
HARDWARE/SOFTWARE CO-DESIGN OF RUN-TIME

SYSTEMS

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Vincent John Mooney III

June, 1998

c Copyright 1998

by

Vincent John Mooney III

ii

I certify that I have read this thesis and that in my opin-

ion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Giovanni De Micheli(Principal Adviser)

I certify that I have read this thesis and that in my opin-

ion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Oyekunle A. Olukotun(Associate Adviser)

I certify that I have read this thesis and that in my opin-

ion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Robert W. Dutton

Approved for the University Committee on Graduate

Studies:

iii

Abstract

Trends in system-level design show a clear move towards core-based design, where

processors, controllers and other proprietary cores are reused and constitute essential

building blocks. Thus, areas such as embedded system design and system-on-a-chip

design are changing dramatically, requiring new design methodologies and Computer-

Aided Design (CAD) tools.

This thesis presents a novel system-level scheduling methodology and CAD en-

vironment, the Serra Run-Time Scheduler Synthesis and Analysis Tool. Unlike

previous approaches to run-time scheduling, we split our run-time scheduler between

hardware and software, as opposed to placing the scheduler all in one or the other.

Thus, given an already partitioned input system speci�cation in an HDL and a soft-

ware language, Serra automatically generates a run-time scheduler partly in hard-

ware and partly in software, for a target architecture of a microprocessor core together

with multiple hardware cores or modules.

A heuristic scheduling algorithm solves for priorities of software tasks executing

on a single microprocessor with a custom priority scheduler, interrupt service rou-

tine, and context switch code. Real-time analysis takes into account the split hard-

ware/software implementation both of the scheduler and of the tasks. The scheduler

supports standard requirements of both domains, such as relative timing constraints

in hardware and semaphores in software.

iv

A designer who uses the Serra CAD tool gains the advantage of e�cient sat-

isfaction of timing constraints for hardware/software systems within a framework

that enables di�erent hardware/software partitions to be quickly evaluated. Thus, a

hardware/software partitioning tool could easily sit on top of Serra, which would

generate run-time systems for di�erent hardware/software partitions chosen for eval-

uation. In addition, Serra's more e�cient design space exploration can improve

time-to-market for a product.

Finally, we present two case studies. First, we show a full analysis, synthesis, and

simulation of a hardware/software implementation of a robotics control system for a

PUMA arm [AKB86, Uni84]. Second, we describe a sample prototype of the split run-

time scheduler in an actual design, a force-feedback real-time Haptic robot. For this

application, the hardware part of the scheduler was implemented on programmable

logic communicating with software using a standard communication protocol.

v

Dedication

To my parents, Vincent John Mooney Jr. and Eulalia Maria Mooney, without whose

love and encouragement throughout the years this thesis would not have been possible.

vi

Acknowledgments

I have many people to thank for this dissertation. First and foremost, I would like to

thank my advisor, Professor Giovanni De Micheli, for his keen insight in helping me

choose an important Ph.D. topic and for his guidance throughout the Ph.D. There

was more than one occasion where I arrived at a technical result, only to look back

and marvel at his guidance in setting me upon the path that led to the solution, while

avoiding many pitfalls which were crystal clear to me only in hindsight.

I would also like to thank Professor Oyekunle Olukotun for serving as my associate

advisor and as a reader of this thesis. The interaction with Professor Olukotun and his

research group { including Rachid Helaihel, Jeremy Levitt, Basem Nayfeh and Mike

Chen { provided excellent opportunities for enriching and challenging the research

ideas I followed. Similarly, Professor David Dill and his students { including Han

Yang, Je�rey X. Su and Clark Barrett { provided superb interaction without which

my research would have been signi�cantly compromised. Additional thanks go to

Professors Olukotun and Dill for serving on my Ph.D. Orals Committee.

Special thanks go to Professor Robert Dutton for serving both as the Chair of my

Ph.D. Orals Committee and as a reader of this thesis. I am very grateful to have such

careful input from someone outside of my circle of immediate research colleagues.

As for the development of the Serra Synthesis System, I would like to acknowl-

edge the contributions of Toshiyuki Sakamoto, who wrote the hardware-tasks in Ver-

ilog HDL and implemented interrupts in the MIPS R4000 model, Sera Linardi, who

vii

ported cinderella to MIPS, Firdaus Abdullah, who implemented the full Verilog

simulations of the hardware-software run-time scheduler for the Robot Arm Con-

troller, and Yau-Tsun Steven Li, who provided guidance and support for cinderella-

M and associated analysis. I also would like to thank Meredith J. Goldsmith and

Giuseppe A. Paleologo for extended discussions about the relation of the schedul-

ing problem considered here to the work in operations research, as well as the help

provided in formulating the problem in AMPL.

I also would like to thank Thoi Nguyen, Charles Orgish and Babak Moghadam

for their network help, without which none of this would have been possible.

Many industry contacts have enriched this thesis tremendously: James Rowson,

Shields Neely, Bill Mark, Mark Shand and Jim Ready, to name a few.

Finally, I would like to thank the members of the CAD group, the Robotics

group, and my many friends I made while at Stanford. Claudionor Coelho, Luca

Benini, Rajesh Gupta, Polly Siegel, Jerry Yang, David Filo, David Ku, James Smith,

Luc Semeria, Tajana Simunic, Matija Siljak, Valeria Bertacco, Alessandro Bogliolo,

Marco Platzner and Aneesh Koorapaty are current or former members of the CAD

group who all helped me in some way, thanks. Diego Ruspini, Kyong-Sok Chang, and

Oscar Madrigal of Professor Oussama Khatib's robotics group helped tremendously,

as did Professor Khatib himself. Also, Bruce Romney of Jean-Claude Latombe's

group helped in many ways, but I will only mention two: the PUMA robotics control

software code and the TAship for EE271 Intro to VLSI. In addition, Scott Devine,

Ben Werther, and Robert Bosch of Professor Mendel Rosenblum's Operating Sys-

tems group provided generous help at key moments. Finally, Oskar Mencer was an

important ally in the Pamette/Synopsys/Xilinx struggles. As for my close friends,

many of the names have already mentioned; I will say a few, but not all, of the

names not mentioned: Derek Gerlach, Ajay Kapur, Rafael Betancourt, Sonja Schue-

mann, Lakita Garth, Florencia Cortina, Ekua Blankson, Afua Ntiwa, Manolo Clavel,

viii

Dr. Jose Meseguer, Peter Olveczky, Noel Vitug, Mike Vroman, Anthony McCarthy,

Mike Pinto and Pedro Gutierrez. Dr. Rick Reis provided mentorship for which I am

extremely grateful. Last but not least, my family is to be thanked: Martha Bowers

Mooney, Vincent John Mooney Jr., EulaliaMaria Mooney, Alexander Xavier Mooney,

Patrick Joseph Mooney, Laurie Jean Mooney, Emily Marie Mooney, Justin Patrick

Mooney, and Margaret Ann Mooney.

This research was sponsored by ARPA, under grant No. DABT 63-95-C-0049, by a

fellowship from National Semiconductor, and by a software donation from Synopsys.

ix

Contents

Dedication iii

Acknowledgments iv

1 Introduction 1

1.1 Hardware/Software Co-Design : 2

1.2 Requirements for Designing Hardware-Software Systems : : : : : : : 5

1.2.1 Scheduling at Di�erent Levels : : : : : : : : : : : : : : : : : : 6

1.3 Objectives and Contributions : 7

1.4 Thesis Outline : 8

2 Background 9

2.1 Previous Hardware/Software Co-Design Systems : : : : : : : : : : : : 9

2.1.1 COSYMA : 10

2.1.2 VULCAN : 11

2.1.3 POLIS : 13

2.1.4 COWARE : 14

2.1.5 CHINOOK : 18

2.2 Hardware Scheduling : 19

2.2.1 Integer Linear Programming : : : : : : : : : : : : : : : : : : : 19

x

2.2.2 List Scheduling : 20

2.2.3 Relative Scheduling : 20

2.2.4 Conditional Process Graphs : : : : : : : : : : : : : : : : : : : 21

2.3 Software Scheduling : 21

2.3.1 Round-Robin Scheduling : 22

2.3.2 Shortest Job First : 22

2.3.3 Rate-Monotonic Analysis : 22

2.3.4 Least Common Multiple : 24

2.3.5 Real-Time Kernel in Hardware : : : : : : : : : : : : : : : : : 25

2.4 Control-Flow Expressions : 25

2.4.1 Formalism : 26

2.4.2 Synthesis with CFEs : 28

2.4.3 Thalia : 29

2.5 Bounds on Execution Time : 29

2.6 Summary : 30

3 Target Architecture, Kernel, and System Model 32

3.1 CAD Requirements : 33

3.2 Target Architecture and Kernel : 37

3.2.1 Task Execution : 37

3.2.2 Run-Time Scheduler Implementation : : : : : : : : : : : : : : 38

3.2.3 Control of Software : 39

3.2.4 Software Generation : 40

3.2.5 Priority Scheduler Template for Software : : : : : : : : : : : : 41

3.3 System Modeling : 42

3.4 Summary : 45

xi

4 Real Time Analysis 46

4.1 Assumptions and Complexity : 47

4.1.1 The Complexity of NSDS : 50

4.2 Constructive Heuristic Scheduling : 53

4.2.1 Constructive Heuristic Scheduling Formulation : : : : : : : : : 53

4.2.2 Constructive Heuristic Scheduling Solution : : : : : : : : : : : 58

4.2.3 Multiple NEV ER Sets of Hardware-Tasks : : : : : : : : : : : 65

4.2.4 Complexity Analysis : 69

4.2.5 Practical Considerations for the Calculation of WCET : : : : 70

4.3 Context Switch Cost and Out-of-order Execution : : : : : : : : : : : 72

4.3.1 Upper bound on extra calls to the Priority Scheduler and Con-

text Switch : 73

4.3.2 Instruction Cache Analysis : 83

4.3.3 Total Upper Bound on WCET : : : : : : : : : : : : : : : : : : 86

4.3.4 Constructive Heuristic Scheduling with Out-of-order Execution 87

4.4 Task Splitting : 93

4.5 Critical Regions : 96

4.6 Summary : 98

5 Implementation and Experimental Results 99

5.1 Design System Implementation : 99

5.1.1 Serra Run-Time Scheduler Analysis and Synthesis : : : : : : 101

5.2 Design Case Study: PUMA Robot Arm : : : : : : : : : : : : : : : : : 103

5.2.1 Two PUMA Arms : 104

5.2.2 Verilog Simulation : 109

5.2.3 Run-Time Scheduler Software : : : : : : : : : : : : : : : : : : 111

5.2.4 Run-Time Scheduler Hardware : : : : : : : : : : : : : : : : : 113

xii

5.2.5 Running the Simulation : 117

5.2.6 Design Gains : 121

5.3 Design Case Study: Haptic Robot : 122

5.3.1 Original Design : 123

5.3.2 Haptic Control Implememted with Split Run-Time System : : 126

5.3.3 System Architecture : 129

5.3.4 Software Generation : 131

5.3.5 Future Directions : 133

5.4 Summary : 135

6 Conclusions and Future Work 137

6.1 Summary : 137

6.2 Future Work : 140

Abbreviations and Symbols 142

Bibliography 145

A A Mathematical Program Formulation 155

xiii

List of Tables

1 Link between Verilog HDL Constructs and Control-Flow Expressions 26

2 Entry Table for Software-Tasks : 40

3 Constructive Heuristic Scheduling Example Stage n� 1 = 4 : : : : : 63

4 Constructive Heuristic Scheduling Example Stage 3 : : : : : : : : : : 63

5 Constructive Heuristic Scheduling Example Stage 2 : : : : : : : : : : 64

6 Constructive Heuristic Scheduling Example Stage 1 : : : : : : : : : : 65

7 WCET Calculation Example : 72

8 WCET Calculation Example : 92

9 Code space, BCET and WCET for sw-tasks. : : : : : : : : : : : : : : 107

10 Results for the synthesis of hw-tasks. : : : : : : : : : : : : : : : : : : 108

11 Code space for software tasks. : 132

12 Code space for hardware tasks. : 133

13 Statistics for Xilinx 4020E Mapping : : : : : : : : : : : : : : : : : : : 134

14 WCET found and run times for Constructive Heuristic Scheduling ver-

sus AMPL. : 157

xiv

List of Figures

1 Vulcan Synthesis Tool in context : 12

2 CoWare simulation paradigm and sample implementation : : : : : : 17

3 Thalia2 Synthesis from CFEs : 28

4 PUMAArms (Courtesy of the Computer Science Robotics Lab at Stan-

ford) : 33

5 Robotics Example: Concurrent Control Algorithms : : : : : : : : : : 34

6 Tool Flow and Target Architecture : : : : : : : : : : : : : : : : : : : 35

7 Target Architecture : 38

8 Robotics Example: Main Task : 42

9 Flattened CDFG of Robot Arm Controller : : : : : : : : : : : : : : : 43

10 DAG, BCET and WCET: The leftmost column shows the task names,

the middle column shows the Best-Case Execution Time, and the right-

most column shows the Worst-Case Execution Time. : : : : : : : : : 49

11 Example transformation of an SRTD problem to an NSDS problem. : 52

12 GraphWCET Example : 55

13 Constructive Heuristic Scheduling Example Stage 3 : : : : : : : : : : 57

14 Calculate WCET Algorithm : 60

15 Constructive Heuristic Scheduling Algorithm : : : : : : : : : : : : : : 61

xv

16 Sample DAG With Optimal Schedule Not Found By Heuristic: The

constructive heuristic scheduling algorithm �nds order (d,b,c) which

yields a WCET of 43,000; however, the optimal order is (b,d,c), which

yields a WCET of 40,000. : 66

17 Multiple NEV ER Set Example : 67

18 Constructive Heuristic Scheduling Algorithm with Multiple NEV ER

Sets : 68

19 DAG, WCET and � Example : 75

20 DAG With Out-of-order Execution Example : : : : : : : : : : : : : : 76

21 Extra Priority Scheduler and Context Switch Time Examples : : : : : 77

22 Execute Out-of-order Algorithm : 88

23 Example With WCET Calculation of Instruction Cache Re�ll Time : 90

24 Constructive Heuristic Scheduling Example of Suboptimal Result : : 94

25 Example of Scheduling with Task Splitting : : : : : : : : : : : : : : : 95

26 Example Speci�cation of Noninterruptible Task : : : : : : : : : : : : 96

27 Tool Flow and Target Architecture : : : : : : : : : : : : : : : : : : : 100

28 Block diagram of Serra: the boxes indicate tools and the ovals indi-

cate data. : 101

29 Directed Acyclic Graphs of Ohold1 Law, Set Torque, and Jhold Law

with Relative Timing Constraints : 104

30 DAG of Robot Arm Controller with Relative Timing Constraints : : 105

31 Final Hardware Portion of Run-Time Scheduler : : : : : : : : : : : : 106

32 Simpli�ed Block Diagram of the Simulation : : : : : : : : : : : : : : 110

33 Interrupt Asserted : 117

34 PC Jumps to Start Address for Interrupt Service Routine : : : : : : : 118

35 Software task cjd completes : 119

36 Control restarts itself after task xb1 : : : : : : : : : : : : : : : : : : : 120

xvi

37 Haptic Robot With Graphics : 122

38 System Architecture : 123

39 Sphere Characterization : 124

40 Synopsys-Xilinx Tool Flow : 127

41 Run-Time Scheduler Control Communication : : : : : : : : : : : : : 128

42 PCI Pamette Version 1 { Architecture : : : : : : : : : : : : : : : : : 130

43 Teapot Graphical Object With Proxy : : : : : : : : : : : : : : : : : : 131

44 AMPL data for dagopt problem. : 155

45 AMPL model for dagopt problem. : : : : : : : : : : : : : : : : : : : 156

46 The dagopt2 problem, generated from the dagopt problem (Figure 16)

by doubling the number of tasks. : 158

xvii

Chapter 1

Introduction

The use of Computer-Aided Design (CAD) and synthesis tools in system-level design

of digital systems has gained large acceptance in industry and academia. Synthe-

sis/CAD tools automate portions of the design process, allowing designers to spend

more time at higher levels of abstraction. Thus, synthesis tools support (i) more

e�cient exploration of the available design space, (ii) the production of correct and

optimal (in some sense) circuits, and (iii) a reduction in time-to-market. These three

characteristics drive the increasing use of synthesis tools in design today.

Additionally, several important trends in system-level design a�ect the use of

synthesis. First of all, there is a signi�cant movement towards core-based design,

where pre-designed cores { such as processor and microcontroller cores { are used in

system designs. Such core usage adds value through design reuse and the selling of

Intellectual Property (IP). Why reinvent a component which another design team has

already spent six months or more optimizing? Instead, both time and e�ort is saved

by purchasing the component as IP.

A second trend in system-level design is the move to System-on-a-Chip (SoC)

designs. For example, instead of making a board with eight separate chips, why not

place all eight designs on the same chip? With ever decreasing transistor sizes, this is

1

CHAPTER 1. INTRODUCTION 2

a real possibility for more and more systems. However, placing a system on a single

Integrated Circuit (IC) requires the integration of many heterogeneous components,

such as digital, analog and memory.

A third trend to help deal with the enormous complexity is the move towards

standards. This is evident in several initiatives, including the Virtual Sockets Interface

Alliance (VSIA)[DF98], the European CAD Standards Initiative (ECSI)[AM98], and

Reusable Application-Speci�c Intellectual Property Developers (RAPID)[RK98]. All

three seek the establishment of open standards for the easy and reliable interfacing

of cores designed by separate design teams.

The direction indicated by these trends is clear. New system-level design method-

ologies and CAD tools are needed.

1.1 Hardware/Software Co-Design

We consider the design of mixed hardware/software systems, such as embedded sys-

tems and robots. Most of today's hardware/software systems are designed by deciding

up front what functionality will be implemented in hardware and what functionality

will be implemented in software, with relatively few changes as the system design

progresses. The research of hardware/software co-design targets altering this design

strategy.

We aim at providing CAD tools that help bring hardware and software design

ows closer together in order to allow designers to make tradeo�s between software

and hardware and thus more quickly evaluate design alternatives.

Approaches to hardware/software co-design of embedded systems [MS96, Mic97]

can be di�erentiated in several ways. One way is to consider the system-level speci�-

cation, which is either homogeneous (i.e. in a single speci�cation language) or hetero-

geneous (i.e. involving multiple modeling paradigms). Another way to di�erentiate

CHAPTER 1. INTRODUCTION 3

approaches is to distinguish how the CAD tool partitions the system speci�cation:

approaches consider either �ne-grained partitions, i.e. at the operation or basic block

level, or coarse-grained partitions, i.e. at the process or task level ([HE96] de�nes

granularity in a slightly di�erent way). For example, the Cosyma system (Sec-

tion 2.1.1 [OBE
+
97]), the VULCAN system (Section 2.1.2 [Gup95]) and the POLIS

system (Section 2.1.3 [BCG
+
97]) can be classi�ed as homogeneous and �ne-grained

approaches, while the CoWare system (Section 2.1.4 [MBL
+
96]) and the approach

of Adams and Thomas [AT95] are heterogeneous and coarse-grained. The method

using the SpecCharts language [NVG92] supports homogeneous speci�cation in

VHDL with both �ne- and coarse-grained partitioning. We take the heterogeneous

and coarse-grained approach in this thesis.

There has been much previous work in hardware-software partitioning [Gup95,

MBL
+
96, MS96]. However, system designs modeled by heterogeneous speci�cations

are often already partitioned by designers into modules or tasks. Whereas some op-

timality is lost in using a coarse granularity in partitioning, the resulting implemen-

tation is often closer to what designers expect, and interfacing hardware to software

blocks is easier. We assume the availability of automated interface generation similar

to [COB95, MBL
+
96].

Designers of real-time embedded systems often have timing constraints that they

must meet for the design to be successful. To support soft and hard real-time con-

straints, system designers need tight bounds on execution delays. In hardware/software

co-design, scheduling resources to meet these tight bounds is a critical problem be-

cause there may be parallel threads of execution in the application with the same

resource required by di�erent threads.

In hardware/software co-design an important problem is the management of soft-

ware routines and their coordination with hardware. An indispensable component

CHAPTER 1. INTRODUCTION 4

to a system of cooperating hardware and software is a run-time scheduler. One ap-

proach to scheduling is to come up with a static schedule for hardware and software

operations. However, the sequence of hardware and software tasks can change dynam-

ically in complex real-time systems, since such systems often have to operate under

many di�erent conditions. For example, a robotics system which comes into contact

with a hard surface may have to change its force control algorithm, along with its

attendant sensor set, estimators, and trajectory control routines. Furthermore, there

may be data-dependent and memory-dependent delays in execution, especially if the

software runs on a processor core with caches. Thus, in many hardware/software

systems, dynamic scheduling is a necessity.

One clear and easy solution is to put the run-time system in software and suitably

design the hardware such that it can be controlled from the software. Unfortunately,

software schedulers may not be predictable as far as being able to satisfy real-time

constraints. Therefore, this thesis proposes implementing the time-constrained por-

tion of the scheduler in hardware, where delays are accurately known. Thus, we

present a strategy for a mixed implementation of a dynamic real-time scheduler in

hardware and software, and a CAD tool, called Serra, to synthesize the necessary

hardware and software for the run-time scheduler as well as analyze the performance

of the system.

This dissertation focuses on analysis and synthesis of a custom dynamic run-

time scheduler in hardware and software for embedded applications such as robotics

control. In particular:

� We present a design approach for scheduling hardware/software tasks de�ned

at a coarse level of granularity.

� We present analysis and synthesis techniques for scheduling mutually exclusive

tasks to minimizeWorst-Case Execution Time (WCET).

CHAPTER 1. INTRODUCTION 5

� We present a Verilog simulation of a robotics system using our scheduling ap-

proach as well as a small prototype of the split run-time scheduler working in

an actual robotics prototype.

1.2 Requirements for Designing Hardware-Software

Systems

One common requirement for system-level design targeted for mixed hardware-software

implementation is the ability to carry out complex calculations. For example, in

robotics control design, state space representation of the kinematics and dynamics of

the arm can involve largematrices and require signi�cant computational power [Lat91].

This complex functionality is often coupled with real-time constraints, such as the

requirement to update robot arm torque inputs to its motors one thousand times a

second. If missing the deadline may result in catastrophic results, such as damage

to the robot or to the user, then we have a hard real-time constraint; if the deadline

can be missed occasionally without signi�cant negative e�ects, then we have a soft

real-time constraint.

