. Messages between objects in ConClass are not
guaranteed to arrive in the order of origination because the message passing on CARE is
asynchronous. For example: An object may receive stale data later than brand-new data.
When a classified-instance is discarded shortly after being created, its sub-classifier may
receive a discard request earlier than a creation one for its related classified-instances.
ConClass adopts embedded features to properly manipulate all messages that are in the
wrong order.

Classified-instances and problem objects are created dynamically and those references are
propagated to other objects. A dynamic object is typically created on a different processing
element than that of the creator according to the object allocation scheme described below.
Although the creator does not receive a created object's reference until a later time, it keeps
indirect reference to the new object, which can be used to send messages. The creator
sends the indirect reference to other objects if the new object is being created so that the
messages from those objects to the created one are sent via the creator indirectly. The direct
reference is later propagated to those objects that hold an indirect reference automatically.

These features were useful for implementing the ConClass system.

3 . 4 . Load Balancing

It is one of the goals of parallel distributed processing to allocate objects over processing
elements such that the work they do is balanced as evenly as possible. We adopted the
same modified random load balancing used by our related work [Nakano 88] to allocate
classified-instances. This scheme involves random selection for dynamic objects from the
set of all processing elements excluding those used by static objects if there are fewer static
objects than processing elements. Otherwise, the dynamic object is allocated randomly
from the set of all processing elements. The random allocation of classified-instances is
reasonable because it is difficult to predict that any given classified-instance will be busier
than another and because it is not suitable to allocate on the basis of statistics concerning
non-permanent objects. In fact, empirical evidence suggests that in the absence of such load
knowledge, random allocation is optimal [Nakano 88].

We allocated another sort of dynamic object, problem object, evenly on the processing
elements dedicated to dynamic objects. Because problem objects, for example, aircraft
platforms, exist more permanently, processing elements are assigned using a round-robin
method.

Static objects, classifiers and interface-objects, can be replicated as much as desired as
described above. These objects are allocated to the processing elements dedicated to static
objects in advance according to domain knowledge, statistics, and user definition3.

4 . Performance Evaluation

We implemented an experimental application system in ConClass and confirmed the
efficiency of the ConClass system.

3 We defined the allocation of static objects in implementing the experimental application system because
of the absence of the ConClass compiler.
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4 . 1 . Experimental Problem

We have been developing an aircraft radar signal interpretation system called AirTrac for
tracking and classifying aircraft. The AirTrac system is composed of three major modules:
Data Association, Path Association, and Platform Interpretation. Data Association accepts
aircraft signal reports of multiple radar systems at regular time intervals and periodically
abstracts the radar signal reports into observation records for individual signal tracks
[Nakano 88]. Path Association reports hypothesized platforms to which the periodic
observation records are associated to form tracks for the same aircraft [Noble 88, Muliawan
89]. Platform Interpretation analyzes and interprets information contained in platforms and
provides continuous real-time assessments about the observed aircraft.

Current
Platform
Behavior

Origin

   Sum
Maneuver

Altitude
Change

Speed

Current
Altitude

Track
Type

Platform
  ClassPlatform

Interface

Figure 4.1.  Experimental Classification System

The problem selected for our experiments is a simplified experimental implementation of
AirTrac's Platform Interpretation module. The configuration of the experimental system is
shown in Figure 4.1. Each sub-problem solver is implemented by means of a classifier and
its classification facilities. This system consists of eight classifiers which have between two
and ten classification-categories. The system input is a series of simplified emulated aircraft
platforms which have aircraft position and sizes information.

The experimental application requires the following:

• The classification system is a hierarchy of classifiers which have multiple fan-in and
fan-out.

• The classifier network has cut-through connections.
• The problem data is continuous and problem solving in each classifier is potentially

dynamic.
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These requirements are in order to evaluate the experimental system in an environment
where configuration and computation are uneven between problem solvers. The
experimental system meets these requirements.

4 . 2 . Experimental Results and Analysis

We experimented with the data of 50 aircraft platforms which appeared in real-time
successively and were classified and reclassified typically three times in the classifications
lower in the hierarchy. The experiment has two parameters: the number of processing
elements and the data rate. The numbers of processing elements used were 8, 16, 32, 64,
and 256. The data rate is the frequency at which problem data is fed into the application
system. We can change the data rate by altering the sampling frequency of observed
problem data. This scheme, however, will change the frequency of classification in relation
to the data rate. In order to maintain the classification quality between the data rates, we
changed the data rate by altering the time interval of feeding the same set of data. Thus, the
experimental application system was performed using the time of the emulated data while
we evaluated the performance of ConClass system using the simulation time of the CARE
system.