Timing constraints can be classi�ed into two types: rate constraints, specifying

the rate of execution of a particular set of operations or tasks, and relative timing

constraints, specifying the minimum and maximum time separation between two op-

erations or tasks. Both types of constraints are typical requirements in embedded

systems.

In order to design a hardware-software system at a coarse level of granularity,

several steps must be completed, not necessarily in this order:

� The system must be partitioned into tasks.

� Each task needs to be allocated to hardware or to software.

CHAPTER 1. INTRODUCTION 6

� The interface between tasks needs to be synthesized.

� The tasks need to be scheduled and synchronized.

The �rst three steps, while extremely important, have been addressed in other re-

search and are not dealt with in this thesis. Instead, we focus on the last step,

scheduling and synchronization.

Yet another requirement is the satisfaction of resource constraints. For example,

there may be limited hardware, or all software-tasks might execute on the same CPU.

Thus, tasks executed on the same hardware or on the same CPU cannot be scheduled

at the same time, but must be mutually exclusive: one task must stop executing

before the other begins to execute on the same resource. Notice that satisfying this

scheduling requirement can pose a di�cult optimization problem since the same task

may be needed in concurrent control ows.

1.2.1 Scheduling at Di�erent Levels

We emphasize here the di�erences between scheduling in high-level synthesis and

scheduling in system-level synthesis. In high-level synthesis, the main emphasis is the

scheduling of operations within a basic block. Optimality of a design in high-level

synthesis is usually given in terms of the optimality of the execution time in basic

blocks or the cost of resources in basic blocks, such as the number of multipliers,

adders or multiplexors. In system-level synthesis, on the other hand, we have to

consider the interactions that cross basic block boundaries as well. When the system

is partitioned in basic blocks some of the interactions of the system are converted

into environmental constraints, such as relative timing constraints and precedence

constraints, which should guide the scheduling tool in �nding a feasible and optimal

implementation. Whenever these environmental constraints cross implementation

paradigms { namely, hardware and software { appropriate synchronization must be

CHAPTER 1. INTRODUCTION 7

added as well.

1.3 Objectives and Contributions

In this thesis, we present a system-level scheduling methodology and CAD tool. We

look at a system as a collection of tasks, where a task is a hardware module or software

thread. We automate the synchronization and scheduling of tasks in hardware and

in software. In order to achieve this automation, we need both analysis of the system

and synthesis for the run-time scheduler implemented in hardware and in software.

Speci�cally, we present the following contributions to the �eld of scheduling for

hardware-software systems:

� Design Style for Scheduling. We will present a simple design style for repre-

senting tasks that is independent of the tasks' implementation in hardware or

in software. The representation will allow for dynamic scheduling of the tasks,

where by dynamic we mean that the exact time when each task starts and

�nishes is not statically determined but instead is decided at run-time.

� Co-Synthesis of a Hardware-Software Run-Time Scheduler. We will show how,

given the control-ow of the tasks in the system, we can synthesize a run-time

scheduler partly implemented in hardware and partly implemented in software.

Such a mixed implementation can leverage the advantages of both domains.

� Rate-Constraint Satisfaction Analysis. We will present techniques for analysis

of the satisfaction of a single hard real-time rate constraint on the system, as

is typical in robotics applications. The analysis will go hand-in-hand with the

scheduling of the tasks and the generation of the run-time scheduler.

� Resource Constraints. We will show how our scheduler synthesis procedure

CHAPTER 1. INTRODUCTION 8

satis�es resource constraints, in hardware and software, while predictably sat-

isfying timing constraints.

� Application to Robotics. We will present a full analysis, synthesis, and simu-

lation of a hardware/software implementation of a robotics control system. We

will also describe a small prototype of a split hardware/software scheduler to

control a force-feedback Haptic robot using a Pentium
TM

for the software and

Xilinx FPGAs for the hardware.

1.4 Thesis Outline

This chapter gives an introduction and motivation for the thesis. Chapter 2 describes

some of the previous work in hardware/software co-design as well as some related

work from other areas. We next give an overview of our target architecture and

system-level scheduling design style in Chapter 3. The chapter also briey describes

the very small kernel running on the microprocessor core.

Chapter 4 presents the real-time analysis used to analyze whether the �nal system

will meet its timing and resource constraints. A heuristic scheduling algorithm is

described in detail, together with extensions to provide support for preemptible tasks

and semaphores in software.

Chapter 5 presents two design examples and how they were solved using the

scheduling approach presented in this thesis. Finally, in Chapter 6, we will present

some concluding remarks and some ideas for future research.

Chapter 2

Background

From the wide array of previous research in hardware/software co-design, hardware

scheduling, and scheduling algorithms for real-time systems, we examine a few repre-

sentative samples which most directly impact the research of this dissertation.

2.1 Previous Hardware/Software Co-Design Sys-

tems

We will �rst examine two systems which focus on hardware/software partitioning, af-

ter which we will examine two other systems which provide particular environments

for hardware/software co-design. The next two sections exemplify two opposite ap-

proaches to hardware/software partitioning: (1) start with a software solution and

migrate parts of the speci�cation to hardware, and (2) start with a hardware solution

and migrate parts of the speci�cation to software.

9

CHAPTER 2. BACKGROUND 10

2.1.1 COSYMA

The Cosyma (COSYnthesis for eMbedded micro Architectures) system aims at

speeding up software execution to meet timing constraints [EHB
+
96, OBE

+
97]. The

speedup is achieved by using dedicated hardware to implement some of the function-

ality originally calculated by software. The original speci�cation is in C
x
, a minimum

extension of the C programming language to allow parallel processes. Rate constraints

are speci�ed at the process level, while input/output timing constraints can only be

handled in a few specialized cases.

The original C
x
speci�cation is compiled into an Extended Syntax Graph of the

code, annotated with local and global data ow information. Timing information is

calculated using several approaches, including pro�ling and symbolic analysis [EY97].

With this timing analysis,Cosyma can identify which constraints are met and which

are not met with the all-software solution. Next comes partitioning.

Hardware/software partitioning occurs at the basic block level, which is seen as a

manageable compromise between �ne-grained (at the level of individual instructions)

and coarse-grained (at the level of processes or threads) partitioning. For basic blocks

implemented with software, a mixed pro�ling/static analysis technique is used to

estimate the worst case execution time (WCET) of the software code [EY97].

Basic blocks that are implemented in hardware are assumed to not have any

pointers. High-level synthesis is performed by the Braunschweig Synthesis Sys-

tem which produces Register-Transfer-Level (RTL) output for the Synopsys Design

CompilerTM (DC
TM

). DC
TM

then produces a �nal netlist. Several techniques are

used to estimate execution time of hardware, including list scheduling [Mic94] and

path-based scheduling [HE95].

Communication time is estimated based on the number of variables that need to

be passed between hardware and software for a given partition. Burst-mode commu-

nication is not supported.

CHAPTER 2. BACKGROUND 11

Cosyma uses simulated annealing in the partitioning process. Tens of thou-

sands of possible hardware/software partitions are considered very quickly (less than

a minute) in a typical run.

Cosyma was originally targeted to single processor with one coprocessor with

shared memory communication but has recently been expanded to target multiple

heterogeneous processors and coprocessors running in parallel communicating over

shared memory or point to point communication. Software processes mapped to the

same processor are statically scheduled.

The �nal output ofCosyma are the hardware blocks, statically scheduled software

processes, and appropriate communication primitives in hardware and in software. If

a solution is generated, it is guaranteed to meet the speci�ed rate constraints while

choosing the smallest hardware cost from among the partitions considered.

2.1.2 VULCAN

The VULCAN tool aims at reducing ASIC hardware cost [Gup95]. The reduction

in hardware cost is achieved by partitioning part of the design to software. The

original speci�cation is in Hardware-C [KD90], a Hardware Description Language

(HDL) which can be synthesized down to netlists with the Olympus Synthesis Sys-

tem [DKMT90].

The Hardware-C description, with rate and relative timing constraints, is mapped

to a �ne-grained Control-Data Flow Graph (CDFG) intermediate representation. By

�ne-grained we mean that nodes in the CDFG correspond to individual computa-

tions such as arithmetic operations. This is the level at which VULCAN carries

out hardware/software partitioning. At locations in the CDFG where a split between

hardware and software occurs, appropriate Inter-Block Communication (IBC) ver-

tices are added. IBC vertices for communication can be blocking, nonblocking, or

bu�ered. In addition, software has to be generated for portions of the CDFG mapped

CHAPTER 2. BACKGROUND 12

to software.

Assembly
Program

HDL
Specification

Graph
Model

compilation

constraint
analysis

partitioning

code synthesis

Program
Graph

C
Program

compilation

ASIC
Graph
Model

interface gen

Interface

strctural synthesis

ASIC Netlist

DLXCC

HEBE CERES

VULCAN

HERCULES

Input description and compilation

Co−synthesis tasks

Software compilation
Hardware synthesis

Figure 1: Vulcan Synthesis Tool in context

In order to map to software, all operations in the speci�ed computation have to

be serialized. Since the partial order of the CDFG speci�cation is naturally paral-

lel, this serialization problem is quite signi�cant. A heuristic algorithm iterates over

possible serial orders which also implement the partial order in the original speci-

�cation without violating any rate constraints. The end result is a set of software

program threads that can run with a custom software run-time scheduler. The run-

time scheduling of software routines in VULCAN uses a non-preemptive scheme, for

CHAPTER 2. BACKGROUND 13

example as provided by a prioritized FIFO scheduler [Gup95].

Hardware/software partitioning is carried out by means of a heuristic graph parti-

tioning algorithmwhich runs in polynomial time [Gup95]. The partitioning algorithm

considers di�erent partitions of the CDFG speci�cation between hardware and soft-

ware, with the goal of minimizing hardware cost while still meeting timing constraints.

A graphical representation of VULCAN is shown in Figure 1.

So far we have considered, from the large amount of research, two representative

systems for hardware/software partitioning. Next we will review a system for con-

trol dominated hardware/software co-design and then a system for signal processing

hardware/software co-design.

2.1.3 POLIS

The POLIS system aims at providing a synthesis system targeted to design and anal-

ysis of embedded controller applications with a mixed implementation split between

software and Application Speci�c Integrated Circuits (ASICs) [BCG
+
97]. The design

is originally speci�ed in a high level language such as Esterel [BG, BS91, Ber96],

graphical FSMs, or Verilog/VHDL subsets.

The fundamental model of computation in POLIS is the Co-design Finite State

Machine (CFSM), which supports a globally asynchronous, locally synchronous formal

model of the design. Each transition of a CFSM takes non-zero time, is atomic, and

can take on any value from a set of �nite values. The assumption of non-zero transition

time is made to avoid the composition problem of Mealy machines, due to undelayed

feedback loops. Communication between CFSMs is by means of events which may be

dropped (response to individual events is not guaranteed by POLIS).

In POLIS, the original design speci�cation is compiled to a network of CFSMs.

Sub-networks of CFSMs are targeted to hardware or to software; automatic synthesis

supports either choice. Hardware synthesis is achieved by generating a synthesizable

CHAPTER 2. BACKGROUND 14

HDL description and passing it on to a logic synthesis tool. Interfaces between hard-

ware, software, and the external world are automatically synthesized in the form of

cooperating circuits and software I/O drivers. For software executing on the same

processor, a custom scheduler (round-robin, static cyclic, or static priority) can be

compiled together with the CFSM-generated C-code, or a commercial Real-Time Op-

erating System (RTOS) can be added by hand. Co-simulation is provided using the

Ptolemy environment [BHLM94].

Thus, POLIS provides an environment where a designer can quickly evaluate

choices of hardware/software partitioning, architecture selection, and scheduler selec-

tion. The output of POLIS is the C-code for the selected processor and the optimized

hardware. This can be used, for example, in a board level prototype where the hard-

ware is implemented with Field-Programmable Gate Arrays (FPGAs). The POLIS

system is publicly available and has been used on several sample designs, such as a

dashboard controller.

2.1.4 COWARE

The goal of the CoWare system is to provide a design environment for heterogeneous

hardware/software Digital Signal Processing (DSP) systems [MBL
+
96, VRBM96].

CoWare was developed at IMEC Belgium, and is the basis for a commercial prod-

uct CoWare N2C [Cow98]. We describe here the original CoWare, based on

published research papers and presentations at international workshops and confer-

ences [MBL
+
96, VRBM96, VLM96a, VLM96b, RVBM96, MBL

+
97]. The CoWare

hardware software co-design environment allows the cospeci�cation of hardware and

software components using existing languages such as VHDL, Data Flow Language

(DFL)[WDC
+
94], Silage and C. CoWare provides unambiguous speci�cation of in-

terfaces between hardware and software, and correct synthesis of these interfaces in

hardware and software by generating both hardware interfaces and device drivers.

CHAPTER 2. BACKGROUND 15

CoWare is based on a data model of communicating processes and supports the

gradual re�nement of a high level description into an interconnection of programmable

processors and dedicated, synthesizable hardware. The model supports the re-use and

encapsulation of hardware and software by a clear separation between the functional

behavior and the communication behavior of a system component.

The current version of CoWare supports the use of the ARM processor and

various software tools such as a simulator and compiler for ARM and commercial

VHDL simulators, logic synthesis and DSP synthesis tools.

The basis for this speci�cation method is a data model for communicating pro-

cesses. The model supports a strict separation between functional and communication

behavior. Designs are made reusable by describing their functional behavior while

maintaining an abstract model of their communication behavior. When a design is ac-

tually (re-)used in a system, the speci�cation method allows one to re�ne the abstract

communication model into a detailed behavior that is more appropriate in the system

context. The same speci�cation method is used to model o�-the-shelf programmable

processors, and these models are used in a processor independent hardware/software

co-design methodology.

Synthesis tools and compilers are able to implement all processor, accelerator,

and memory components once the global system architecture has been de�ned. The

CoWare design environment provides for integration of existing design technology

by automatically generating the interfaces that link these design environments and

by interfacing the generated and o�-the-shelf processors in a way that is consistent

with the system speci�cation.

Designing a system with the CoWare environment involves four steps: func-

tional speci�cation, architecture de�nition, communication selection, and component

implementation [VRBM96].

Functional speci�cation. A system is speci�ed by means of communicating

CHAPTER 2. BACKGROUND 16

processes that exchange data via channels. The behavior of a process can be entered

using a host language such as C, DFL or VHDL.

Architecture de�nition. Optimally allocate processors, accelerators and mem-

ories, binding them to the functional speci�cation. This interactive allocation and

binding step includes the hardware/software partitioning.

Communication selection. Automatically generate the necessary software and

hardware to make processors, accelerators and the di�erent environments commu-

nicate. This step is performed via the SYMPHONY interface synthesis toolbox.

Communication Blocks (CBs) provide pipelining and synchronization between accel-

erators. The communication between the hardware and the software for the ARM

processor is more complex. The ARM interface includes address decoders, DMA

channels, interrupts and I/O ports. Within the ARM, software drivers must be syn-

thesized and linked to the processes running on the ARM.

Component implementation. All components in the system such as acceler-

ator processors, interface hardware and software, memories, software running on a

processor core, and debugging blocks are implemented using existing design environ-

ments. CoWare embeds di�erent component compilers into the design environment,

such as the ARM C-compiler and commercial VHDL/DSP synthesis environments.

The basic model of communication in CoWare is the Remote Procedure Call

(RPC). An example can be seen in Figure 2. The RPC connections can be seen

between blocks. The cascaded blocks show di�erent abstraction levels of the same

functionality. The \abstract CoWare C" is C code written for CoWare and not

targeted to any particular processor. \C for CPU" is C code targeted to a particular

processor, e.g. an ARM. Finally, RTL is a Register-Transfer Level description in

some HDL, typically Verilog HDL or VHDL. Notice that any RPC connection can

communicate with an RPC connection at any other level of abstraction { abstract

CoWare C, C for CPU, or RTL.

CHAPTER 2. BACKGROUND 17

C for CPU
RTL

RPC

RTL C

CPU

sw driver
hw I/F

I/F bus

 HW
Block

in, out, in/out

C for CPU
RTL

Block B
abstract
CoWare C

Block A
abstract
CoWare C

Figure 2: CoWare simulation paradigm and sample implementation

The bottom half of Figure 2 shows a hardware implementation of the RPC com-

munication paradigm. CoWare synthesizes the software device driver as well as the

logic in hardware to read data from the interface (I/F) bus.

Thus, a mixed system level speci�cation in which part of the system is already

implemented while another part is still speci�ed at the behavioral level can be co-

simulated. For this purpose, existing simulators can be integrated into the environ-

ment. Currently, Synopsys' VSS simulator for VHDL and the ARM instruction set

simulators (both instruction accurate and cycle accurate) have been linked [MBL
+
97].

CoWare operates very much like a linker, providing an executable that can

be linked to instruction set simulators as well as other modules. The CoWare

methodology imposes increased demands on the generation of library elements. Often,

abstract and detailed models of IP blocks do not exist. Existing IP blocks, for which

CHAPTER 2. BACKGROUND 18

Verilog HDL code currently exists, require additional work to generate validated

abstract CoWare C models.

2.1.5 CHINOOK

The Chinook system aims at providing automated interface synthesis within a hard-

ware/software co-design framework for embedded systems [BCO96, COB95, CB94,

CWB94, COB92]. A single speci�cation language, e.g. Verilog HDL, contains both

behavioral and structural descriptions of the application, including information about

the processors, peripheral devices, and communication interfaces that will be used.

Parts of the behavioral speci�cation are tagged for preferred implementation in a

particular processor or dedicated hardware, with any untagged speci�cation assumed

to be implemented in software. All interactions with the devices and interfaces are

speci�ed using a procedural abstraction layer.

Process scheduling in Chinook is achieved by assigning di�erent modes of opera-

tion to the overall system. A di�erent schedule is associated with each mode. Timing

watchdogs can disable modes and cause mode transitions. Upon changing to a new

mode, the system starts running the corresponding schedule. Timing constraints may

be intermodal or intramodal. Each mode has a periodic set of tasks, which is unrolled

and scheduled under timing constraints, using an extension of the relative scheduling

formulation [KM92]. With this scheduling technique, Chinook supports the map-

ping of an embedded system model to one (or more) processor and peripherals while

ensuring the satisfaction of timing constraints.

Chinook synthesizes device drivers, interface logic, and bus logic necessary for

communication among hardware and software. For processors with general pur-

pose I/O ports, a heuristic allocates the ports to minimize interface logic; otherwise,

memory-mapped I/O is used, which includes allocating address spaces. Knowledge

about the interfaces of processors and devices, which Chinook needs to carry out

CHAPTER 2. BACKGROUND 19

the synthesis, is captured in libraries.

New e�orts in the Chinook system emphasize distributed architectures [HB97,

OB97].

2.2 Hardware Scheduling

In this section we will briey discuss some of the scheduling approaches used in high-

level synthesis of hardware. In this case we have a model containing a set of operations

and dependencies. The hardware implementation is assumed to be synchronous,

with a given cycle-time. Operations are assumed to take a known integer number

of cycles to execute. (We will later consider removing this assumption.) The result

of scheduling, i.e., the set of start times of the operations, is just a set of integers.

The usual goal is to minimize the overall execution latency, i.e. the time required to

execute all operations.

2.2.1 Integer Linear Programming

The scheduling problem can be cast as an integer linear program (ILP) [Mic94], where

binary-valued variables determine the assignment of a start time to each operation.

Linear constraints require each operation to start once and to satisfy the precedence

and resource constraints. Latency can also be expressed as a linear combination of

the decision variables. The scheduling problem has a dual formulation, where latency

is bounded from above and the objective function relates to minimizing the resource

usage, which can also be expressed as a linear function. Timing and other constraints

can be easily incorporated in the ILP model.

The appeal of using the ILP model is due both to the uniform formulation, even

in presence of di�erent constraints, and to the possibility of using standard solution

packages. Its limitation is due to the prohibitive computational cost for medium-large

CHAPTER 2. BACKGROUND 20

cases. This relegates the ILP formulation to speci�c cases, where an exact solution is

required and where the problem size makes the ILP solution viable.

2.2.2 List Scheduling

Most practical implementations of hardware schedulers rely on list scheduling, which

is a heuristic approach that yields good (but not necessarily optimal) schedules in

linear (or overlinear) time. A list scheduler considers the timeslots one at a time, and

schedules to each slot those operations whose predecessors have been scheduled, if

enough resources are available. Otherwise the operation execution is deferred. Ties

are broken using a priority list, hence the name.

2.2.3 Relative Scheduling

The synchronization of two or more operations or processes, often with exact cy-

cle minimum and maximum separation timing constraints, is an important issue in

hardware scheduling. Synchronization is needed when some delay is unknown in the

model { the assumption that all operations take a known integer number of cycles

to execute is removed. Relative scheduling is an extended scheduling method to cope

with operations with unbounded delays [KM92] called anchors. The presence of an

anchor means that a static schedule cannot be determined. Nevertheless, in relative

scheduling the operations are scheduled with respect to their anchor ancestors. A

FSM can be derived that executes operations in an appropriate sequence, on the ba-

sis of the relative schedules and the anchor completion signals. Relative scheduling

support the analysis of timing constraints; when these constraints are consistent with

the model, any resulting schedule generated is guaranteed to satisfy the constraints

for any anchor delay.

CHAPTER 2. BACKGROUND 21

2.2.4 Conditional Process Graphs

A recently published paper considers the case where a Directed Acyclic Graph (DAG)

speci�es a set of processes with precedence constraints [EKP
+
98]. Each edge in the

DAG may have a conditional associated with it.

The goal is to generate a static schedule which will minimize the execution time of

the DAG for any allowable value of the conditionals. Since this may require activations

of di�erent tasks in di�erent orders, they keep track of the possible paths using a

schedule table. Alternative paths through the DAG are captured with BDDs. There

may be a conict, where, for example, the optimal schedule of one path requires

that process P3 be scheduled at time tk, while the optimal schedule of another path

requires that P3 be scheduled at time tl, tk 6= tl. Conicts are handled by adjusting

one of the path schedules.

This technique is applicable to hardware/software systems. The end result is a

distributed run-time scheduler composed of non-preemptive schedulers. Conditionals

are broadcast so that individual schedulers can dynamically choose the appropriate

schedule for the processes under their control. For the case where each process can

be allocated either to hardware or to a programmable processor, then this scheduling

technique applies to hardware/software co-design.

2.3 Software Scheduling

Wewill next examine some representative examples of previous approaches to schedul-

ing for real-time software systems. The goal is software scheduling to meet real-time

constraints. In the following, the assumption is that a large scale software system,

with hundreds or thousands of individual tasks with many di�erent periods and dead-

lines, is being designed.

CHAPTER 2. BACKGROUND 22

2.3.1 Round-Robin Scheduling

The round-robin scheduling algorithm takes a small slice of time and allocates each

process on a circular queue the time slice. If the process takes less than the time

slice to execute, then the scheduler immediately goes to the next process in the

circular queue. Otherwise it preempts the currently executing process at the end of

the time slice and runs the next process in the queue. As the size of the time slice

approaches in�nity, the round-robin policy becomes the same as the First-Come-First-

Served (FCFS) policy. While this algorithm is very predictable and by design avoids

starvation and deadlock, unfortunately it can result in large average waiting time and

many extra context switches.

2.3.2 Shortest Job First

The shortest-job-�rst scheduling algorithm requires that each process have associated

with it the length of uninterrupted CPU execution it needs next. This length can

either be the entire length of the process or the length of the next CPU burst where

it will heavily use the CPU (as opposed to waiting on I/O or for synchronization

with other processes). Then, shortest-job-�rst assigns the CPU to whichever avail-

able process has the smallest length of uninterrupted CPU execution associated with

it. When that process �nishes, the CPU is assigned again to the process with the

shortest length. While the shortest-job-�rst algorithm is optimal in terms of mini-

mizing the average waiting time, it may result in missing timing constraints where

another schedule would have met the timing constraints.

2.3.3 Rate-Monotonic Analysis

Rate Monotonic Analysis (RMA) [LL73] and Generalized Rate Monotonic Analysis

(GRMA) [SRS94] both assume that tasks are independent and that each task has its

CHAPTER 2. BACKGROUND 23

own period and deadline which are the same and never change. Furthermore, each

task is assumed to have a constant run-time which does not change over time. In

RMA, the rate-monotonic priority assignment assigns higher priorities to tasks with

higher priorities. Such a priority assignment has been proven optimal in the sense that

no other �xed priority assignment can schedule a set of tasks which cannot be sched-

uled (without missing deadlines) by the rate-monotonic priority assignment [LL73].

Liu and Layland were able to prove the following theorem:

Theorem 2.1 A set of n independent periodic tasks scheduled by the rate-monotonic

algorithm will always meet their deadlines for all task start times, if

C1

T1
+

C2

T2
+ : : :+

Cn

Tn
� n(2

1

n � 1)

where Ci is the execution time and Ti is the period of task �i.

Theorem 2.1 ignores all overheads (assumed to be zero). The bound on the uti-

lization n(2
1

n � 1) rapidly converges to ln 2 = 0.69 as n becomes large.

GRMA adapts the RMA framework to deal with problems typically faced in real-

time software systems. For example, a typical problem is priority inversion. This

occurs when a lower priority process holds a critical resource, thereby preventing

a higher priority process from executing when it interrupts and tries to access the

critical resource: the priorities of the two process have been inverted because the

lower priority process has, in e�ect, made itself higher in priority. Thus, GRMA

supports the priority ceiling protocol, which avoids mutual deadlock arising from the

priority inversion problem [SRL90, Raj91]. The deadlock is avoided by having any

lower priority process holding a critical resource inherit the priority of any higher

priority processes which try to access the resource, until the lower priority process

CHAPTER 2. BACKGROUND 24

releases the resource (at which point the lower priority process resumes its original

priority).

RMA has also been extended to account for release jitter and some cases of re-

source contention [ABD
+
95, ABR

+
93].

However RMA and GRMA both fail when the tasks have precedence constraints.

We assume the presence of precedence constraints in the system in this dissertation.

2.3.4 Least Common Multiple

RMA has also been extended to allow precedence among tasks by formulating the

problem as a big task with the length of the Least Common Multiple (LCM) of all the

periods [Ram95, Ram90, PS89]. Unfortunately, this approach is usually impractical

for hardware/software co-design for several reasons:

� First of all, it is di�cult to handle a situation where the period and computation

times are nondeterministic but bounded, since a period of a LCM does not

represent all possible situations [YW96, YW95].

� Secondly, the task periods can be large and co-prime, resulting in a LCM too

large to be practical.

� Thirdly, it discourages static allocation and scheduling because it treats di�erent

instances of the same task as di�erent nodes in the LCM.

One approach to deal with the third problem mentioned above is to use the con-

cept of an association array which keeps track of the priority level, allocation to

hardware or CPU, deadline, and best/worst-case execution time for each copy of each

task [DLJ97, DJ98].

CHAPTER 2. BACKGROUND 25

2.3.5 Real-Time Kernel in Hardware

A common approach is to encapsulate software scheduling algorithms into a fast but

general purpose operating system, called a Real-Time Operating System (RTOS). The

basic idea is to provide the functionality needed by real-time software systems without

the large overhead associated with traditional operating systems. A good overview

of RTOS research in scheduling algorithms is contained in [SSNB95].

One interesting RTOS research direction implements a small real-time kernel in

hardware to run in parallel with multiple processors [AFLS96, LSF95, Lin92, LS91].

The real-time kernel contains a scheduler with a priority scheduling algorithm, a

dispatcher which controls the task switch mechanism, a wait queue for inactive tasks,

a wait queue for tasks waiting for a time event, and a ready queue. A prototype of

the system contains a VME bus connecting the real-time kernel in hardware, a bus

arbiter in hardware, a large RAM, and three processors. To schedule a software task

on a particular processor, the kernel triggers an interrupt on the processor, which

results in placing the task id of the new task in a register on the processor. The new

task id is read from that register, performing a task switch. The real-time kernel can

handle a maximum of 64 tasks at 8 priority levels [AFLS96].

2.4 Control-Flow Expressions

Control-ow expressions (CFEs) [CM96, Coe96, CM97] support system-level speci-

�cations in an algebraic formalism that considers most of the language constructs

used to model systems reacting to their environment, i.e. sequential, alternative, con-

current, iterative, and exception handling behaviors. Such constructs are found in

languages such as C, Verilog HDL, VHDL, Esterel and StateCharts. CFEs can spec-

ify control ow that satis�es relative timing constraints (minimum and maximum

CHAPTER 2. BACKGROUND 26

Composition HL Representation CF Expression

Sequential begin P ; Q end p � q

Parallel fork P ; Q join pkq

Alternative

if (C)

P ;

else

Q ;

c : p+ c : q

Loop

while (C)

P ; (c : p)�

wait (!C)

P ; (c : 0)� � p

In�nite
always

P ;
p!

Table 1: Link between Verilog HDL Constructs and Control-Flow Expressions

separation)[KM92] in hardware while also controlling dynamically the ow of execu-

tion.

2.4.1 Formalism

Input events of a control-ow are speci�ed by conditionals, which enable di�erent

blocks of the speci�cation to execute based on the input. Output control signals

are speci�ed by actions which control execution according to the control-ow; for

example, an action becoming asserted may indicate that a multiplier should begin

execution. Table 1 shows the correspondence between CFEs and standard Verilog

HDL control-ow constructs.

Example 1 Suppose we have an alternative choice where based on conditional c, we execute

either an adder, represented by CFE action a, or a multiplier, represented by CFE action m.

The CFE description of this conditional choice, assuming that the adder and the multiplier are

single-cycle actions, is as follows: c : a+ c : m 2

CHAPTER 2. BACKGROUND 27

Any CFE expression can be compounded sequentially or in parallel with any other

CFE expression. Furthermore, with CFEs one can represent the control ow of most

digital systems.

Synchronization constraints are speci�ed through the use ofNEV ER andALWAY S

sets. NEV ER sets model mutual exclusion; for example, NEV ER = fa; b; cg indi-

cates that actions a, b, and c can never be active at that same time. In a similar

vein, tasks that must begin execution concurrently are speci�ed through the use of

ALWAY S sets; e.g. ALWAY S = fa; b; cg indicates that tasks a, b, and c must

each begin execution at the same time. Thus, with conditionals, NEV ER sets, and

ALWAY S sets, CFEs can specify and consider constraints crossing concurrent blocks

of the design, which are generally ignored in other synthesis tools.

Using conditional execution within a loop models an action with unbounded delay,

e.g. as shown by the CFE construct (c : p)�. Using a composition of these unbounded

conditional executions can model a sequence of hardware and software tasks with

unknown delay. Thus, with CFEs one can dynamically control the execution task,

beginning a subsequent task after, and exactly after, all of its preceding tasks have

�nished execution.

Example 2 Suppose we want to execute the following tasks in�nitely often: a followed by b,

in parallel with d followed by e. Tasks a and d have nondeterministic delay. Tasks b and e take

one cycle each. There are no constraints, i.e. no relative timing constraints, NEV ER sets, or

ALWAY S sets. Associating a CFE control signal and a CFE action with each task, we end up

with the following expression (recall that in CFE semantics, � indicates zero or more cycles, jj

indicates parallel execution, � indicates serial execution, and ! indicates an in�nite loop):

(((c1 : a)� � b)jj((c2 : d)� � e))! 2

CHAPTER 2. BACKGROUND 28

2.4.2 Synthesis with CFEs

The synthesis procedure begins by converting the control-ow expressions into an

automaton where design constraints such as timing, resource and synchronization are

incorporated. The synthesis is conservative in the sense that a solution is produced

only if the speci�ed constraints, such as relative timing constraints, are satis�ed. In

order to generate the control-units for the design, two scheduling procedures are used.

The �rst procedure, called static scheduling, attempts to �nd �xed schedules for op-

erations satisfying system-level constraints. The second procedure, called dynamic

scheduling, attempts to synchronize concurrent parts of a circuit description by dy-

namically selecting schedules according to conditionals from the rest of the system.

The solution of both scheduling problems are cast as Integer Linear Programming

instances and solved using Binary Decision Diagrams.

Verilog

BDD Solver

Thalia2

Control−units in
 synthesizable
 Verilog

CFEs

Control Flow
 Automaton

Figure 3: Thalia2 Synthesis from CFEs

CHAPTER 2. BACKGROUND 29

2.4.3 Thalia

The algorithms to synthesize a controller from a CFE speci�cation have been imple-

mented in a tool called Thalia [CM96, Coe96] which outputs a logic description.

This logic description can be synthesized by commercial (e.g. Synopsys) or research

(e.g. Olympus[DKMT90] or SIS[SSM+
92]) synthesis systems. We have modi�ed

Thalia slightly in order to output synthesizable Verilog HDL; we call the new tool

Thalia2, as shown in Figure 3.

2.5 Bounds on Execution Time

Real-time systems design requires bounds on execution time of the various compo-

nents. The lower bound is often referred to as the Best-Case Execution Time (BCET),

while the upper bound is referred to as the Worst-Case Execution Time (WCET).

Recent previous approaches to such real time analysis have focused on software, since

the performance analysis of ASICs is considered a well studied problem already. One

such approach is that of the cinderella tool [MWWL96, LM95], which this section

discusses since we will use cinderella in the timing analysis presented in this thesis.

cinderella addresses the problem of determining BCET and WCET bounds

for a given program executed on a given processor, assuming uninterrupted execu-

tion. Two important issues in solving this problem are (i) program path analysis,

which determines which sequence of instructions will be executed in the worst case,

and (ii) microarchitecture analysis, which requires modelling the hardware system to

determines the BCET and WCET execution bounds for a given sequence of assem-

bly instructions. cinderella divides the assembly code into its basic blocks and

extracts the control-ow among the blocks. Thus, explicit path enumeration is not

required by cinderella. Software is assumed to not have dynamic memory allo-

cation nor recursive function calls. However, loops are allowed as long as the user

CHAPTER 2. BACKGROUND 30

can provide upper bounds for each loop speci�ed. Then, using an ILP formulation,

cinderella �nds a BCET and a WCET for the program in clock cycles of the mi-

croprocessor clock. Target microarchitectures include the Intel i960KB processor and

the Motorola 68000 processor [MWWL96, LM95]. We have ported cinderella to

the MIPS R4000 processor.

2.6 Summary

We have shown some representative samples of previous work in hardware/software

co-design and algorithms for real-time scheduling of software. In hardware/software

co-design, we have seen several systems for hardware/software partitioning and eval-

uation of di�erent hardware/software tradeo�s. Only a few of the systems considered

have as a primary goal the support of heterogeneous input in both a software language

and an HDL, which will be the approach we take in this thesis. Finally, some of the

previous work in scheduling for hardware and for �nding bounds on the execution

time of software was discussed.

None of the previous hardware/software co-design systems focus on run-time

scheduling, and all place the run-time scheduler on the CPU (hardware is assumed

to have a static schedule implied by the input description of the application). This

thesis extends previous work to support dynamic interleaving of hardware-software

execution, where by dynamic we mean that exact start times are not statically de-

termined but instead are decided at run-time based on actual execution times. To

achieve this, we present the �rst implementation of a run-time scheduler split partly

in hardware and partly in software. Furthermore, real-time analysis will be provided

to determine a WCET for the system.

In the next chapter, we will explain the target architecture for our system, the

small kernel to control software running on a microprocessor, run-time scheduler

CHAPTER 2. BACKGROUND 31

implementation details, and the approach to modelling of the system.

Chapter 3

Target Architecture, Kernel, and

System Model

We aim at supporting system-level design with hardware/software tasks custom de-

signed for a target architecture. We refer to the tasks in hardware as hardware-tasks

and to the tasks in software as software-tasks. We assume the existence of mature

high-level synthesis tools and software compilers, as well as intellectual property in the

form of processor and controller cores. We assume that the system requires both static

scheduling, especially in the coordination of hardware-tasks, and dynamic scheduling,

given the inexact delay of software and the randomness of the stimuli coming from the

environment. A run-time scheduler must meet both of these scheduling requirements.

We will present the Serra tool, which automates the generation of the run-time

scheduler, thus providing for the synchronization and scheduling of system-level com-

ponents in hardware and software.

Our approach assumes a coarse-grained partition of the system into tasks. We as-

sume tasks model system components of signi�cant sizes, and that the system consists

of around ten to a hundred tasks. The tasks are assumed to model either hardware

or software and to be written either in Verilog HDL or in C. This approach matches

32

CHAPTER 3. TARGET ARCHITECTURE, KERNEL, AND SYSTEM MODEL33

design practice, where designers often describe their systems in a heterogeneous way,

using description languages appropriate to the subsystem being implemented.

3.1 CAD Requirements

Figure 4: PUMA Arms (Courtesy of the Computer Science Robotics Lab at Stanford)

Example 3 As a motivational example, consider the set of control algorithms of Figure 5.

These algorithms calculate torques for the PUMA[AKB86, Uni84] robot arms shown in Figure 4.

We assume that the controller manages two arms at the same time, and thus any two of

the algorithms may be selected in each execution. An execution of the arm controller must

complete calculation of new torques for the arms once every millisecond. Since each arm has six

degrees of freedom, only six new torque values need to be communicated for each update; thus,

the amount of data ow in the system is small. However, the algorithms (\laws" in robotics

terminology) need to maintain oating point matrices representing the kinematics and dynamics

of the arms, so that the computation would be di�cult to represent concisely in, for example,

�nite-state machines. This control approach is also drastically di�erent than the fuzzy logic

adaptive control in [ACJ96].

CHAPTER 3. TARGET ARCHITECTURE, KERNEL, AND SYSTEM MODEL34

calc
joint
dynamics

saturate
velocity

sat

convert
force
torque

find
jacobian

find
jacobian
transpose

calc
gravity

singular

calc
lambda
mu

sum
vector

matrix
vector
multiply

Jhold
 Law:

matrix
vector
multiply

oh2

oh3

matrix
vector
multiply

oh4

Ohold
 Law:

Ohold2
 Law:

find
jacobian

matrix
vector
multiply

oh2

Ohold
 Law

0 1

oh3

0

1
calc
joint
dynamics

matrix
vector
multiply

calc
gravity

sum
vector

matrix
vector
multiply

matrix
vector
multiply

 forward
kinematics

Figure 5: Robotics Example: Concurrent Control Algorithms

Figure 5 shows three of the ten di�erent algorithms (laws) used with a PUMA arm; Ohold2

Law, Ohold Law, and Jhold Law are top-level tasks which call subtasks in a particular sequence.

The coarse-grained partitions of Ohold2 Law, Ohold Law, and Jhold Law contains calls to many

common subtasks. Some of the subtasks involve hardware components with timing constraints

speci�ed on a cycle basis. 2

The CAD requirements for co-design of a system such as Example 3 are as follows.

First, we need to satisfy hard real-time constraints imposed by some of the hardware

components in the system as well as by external hardware. Second, we need to opti-

mize the run-time system over calls to multiple tasks in hardware and software. This

involves allocation of tasks to hardware and software as well as interface generation

for communication. Third, we need to guarantee a hard real-time rate constraint

across tasks in hardware and in software. The handling of multiple-rate constraints

is beyond the scope of this thesis.

We design our run-time scheduler CAD tool, which we call Serra, to work with

CHAPTER 3. TARGET ARCHITECTURE, KERNEL, AND SYSTEM MODEL35

behavioral
 Verilog C constraints

 Interface
Generation

User options
(protocols,
 fifos, RAM
 model, core)

behavioral
 Verilog

BC

BC

RAM
L1

V1 Vn

Ι RTS.c

*.c

 Serra
Run−Time
Scheduler
Synthesis

RTS.v
...

 RTL
 Verilog

DC

 System Specification

User options
(microprocessor
 core, RAM size)

wcet

wcet cinderella−M

CPU
Core1

Figure 6: Tool Flow and Target Architecture

existing hardware synthesis and software compilation tools. Figure 6 shows the tool

ow in which Serra is embedded. Hardware-tasks are speci�ed in Verilog HDL

that can be synthesized by the Synopsys Behavioral Compiler
TM

[Kna96] (labeled BC

in Figure 6; DC labels the Design Compiler
TM

). Software-tasks are written in C.

Microprocessor cores, memories (DRAM, SRAM), FIFO models, and other custom

blocks are assumed as available inputs to the system.

The system-level tasks in Verilog HDL and C, as well as constraints, are input to

a tool that generates the interface and to Serra. Constraints include relative timing

constraints (minimum and maximum separation), resource constraints, and a single

rate constraint. The implementation of the synthesized system can vary from a system

on a chip to a board or set of interconnected components. The overall control/data

ow of the run-time scheduler is synthesized into hardware, while the necessary code

for calling tasks in software is generated as well. Further aspects of an RTOS can

CHAPTER 3. TARGET ARCHITECTURE, KERNEL, AND SYSTEM MODEL36

be added in software by the user if desired, although Serra's WCET calculation

assumes that only the software which Serra generates is run on the microprocessor.

We wrote a new backend for the tool discussed in Section 2.5, cinderella[MWWL96,

LM95]. The new backend is for MIPS assembly run on a MIPS R4000 proces-

sor; we call the new tool cinderella-M. Software-tasks are compiled and input

to cinderella-M, which outputs a WCET for each task. Similarly, from the hard-

ware synthesis of the Synopsys Behavioral Compiler
TM

(BCTM
)[Kna96], we obtain

an exact execution time for each hardware-task, which we take as a WCET for the

hardware-task. TheWCET value for each task is required in order to analyze whether

or not we will always meet our rate constraint.

The run-time scheduler synthesis of Serra supports the execution of software-

tasks through an interrupt triggering mechanism where hardware communicates to

a software scheduler which of the software-tasks are ready to execute. The Clara

tool, which is embedded within the Serra system, takes as input the worst case ex-

ecution time (WCET) for each task and then provides for the automated generation

of priorities for the software-tasks to be run on a preemptive �xed priority scheduler

as well as the serial order for hardware-tasks executed using the same hardware re-

source. These software-task priorities and hardware-task serial orderings are chosen

to minimize WCET for subsets of hardware- and software-tasks under a hard real-

time rate constraint. Thus, Serra provides the user with the ability to evaluate the

performance of di�erent partitions with an automatically generated run-time sched-

uler (system). For example, the user can migrate a task from C to Verilog HDL to

speed up a critical path in the algorithm.

This thesis focuses on the synthesis and analysis of a custom run-time scheduler.

CHAPTER 3. TARGET ARCHITECTURE, KERNEL, AND SYSTEM MODEL37

3.2 Target Architecture and Kernel

Our target architecture consists of a CPU core with multiple hardware modules,

each implementing a particular hardware-task. The CPU has a two-level memory

hierarchy consisting of instruction and data caches with a large RAM. Since we target

embedded systems, we assume that the RAM is large enough to hold all the program

code needed.

3.2.1 Task Execution

We associate a start and a done event with each task in order to allow the scheduler

to control the task. In hardware the two events are simply signals on an input port

and an output port, respectively. For software, we have a start vector and a done

vector which encapsulate the start and done events for each software-task.

Note that some tasks are called multiple times by other and di�erent tasks, such

as matrix vector multiply in our robot example, as can be seen in Figure 5. Some

real-time constraints in hardware can be satis�ed by high-level synthesis. However,

constraints at the task level must be handled by the run-time system. How can

the run-time system dynamically allocate tasks while at the same time predictably

satisfying exact timing constraints between tasks?

The solution to predictability comes from a hardware solution with cycle based

semantics. Thus, constraints between events in exact units of cycles can be pre-

dictably met. We solve this scheduling problem using a hardware cycle based FSM

implementation of the part of the scheduler which chooses which task(s) to execute

next.

CHAPTER 3. TARGET ARCHITECTURE, KERNEL, AND SYSTEM MODEL38

3.2.2 Run-Time Scheduler Implementation

We split the run-time scheduler into hardware and software based on an analysis of

the constraints. We hypothesize that exact relative timing constraints between tasks

cannot be satis�ed by software. Thus, we have the problem of choosing between the

predictability of satisfying real-time constraints in hardware and the desirability of

having some features of an RTOS. We try to accommodate both choices by putting in

hardware a FSM corresponding to the task control ow of the system, while putting in

software a reactive executive which calls the appropriate software-tasks when signaled

by the hardware FSM.

Therefore we split the run-time scheduler into two parts:

� An executive manager in hardware with cycle-based semantics that can satisfy

hard real-time constraints.

� A preemptive static priority scheduler that executes di�erent threads based on

eligible software-tasks as indicated by the start vector.

CPU
core1

done
start

done
start

RTS.v

CPU Interface

memory controller

done
start

done
start

RAM

64

int

V1 Vn...

L1

Figure 7: Target Architecture

CHAPTER 3. TARGET ARCHITECTURE, KERNEL, AND SYSTEM MODEL39

Figure 7 shows the target architecture of our system. At the top we have a CPU

core with a level 1 cache and copies of the start and done vectors in on-chip registers.