1

2

4

8

16

Data Rate

16 32 64 128 256

Number of Processing Elements

Figure 4.2.  Speedup Curve (based on sustainable data rate)

The experimental system achieved a linear speedup against the number of processing
elements as shown in Figure 4.2. The speedup was based on the sustainable data rate, the
maximum data rate for which all measured latencies stabilize and do not increase over time.
See appendices for the observed latencies from which the speedup was evaluated. The load
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balancing in ConClass uses two methods: replication and allocation of static objects, and
the assignment of processing elements for dynamic objects. We assumed that we could
optimize these factors using domain knowledge and statistics. Therefore, we fine-tuned the
factors in the experiment so as to optimize the results. Another reason for the optimization
was to evaluate  the processing speed with respect to achieving an efficient concurrency. In
addition, we implemented the ConClass system paying attention to even the execution
efficiency of Lisp functions. This was to more precisely evaluate the system overhead for
parallel processing.

The CARE simulation system has an user interface where we can observe a variety of
statistics and latencies of CARE components. Figure 4.4 shows the processor utilization
graph whose upper half specifies utilization of evaluators which execute actual data
computation. The lower half specifies that of operators which manage the communication
between processing elements. In a typical classification situation, for example, ConClass
was able to use 28 to 30 processing elements at a time out of a possible 32. Including the
initialization of ConClass, which brought about considerable computation, the overall
average of concurrent utilization was 21 processing elements.  Because the classification
computation in ConClass is coarse-grained, the operators are not busy.

In ConClass, the concurrency designed by an application developer can correspond
effectively to actual computational hardware components. We were able to implement the
experimental application system efficiently using this scheme. It was easy to estimate
replication and allocation of objects and assign processing elements. The ConClass
development environment for describing and decomposing classification problems was
useful. ConClass execution facilities excluding schedulers and various synchronization
schemes improved the efficiency of parallel distributed processing.

Figure 4.3.  Processor Utilization

Table 4.1 shows the frequencies of messages sent between objects to solve the
experimental problem. These frequencies correspond to sustainable data flows. Most
messages are propagated between classifiers and between classified-instances. Messages
can be sent between the classifier network and instance networks while creating and
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discarding classified-instances. Data propagation messages can be sent from classified-
instances to their related but uninstantiated classification-categories. The former messages
are not frequent because classified-instances are long-lived according to the instantiation
scheme of ConClass as described above. The latter situation is fairly rare due to the
classification problem's structure. The ratio of number of messages to classified-instances
decreases as the number of processing elements increases. This is because the instantiation
time becomes longer compared to the experimental simulation length. However, this is not
a factor which can affect the independence between the classifier network and instance
networks. Although more dynamic problems may increase the interactions between the two
kinds of networks, the experimental results show the efficiency of a dynamic load
distribution of ConClass.

Table 4.1.  Message Frequencies

To Classifiers

From Instances

To Classified-instances

From Classifiers

Messages

5409(79.3)

1409(20.7)

131 (1.9)

206 (3.0)

5527(56.1)

4317(43.9)

389 (4.0)   

273 (2.8)

5445(51.2)

5181(48.8)

268 (2.5)

180 (1.7)

5448(51.0)

5248(49.0)

313 (2.9)

167 (1.6)

Number of Messages (Percentage)

Processing
Elements 16 32 64 256

5 . Conclusions

In this paper we have described the parallel solution of classification problems. The
developed framework, ConClass, is capable of classifying continuous real-time problems
dynamically and concurrently.

ConClass provides a high-level structure for describing and decomposing classification
problems. The ConClass classification system can handle multiple sources of problem
inputs as well as dynamic global information. A ConClass application can use static
knowledge to solve problems in the system. Such a high-level framework was useful in
implementing the experimental application in ConClass.

Classification problem solving can be structured hierarchically by means of decomposing
problem and synthesizing solutions. We implemented the ConClass framework based on
this characteristic so that decomposed problem solving modules were directly represented
as distributed processing components. Therefore, the concurrency designed by developers
is effectively reflected in the actual parallel computation and this scheme makes it easier to
anticipate and evaluate the system behavior. Moreover, a decomposed classification
problem solver, consisting of a classifier and its classified-instances, is very uniform in
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terms of its basic structure and execution mechanism. These features are useful in the
design of concurrency and the implementation of efficient distributed processing. The
classification execution in ConClass is intrinsically parallel, in contrast to our previous
problem solving frameworks [Brown 86, Nii 89, Saraiya 89] which report various
problems of parallel processing.