The bottom shows n hardware tasks V 1 through V n. The executive manager hard-

ware FSM is labeled RTS:v and generates all the start events as well as receives all

the done events. This FSM is synthesized to implement the overall system control

and can predictably meet the relative timing constraints, if satis�able, speci�ed in

exact numbers of cycles between the start times of tasks.

3.2.3 Control of Software

The hardware run-time scheduler updates the start vector in software as follows.

First, it updates its local register containing the start vector. Then it triggers an

interrupt on the CPU. The CPU interrupt service routine (ISR) reads the register

using memory-mapped I/O and places it into the software copy of the start vector.

Figure 7 shows both the start and done vectors in registers in RTS:v and their copies

in on-chip registers in CPUcore1.

The start vector may specify that several software tasks are ready to be executed.

Thus, we generate a preemptive static priority scheduler which executes the highest

priority software-task among the tasks indicated by the hardware FSM as ready to

execute. The priority-based scheduler is always called by the ISR after fetching the

new start vector into memory, and whenever a software-task terminates.

When a software-task is �nished executing, it updates the done vector by writing

the new value of done out with memory mapped I/O. Thus, the done vector in the

run-time scheduler in hardware is updated. Notice that in the above two cases,

a dedicated port could be used instead of memory-mapped I/O, depending on the

CPU.

CHAPTER 3. TARGET ARCHITECTURE, KERNEL, AND SYSTEM MODEL40

3.2.4 Software Generation

For the software that runs on the microprocessor core (CPU), the individual software-

tasks are compiled and linked using standard C compilers and linkers. The software

tasks are compiled and linked into assembly, with data and program memory stati-

cally allocated. Memory-mapped I/O is called with C pointers set explicitly to the

appropriate addresses. We thus have a table of software-tasks and their entry points

as shown in Table 2.

Entry Value

0 Pointer to sw-task 0

1 Pointer to sw-task 1

. . . .

n Pointer to sw-task n

Table 2: Entry Table for Software-Tasks

Therefore, given a particular value of the start vector, the appropriate software-

task(s) can be executed. The typical sequence of events in software is as follows:

� A hardware interrupt trigger the execution of the ISR.

� The ISR updates the start vector and, if a higher priority task has become

ready, calls save context.

� A priority scheduler updates the task data structure and executes the highest

priority task now ready. If needed, the priority scheduler calls restore context.

� When a software-task is �nished, it writes out the new value of the done vector.

An advantage of this approach is that it can support standard RTOS scheduling

algorithms (round-robin, rate-monotonic, etc.), although we only consider a static

CHAPTER 3. TARGET ARCHITECTURE, KERNEL, AND SYSTEM MODEL41

(�xed) priority scheme here. Multiprocessing is helpful when a low-priority, long

duration software-task is ready to execute at the same time as a high priority, short

duration software-task, but a price is paid when switching context. A disadvantage of

multiprocessing is the slower response time due to added overhead for implementing

the RTOS scheduling algorithm, polling executive, and associated context switches.

Another possible option which has lower overhead is to have the ISR directly in-

voke each software-task, executing each task in kernel mode, as discussed in [MSM97].

Such a scheme, however, does not allow a lower priority task to execute while an un-

executed higher priority task is not yet ready. Thus, in this thesis we only consider a

priority driven scheme.

3.2.5 Priority Scheduler Template for Software

A task can be in one of two states: running=suspended or ready=terminated. In

our simpli�ed real-time operating system, once a software-task has completed (ter-

minated), it is ready to run again, so we overlap the traditionally distinct ready and

terminated states into one. The running=suspended state, combined with the infor-

mation in the start and done vectors, tells us whether or not restore context needs

to be called before invoking the highest priority task. In particular, if a higher prior-

ity task just �nished execution and the next highest priority software task ready to

execute is in the running=suspended state, then we know that it must have been ex-

ecuting earlier at some point. Thus, we execute a restore context for that process.

Otherwise, we simply jump to the starting PC for the task.

Note that the interrupt service routine (ISR) is responsible for calling save context

if needed. The register �le that contains the process state information is saved only

when the new start vector indicates that a higher priority task is now ready to exe-

cute (i.e. we eliminate context switching when one task ends and a new task begins,

in which case there is no need to save/restore the register �le).

CHAPTER 3. TARGET ARCHITECTURE, KERNEL, AND SYSTEM MODEL42

In operating systems terms, the run-time scheduler software portion implements

priority-based job scheduling (multiprogramming). Strictly speaking, this is not mul-

titasking since there is no time-shared access to CPU compute cycles.

Clearly, for this implementation to work, we need a priority for each software-

task. We obtain the priorities from the real time analysis, which will be explained in

Chapter 4. We now turn to modeling issues.

3.3 System Modeling

Wait
Next
Tick
(wnt)

 Get
Position1
 (gp1)

 Get
Velocity1
 (gv1)

 Get
Position2
 (gp2)

 Get
Velocity2
 (gv2)

 Handle
Message
 (hm)

 Set
Torque2
 (st2)

 Set
Torque1
 (st1)

Jhold
 Law
 (jh)

Note: wnt, gp1, gv1, gp2, gv2,
jh,oh,st1,st2, and hm are the
events associated with each task.

start

Which two laws to execute
concurrently in the next
iteration are selected by

Epsilon

Ohold1
 Law
 (oh)

Figure 8: Robotics Example: Main Task

The input speci�cation is a collection of tasks written in Verilog HDL or C, with

one of the tasks designated as the main task. The main task begins execution and

calls the other tasks. The main task speci�es the overall sequence of tasks in the

application (an example of a main task can be seen in Figure 8). From each task we

extract a Control/Data-Flow Graph (CDFG) of the tasks it invokes, where each node

in the CDFG corresponds to a call to another task. If a task does not call any other

CHAPTER 3. TARGET ARCHITECTURE, KERNEL, AND SYSTEM MODEL43

task, then it has no such CDFG. We call this kind of task a leaf task. A task which

is not the main task nor a leaf task is an intermediate task. An intermediate task

must trace back its invocation to the main task, and the intermediate task must itself

invoke at least one leaf task. We assume that an intermediate task has all computation

speci�ed in leaf tasks. If an intermediate task does contain some computations, a new

leaf task can be generated containing these computations. This allows us to atten

the hierarchical description and generate a CDFG of the system where all nodes are

leaf tasks. We assume that we have a rate constraint speci�ed for the CDFG of the

system. In other words, we assume that the main task is invoked at a �xed rate.

cg

fk

cjd

Jhold Law

oh0

oh1

2 2
Set Torquexf1 xb1 xf2 xb2−8 −8

wnt

gp1 gv1 gv2

hm

gp2

mvm1

mvm2

mvm4

mvm3

epsilon
Ohold1 Law

Figure 9: Flattened CDFG of Robot Arm Controller

Example 4 Figure 8 shows the overall ow of execution of the robot controller in the form

of a CDFG of the main task for the system. The original speci�cation of the main task was in

Verilog HDL. The other tasks are speci�ed in C and Verilog HDL.

Note that the CDFG of Figure 8 must complete once every millisecond. Thus, we have a

rate constraint on the graph.

CHAPTER 3. TARGET ARCHITECTURE, KERNEL, AND SYSTEM MODEL44

An example a attened CDFG where all the nodes are leaf tasks can be seen in Figure 9.

The attened CDFG executes an appropriate subset of the control algorithms of Figure 5 to

output torques for two PUMA robot arms. In this case, since there is no branching, the CDFG

is equivalent to a DAG with relative timing constraints. 2

Serra uses the Synopsys Behavioral Compiler
TM

for the synthesis of hardware

tasks. Serra leverages previous research on system modeling using control-ow

expressions (CFEs) [CM96, Coe96], as covered in Section 2.4. In Serra, CFEs

represent an intermediate model of the run-time system that captures the global

control-ow information in the system. This contrasts with earlier uses of CFEs to

model systems at the operation level [MCSM96]. Using CFEs to coordinate tasks

hides the coordination of low-level operations from the CFE model and results in

greatly reduced control logic. We assume that the total number of tasks in the

system is around 50 to 100.

We support the speci�cation of tasks that cannot execute concurrently through

the use of CFE NEV ER sets. In general, NEV ER sets can model mutual exclusion;

here, we use NEV ER sets to model resource constraints. We make use of this feature

to specify resource constraints such as (i) multiple calls to the same piece of physical

hardware (which implements a hardware-task), or (ii) software-tasks executed on the

same microprocessor. In this thesis, we consider any number of NEV ER sets. For

a target architecture of one CPU core, it makes sense to have a single NEV ER set

of software-tasks, which we use to serialize the software-tasks executed on the same

CPU, and multiple NEV ER sets of hardware-tasks. This is the case we focus on in

this thesis.

Thus, we do not consider ALWAY S sets explicitly in the formulation of our

problem.

CHAPTER 3. TARGET ARCHITECTURE, KERNEL, AND SYSTEM MODEL45

3.4 Summary

In this section we outlined our approach and design style for hardware/software co-

design of a run-time scheduler split between hardware and software. We presented a

target architecture and small software kernel to manage software-tasks. Finally, we

reviewed our system-level modeling of task ow for any speci�ed application.

In the next chapter, we will focus on the analysis and synthesis of a custom run-

time scheduler, which requires the satisfaction of a single rate constraint and multiple

resource constraints.

Chapter 4

Real Time Analysis

We aim at predictably satisfying real-time constraints in the form of control/data-

ow (precedence) constraints, resource constraints, and a rate constraint. We assume

that we have as input a CDFG representing the ow of tasks in the application,

a rate constraint on the graph, and NEV ER sets specifying a resource constraint

on software-tasks and resource constraint(s) on hardware-tasks. In this chapter, we

�rst show a formulation which does not include NEV ER sets of hardware-tasks

(hardware resource constraints) for the sake of simplicity of explanation. We expand

the formulation to include multiple NEV ER sets of hardware-tasks in Section 4.2.3.

The outline of this chapter is as follows. In Section 4.1, we �rst present the

assumptions we make in de�ning our problem and prove the resulting (decision)

problem to be NP-complete. In Section 4.2 we present the Constructive Heuristic

Scheduling approach to solving our problem, which is the ordering of tasks which

use the same resource and thus must execute in a mutually exclusive fashion. In

Section 4.2.3 we extend the heuristic of the previous section to deal with the case of

multiple sets of mutually exclusive tasks. Section 4.3 presents analysis and a greedy

heuristic to deal with the case of preemptible tasks (which leads to increased context

switches). Finally, Sections 4.4 and 4.5 improve the heuristic and extend it to support

46

CHAPTER 4. REAL TIME ANALYSIS 47

critical regions, thus providing the same functionality as semaphores.

4.1 Assumptions and Complexity

To predictably satisfy a rate constraint, we need a worst case execution time (WCET)

for each task and a WCET for the control/data-ow of the set of tasks under the rate

constraint. We obtain the WCET times for the individual tasks from cinderella-

M and BCTM
[Kna96] as mentioned in Section 3.1. We need some assumptions to

compute the WCET for the set of tasks.

Assumption 4.1 We have a Directed Acyclic Graph (DAG) representing a set of

tasks,a WCET for each task, and a NEV ER set specifying tasks that must be executed

in a mutually exclusive manner. A rate constraint is speci�ed for the execution of the

whole graph.

Example 5 Figure 9 shows the DAG resulting from the parallel execution of Jhold Law and

Ohold1 Law. While the full CDFG can select more combinations, e.g. Ohold2 Law and Jhold

Law, we consider here only the case where Jhold Law and Ohold1 Law are selected to execute in

parallel. In other words, the CDFG has been e�ectively reduced to a DAG. Note that the system

is still dynamic since the start and done times of tasks in the DAG are not determined ahead of

time but are handled at run-time. Also, the DAG may contain relative timing constraints. 2

Note that reducing the CDFG to a DAG limits the amount of control-ow information

in the graph to relative timing constraints among tasks. In particular, a control choice

equivalent to branching statement is not modelled. Also note that for now we consider

only a single NEV ER set of software-tasks executed on the same CPU. We assume

that we have the resulting DAG in graph form G(V;A), where V is the set of vertices

and A is the set of directed edges.

CHAPTER 4. REAL TIME ANALYSIS 48

Assumption 4.2 Software is executed by a simple priority scheduler consisting of

four code segments: an interrupt service routine(ISR), a priority scheduler,

a save context routine and a restore context routine.

Note that the priority scheduler is compiled for each embedded application; the

other three routines are written in assembly and do not require any recompilation.

Assumption 4.3 Each task, once started, runs to completion.

Together with the previous assumption and the fact that the priority scheduler

code only uses registers reserved for the operating system, we �nd that the only

overhead for software-tasks are the ISR and priority scheduler calls. We will relax

the assumption of running to completion later when calculating WCET involving

software-tasks which can be partially executed before being interrupted.

Assumption 4.4 Hardware-software communication time is included in the WCET

of each task and/or is included as a distinct task.

We have several communication primitives, such as shared memory and FIFOs, with

interface generation along the lines of [COB95, MBL
+
96, VRBM96].

Assumption 4.5 Interrupts that switch context come only from the hardware run-

time scheduler as described in Section 3.2.3.

Example 6 As an example, consider Figure 10. This represents a subset of the tasks from

the robot controller shown in Figure 9. The WCET times for the individual tasks have already

been calculated by cinderella-M andBCTM
. Three tasks are speci�ed in Verilog HDL: mvm,

fk, and cg, corresponding to matrix vector multiply, forward kinematics, and calc

gravity, respectively, in Figure 5. (Task mvm has four instantiations in mvm1-4.) Similarly,

three tasks are speci�ed in C: oh0, oh1, and cjd, where cjd corresponds to calc joint

dynamics in Figure 5 and both oh0 and oh1 are coarser-grained groupings of tasks called

CHAPTER 4. REAL TIME ANALYSIS 49

cg

fk

cjd

src

sink

Jhold Law

oh0

oh1

NEVER = {oh0,oh1,cjd}

mvm1

mvm2

mvm3

mvm4

Ohold1 Law

WCET
(cycles)
−−−−−
4,000
2,221
17,399
4,500
13,213
4,400
4,400
4,400
4,400
0
0

BCET
(cycles)
−−−−−
4,000
1,598
12,341
4,500
9,989
4,400
4,400
4,400
4,400
0
0

Task
−−−−
cg
oh0
oh1
fk
cjd
mvm1
mvm2
mvm3
mvm4
src
sink

Figure 10: DAG, BCET and WCET: The leftmost column shows the task names,

the middle column shows the Best-Case Execution Time, and the rightmost column

shows the Worst-Case Execution Time.

by Ohold Law in Figure 5. Since our target architecture for this example contains only one

microprocessor, all three software-tasks are put into a single NEV ER set which states that

their execution times cannot overlap at all. Thus, the tasks must be serialized.

Consider theNEV ER set shaded in Figure 10. A �rst-come-�rst-serve scheduling algorithm

would schedule oh0 �rst, then oh1 (since mvm is still executing when oh0 �nishes), and cjd

last. Without considering the small overhead of the priority scheduler, this results in a WCET

of 46,033 cycles for the graph. However, if oh1 were executed after cjd, the WCET would be

39,012 for the graph. 2

Example 6 shows a di�cult problem in that a NEV ER set of software-tasks may

cross parallel paths. This problem, which we refer to as the Never Set DAG Scheduling

(NSDS) problem, cannot be solved with a single execution of a longest path algorithm

because the execution start time of each task in a NEV ER set depends upon the

scheduling of the other tasks in the NEV ER set. In fact, �nding the serial order

CHAPTER 4. REAL TIME ANALYSIS 50

of tasks in the NEV ER set which minimizes WCET { the NSDS problem { will be

shown to be NP-Hard in the next section.

4.1.1 The Complexity of NSDS

In this section we discuss the complexity of NSDS. As is customary, we cast NSDS as a

decision problem. Note that in the followingwe distinguish between GraphWCET, the

Worst-Case Execution Time for a set of tasks in a DAG, and WCET, the Worst-Case

Execution Time for an individual task. We give a formal de�nition of NSDS-decision

as follows:

De�nition 4.1 [NSDS-decision] INSTANCE: Directed Acyclic Graph G(V;A), al-

lowable GraphWCET of K for the graph, NEVER set N � V , set T of tasks with

V = T and, for each task t 2 T , a length l(t) 2 Z+.

QUESTION: Is there a one-processor schedule for N that satis�es the allowable

GraphWCET of K for the DAG, i.e. a one-to-one function � : T ! Z+
0 , with, if

ti 2 N; tj 2 N�ftig, either �(ti) > �(tj) implying �(ti) � �(tj)+l(tj) or �(tj) > �(ti)

implying �(tj) � �(ti) + l(ti), such that, for all t 2 T , �(t) � �(tp) + l(tp), where tp

is a predecessor of t in G(V;A), and �(sink) + l(sink) < K, where sink is the sink

task in G(V;A).

Notice that for the case of two tasks in the NEVER set, ti 2 N; tj 2 N �ftig, forcing

either �(ti) > �(tj) implying �(ti) � �(tj) + l(tj) to be true or �(tj) > �(ti) implying

�(tj) � �(ti) + l(ti) to be true ensures a serial order for software-tasks executed on

the same processor. Note that � records the start times for the tasks in G(V;A). Also

note that for each task t 2 T , l(t) is equivalent to a WCET for t. For the actual

NSDS problem, of course, we are not given a maximum allowable GraphWCET of K,

but instead we try to �nd the minimum such K possible.

CHAPTER 4. REAL TIME ANALYSIS 51

Now, to analyze the complexity of NSDS-decision, we use the Sequencing with

Release Times and Deadlines (SRTD) problem[GJ79], which is de�ned as follows:

De�nition 4.2 [SRTD] INSTANCE: Set T of tasks and, for each task t 2 T , a

length l(t) 2 Z+, a release time r(t) 2 Z+
0 , and a deadline d(t) 2 Z+.

QUESTION: Is there a one-processor schedule for T that satis�es the release time

constraints and meets all the deadlines, i.e. a one-to-one function � : T ! Z+
0 , with,

if t0 2 T � ftg, �(t) > �(t0) implying �(t) � �(t0) + l(t0), such that, for all t 2 T ,

�(t) � r(t) and �(t) + l(t) � d(t)?

The Sequencing with Release Times and Deadlines (SRTD) problem deals with

the situation where the task t is executed from time �(t) to time �(t) + l(t), cannot

start executing until time r(t), must complete by time d(t), and cannot overlap the

execution of any other task t0.

Theorem 4.1 NSDS-decision is NP-Complete.

Proof: First, given an order for the software-tasks (which are all in the

NEVER set N), one can check in polynomial time if the GraphWCET

of the DAG is less than K.

Next, SRTD can be reduced to NSDS-decision as follows.

Let an instance ISRTD of SRTD be given with T = ft1; t2; : : : ; tng. De�ne

K to be equal to (

P
ti2T

l(ti)) + maxti2T r(ti). (Note there is no need to

add any d(t) to K, since d(t) is just a deadline.) Now we de�ne an instance

INSDS�decision of NSDS-decision by assigning nodes in NSDS-decision for

each task ti 2 T as follows:

� let si1 be a hardware-task with WCET equal to r(ti), where the

predecessor of si1 is the source and the successor of si1 is si2

� let si2 be a software-task with WCET equal to l(ti), where the pre-

decessor of si2 is si1 and the successor of si2 is si3

CHAPTER 4. REAL TIME ANALYSIS 52

� let si3 be a hardware-task with WCET equal to K � d(ti), where

the predecessor of si3 is si2 and the successor of si3 is the sink (note

that if d(ti) > K, then we remove si3 from the DAG)

Basically, si1 enforces the release time constraint and si3 enforces the

deadline. Now, place all software-tasks in a single NEVER set. Clearly,

ISRTD has a solution if and only if INSDS�decision has a solution.

QED.]

src

sink

NEVER = {s_12,s_22}

 s_21

 s_22

s_23

task
−−−−
s_11
s_12
s_13
s_21
s_22
s_23

wcet
(cycles)
−−−−−
 0
 3
 4
 2
 4
 3

 s_12

 s_11

s_13

Figure 11: Example transformation of an SRTD problem to an NSDS problem.

Example 7 Consider an instance of SRTD with two tasks: task t1 with length l(t1) = 3,

release time r(t1) = 0, and deadline d(t1) = 5; and task t2 with length l(t2) = 4, release time

r(t4) = 2, and deadline d(t1) = 6. Then, we calculate K = 3+4+2 = 9. We add the following

tasks to the NSDS instance to account for t1 in SRTD: s11 with a WCET of 0, s12 with a

WCET of 3, and s13 with a WCET of K � d(t1) = 9 � 5 = 4. Next, we add the following

tasks to the NSDS instance to account for t2 in SRTD: s21 with a WCET of 2, s22 with a

WCET of 4, and s23 with a WCET of K � d(t2) = 9� 6 = 3. The two tasks s12 and s22 are

placed in a single NEV ER set. Figure 11 shows the resulting NSDS instance. 2

Trivially, since NSDS-decision is NP-Complete, NSDS is NP-Hard (at least as

hard to solve as an NP-Complete problem) [GJ79]. In the context of our system

CHAPTER 4. REAL TIME ANALYSIS 53

design, solving the NSDS problem allows us to proceed with our real-time analysis.

For example, once we have a WCET for the CDFG of Figure 8, then we can say if

the robot controller �nishes execution within one millisecond.

4.2 Constructive Heuristic Scheduling

We want to �nd a schedule for the tasks, with a NEV ER set containing all the

software-tasks, where the other tasks are all hardware-tasks. We �nd an ordering

of the software-tasks using a problem formulation which is reminiscent of dynamic

programming[HL95]. The formulation enables us to construct in polynomial time a

schedule of the tasks which minimizes WCET (the heuristic may �nd a local mini-

mum). Our constructive heuristic scheduling algorithm allows us to take into account

precedence constraints, a rate constraint, and a resource constraint in the form of a

NEV ER set of software-tasks. In Section 4.2.3, we will extend constructive heuristic

scheduling to include multiple resource constraints in the form of NEV ER sets of

hardware-tasks.

4.2.1 Constructive Heuristic Scheduling Formulation

We take as input the DAGG(V;A) annotated withWCETs (one per task), aNEV ER

set specifying the mutually exclusive software-tasks,WCETisr which is aWCET for

the ISR, and WCETprsched which is a WCET for the priority scheduler code.

We divide the problem into stages according to the number of tasks in theNEV ER

set. We �rst �nd a solution for the last stage, then the second-to-last stage, etc., up

to the �rst stage (we proceed in reverse order from the stage number). We use the

following de�nitions:

De�nition 4.3 Let there be n stages, where in each stage we decide which among n

tasks to schedule.

CHAPTER 4. REAL TIME ANALYSIS 54

The number of stages n is set equal to the number of tasks in the NEV ER set plus

two (for the source and the sink).

De�nition 4.4 Let t denote a task, and let ti denote a task executed in stage i.

De�nition 4.5 Let the multivalued decision variables xik, i 2 (1; 2; : : : ; n�1) and k 2

Z+, denote the ordered set of tasks from the NEV ER set executed in the subsequent

stages, i.e. after stage i.

Note that xik represents an ordered set of tasks.

De�nition 4.6 Let Xi, i 2 (1; 2; : : : ; n�1), denote the multiset of decision variables

fxikg.

Example 8 Consider Figure 10. Since jNEV ERj = 3, there are 5 stages. In stage 3 we

could �nd that X3 = fx31; x32; x33g = f(oh0,sink),(oh1,sink),(cjd,sink)g. Each x3k is an

ordered set, and X3 is a multiset. 2

De�nition 4.7 Let state si = (ti; xik) in stage i denote the current task ready to

start execution and the subsequent tasks from the NEV ER set executed in stages

(i+ 1; i+ 2; : : : ; n� 1), where the sink is always executed in stage n.

Note that given an ordering of software-tasks, the rest of the graph is scheduled with

an As Soon As Possible (ASAP) schedule that takes into account the dependencies

induced by the ordering of the mutually exclusive tasks.

Example 9 In Figure 10 the tasks under consideration are src, oh0, oh1, cjd, and sink.

Since the sink is always executed last, Xn�1 = X4 = f(sink)g. The possible tasks executed

before the sink, and thus in stage 4, are t4 = oh1 and t4 = cjd. Thus the possible states in

stage 4 are s4 = (oh1,sink) and s4 = (cjd,sink). 2

We denote the WCET for task t by WCET (t).

CHAPTER 4. REAL TIME ANALYSIS 55

 s
−−−−−−
oh1,sink
cjd,sink

NEVER = {oh0,oh1,cjd}
cg

fk

cjd

src

sink

oh0

oh1

4 −−−−−
21,799
26,413

4
GraphWCET(s)

mvm1

mvm2

mvm3

mvm4

Figure 12: GraphWCET Example

De�nition 4.8 Given a state si, let Gsi
� G be the directed acyclic graph Gsi

(Vsi; Asi
)

de�ned by the tasks in state si and their successors.

Example 10 Consider Figure 12. In this example we are in stage i = 4. The leftmost shaded

area covers Gs4
de�ned by s4 = (oh1,sink). In this case Vs4 = foh1,mvm1,sinkg. 2

De�nition 4.9 Given a state si, let si be called valid if Gsi
does not contain any

task which is in the NEV ER set but does not appear in si.

Example 11 Consider Figure 12 again. The two valid states in stage 4 are s4 = (oh1,sink)

and s4 = (cjd,sink). State s4 = (oh0,sink), however, is not a valid state becauseGs4
contains

oh1, which is in the NEV ER set but not in s4. 2

De�nition 4.10 Given a valid state si, let GraphWCET (si) be the worst case exe-

cution time (WCET) as determined by an As Soon As Possible (ASAP) schedule for

Gsi
, where any tasks in Gsi

which are in the NEV ER set are executed in the order

in which they appear in si. (If si is not valid, then GraphWCET (si) is unde�ned.)

CHAPTER 4. REAL TIME ANALYSIS 56

Example 12 Continuing with Figure 12, consider the leftmost shaded area again. For this

Gs4
, we �nd that GraphWCET (s4) = WCET (oh1) +WCET (mvm1) = 21; 799. 2

In other words, GraphWCET (si) is the overall WCET for stages (i; i + 1; : : : ; n),

given that the �rst task ti in si is executed in stage i, and the rest of the tasks xik in

si are executed in stages i+ 1; i+ 2; : : : ; n according to the order in which the tasks

appear in xik.

De�nition 4.11 Let fi(si), i 2 (1; 2; : : : ; n�1), denote a value equal to GraphWCET (si)

if both si is valid and the order of tasks in si does not violate any precedence con-

straints; otherwise let fi(si) = 1. We de�ne fn(sn) to be zero since there is no task

to execute after the last stage, and the last task executed is always the sink (so that

it is always the case that sn = (sink)), whose execution takes zero cycles.

Example 13 A possible state for Figure 12 is s4 = (t4; x41) = (oh0,sink). However, this

state is not valid, and so for s4 = (oh0,sink), f4(s4) = 1. The other two possibilities for s4

are shown in Figure 12, and for those two we have f4(s4) = GraphWCET (s4). 2

Recall that tasks not in the NEV ER set are all hardware-tasks and are scheduled

ASAP.

De�nition 4.12 Let fi
�

(si), i 2 (1; 2; : : : ; n � 1), be the minimum �nite value of

fi(si) = fi(ti; xik) over all possible xik for a given ti.

De�nition 4.13 Given task ti (the current task executing), let x�
ik
denote the value

of xik that yields fi
�

(si) = fi
�

(ti; xik).

Note that if there is no xik such that fi(si) = fi(ti; xik) is �nite, then we have no

fi
�

(si) nor x
�

ik
de�ned for task sequences beginning with task ti in this stage.

Thus, when computing fi
�

(si), we �nd the following holds, if there exists at least

one state xik for which fi(ti; xik) is �nite:

CHAPTER 4. REAL TIME ANALYSIS 57

fi
�

(si) = min
xik

fi(ti; xik) = fi(ti; x
�

ik
); i 2 (1; 2; : : : ; n� 1)

NEVER = {oh0,oh1,cjd}
cg

fk

cjd

src

sink

oh0

oh1

 s
−−−−−−−−−
oh0,oh1,sink
cjd,oh1,sink
oh1,cjd,sink

3 −−−−−
24,020
35,012
43,812

3GraphWCET(s)

mvm1

mvm2

mvm3

mvm4

Figure 13: Constructive Heuristic Scheduling Example Stage 3

De�nition 4.14 Given a valid state si = (ti; xik), let ts denote a successor of task

ti, where Gts
� G is the graph de�ned by ts and the successors of ts. Then, we de�ne

GraphWCETsucc(ti; xik) to be the largest GraphWCET (ts; xik) of any successor ts

of task ti.

In calculating GraphWCETsucc(ti; xik), we schedule the subgraph induced by the

successors of task ti using an ASAP schedule. If we �nd a successor ts of ti that is in

the NEV ER set, then we use GraphWCET (ts), which, since the state is valid, was

already calculated in a previous stage that scheduled the tasks in xik.

Example 14 Consider Figure 13 where we are in stage 3; the leftmost shaded area shows Gs3

for s3 = (oh0, oh1,sink). So we have t3 = oh0 and x32 = (oh1,sink). One successor of task t3

CHAPTER 4. REAL TIME ANALYSIS 58

is oh1, which is a member of theNEV ER set. Thus we useGraphWCET (oh1; x32) = 21; 799

as calculated in the previous stage. The other successor of task t3 is fk, for which we �nd that

the subgraph consisting of tasks ffk; mvm1; sinkg yields GraphWCET (fk; sink) = 8; 900

(recall that a state si = (t; xik) consists of a task t and decision variable xik, where the tasks

in xik must be in the NEV ER set, or be the src or the sink, but the task t need not be in

the NEV ER set). The �nal result is GraphWCETsucc(t3; x32) = 21; 799. 2

De�nition 4.15 Given a state si = (ti; xik), we de�ne the following:

GraphWCETextra(si) =

8<
:

GraphWCETsucc(ti; xik)�GraphWCET (xik) if (GraphWCETsucc(ti; xik)
> GraphWCET (xik))

0 otherwise

and GraphWCET (si) = WCET (ti) +GraphWCETextra(si) +GraphWCET (xik).

Example 15 Consider the leftmost shaded area in Figure 13 again; we have t3 = oh0, x32

= (oh1,sink) and s3 = (t3; x32). We found previously that GraphWCET (x32) = 21; 799 and

GraphWCETsucc(t3; x32) = 21; 799. From these values we �nd thatGraphWCETextra(s3) =

0 and thus GraphWCET (s3) = WCET (oh0) + 0 +GraphWCET (x32) = 24; 020. 2

This de�nition allows us to take into account the case where GraphWCETsucc(ti; xik),

the WCET of the subgraph covered by the successors of task ti, is not determined by

GraphWCET (xik) (i.e. the path through the software task(s) in xik) but instead is

determined by a di�erent path through the subgraph. At this point we have speci�ed

all the de�nitions needed to calculate GraphWCET (s) for any state s.

4.2.2 Constructive Heuristic Scheduling Solution

The number of stages n we use is equal to the number of tasks in the NEV ER set

(which we call SWNEV ER since it is composed entirely of software-tasks) plus two

(for the source and the sink). We use a bottom-up approach and set the last stage to

be the sink and the �rst stage to be the source (we always have a source and a sink

according to Assumption 4.1).

CHAPTER 4. REAL TIME ANALYSIS 59

In each stage, we compute the best sequence of tasks given that we start with a

particular task. That is, in stage i, for each possible �rst task ti 2 SWNEV ER, we

�nd the sequence of tasks starting with ti in stage i and x�
ik
in stages (i; i+ 1; : : : ; n)

which yields the smallest GraphWCET . Thus, since each distinct sequence of tasks

de�nes a unique decision variable for the next stage, at most jSWNEV ERj decision

variables are carried over from one stage to the next. Thus, for each ti 2 SWNEV ER,

there are at most jSWNEV ERj candidates for xik. This limits the total number of

task sequences considered in each stage to a maximum of jSWNEV ERj2, making

the algorithm polynomial instead of exponential. Unfortunately, it also makes the

algorithm a heuristic instead of an exact solution method.

Since the sink is always executed last and takes no time to complete, we assume

that this last stage has already been scheduled when we start. Note that in the

following we number the stages (1; 2; : : : ; n) and use index i to refer to current stage.

Thus, since the sink is always schedule in stage n, our approach starts with the

second to last stage, stage n � 1, and progressively works its way back to the �rst

stage, stage 1.

The pseudo-code for the Constructive Heuristic Scheduling Algorithm is shown in

Figures 14 and 15. The algorithm of Figure 14 calculates the worst-case execution

time for a given stage, whereas the algorithm of Figure 15 actually implements the

constructive heuristic scheduling algorithm and selects the order for the tasks in

SWNEV ER, which is a single NEV ER set of software tasks.

The algorithmof Figure 15 actually implements the core of the constructive heuris-

tic scheduling algorithm. For stage n, no calculations are necessary since the sink

always takes zero time to execute.

Scheduling starts with stage n � 1, for which each task in SWNEV ER either

can be scheduled then or cannot be scheduled then. For example, if a software-task

ti has a precedence constraint where another software-task must execute after ti,

CHAPTER 4. REAL TIME ANALYSIS 60

Calc WCET (G;SWNEV ER; i; n; fi+1
�; Xi) f

1 initialize fi
�

, fi; Xi�1 = ;;

2 for (j = 1; j < (n� 1); j ++)f

3 tj = jth task in SWNEV ER;

4 for (each task order xik 2 Xi) f

5 si = (tj , xik);

6 if (order not possible(G; tj ; xik)) f

/* if order not possible due to constraints in G */

7 fi(si) = 1;

8 g else f
9 calculate GraphWCETextra(si);

10 fi(si) = WCET (tj) + GraphWCETextra(si) + fi+1(xik);

/* note that by de�nition, fi+1(xik) = GraphWCET (xik) */

11 g
12 g /* fi(si) has now been calculated for all possible xik for this tj */

13 if (fi(si) �nite for some si = (tj , xik)) f
/* if we did not �nd all fi(si) = 1 in this iteration */

14 x�
ik
= xik such that fi(tj ; xik) is minimized;

15 fi
�

(si) = fi(tj ; x
�

ik
);

16 Xi�1 = Xi�1 [f(tj ; x
�

ik
)g;

17 g
18 g
19 return (fi

�; Xi�1);

g

Figure 14: Calculate WCET Algorithm

then clearly ti cannot be scheduled in stage n� 1 since no software-task can ever be

scheduled after stage n� 1 (recall that the sink is always scheduled last, i.e. in stage

n). Each software-task which can be scheduled to execute in stage n � 1 without

violating any constraints is placed in a one element set and added to Xn�2 for the

next stage.

Then, for stage n � 2, we calculate a jSWNEV ERj � jXn�2j table where we

place in each table entry the GraphWCET for each state determined by a software-

task eligible to execute in this stage (n � 2) followed by a software-task that can

CHAPTER 4. REAL TIME ANALYSIS 61

Solve order(G;SWNEV ER;WCETisr;WCETprsched) f

1 n = jSWNEV ERj+ 2; /* number of stages */

2 increase WCET for each task in SWNEV ER by WCETisr +WCETprsched;

3 fn
�

(sn) = fn(sink) = 0; /* initial values for stage n-1 */

4 Xn�1 = f(sink)g;

5 for (i = n� 1; i > 1; i��) f /* go through the stages in reverse order */

6 (fi
�; Xi�1) = Calc WCET (G;SWNEV ER; i; n; fi+1

�; Xi);

/* record WCET and state */

7 g /* when this loop ends we have calculated f2
�

and X1 */

8 (f1
�; X0) = Calc WCET (G; f(src)g; 1; n; f2

�; X1);

/* record state x�01 with minimumWCET from src */

9 x�01 = the �rst (and only) set in X0;

/* X0 has only one set since the we passed in f(src)g to CalcWCET */

10 GWCET = f1
�

(x�01); /* annotate G with minimal overall WCET found */

11 Gtask order list = x�01; /* record the task order found */

g

Figure 15: Constructive Heuristic Scheduling Algorithm

be executed in stage n � 1 (if the two software-tasks selected cannot execute in the

chosen order due to precedence constraints, the table entry records a GraphWCET

of 1). For each task in SWNEV ER, we record a decision variable (an ordered

set, see De�nition 4.5) indicating the sequence starting with that task which has the

minimalGraphWCET . The decision variables are accumulated in Xn�3 for the next

stage n� 3.

Next, for stage n � 3, we again calculate a table of size jSWNEV ERj � jXn�3j

where we place in each entry the GraphWCET corresponding to an ordered set of

three software-tasks. Each ordered set consists of a task from SWNEV ER followed

by two software-tasks from an ordered set in Xn�3. Since Xn�3 can contain at most

CHAPTER 4. REAL TIME ANALYSIS 62

jSWNEV ERj sets, we calculate the GraphWCET for up to jSWNEV ERj2 combi-

nations of three sw-tasks. For each task tn�3 in SWNEV ER, we select the decision

variable x(n�3)k� which minimizes GraphWCET (tn�3; x(n�3)k�) and add ordered set

(tn�3; x(n�3)k�) to multiset Xn�4 for the next stage n� 4.

Continuing in this way for stages (n� 4; n� 5; : : : ; 3; 2), we calculate the Graph�

WCET for each state composed of a task eligible to execute in that stage fol-

lowed by a particular order of software-tasks in the previous stage, selecting at most

jSWNEV ERj task orders to pass on to the next stage. Note that as we decrease the

stage number by one, we increase the number of tasks in each ordered set xik 2 Xi

by one.

Thus, when we reach stage 1, we consider up to jSWNEV ERj task orderings

of all tasks in SWNEV ER, where the �rst task executed is the src. From these

possibilities we choose the best and �nd an order of execution for the tasks in the

SWNEV ER set yielding the smallest GraphWCET among the orders considered.

Note that the �nal list from which the solution is chosen consists of task orderings

chosen based on the optimality of suborderings along the way, i.e. by selecting the xik

that minimize the overall WCET for the graph (the GraphWCET). Since choosing

local minimamay accidentally kick out a subordering which later turns out to be nec-

essary for the global minimum, this formulation is a heuristic. However, it performs

in polynomial time.

We next show the application of the algorithm to our example.

In order to begin with the last stage (i.e. stage n = 5), we schedule the sink,

yielding f5
�

(sink) = 0.

For stage n � 1 = 4, the WCET is determined entirely by the current state

(whichever task is chosen to execute). Therefore, our table of calculations need only

include s4, f4(s4) and X4.

CHAPTER 4. REAL TIME ANALYSIS 63

X4 f4(s4)

t4 sink X3

oh0 1

oh1 21,799 (oh1,sink)

cjd 26,413 (cjd,sink)

Table 3: Constructive Heuristic Scheduling Example Stage n� 1 = 4

Example 16 Consider Figure 10. We have n = 5 stages. For stage 5 we found that

f5
�(sink) = 0. Table 3 shows the calculations for stage 4. From this we achieve one optimiza-

tion for the next stage already: oh0 cannot be scheduled in this stage due to control/data-ow

(precedence) constraints. Thus, the multiset X3 calculated for the next iteration only has two

members.

Figure 12 showed the two sets of tasks scheduled and their WCET paths in this pass of the

algorithm. 2

For stages n � 2 through 2, we use the fi+1 and Xi values calculated in the

previous iteration. Note that for each possible ordered set of tasks, in the worst case

n�(jV j+jAj) operations have to be performed in calculatingGraphWCET (si), where

V denotes the vertices and A denotes the directed edges in the DAG of the task ow.

X3 f3(s3)

t3 (oh1,sink) (cjd,sink) x3k� f3
�

(t3; x3k�) X2

oh0 24,020 1 (oh1,sink) 24,020 (oh0,oh1,sink)

oh1 1 43,812 (cjd,sink) 43,812 (oh1,cjd,sink)

cjd 35,012 1 (oh1,sink) 35,012 (cjd,oh1,sink)

Table 4: Constructive Heuristic Scheduling Example Stage 3

Example 17 Continuing our attempt to schedule Figure 10, we pass now to stage 3. Table 4

shows the calculations for this stage. The �rst �nite-valued entry contains the GraphWCET if

CHAPTER 4. REAL TIME ANALYSIS 64

oh0 is scheduled in stage 3 and oh1 in stage 4 (with the sink in stage 5). Note that it is not

possible to schedule oh0 in stage 3 and cjd in stage 4 due to control/data-ow constraints.

Note also that there is no column for x3k = (oh0; sink) since it was not possible to schedule

oh0 in stage 4.

To calculate the GraphWCET values for s3, given that we execute task t3 in this stage (3)

and the �rst task in x3k in the next stage (4), requires scheduling the subgraph covered by task

t3, the tasks in x3k, and all of their successors. We use an ASAP schedule.

Figure 13 showed the states scheduled in this stage and and their WCET paths in this pass

of the algorithm. 2

X2 f2(s2)

t2 (oh0,oh1,sink) (oh1,cjd,sink) (cjd,oh1,sink) x2k� f2
�(t2 ; x2k�) X1

oh0 1 46,033 37,233 (cjd,oh1,sink) 37,233 (oh0,cjd,oh1,sink)

oh1 1 1 1

cjd 37,233 1 1 (oh0,oh1,sink) 37,233 (cjd,oh0,oh1,sink)

Table 5: Constructive Heuristic Scheduling Example Stage 2

Example 18 Next consider stage 2 of the attempt to schedule Figure 10 using the construc-

tive heuristic scheduling algorithm. Table 5 shows the calculations for this stage. For the states

beginning with task oh0, the minimum value of f2 is selected by x2k� yielding one value for

f2
�. Note that x2k� is a set that takes on two di�erent values, namely (cjd,oh1,sink) and

(oh0,oh1,sink), in the course of the calculation. On the other hand, X1 is a multiset that

contains all of the sets in its column, so X1 = f(oh0; cjd; oh1; sink); (cjd; oh0; oh1; sink)g.

2

Note that the states eliminated in calculating fi
�

(si) leave us carrying at most

jSWNEV ERj ordered sets of tasks to the next stage calculation. This means at

most jSWNEV ERj2 di�erent possible task orderings are considered in each stage,

just as we noted earlier. Unfortunately one of the states eliminated in calculating

fi
�

(si), while suboptimal locally, may turn out to be the global optimum. The fact

CHAPTER 4. REAL TIME ANALYSIS 65

that this algorithm is a heuristic can be veri�ed by applying it to the example of

Figure 16.

X1 f1(s1)

t1 (oh0,cjd,oh1,sink) (cjd,oh0,oh1,sink) x11� f1
�(t1; x11�) X0

src 39,012 41,233 (oh0,cjd,oh1,sink) 39,012 (src,oh0,cjd,oh1,sink)

Table 6: Constructive Heuristic Scheduling Example Stage 1

Example 19 Now for the last set of computations, stage 1. There is only one starting state,

the source, so the table has only one row. Table 6 shows the calculations for this stage. The

minimum WCET for the graph is found in choosing x11�. Note that the algorithm �nally

takes into account the WCET for task cg, making the option of selecting cjd to execute

before oh1 less favorable. We end up with X0 = fx�01g, and so the order found is x�01 =

(src,oh0,cjd,oh1,sink) with a WCET of 39,012. Thus we give oh0 the highest priority, cjd

the second-highest, and oh1 the lowest priority. Note that we use X0 and x�01 only to record

the �nal order found (there is no stage 0). 2

Thus we have an order (given our assumptions) of execution of tasks in the

NEV ER set which minimizes WCET from among the task orders considered. We

use this order to statically set the priorities for the software-tasks.

4.2.3 Multiple NEV ER Sets of Hardware-Tasks

Up till now we have formulated our scheduling problem under the assumption that

we have unlimited hardware and a single processor. Now suppose we do have limited

hardware resulting in hardware-tasks implemented on the same hardware resource.

We represent each such resource constraint with a NEV ER set of mutually exclusive

hardware-tasks which cannot overlap execution.

CHAPTER 4. REAL TIME ANALYSIS 66

src

sink

NEVER = {b,c,d}

task
−−−−
 a
 b
 c
 d
 e
 f

wcet
(cycles)
−−−−−
5,000
3,000
20,000
15,000
5,000
11,000

 b

 c d

 a

 e

 f

Figure 16: Sample DAG With Optimal Schedule Not Found By Heuristic: The con-

structive heuristic scheduling algorithm �nds order (d,b,c) which yields a WCET of

43,000; however, the optimal order is (b,d,c), which yields a WCET of 40,000.

We can include multiple NEV ER sets of hardware-tasks by extending the con-

structive heuristic scheduling algorithm in a straightforward fashion. We simply set

the number of stages n equal to the total number of tasks in all NEV ER sets, plus

two for the src and sink. Let the number of distinct NEV ER sets be d, where

the �rst NEV ER set contains all software-tasks in the application, while subsequent

NEV ER sets contain hardware-tasks which utilize the same hardware resource to

accomplish their computation.