We implemented the replication features of static objects for preventing a particular object
from being overloaded. The dynamic creation of problem objects may cause the system
load to increase. We incorporated the load distribution scheme by means of dynamically
creating instance networks which maintain hypotheses as solutions of problem objects. We
implemented an efficient execution mechanism for ConClass without using schedulers or
synchronization schemes which are liable to be bottlenecks. We confirmed the efficiency of
the parallel processing and the load balancing of ConClass by an experiment.

ConClass is a concurrent problem solving framework using a structural hierarchy of
classification problem and continuity of problem data. Real-time problem solving systems
are increasing in importance and we realize the advantage of the ConClass framework.
Furthermore, ConClass suggests a construct for dynamic information fusion and multiple
assessments. AirTrac, a part of which we selected as an experimental application, is an
example: AirTrac fuses information such as radar signal, flight plans, ground information,
aircraft knowledge, and geography. AirTrac reports real-time assessments such as aircraft
classifications and predictions of flight courses and aircraft actions. The hierarchical
structure of decomposing a problem and synthesizing solutions are useful and effective for
implementing these functions.
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Appendices

A 1 . Problem Data Profile

Figure A1.1 specifies the data used in the experimental classification system. This figure
shows the numbers of total and new problem objects at every data input.

Total and New Problem Objects  vs  Time(Data Sequence)
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Figure A1.1.  Problem Data Profile

A 2 . Latencies

The following are observed latencies from which we evaluated the sustainable data rates.
We observed the latencies of forming initial hypotheses, making other hypotheses, and
disproving those hypotheses. We compared the latencies with the same object allocation on
each set of processing elements. We denote a processing element a PE and use the legend
specified in Figure A2.1 for the latency figures in this section.
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This legend is used in the following latency figures.

Hypothesizing Max
Hypothesizing Ave
Hypothesizing Min

Reclassifying Max
Reclassifying Ave
Reclassifying Min

Disproving Max
Disproving Ave
Disproving Min

Time (Data Sequence)
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Figure A2.1.  Legend for Latency Figures

A 2 . 1 . Latencies at Sustainable Data Rates

16 Processor Elements; Data Rate = 1/166.7 [1/msec]
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Figure A2.1.1.  Hypothesizing Latency on 16 PEs
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16 Processor Elements; Data Rate = 1/166.7 [1/msec]
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Figure A2.1.2.  Reclassifying Latency on 16 PEs

16 Processor Elements; Data Rate = 1/166.7 [1/msec]
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Figure A2.1.3.  Disproving Latency on 16 PEs
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32 Processor Elements; Data Rate = 1/100 [1/msec]
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Figure A2.1.4.  Hypothesizing Latency on 32 PEs

32 Processor Elements; Data Rate = 1/100.0 [1/msec]
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Figure A2.1.5.  Reclassifying Latency on 32 PEs
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32 Processor Elements; Data Rate = 1/100.0 [1/msec]
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Figure A2.1.6.  Disproving Latency on 32 PEs

64 Processor Elements; Data Rate = 1/40.0 [1/msec]
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Figure A2.1.7.  Hypothesizing Latency on 64 PEs
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64 Processor Elements; Data Rate = 1/40.0 [1/msec]
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Figure A2.1.8.  Reclassifying Latency on 64 PEs

64 Processor Elements; Data Rate = 1/40.0 [1/msec]
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Figure A2.1.9.  Disproving Latency on 64 PEs
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256 Processor Elements; Data Rate = 1/10.7 [1/msec]
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Figure A2.1.10.  Hypothesizing Latency on 256 PEs

256 Processor Elements; Data Rate = 1/10.7 [1/msec]
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Figure A2.1.11.  Reclassifying Latency on 256 PEs

256 Processor Elements; Data Rate = 1/10.7 [1/msec]
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Figure A2.1.12.  Disproving Latency on 256 PEs
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A 2 . 2 . Sample Latencies at Overloaded Data Rates

16 Processor Elements; Data Rate = 1/142.9 [1/msec]
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Figure A2.2.1.  Hypothesizing Latency on 16 PEs
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32 Processor Elements; Data Rate = 1/83.3 [1/msec]
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Figure A2.2.2.  Hypothesizing Latency on 32 PEs

64 Processor Elements; Data Rate = 1/37.5 [1/msec]
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Figure A2.2.3.  Hypothesizing Latency on 64 PEs
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256 Processor Elements; Data Rate = 1/9.38 [1/msec]
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Figure A2.2.4.  Hypothesizing Latency on 256 PEs