Example 20 We consider a modi�ed version of Figure 10 where the four tasks mvm1-4 are

all executed on the same hardware module mvm. Figure 17 shows the six of the seven tasks in

the two NEV ER sets as they are scheduled in stage 4 of the constructive heuristic scheduling

algorithm. We have n = 9 stages, so f9
�(s), f8

�(s), f7
�(s), f6

�(s) and f5
�(s) have already been

calculated. The shading in Figure 17 identi�es the tasks in the same NEV ER set scheduled

at this step of the algorithm; the thick arrows indicate the relative ordering among all of the

tasks. The table for this stage is not shown here but would look similar to Table 5. except that

it would have seven by seven entries, one row/column per task in a NEV ER set.

CHAPTER 4. REAL TIME ANALYSIS 67

4

cg

fk

cjd

src

sink

oh0

oh1

mvm1

mvm2

mvm3

mvm4

cg

fk

cjd

src

sink

oh0

oh1

mvm1

mvm2

mvm3

mvm4

 s
−−−
oh0
oh1
cjd
mvm1
mvm2
mvm3
mvm4

f *(s)
−−−−−
24,020
43,812
35,012
 −
 −
 −
 −

cg

fk

cjd

src

sink

oh0

oh1

mvm1

mvm2

mvm3

mvm4

NEVER1 = {oh0,oh1,cjd}
NEVER2 = {mvm1, mvm2,
 mvm3, mvm4}

Figure 17: Multiple NEV ER Set Example

Note that at this stage we have already scheduled 5 tasks and are considering which task to

schedule just before those 5. Due to precedence constraints in the DAG, none of mvm1-4 can

be scheduled at this stage, and therefore the entries are empty. (For example there is no way

to schedule mvm1 in this stage and thus have 5 tasks scheduled after mvm1 completes.) 2

The constructive heuristic scheduling algorithm has already been shown in Fig-

ures 14 and 15. The only di�erence in calling algorithm Solve order of Figure 15 is

that instead of passing in SWNEV ER, we call it with a multiset NEV ERSETS

which contains the �rst NEV ER set equal to SWNEV ER, while the rest of the

NEV ER sets all contain only hardware-tasks.

Figure 18 shows the modi�cations necessary to convert Figure 15 to handle mul-

tiple NEV ER sets of hardware-tasks. Note that the only changes are in lines 1,

2, and 7 of Figure 18. The �nal task order found in x�01 contains all tasks in any

NEV ERi 2 NEV ERSETS. Thus, the task order for tasks in the same NEV ER

set can be extracted from x�01 by simply removing the relevant tasks from x�01 in the

order they are found.

CHAPTER 4. REAL TIME ANALYSIS 68

Solve order(G;NEV ERSETS;WCETisr;WCETprsched) f

1 SWNEV ER = �rst set in NEV ERSETS;

2 n = (

P
NEV ERi2NEV ERSETS jNEV ERij) + 2; /* number of stages */

3 increase WCET for each task in SWNEV ER by WCETisr +WCETprsched;

4 fn
�

(sn) = fn(sink) = 0; /* initial values for stage n-1 */

5 Xn�1 = f(sink)g;

6 for (i = n� 1; i > 1; i��)f /* go through the stages in reverse order */

7 (fi
�; Xi�1) = Calc WCET (G;NEV ERSETS; i; n; fi+1

�; Xi);

/* record WCET and state */

8 g /* when this loop ends we have calculated f2
�

and X1 */

9 (f1
�; X0) = Calc WCET (G; f(src)g; 1; n; f2

�; X1);

/* record state x�01 with minimumWCET from src */

10 x�01 = the �rst (and only) set in X0;

/* X0 has only one set since the we passed in f(src)g to CalcWCET */

11 GWCET = f1
�

(x�01); /* annotate G with minimal overall WCET found */

12 Gtask order list = x�01; /* record the task order found */

g

Figure 18: Constructive Heuristic Scheduling Algorithm with MultipleNEV ER Sets

Example 21 Consider a Figure 17 again. Let x�21, x
�

22 and x
�

21 denote the decision variables

for the left, middle and right-hand graphs shown in Figure 17, respectively. For the leftmost

DAG, we have x�21 = fcjd, mvm2, mvm3, oh1, mvm4, mvm1, sinkg from which we would

extract order fcjd,oh1g forNEV ER1 and order fmvm2, mvm3, mvm4, mvm1g forNEV ER2.

For the DAG in the middle, we have x�22 = foh1, cjd, mvm1, mvm2, mvm3, mvm4, sinkg

from which we would extract order foh1,cjdg for NEV ER1 and order fmvm1, mvm2, mvm3,

mvm4g for NEV ER2. Finally, for the rightmost DAG, we have x�23 = foh0, oh1, mvm1,

mvm2, mvm3, mvm4, sinkg from which we would extract order foh0,oh1g for NEV ER1 and

order fmvm1, mvm2, mvm3, mvm4g for NEV ER2.

It turn out that the �nal optimal solution is found from leftmost DAG and yields x�01 =

CHAPTER 4. REAL TIME ANALYSIS 69

fsrc, oh0, cjd, mvm2, mvm3, oh1, mvm4, mvm1, sinkg from which we would extract or-

der foh0, cjd,oh1g for NEV ER1 and order fmvm2, mvm3, mvm4, mvm1g for NEV ER2.

2

The changes needed to alter Figure 14 to handle an input of multisetNEV ERSETS

instead of the single set SWNEV ER are so few that we will simply describe them

here in words. The �rst change is to de�ne the jth task of NEV ERSETS to be the

jth task encountered when processing each NEV ERi 2 NEV ERSETS one by one

in the same order each time (i.e. in the order they are stored in NEV ERSETS).

The second change from the single NEV ER set algorithm shown in Figure 14 oc-

curs in scheduling the DAG at each step in the algorithm. Instead of a single ASAP

schedule for the entire graph, we have to perform an ASAP scheduling of the graph

for each distinct never set. Thus, in the worst case, (jV j+ jAj) � d operations have to

be performed in calculatingGraphWCETextra(si) of De�nition 4.15, where d denotes

the number of NEV ER sets contained in the multiset NEV ERSETS.

4.2.4 Complexity Analysis

First note that in order to calculate fi(si) = fi(ti; xik), we have to ASAP schedule

the DAG Gsi
(Vsi ; Asi

), where Vsi denotes the vertices and Asi
denotes the directed

edges (arrows) in the DAG of the task ow of si. Note that Gsi
(Vsi; Asi

) has already

scheduled all resource-constrained tasks other than ti in the previous stage. For each

task in NEV ERi 2 NEV ERSETS, an upper bound on the number of constant

operations that have to be performed for the ASAP schedule is ((jVsi j+ jAsi
j)). Since

in each stage ti ranges over the tasks in some NEV ER set, and recalling that n�2 =

P
NEV ERi2NEV ERSETS jNEV ERij, we �nd that ti can take on any of n � 2 values.

Now, since for each possible value of ti we select at most one value of x�
ik
, Xi�1 has at

most n � 2 members in each iteration. Thus, since in each iteration we calculate fi

CHAPTER 4. REAL TIME ANALYSIS 70

for every possible state (ti,xik), in the worst case (n�2)
2
calculations of fi are needed

each iteration. Together with our earlier upper bound of (jVsi j+ jAsi
j) for calculating

fi, we end up with an asymptotic upper bound of O((n � 2)
2 � (jVsij + jAsi

j)) =

O((n2
) � (jV j + jAj)) calculations for one stage (i.e. for Calc WCET of Figure 14).

For Solve order shown in Figure 15 or Figure 18, none of the lines take time

greater than O(n2 � (jV j + jAj)). Thus, since we call Calc WCET at most n times,

our constructive heuristic scheduling algorithm with multiple NEV ER sets takes

time O(n3 � (jV j + jAj)). Assuming we can bound V and A by constants, we have a

polynomial-time algorithm.

4.2.5 Practical Considerations for the Calculation of WCET

In order to make a correct calculation of the WCET, we have to consider the time

spent executing the ISR and the priority scheduler. To be more speci�c, we will

consider the case where the processor is a MIPS R4000. To calculate the WCET

of the entire graph, we use the following costs, obtained by analyzing our run-time

scheduler software code executed on a MIPS R4000 model (with no cache analysis,

i.e. assuming we always miss in the instruction cache): interrupt overhead = 38 cycles

and priority scheduler task selection = 98 cycles.

For the interrupt, we use pin Int(0) on the MIPS R4000 model and do not save

the register set before passing control to the priority scheduler software. The priority

scheduler template uses several registers reserved for the kernel; it also uses two

general purpose registers, which it saves before using and restores just before exiting.

Otherwise, with a general context switch, our interrupt overhead would be much

larger. Also, since each task runs to completion (Assumption 4.3), no context switches

are needed between tasks (in the following sections, we will show how to relax this

assumption and still account for the worst case).

We use these costs to calculate the WCET of the entire graph. Note that in the

CHAPTER 4. REAL TIME ANALYSIS 71

actual implementation of the constructive heuristic scheduling algorithm, the WCET

for the ISR and the WCET for the priority scheduler are added to the WCET for

each software-task when calculating the task priorities.

We use the priority scheduler with the priorities found via constructive heuristic

scheduling. Note that we assume that precedence constraints needed to implement

the chosen task order is enforced by the run-time scheduler. In other words, no inter-

rupts updating the start vector of start events for the software-tasks for a particular

software-task until all higher-priority software-tasks are �nished executing.

Example 22 Consider Figure 10. We use the priorities found in Example 19. We �nd that

the run-time scheduler causes three interrupts. Since the hardware part of the run-time scheduler

enforces the precedence constraint of cjd before oh1, 1,643 clock cycles go unused between the

completion of oh0 and the start of cjd. After the third interrupt, oh1 executes concurrently

with mvm2, mvm3 and mvm4. After oh1 �nishes, then mvm1 executes.

A straightforward ASAP schedule is used. Several of the software- and hardware-tasks

have loops, for each of which the user provided upper bounds (the analysis of cinderella-M

supports user speci�cation of loop bounds[MWWL96, LM95]). Notice how the critical path runs

through both hardware and software in di�erent execution paths. Table 7 shows the calculation.

The overall WCET is 39,284 cycles. 2

Recall that we assume that the hardware part of our run-time scheduler is the

only source of interrupts for the CPU (Assumption 4.5). Now we know that we can

generate the FSM such that hardware part of the run-time scheduler only interrupts

the software to indicate that the next highest priority task is ready to execute once

the previous task (in priority level) has completed. Thus, we can guarantee that each

software task runs to completion (Assumption 4.3). With these two assumptions, we

�nd that no context switches ever occur in our software (no calls to save context or

restore context). Furthermore, only one call to interrupt service routine(ISR)

CHAPTER 4. REAL TIME ANALYSIS 72

sw-task # cycles hw-task # cycles

int-ser-routine 38 cg 4,000

priority-sch-sw 98

oh0 2,221

int-ser-routine 38 fk 4,500

priority-sch-sw 98

cjd 13,213

int-ser-routine 38 mvm2 4,400

priority-sch-sw 98

oh1 4,264

oh1 4,400 mvm3 4,400

oh1 4,400 mvm4 4,400

oh1 4,335 mvm1 4,400

Table 7: WCET Calculation Example

and one call to priority scheduler are needed per software task. Thus, we �nd that

the �nal output of our WCET calculation is an upper bound on the WCET of the

graph, given the priorities assigned to software-tasks in the same NEV ER set.

So we now can analyze satis�ability of a rate constraint in a dynamically chang-

ing, concurrent execution of hardware-tasks and software-tasks, given our run-time

scheduler implementation.

4.3 Context Switch Cost and Out-of-order Execu-

tion

In the previous section, we found a solution that minimizes WCET when software-

tasks are assigned priorities and not executed until all higher priority software-tasks

have completed. However, in some cases there may be unused CPU cycles between

two software-tasks with consecutive priorities, e.g. if a hardware-task needs to �nish

to satisfy precedence constraints (captured in the DAG). Thus, we may want to relax

CHAPTER 4. REAL TIME ANALYSIS 73

Assumption 4.3 and allow lower priority software-tasks to execute during otherwise

unused CPU cycles, even when some higher priority tasks have not yet executed. We

call this situation out-of-order execution because we abandon the exact sequencing of

software-tasks according to their priority as was done in the previous section.

However, now our WCET calculation must account for software-tasks which are

partially executed and then interrupted. In our analysis the WCET of a context

switch is for either saving the register set { save context { or for restoring a previous

register set { restore context. Since context switching is a major cost to consider

when trying to optimize for real time
1
, we feel that the savings is worth the e�ort

spent separating the two kinds of contexts switches.

Note that when a particular software-task completes its execution, there are no

registers to save when transferring the processor to another software-task. Similarly,

when a particular invocation of a software-task �rst begins execution, there is no

register state to load. Eliminating context switches in these cases does not mean that

there cannot be other processes switched out; it just means that saving or restoring

the register set may not be necessary at that particular instant.

Interrupts are disabled during context switches. The priority scheduler is restarted

if an interrupt is received during its execution. Note that due to the construction of

the hardware part of the run-time scheduler, at most one interrupt will occur per

software-task.

4.3.1 Upper bound on extra calls to the Priority Scheduler

and Context Switch

Suppose we havem software-tasks whose order, assuming each runs to completion, has

been found by the constructive heuristic scheduling algorithm described in Section 4.2.

1For example, the major result of [HWS95] was a 66% reduction in context switch cost.

CHAPTER 4. REAL TIME ANALYSIS 74

Then, suppose we allow l of the software-tasks to execute out-of-order; that is, for

any of the l software-tasks, if it is ready to start before software-tasks higher in

priority are ready, we allow it to execute until one of the higher priority tasks is ready

to execute. (Clearly, l < m since the highest priority task cannot execute \out-of-

order.") Since at most one interrupt will occur per software-task for each execution

of the application (as captured in the DAG), the ISR overhead is �xed based on the

number of software-tasks. With interleaved execution of software-tasks, however, the

number of calls to the scheduler is not �xed. What is the overhead, in terms of extra

executions of the priority scheduler and context switch code, incurred by allowing

these l tasks to execute early (out-of-order)?

In order to begin our analysis, we de�ne the following:

De�nition 4.16 Let� assign a priority to each software-task that minimizesWCET

if each task runs to completion: if �(sa) > �(sb) then the sa has a higher priority

than sb.

Presumably we found � using the constructive heuristic scheduling algorithm of the

previous section.

De�nition 4.17 A software-task executes early when the run-time scheduler sets its

start event before all higher priority tasks have completed execution.

Clearly, a software-task that executes early can possibly execute out-of-order.

De�nition 4.18 Let I = fi1; i2; : : : ; ilg = the set of l software-tasks allowed to exe-

cute early and possibly execute out-of-order.

Each task i 2 I can have part or all of it computation performed before the software-

task immediately preceding it in priority has even begun to execute at all.

CHAPTER 4. REAL TIME ANALYSIS 75

cg

fk

cjd

src

sink

Jhold Law

oh0

oh1

NEVER = {oh0,oh1,cjd}

mvm1

mvm2

mvm3

mvm4

Ohold1 Law

T T TT(oh0) > T(cjd) > T(oh1)

WCET
(cycles)
−−−−−
4,000
2,221
17,399
4,500
13,213
4,400
4,400
4,400
4,400
0
0

BCET
(cycles)
−−−−−
4,000
1,598
12,341
4,500
9,989
4,400
4,400
4,400
4,400
0
0

Task
−−−−
cg
oh0
oh1
fk
cjd
mvm1
mvm2
mvm3
mvm4
src
sink

Figure 19: DAG, WCET and � Example

De�nition 4.19 Suppose we have two tasks i and j with �(j) > �(i) but under some

conditions it is possible that the run-time scheduler will assert the start event for i

before the start event for j. Then we say that software-task i can jump software-task

j.

Clearly, for it to be possible for i to jump j, then there cannot be any precedence

constraint between i and j.

De�nition 4.20 Given a set I of software-tasks that can execute early, let J =

fj1; j2; : : : ; jqg = the set of q software-tasks that can be jumped by some i 2 I.

Example 23 Consider the DAG shown in Figure 19 where theNEV ER set speci�es software-

tasks which must execute on the same CPU. The order of tasks in the NEV ER set which

minimizes WCET for the graph is (oh0,cjd,oh1) { thus �(oh0) > �(cjd) > �(oh1) {

and is shown by the two emboldened edges in Figure 19. Thus, the static priority scheduler in

software has the highest priority assigned to oh0, the next highest priority to cjd and the lowest

CHAPTER 4. REAL TIME ANALYSIS 76

priority to oh1. Notice that after oh0 �nishes, there are 8,779 cycles of delay before cjd can

start, due to cg. If the run-time scheduler were to set the start event for oh1 right after oh0

�nishes, then oh1 would execute early and cjd would be jumped. In this case we would have

I = fi1g = foh1g and J = fj1g = fcjdg. 2

In general, a task can be in both I and J . Note that in Figure 20, Figure 21,

cg

fk

cjd

src

oh0

oh1

oh1

p
sc
rc

src
i1
j1
i1
snk

sink

mvm1

mvm2

mvm3

mvm4

Figure 20: DAG With Out-of-order Execution Example

Example 24 and the subsequent proofs, the abbreviation p stands for a call to the

priority scheduler code, sc stands for a call to the save context code and rc

stands for a call to the restore context code.

Example 24 Figure 20 shows a graphical representation of the execution of the DAG of

Figure 19 where oh1 executes early (i.e. out-of-order) with respect to its assigned priority (the

thick arrows indicate the out-of-order execution ow). The two small columns show which extra

calls to the priority scheduler code (p), save context code (sc) and restore context

code (rc) occur. An extra call to p �rst occurs to schedule i1 = oh1 right after oh0 �nishes.

CHAPTER 4. REAL TIME ANALYSIS 77

There is no need to call any context switch code since one software-task is completely �nished,

namely oh0, and the other software-task, oh1, starts up from the beginning of its code. Next,

j1 = cjd becomes ready, necessitating a call to sc to store the register state for oh1. Finally,

cjd �nishes and a call to rc is needed to continue execution of oh1 from its state when it was

interrupted. Thus, after the source, i1 causes an extra call to p, j1 causes an extra call to sc,

i1 causes an extra call to rc and �nally the sink is reached. Thus, the columns show the extra

overhead incurred in extra calls to p, sc and rc that would not have been incurred were the

tasks executed strictly in order of their assigned priorities. 2

p
sc
p,rc
sc
p,rc
sc
p,rc

sc
p,rc
sc
p,rc
sc
p,rc
sc
p,rc
sc
p,rc
sc
p,rc
sc

rc

p
sc
p
sc
p
sc
p,rc

sc
p,rc
sc
p,rc
sc
p,rc
sc
p,rc
sc

rc

rc

rc

p
sc
p,rc
sc
p,rc
sc

rc
p
sc
p,rc
sc

rc
p
sc
p,rc
sc
p,rc
sc

rc

J

p
sc
p
sc
p
sc
p,rc
p,rc
sc
p,rc
sc
p,rc
sc
p,rc
sc
p,rc
sc

rc

rc

(A) (B) (C) (D) (E)

p
p,sc
p,sc
sc
p,rc
sc
p,rc
sc
p,rc

sc
p,rc
sc
p,rc
sc
p,rc
sc
p,rc
sc

rc

rc

rc

jum
pe

d
no

de
s (

in
se

t
)

src
i1
j1
i1
j2
i1
j3
i1

j4
i1
j5
i1
j6
i1
j7
i1
j8
i1
j9
i1
j10

i1
snk

src
i3
j1
i2
j2
i1
j3
i1

j4
i1
j5
i1
j6
i1
j7
i1
j8

i1

i2

i3
snk

src
i3
j1
i2
j2
i1
j3
i1
i2
j4
i2
j5
i2
j6
i2
j7
i2
j8

i2

i3
snk

src
i1
j1
i1
j2
i1
j3

i1
i2
j5
i2
j6

i2
i3
j8
i3
j9
i3
j10

i3
snk

src
i3
i2
i1
j1
i1
j2
i1
j3
i1

j4
i1
j5
i1
j6
i1
j7
i1
j8

i1

i2

i3
snk

Figure 21: Extra Priority Scheduler and Context Switch Time Examples

Example 25 Let's consider the three examples of Figure 21. In (A), I = fi1g and jIj = 1;

in (B), (C), (D) and (E), I = fi1; i2; i3g and jIj = 3. Notice that in all �ve examples the

number of software-tasks that get \jumped" is jJ j = 10. Both (B) and (C) have some tasks

in both I and J ; for example, in (B) i1 and i2 can be jumped by i3, and so both i1 2 J and

i2 2 J .

CHAPTER 4. REAL TIME ANALYSIS 78

In (A), i1 is allowed to execute after the source. So, in every space between two software-

tasks, i1 tries to execute, causing an extra call to p and to rc before actually running any

instructions of i1 itself. Then, when a task in J is ready to execute, a call to sc has to be made

since i1 is not �nished yet. Notice that no rc calls are needed for any of the tasks in J since

each j 2 J runs to completion. 2

Next we propose two theorems about the number of additional calls to p, rc and

sc if we allow software-tasks in a set I to execute while no higher priority tasks are

ready (even though some higher priority task has yet to start execution). For the

sake of simplicity, note that in the following, given two sets A and B, we use A� B

to denote the elements of A not in B.

Theorem 4.2 Consider o hardware-tasks and m software-tasks fs1; s2; : : : ; smg with

priority � which execute on a single processor.

Let I = fi1g be a single software-task allowed to execute early. Furthermore, let

the software-tasks that i1 can possibly jump be J = fj1; j2; : : : ; jqg, where �(j1) >

�(j2) > : : : > �(jq) and q < m.

Claim:

The number of additional calls to the priority scheduler(p), save context(sc)

and restore context(rc) code due to allowing the software-task i1 to execute early

has an upper bound of

jJ j � (p+ sc + rc): (4.1)

Proof: In the worst case i1 executes before j1, causing an extra call to p,

but does not �nish execution. Next j1 becomes ready to execute, causing

a call to p and sc. Since the call to p would have happened anyway, only

the sc call is additional. After j1 �nishes, in the worst case there is exactly

enough time for only a single extra call to the p and to rc for i1 before

j2 is ready to execute. So, both of these calls occur. Next j2 is scheduled

to execute, but needs an extra call to sc to store i1's register set (since i1

CHAPTER 4. REAL TIME ANALYSIS 79

did not �nish). In the worst case, the calls continue in this way until jq,

after which i1 immediately executes, since it is the next priority task. At

this step, only an extra rc call is needed for i1. The total number of extra

calls is one p for i1 just before j1, one sc just before executing j1, then p

+ rc + sc for j2 through jq, and �nally one rc for the �nal execution of

i1: p + sc + (q � 1) � (p+ rc+ sc) + rc

This is exactly equal to q � (p+ rc+ sc) = jJ j � (p+ rc+ sc). QED.]

Example 26 An example of the worst case scenario is shown in (A) of Figure 21, which

shows the case for q = 10. The total number of extra calls is 10 � (p+ rc+ sc). 2

Theorem 4.3 Consider o hardware-tasks and m software-tasks fs1; s2; : : : ; smg with

priority � which execute on a single processor.

Let I = fi1; i2; : : : ; ilg, where �(i1) > �(i2) > : : : > �(il), be software-tasks,

l < n, such that all of them are allowed to execute early. Furthermore, let the

di�erent software-tasks that some i 2 I can possibly jump be J = fj1; j2; : : : ; jqg,

where �(j1) > �(j2) > : : : > �(jq):

Claim:

The number of additional calls to the priority scheduler(p), save context(sc)

and restore context(rc) code due to allowing the software-tasks of I to execute

early has an upper bound of

(j(J � (J \ I)) [Ij � 1) � (p+ sc + rc): (4.2)

Proof: We give a proof by induction.

Base step: I1 = fi1g and J1 = fj1; j2; : : : ; jq1g, where J1 is the set of tasks

that i1 can possibly jump.

Clearly, I1 � I and J1 � J . By Theorem 4.2, an upper bound

on the number of calls to p, sc and rc is

jJ1j � (p+ sc + rc).

By de�nition of J1 and I1, J1 \ I1 = ;, and so the upper bound

CHAPTER 4. REAL TIME ANALYSIS 80

is

jJ1 � (J1 \ I1)j � (p+ sc + rc) which, since jIj = 1, is equal to

(j(J1 � (J1 \ I1)) [I1j � 1) � (p+ sc+ rc).

QED for base step.

Step k: Ik = fi1; i2; : : : ; ikg and Jk = fj1; j2; : : : ; jqkg, where Jk are the

tasks that some i 2 Ik can possibly jump.

Assume true that the following upper bound holds:

(j(Jk � (Jk \ Ik)) [Ikj � 1) � (p+ sc + rc).

(Note that by de�nition of J , Jk � J .)

Step k + 1: Ik+1 = fi1; i2; : : : ; ik+1g and Jk+1 = fj1; j2; : : : ; jqk+1g, where

Jk+1 are the tasks that some i 2 Ik+1 can possibly jump. From the given,

we know that �(ik) > �(ik+1). We have several cases.

Case (i): i1; : : : ; ik �ll all available spaces between tasks in J ,

so that ik+1 is unable to execute out-of-order. By hypothesis

(Step k), the upper bound on the number of additional calls to

p, rc and sc due to Jk and Ik = fi1; : : : ; ikg is (j(Jk � (Jk \

Ik)) [Ikj � 1) � (p + rc + sc) (1). If Jk+1 = Jk, i.e. there

are no additional jumpable tasks included in Jk+1 due to ik+1,

then (j(Jk+1� (Jk+1\ Ik+1))[Ik+1j� 1) increases by 1 while no

additional calls are incurred since ik+1 just executes right away,

after all the previous tasks in Jk+1 and Ik+1 have completed. So

the upper bound of (j(Jk+1 � (Jk+1 \ Ik+1)) [Ik+1j � 1) � (p+

sc+ rc) holds.

So let's assume that there are additional jumpable tasks. Let

these additional jumpable tasks included due to ik+1 and not

already in Jk [Ik be fjr; jr+1; : : : ; jqk+1g (we don't consider the

jumpable tasks that are also in I because for this case we assume

ik has �nished execution).

Just considering tasks fjr; jr+1; : : : ; jqk+1g and ik+1, we have an

instance of Theorem 4.2. So the upper bound is

jfjr; jr+1; : : : ; jqk+1gj�(p+sc+rc). If we add this to the previous

CHAPTER 4. REAL TIME ANALYSIS 81

upper bound (1) for fj1; j2; : : : ; jr�1g and Ik, we have

(j(Jk�(Jk\Ik))[Ik j�1)�(p+rc+sc)+ jfjr ; jr+1; : : : ; jqk+1gj�

(p+ sc+ rc) (2).

Now, since fjr; jr+1; : : : ; jqk+1g are not in Jk [Ik, and since ik+1

cannot be in Jk+1, we �nd that

(Jk � (Jk \ Ik)) [Ik [fjr; jr+1; : : : ; jqk+1g

= (Jk+1 � (Jk+1 \ Ik+1)) [Ik

Thus, from (1), we �nd an upper bound of

(j(Jk+1 � (Jk+1 \ Ik+1)) [Ikj � 1) � (p+ sc+ rc)

which is clearly less than

(j(Jk+1 � (Jk+1 \ Ik+1)) [Ik+1j � 1) � (p+ sc+ rc)

QED for case (i).

Case (ii): ik+1 was able to execute early, e.g. right after the

source but before j1, because none of i1; : : : ; ik were ready to

execute or still had execution time left at that time (see Fig-

ure 21, (E), for an example). This causes an extra p. However,

in the worst case, just as ik+1 is about to be dispatched, an

interrupt arrives saying that ik is ready to execute (we do not

consider the time due to interrupts here). So, an extra p and

sc are incurred. Similarly, ik�1 becomes ready, incurring yet

another p and sc. This continues for all i 2 Ik+1 in increasing

level of priority until we reach i1. Thus, so far extra calls have

occurred in the amount of p+ (jIk+1j � 1) � (p+ sc) (3).

(Note that we do not stipulate that all of these interrupts occur

before j1, but only state that in the worst case they arrive in

this reverse order and each have enough of a delay before the

next interrupt so that additional p + (jIk+1j�1)� (p+ sc) calls

are still made.)

Consider each j 2 (Jk+1 � (Jk+1 \ Ik+1)). From here on out,

in the worst case each j 2 (Jk+1 � (Jk+1 \ Ik+1)) will incur an

extra call to sc because j interrupts an executing process. Thus,

jJk+1 � (Jk+1 \ Ik+1)j � sc extra calls will occur (4).

Since all tasks in Ik+1 have become ready to execute, the only

CHAPTER 4. REAL TIME ANALYSIS 82

way for a task in Ik+1 to begin execution is if all higher priority

i 2 Ik+1 have already �nished. In the worst case, i1 will not

�nish executing until after the last jqk+1 (for the situation where

i1 �nishes before jqk+1, see the next case), so that all of the

previous calls to p for i1 will have been extra, and only this call

to p now that jqk+1 is done will not be an extra call { but the

call to rc will be additional (see Figure 21, (E), for an example

with jIj = 3). Therefore, (jJk+1�(Jk+1\Ik+1)j�1)�(p+rc)+rc

extra calls will be made for i1 (5).

Similarly, for the rest of Ik+1, jIk+1j � 1 extra calls to rc will

occur (the remaining jIk+1j � 1 calls to p were necessary in the

normal course of events and so are not counted as extra). Thus,

a total of (jIk+1j� 1) � rc extra calls will be needed in the worst

case (6).

Combining (4), (5), (3), and (6) (in this order), we �nd that

in the worst case the number of extra calls needed is

jJk+1 � (Jk+1 \ Ik+1)j � sc + (jJk+1 � (Jk+1 \ Ik+1)j � 1) � (p+

rc) + rc+ p+ (jIk+1j � 1) � (p+ sc) + jIk+1j � rc

= (jJk+1 � (Jk+1 \ Ik+1)j � 1) � (p + sc + rc) + sc + rc + p +

(jIk+1j � 1) � (p+ sc+ rc)

= (j(Jk+1 � (Jk+1 \ I+1k)) [Ik+1j � 1) � (p+ sc+ rc).

QED for case (ii).

Case (iii): Suppose in the previous case i1 does in fact �nish

execution before jqk+1 (e.g. consider the case in Figure 21, (C),

where i2 executes after j3 and i1). In this case an additional call

to p and and to rc are needed for i2 in the worst case (because

i2 had executed before and needs its context back). However,

later on, i1 will not need to be executed, because it has already

�nished. This saves calls to p and rc later: thus, the total

amount of calls to p, rc and sc remain unchanged. This can

be extended: if any ip; p � k + 1, �nishes early, then ip will not

need to be executed later, leaving the total amount of calls to

p, rc and sc unchanged. This is true even if multiple ip's �nish

CHAPTER 4. REAL TIME ANALYSIS 83

in the same space (i.e. between the same two tasks of set J).

Thus the upper bound found in the previous case still holds:

(j(Jk+1 � (Jk+1 \ Ik+1)) [Ik+1j � 1) � (p+ sc+ rc).

QED for case (iii).

Now, since I was chosen arbitrarily, and since J is uniquely determined

by I and �, the above induction holds for any I, � and corresponding J .

QED.]

The main point of this section has been accomplished: to analyze the worst-case

overhead incurred in allowing software-tasks to execute out-of-order. Our major result

is Equation 4.2, which gives us a formula which quanti�es the number of extra calls

to the priority scheduler, save context and restore context code, where we as-

sume that each software-task necessitates one call to the interrupt service routine

and priority scheduler.

4.3.2 Instruction Cache Analysis

We want to quantify all of the overhead associated with allowing software-tasks to

execute out-of-order. The previous section dealt with the overhead in terms of extra

calls to the priority scheduler and context switch code. What about the instruction

cache?

To calculate the WCET of a software-task, we use cinderella-M. However,

cinderella-M's instruction cache analysis assumes that no interrupts occur [LM95].

In our case, the presence of interrupts means that a software-task's instructions can

possibly be kicked out of the instruction cache if it is suspended to allow execution

of a newly ready, higher priority software-task. Thus, we use the following heuristic

to augment cinderella-M's analysis.

cinderella-M calculates the binary code size of each software-task. From this,

we calculate the maximum number of instruction cache lines neeeded and the cost

CHAPTER 4. REAL TIME ANALYSIS 84

of reloading the entire intruction cache with the task's instructions. Note that

cinderella-M's analysis[MWWL96, LM95] already includes the worst-case e�ects

for the situation where the binary code size is greater than the instruction cache size,

so the maximum number of instruction cache lines we have to consider is bounded by

the size of the instruction cache.

Ideally cinderella-M would return a worst case instruction cache penalty due

to the instruction cache being emptied of a task's instructions. However, we sim-

ply read the binary code size using the View!Function Statistics command of

cinderella-M. Then we use the following formula, where binarycodesize and

icachelinesize are in bytes:

WCET reload icache = (d
binarycodesize� 1

icachelinesize
e+ 1) � (time to load a single icache line)

(4.3)

Note the the binarycodesize� 1 and +1 in the formula are necessary to account for

the case where the �rst instruction byte maps to the last byte of an instruction cache

line. The only exception to this formula is when it gives a result greater than the time

to load the entire instruction cache, in which case we take WCET reload icache to

be the lower value, i.e. the time to load the entire instruction cache.

Thus, for each possible interruption by a higher priority task that a task can

experience, we have to add the cost of reloading all the instruction cache lines for

that task to the overallWCET for the entire graph. In the worst case, this additional

cost will be incurred for every possible call to rc. Thus, for each possible call to

rc, we add the worst case instruction cache re�ll time, as well as the WCET for the

restore context code.

Example 27 Software-task oh1, when compiled, has a binary code size of 3584 bytes. The

View!Function Statistics command of cinderella-M is one way to count the binary

code size, and this is the method we use. The MIPS R4000 we use has icache line size of 16,

CHAPTER 4. REAL TIME ANALYSIS 85

while the time to load a single instruction cache line is 18 cycles. Thus, for oh1, we �nd the

following using Equation 4.3:

WCET reload icache = (d
3584� 1

16
e+ 1) � (18) = 4050

2

Practical Considerations in Instruction Cache Analysis

As in Section 4.2.5, we consider the case where the processor is a MIPS R4000.

Note that the MIPS R4000 does not have a scratchpad section in its primary caches

(instruction and data are separate), nor is it con�gurable to allow one. The cache

controller is all in hardware. Thus, in order to calculate the WCET of the four

operating systems routines we use (ISR, priority scheduler, save context, and

restore context), we always assume that they miss in the instruction cache; this

assumption was implicit when we calculated these values in Section 4.2.5.

This estimate is obviously undesirable because the routines are called often and

most likely will often be resident in the cache (e.g. none of the three software-tasks

considered in our robotics example take up the full instruction cache size of 8K).

We could eliminate the instruction cache misses for these four routines in general by

either (i) �nding with other analysis an upper bound on the number of times the

routines can be kicked out of the instruction cache, or (ii) placing the four routines

into a scratchpad section of the instruction cache (i.e. a scratchpad section is one that

is never kicked out by the caching system in order to make room for new instructions

due to a cache miss). Unfortunately, (ii) is not available for the speci�c CPU we

consider.

CHAPTER 4. REAL TIME ANALYSIS 86

4.3.3 Total Upper Bound on WCET

In this section we combine the results of the previous two sections in order to come

up with a total upper bound formula for the case of tasks with priority � running

on a CPU where the set I of tasks may execute early and the set J of tasks may be

jumped.

Let WCETprsched be the WCET of the priority scheduler code,

WCETsavecntxt be the WCET of the save context code and WCETrestorecntxt

be theWCET of the restore context code. Furthermore, letWCET reload icachei

be the maximum additional WCET due to extra instruction cache misses in task

i 2 I, and letWCET reload icache be the maximum additionalWCET due to extra

instruction cache misses for any i 2 I.

Now, for each possible interruption by a higher priority task that a task can

experience, we have to add the cost of reloading all the instruction cache lines for

that task to the overall WCET for the CPU. In the worst case, this additional cost

will be incurred for every possible call to rc. Thus, for each possible call to rc,

we add the worst case instruction cache re�ll time, as well as the WCET for the

restore context code.

Thus, by Theorem 4.2 and its corresponding Equation 4.1, for a given G and I

with one element fi1g and the associated J , an upper bound on the increase in overall

WCET for G is given by the following:

jJ j � (WCETprsched+WCETsavecntxt +WCETrestorecntxt +WCET reload icache)

(4.4)

Similarly, by Theorem 4.3 and Equation 4.2, for a given G and I with associated J ,

an upper bound on the increase in WCET for G is given by the following:

(j(J�(J\I))[Ij�1)�(WCETprsched+WCETsavecntxt+WCETrestorecntxt+WCET reload icache)

(4.5)

This completes our calculation of the total upper bound on WCET for the CPU with

CHAPTER 4. REAL TIME ANALYSIS 87

instruction cache analysis included.

4.3.4 Constructive Heuristic Scheduling with Out-of-order

Execution

In this section we present a heuristic algorithm that can improve the solution of the

constructive heuristic scheduling algorithmwhere we do not have Assumption 4.3 and

thus software-tasks are not all necessarily atomic.

We �rst compute the priorities by the algorithmof Section 4.2 for multipleNEV ER

sets. Thus, we have an order of software- and hardware-tasks contained in NEV ER�

SETS and the correspondingWCET for the DAG representing the application. Our

goal is to increase CPU utilization by starting execution of a low priority software-

task that is ready when no higher priority software-task is yet ready. However, if

not done carefully, we could end up increasing overall WCET, although in general

relaxing Assumption 4.3 will allow us to reduce WCET for the graph, thus improving

our solution. We use the bounds proven in the previous section to guide our decision

and guarantee that any out-of-order execution allowed will not worsen the WCET.

The basic insight that we gain from the previous section is the following. Sup-

pose we consider a software-task pi lower in priority (and thus later in execution

if all software-tasks execute strictly in priority order) than two consecutive priority

software-tasks k1 and k2 which leave the CPU unused for a certain number of cy-

cles between the completion of k1 and the beginning of k2. Let's de�ne a function

get space(k1; k2) that returns a number equal to the amount of unused CPU cycles.

Should we allow pi to execute after k1 �nishes (assuming there are no control/data-

ow constraints preventing pi from doing so)? To answer this question, we use the

bound found in Equation 4.5 of the previous section: if the amount of space (unused

cycles) is greater than or equal to Equation 4.5, then yes, otherwise no. That is the

CHAPTER 4. REAL TIME ANALYSIS 88

Execute out of order(G;�;NEV ERSETS;

WCETprsched;WCETsavecntxt;WCETrestorecntxt) f

1 SWNEV ER = 1st set in NEV ERSETS; m = jSWNEV ERj;

/* Get set and number of software-tasks */

2
 = (src; p1; p2; : : : ; pm) where pi 2 SWEV ER; 1 � i � m;

and �(p1) > �(p2) > : : : > �(pm);

/*
 stores the source followed by the software-tasks in priority order */

3 p0 = src; /* now we have
 = (p0; p1; p2; : : : ; pm) */

4 W = WCETprsched +WCETsavecntxt +WCETrestorecntxt;

5 I = ;; J = ;; 	 = ;; /* 	 keeps track of new precedence constraints */

6 i = 1; WCET reload icache = 0; /* i counts the number of tasks in set I plus one */

/* the following for loop considers allowing sw-tasks (pm; pm�1; : : : ; p2) to execute early */

7 for (l = m; l � 2; l��) f

8 k2 = pl�1;

9 if (k2 2 J) v = 0;

10 else v = 1; /* v counts the number of tasks skipped by pl and not already 2 J */

11 new prec task = k2;

12 for (k1 = pl�2 to k1 = p0) f

13 if (9 a precedence constraint fk2! plg)

14 continue; /* exit inner for(k1=. . .) loop */

15 if (get space(k1; k2) �

16 (i + v + num tasks skipped(
) - 1)*(W + WCET reload icachei)) f

17 new prec task = k1;

18 after prec task = k2;

19 if (WCET reload icachei > WCET reload icache)

20 WCET reload icache = WCET reload icachei;

21 g

22 k2 = k1;

23 if (k2 : 2 J) v ++;

24 g

25 if (new prec task) f

26 	 = 	 [fnew prec task! plg;

/* add new precedence constraint fnew prec task ! plg to 	 */

27 update I, J ;

28 reduce get space(new prec task; after prec task)

29 by (i + num tasks skipped(
))*(W + WCET reload icachei);

30 i++;

31 g else f 	 = 	 [fpl�1 ! plg; g /* add consecutive precedence constraint to 	 */

32 g

33 return(, WCET reload icache);

g

Figure 22: Execute Out-of-order Algorithm

CHAPTER 4. REAL TIME ANALYSIS 89

insight behind the heuristic Execute Out-of-order procedure of Figure 22.

We describe now the heuristic algorithm of Figure 22 that improves the exe-

cution time of a schedule by allowing out-of-order execution. From �, which was

computed by the algorithm described in Section 4.2.3, we obtain the software-task

order (p1; p2; : : : ; pm), where there are m software-tasks. Then we consider allowing a

software-task pl to execute early one at a time in reverse order of the software-tasks

from this set (except for the �rst software-task, for which it does not make sense to

execute early). Thus, given a software-task pl 2 (p2; p3; : : : ; pm), and starting with the

software-task scheduled last (i.e. pm), we consider allowing pl to execute early. For

each such software-task pl we check if pl can execute in some unused space between

two consecutive and higher priority software-tasks k1 and k2, assuming no precedence

constraints are violated. If pl can execute in the space, then we check if the space is

big enough to account for the worst-case extra execution time that will be incurred

according to Equation 4.5. Note that we calculate Equation 4.5 in Figure 22 by using

num tasks skipped(
), a function which returns the number of tasks currently in

(J � (J \ I)) (i.e. not including the tasks currently under consideration, unless they

were already placed in I or J in a previous iteration). Now, if the space of unused

CPU time is big enough, then we greedily schedule pl in that space and appropriately

reduce the available space to reect the new schedule; otherwise we add the prece-

dence constraint of strict in-order consecutive execution, namely fpl�1 ! plg. As we

go along, we keep track of I and J as we add tasks to each set. Continuing in this

way, we consider all possible software-tasks one by one for early execution.

When this algorithm completes, we have a �nal set of precedence constraints for

the software-tasks that allows out-of-order execution without increasing the WCET

of the application.

Example 28 [Sample Application of Execute Out-of-order algorithm] Consider Fig-

ure 23, which shows the BCET and WCET for each task, the icache re�ll WCET for the

CHAPTER 4. REAL TIME ANALYSIS 90

cg

fk

cjd

src

sink

Jhold Law

oh0

oh1

Ohold1 Law

mvm1

mvm2
T T TT(oh0) > T(cjd) > T(oh1)

SWNEVER = {oh0,oh1,cjd}

Task
−−−−
cg
oh0
oh1
fk
cjd
mvm1
mvm2
src
sink

Task
BCET
(cycles)
−−−−−
11,000
1,598
12,341
4,500
9,989
5,000
5,000
0
0

Task
WCET
(cycles)
−−−−−
11,000
2,221
17,399
4,500
13,213
5,000
5,000
0
0

icache refill
WCET
(cycles)
−−−−−

612
4050

3258

Figure 23: Example With WCET Calculation of Instruction Cache Re�ll Time

software-tasks (SWNEV ER), and the priorities found for the tasks: �(oh0) > �(cjd) >

�(oh1).

We begin by considering oh1 for out-of-order execution. We �nd that the space between

the end of oh0 and the beginning of cjd is 11,000 - (2,221 + WCETisr +WCETprsched)

= 8,643 cycles (using the costs of Section 4.2.5, from which we also �nd that W = 422). At

this point in the algorithm of Figure 22, we �nd that (i + m + num tasks skipped(�) � 1)

= 1 + 1 + 0 � 1 = 1, and that WCET reload icachei = 4,050, giving us a move cost of

1 � (422 + 4; 050) = 4; 472. Since 8; 643 � 4; 472, we set new prec task (of Figure 22) to

oh0. We next �nd out that oh1 cannot execute before oh0 since oh1 requires data generated

by oh0. Thus, we add the precedence constraint foh0 ! oh1g which means that we do not

add precedence constraint fcjd ! oh1g. Therefore, the run-time scheduler will set the start

event of oh1 as soon as oh0 �nishes execution instead of waiting for cjd to �nish.

We next consider cjd for out-of-order execution. We �nd that it does not make sense to

try to have cjd execute before oh0 since oh0 starts right away. So we add the precedence

constraint foh0 ! cjdg which means that cjdg will run to completion (since it cannot start

until the task immediately preceding it in priority executes). This completes the algorithm of

Figure 22 for the example of Figure 23.

Note that the precedence constraint foh0 ! oh1g in this case is redundant because the

CHAPTER 4. REAL TIME ANALYSIS 91

precedence constraint is already enforced by a control/data-ow constraint (in general, of course,

such redundancy will not always be the case).

The result is that the lower priority task oh1 executes in the idle CPU time between the end

of oh0 and the beginning of cjd. 2

Calculation of WCET With Out-of-order Execution

In order to make a correct calculation of the WCET, we have to consider the time

spent executing the ISR, the priority scheduler, and context switches. As in Sec-

tion 4.2.5, we will consider the speci�c case where the processor is a MIPS R4000.

We use the following costs, obtained by analyzing our run-time scheduler software

code executed on a MIPS R4000 model (with no cache analysis, i.e. assuming we

always miss in the instruction and data caches): save context = 162 cycles, restore

context = 162 cycles, interrupt overhead = 38 cycles, and priority scheduler task

selection = 98 cycles.

After execution of the Execute Out-of-order algorithm of Figure 22, we have a

maximum value for WCET reload icache (which could be zero if jIj = 0).

With these costs, we calculate the WCET of the entire graph, scheduling every-

thing ASAP where each software-task has WCETisr+WCETprsched = 136 cycles

added to its WCET. At this point we have performed exactly the same calculations

as in Section 4.2.5. If jIj = 0, then this is our �nal answer.

If jIj 6= 0, then both I and J are nonempty, and we have to account for extra

overhead. We use the bound found using Theorem 4.3 in Section 4.3.3, namely

Equation 4.5, reprinted here for convenience:

(j(J�(J\I))[Ij�1)�(WCETprsched+WCETsavecntxt+WCETrestorecntxt+

WCET reload icache).

Adding this value to the WCET found from scheduling the graph gives us an upper

bound on the WCET of the graph. This is the value we return to the user.

CHAPTER 4. REAL TIME ANALYSIS 92

sw-task # cycles hw-task # cycles

int-ser-routine 38 cg 11,000

priority-sch-sw 98

oh0 2,221

int-ser-routine 38

priority-sch-sw 98

oh1 8,507

int-ser-routine 38 fk 4,500

save context 162

priority-sch-sw 98

cjd 13,213

priority-sch-sw 98 mvm2 4,400

restore context 162

WCET reload icache 4,050

oh1 90 mvm3 4,400

oh1 4,400 mvm4 4,400

oh1 4,402 mvm1 4,400

Table 8: WCET Calculation Example

Example 29 [WCET calculation] Consider Figure 23. If we make each software-task run

to completion, then with the optimal order of (oh0, cjd, oh1) we calculate that the WCET

for the graph is 46,284 cycles. However, we found in Example 28 that we should allow oh1 to

execute after oh0, even though oh1 has a lower priority than software-task cjd. This allows

previously unused CPU cycles to be �lled.

We have J = fcjdg, I = foh1g and J \ I = ;. The heuristic of Figure 22 gives

us WCET reload icache = 4050. Using our costs for WCETprsched;WCETsavecntxt;

WCETrestorecntxt and WCET reload icache, we �nd that W = 422. From Equation 4.5,

we �nd that

(j(J � (J \ I)) [Ij � 1) � (WCETprsched + WCETsavecntxt + WCETrestorecntxt +

WCET reload icache) = 1 � (422 + 4050) = 4472.

Table 8 shows the ASAP graph schedule with the worst-case execution time added in. Notice

that the maximum context switch overhead and the maximum one additional call to the priority

CHAPTER 4. REAL TIME ANALYSIS 93

scheduler has been accounted for. The �nal WCET is 42,113 cycles, which is less than our

initial solution of 46,284 cycles. 2

This �nal output is an upper bound on theWCET of the graph given the priorities

assigned to software-tasks and the precedence constraints added to the graph and

therefore implemented in the hardware portion of the run-time scheduler. In addition

to helping to limit the increase in overall WCET due to software-tasks, the added

precedence constraints also guarantee mutually exclusive invocation of hardware-tasks

in the same NEV ER set.

Notice that with this result we do not know exactly when each software-task will

begin and end. Software schedulers are by their very nature dynamic, especially with

a system like ours that contains caches. Thus, a run-time system that statically

schedules all software-tasks and their start/�nish times may require timers and other

additional components, making such an approach infeasible or impractical. Also, the

total WCET found for the system may be one that no single static schedule could

achieve, because the possibilities for di�erent interactions between tasks could not be

so tightly arranged as with the dynamic approach here.

So we now can analyze satis�ability of a rate constraint in a dynamically chang-

ing, concurrent execution of hardware-tasks and software-tasks with multiple resource

constraints (expressed with NEV ER sets), given our run-time scheduler implemen-

tation.

4.4 Task Splitting

One of the limitations of the Execute Out-of-order algorithm of the previous section

is that the original priorities assigned to software-tasks is kept. However, having

abandoned Assumption 4.3, one might be tempted to go back to the original formula-

tion of the Constructive Heuristic Scheduling Algorithm of Section 4.2 used to assign

CHAPTER 4. REAL TIME ANALYSIS 94

priorities. Can we improve upon the algorithm when software-tasks are allowed to

execute out-of-order? Are there optimal task priorities with out-of-order task execu-

tion which any algorithm will always miss because of Assumption 4.3? It turns out

that there are. Consider the following example:

src

sink

 a

 b

 c

 d

NEVER = {b,c}

task
−−−−
a
b
c
d
src
sink

T TT(b) > T(c)

WCET (cycles)
−−−−−
3,000
6,000
4,000
2,000
0
0

Figure 24: Constructive Heuristic Scheduling Example of Suboptimal Result

Example 30 Consider Figure 24. The constructive heuristic scheduling algorithm will com-

pare the two possible orderings, (b; c) and (c; b), and will �nd that the overall WCET is 12,000

cycles for the �rst case and 13,000 for the second. Thus, software-task b will receive the highest

priority. Even an exhaustive algorithm which enumerates all possibilities will �nd this result.

Now we run the heuristic of Section 4.3.4 and �nd that we cannot improve on the solution

since there is no space (unused CPU cycles) before b, which begins execution right away. Thus c

must wait until b �nishes to begin execution; overall WCET for the graph is still 12,000 cycles.

Suppose c had a higher priority than b and that out-of-order execution were allowed. Then,

ignoring the software scheduling, interrupt and context switch overhead, b would execute for

3,000 cycles concurrently with a, then c would execute for 4,000 cycles, and �nally b would

�nish in 3,000 cycles while d concurrently executes, resulting in an overall WCET of 10,000

cycles, which is signi�cantly less than previously found. 2

CHAPTER 4. REAL TIME ANALYSIS 95

src

sink

 a

 b

 c

 d

 b

task
−−−−
a
b
b
c
d
src
sink

1

2

1
2

NEVER = {b (split = 2) ,c}

T T

T T

TT(b1) > T(c) > T(b2)

T(c) > T(b)Result:

WCET (cycles)
−−−−−
3,000
3,000
3,000
4,000
2,000
0
0

Figure 25: Example of Scheduling with Task Splitting

To deal with this problem, we add the following heuristic: we allow the user to

specify for a task s that it can be split into n equal chunks. We then split s into

n sequential tasks (s1; s2; : : : ; sn) each with
1
n
of the WCET of s. Then we run the

constructive heuristic scheduling algorithm as before, but from the �nal order we set

the priority of s to be the priority found for sn and discard the priorities found for

(s1; s2; : : : ; sn�1).

Example 31 Consider Figure 25. This time the user speci�es that software-task b can be

split into n = 2 chunks. The modi�ed speci�cation of the NEV ER set, WCET for each task,

and resultant graph can be seen in Figure 25. The constructive heuristic scheduling algorithm

�nds the ordering (b1; c; b2) (which is optimal), from which we extract the order only including

bn, resulting in (c; b2). Thus c receives a higher priority than b and we have �(c) > �(b).

Now we run the heuristic of Section 4.3.4 and �nd that b should be allowed to begin execution

right after the source, and then be suspended when c becomes ready. The hardware portion of

the run-time scheduler is synthesized to implement this, namely by interrupting the CPU right

away to communicate a start vector indicating that b is ready to execute. Ignoring the software

scheduling, interrupt and context switch overhead, the overall WCET is now 10,000 cycles. 2

CHAPTER 4. REAL TIME ANALYSIS 96

4.5 Critical Regions

An important programming methodology to support is the use of critical regions.

A critical region is a section of software code where critical resource(s) are used or

common variable(s) are read/written. In fact, software semaphores were originally

created in order to allow the speci�cation of critical regions in software. Thus, if

our run-time scheduler can support the speci�cation of critical regions, then we can

accomplish the same goal without resorting to semaphores.

src

sink

 a

 b

 c

 d

NEVER = {b,c}
NONINT = {b}

WCET (cycles)
−−−−−
1,000
6,000
4,000
2,000
0
0

Task
−−−−
a
b
c
d
src
sink

Figure 26: Example Speci�cation of Noninterruptible Task

We support critical regions via noninterruptible software-tasks. The user can spec-

ify a set NONINT of noninterruptible software-tasks. If a task is in NONINT then

the task will not be considered for membership in the set I of tasks allowed to execute

out-of-order. In other words, all higher priority software-tasks must �nish before the

task is scheduled, so that any interrupts received during the task's execution cannot

be from a higher priority task, thereby ensuring that the noninterruptible software-

task is never kicked out. In this manner a set of critical regions, e.g. that access the

same shared variables or other resource, can be de�ned. The algorithms of Section 4.2

are modi�ed to take into account that these processes are noninterruptible by simply

CHAPTER 4. REAL TIME ANALYSIS 97

retaining Assumption 4.3, namely that the task, once started, runs to completion.

Note that one could implement a semaphore S by specifying each access to S as a

noninterruptible software-tasks.

Since the entire critical region must run to completion, releasing the resource or no

longer accessing the shared variable, the priority inversion problem does not arise in

the �nal implementation. The problem of priority inversion refers to a situation where

a lower priority process holds a resource when a higher priority process interrupts

which needs to use the held resource. In this case the higher priority process is

prevented from executing and has to release control to the lower priority process;

thus, the lower priority process has, in e�ect, made itself higher in priority, i.e., the

priorities of the two processes have been inverted. By design, a noninterruptible

software-task cannot give rise to the priority inversion problem.

Note, however, that we assume that the critical region is located as a single task

within a DAG. Thus, the only iteration on the critical region or semaphore allowed

is that which occurs in each execution of the DAG. Loops de�ned on a critical region

are not allowed since a DAG cannot contain loops and remain acyclic. However, loops

without critical regions are allowed in individual C and Verilog HDL tasks, as long

as an upper bound can be given on the number of times a loop will repeat in a given

execution of the task containing the loop.

Example 32 In Figure 26 task b is speci�ed as noninterruptible. Clara �nds that the order,

if each task runs to completion, is (c; b). Since b is noninterruptible, we do not consider executing

part of b during the unused CPU time available while a is executing. The precedence constraint

fc! bg is generated. 2

CHAPTER 4. REAL TIME ANALYSIS 98

4.6 Summary

In this chapter we showed how to e�ciently solve for the order of tasks in the same

NEVER set using a heuristic that constructively builds a solution from the DAG

representing the partial order needed for the hardware- and software-tasks to exe-

cute. Then we extended the heuristic to handle the case of multiple NEVER sets in

hardware.

We next considered the case where software-tasks in the same NEVER set are

allowed to interrupt and preempt each other. To handle this case, we statically

calculate an upper bound on the number of extra calls that may be necessary to

our kernel code { namely, to the priority scheduler and context switch code. Using

this number, we �nd a total upper bound on the WCET with speci�ed software-

tasks allowed to preempt other particular software-tasks. Based on this analysis, we

propose a greedy heuristic for allowing some lower priority tasks to execute during

idle time, thus possibly being preempted by higher priority tasks.

Finally, we presented a task-splitting method to improve our results in some cases

where our assumptions change, as well as a feature to declare certain tasks to be

noninterruptible, thus providing support for critical regions.

Chapter 5

Implementation and Experimental

Results

This chapter consists of three sections. In the �rst section, we present an overview

of the tool ow implementing the design approach and algorithms of the previous

chapters. In the second, we present an example of a PUMA robot control to show

how a design can be successfully synthesized using the CAD system described. We

verify the synthesis results of the PUMA controller via simulation. Finally, in the

last section we present a sample prototype implementing the split run-time scheduler

in a Haptic robot. The Haptic robot prototype was achieved by modifying existing

Haptic robot in the Computer Science Robotics laboratory at Stanford.

5.1 Design System Implementation

Figure 27 (repeated from Figure 6 for the reader's convenience) shows our tool ow

when applying our design tools to a system design. The hardware tasks are written

in Verilog HDL and software tasks are written in C. Constraints include relative

timing constraints, a single rate constraint, and resource constraints in the form of

99

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 100

behavioral
 Verilog C constraints

 Interface
Generation

User options
(protocols,
 fifos, RAM
 model, core)

behavioral
 Verilog

BC

BC

RAM
L1

V1 Vn

Ι RTS.c

*.c

 Serra
Run−Time
Scheduler
Synthesis

RTS.v
...

 RTL
 Verilog

DC

 System Specification

User options
(microprocessor
 core, RAM size)

wcet

wcet cinderella−M

CPU
Core1

Figure 27: Tool Flow and Target Architecture

NEV ER sets. Precedence constraints are implicit in the task speci�cation which

takes the form of a Directed Acyclic Graph. Serra performs run-time scheduler

synthesis and worst-case execution time (WCET) analysis. Satisfaction of relative

timing constraints (minimum and maximum separation) in hardware blocks is dealt

with in hardware control synthesized by the Thalia2 tool. Thalia2 generates a

hardware FSM implementing a CFE speci�cation of the system with relative timing

constraints (CFEs and Thalia2 were described briey in Section 2.4 [CM96, Coe96,

CM97]).

The system-level tasks, written Verilog HDL and C, and the constraints are input

to Serra and to a tool that generates the interface. One of the tasks is speci�ed as

the main task. Worst-case software execution time is found by the tool cinderella-

M, which was described in Section 2.5 and which takes as input C programs for the

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 101

software tasks and outputs a WCET for each software task (note that bounds on

loops must be provided by the user) [MWWL96, LM95]. Similarly, from BCTM
we

obtain a WCET for each hardware-task (loop bounds must be provided here in some

cases as well). Since we compare BCTM
-generated WCETs with software WCETs,

we convert all delays to the number of microprocessor clock cycles (since the hardware

clock speed is typically slower).

dataflow
analysis

cdfg

cfe

relocatable
assembly code

sw tasks
assembly code Run−Time

Scheduler
assembly code

 Thalia2

 Diego

pr
ec

ed
en

ce
s

behavioral
 Verilog C constraints

BC

 System Specification

wcet

w
ce

t

cinderella−M

Priority Scheduler
 template

GCC

linker

context switch,
 ISR templates

 Clara

pr
io

rit
ie

s

Run−Time Scheduler
control FSM in RTL
 Verilog

Figure 28: Block diagram of Serra: the boxes indicate tools and the ovals indicate

data.

5.1.1 Serra Run-Time Scheduler Analysis and Synthesis

The Serra design tool is shown in Figure 28, which expands the box labelled Serra

in Figure 27. Serra �rst extracts the task control-ow from the system speci�cation.

The user-speci�ed main task contains the overall sequence of tasks in the application;

from it we extract a CFE describing the task ow of the system. Diego can extract a

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 102

CFE description from a task written in Verilog HDL; for example, given the main task

in Verilog HDL, Diego can generate in CFE format the sequence of task invocations

(calls) from the main task. A WCET for each task is calculated using BCTM
or

cinderella-M; next, the CFEs are annotated with the WCET calculated for each

hardware or software task. These WCET values are used to annotate the leaf tasks

in the �nal DAG of the system speci�cation. Figure 10 showed a sample DAG and a

corresponding table with the WCET annotations. Finally, a single rate constraint is

speci�ed in the form of invoking the main task at a �xed rate.

Serra synthesizes the control-unit of the scheduler by means of tool Thalia2

which takes as input a CFE description and produces a logic-level description in

synthesizable Verilog HDL [CM96, MCSM96]. The timing, resource and precedence

constraints speci�ed in the CFEs input to Thalia2 are translated into a �nite-state

machine implementation if a solution is found which satis�es the constraints.

The constructive heuristic scheduling algorithm is implemented by Clara, which

generates the static priorities for the software and hardware tasks. Since we assume

that all hardware-tasks are noninterruptible, in the case of hardware-tasks in the same

NEV ER set, the static priorities found by Clara are converted into precedence

constraints enforcing the order indicated. Serra synthesizes the control-unit of the

scheduler into a hardware FSM which includes the additional precedence constraints

found by Clara.

Clara can e�ectively handle multiple NEV ER sets, split tasks (Section 4.4),

and noninterruptible software-tasks (Section 4.5). Furthermore, Clara can generate

precedence constraints among software-tasks in a single NEV ER set where lower

priority software-tasks can execute during idle time when higher priority software

tasks are not yet ready. The analysis for this case is also implemented by Clara,

and thus it calculates WCET for the out-of-order execution using the results from

Section 4.3.4. Clara has been implemented in 15,000 lines of C.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 103

To generate the run-time kernel's C code, Serra uses templates of the priority

scheduler in C, the Interrupt Service Routine (ISR) in MIPS assembly and context

switch code in MIPS assembly. For the software that runs on the microprocessor

core (CPU), the individual software-tasks are compiled together with the priority

scheduler, ISR, and context switch code using standard C compilers and linkers.

Data and program memory are statically allocated.

Serra also allows the user to override the priorities found by the heuristics of

Clara. Even further, Serra allows the user to override precedences added to the

hardware portion of the run-time scheduler, so that di�erent software-tasks can be

allowed to execute early in an order di�erent from that found by the heuristic of

Section 4.3.4. Thus, possible optimizations can be added by the user. Serra can then

calculate the new WCET for the application with the new set of priorities and/or new

set of precedences. Serra thus provides for interactive performance evaluation and

tuning of the run-time system, as well as synthesis for each particular implementation.

5.2 Design Case Study: PUMA Robot Arm

In this section, we use and show the Serra system to design a robot controller

for manipulating two PUMA arms, which are a standard in the robotics indus-

try [AKB86, Uni84] (Figure 4 showed two PUMA arms grasping an object). The con-

troller implements concurrent models of two \laws" that must calculate new torques

every millisecond. We show how real-time constraints can be satis�ed with a run-time

system that also provides for dynamic allocation of resources, where by dynamic we

mean that the exact times resources are allocated is not statically determined but

instead is determined at run-time. We describe how we simulated the �nal imple-

mentation.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 104

2 2
Set Torque

mvm1

xf1 xb1 xf2 xb2−8 −8

Ohold1 Law

Jhold Law

cjd

cg

oh0

oh1

mvm2

mvm4

mvm3
fk

Figure 29: Directed Acyclic Graphs of Ohold1 Law, Set Torque, and Jhold Law with

Relative Timing Constraints

5.2.1 Two PUMA Arms

For our example, we consider the robot control algorithm of Figures 8 and 9. We

implement the tasks required for executing Jhold Law and Set Torque in parallel

with Ohold1 Law and Set Torque. The DAGs, including the leaf tasks that imple-

ment Set Torque, are shown in Figure 29; the full DAG is shown in Figure 30. Note

that Xmit Frame1 (xf1) and Xmit Bit1 (xb1) of Set Torque1 have a strict relative

timing constraint of xb1 starting no less than 2 cycles after xf1 and no more than

8 cycles after. The exact same constraint holds for Set Torque2. This constraint

could not always be satis�ed with control signals generated by a run-time scheduler

in software (note our CPU in Figure 27 has an L1 cache). We assume that the full

system drives Xmit Bit from hardware modules other than Xmit Frame and thus the

two hardware tasks, although tightly coupled, must be kept separate.

We perform real-time analysis using the Clara tool. We �rst use Constructive

Heuristic Scheduling for multiple NEV ER sets and �nd the order of (oh0, cjd,

oh1) for the software-tasks. Even with task splitting applied to oh1, the order does

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 105

cg

fk

cjd

Jhold Law

oh0

oh1

2 2
Set Torquexf1 xb1 xf2 xb2−8 −8

wnt

gp1 gv1 gv2

hm

gp2

mvm1

mvm2

mvm4

mvm3

epsilon

NEVER1 = {oh0,oh1,cjd}
NEVER2 = {mvm1,mvm2,mvm3,mvm4}
NEVER3 = {xf1,xb1,xf2,xb2}

Ohold1 Law icache refill
WCET
(cycles)
−−−−−

612
4050

3258

Task
−−−−
cg
oh0
oh1
fk
cjd
mvm1
mvm2
mvm3
mvm4
xf1
xf2
xb1
xb2
src
sink

Task
BCET
(cycles)
−−−−−
11,000
1,598
12,341
4,500
9,989
4,400
4,400
4,400
4,400
1
1
322
322
0
0

Task
WCET
(cycles)
−−−−−
11,000
2,221
17,399
4,500
13,213
4,400
4,400
4,400
4,400
1
1
322
322
0
0

hw/sw
−−−−
hw
sw
sw
hw
sw
hw
hw
hw
hw
hw
hw
hw
hw
 −
 −

Figure 30: DAG of Robot Arm Controller with Relative Timing Constraints

not change. Thus, we set the static priorities in the software scheduler such that

�(oh0) > �(cjd) > �(oh1). Then we run the Execute Out-of-order algorithm

and �nd, just as we did in Example 28, that we should allow task oh1 to execute

on the CPU as soon as oh0 is �nished. Therefore we �nd the following precedence

constraints: foh0! cjdg and foh0! oh1g.

The Constructive Heuristic Scheduling algorithm found order (mvm2, mvm3, mvm4,

mvm1) for NEV ER2 and order (xf2, xb2, xf1, xb1) for NEV ER3. Excluding re-

dundant precedence constraints already present in the DAG, we �nd the following

additional precedence constraints: fmvm4 ! mvm1g and fxb2! xf1g.

As in Example 29, we calculate a WCET for of 42,113 for Figure 29 with out-of-

order execution. This provides for the upper bound on execution speed for the tasks

in Figure 29 under worst-case conditions.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 106

wnt
gp1
gv1
gp2
gv2
oh0
cg
fk
oh1
cjd
mvm1
mvm2
mvm3
mvm4
xf1
xb1
xf2
xb2
hm

c0

c1
c2
c3
c4
c5
c6
c7
c8
c9

c10

 gp1_done

s q’
r q

s q’
r q

s q’
r q

s q’
r q

s q’
r qs q’

r q

s q’
r q

s q’
r q

s q’
r q

s q’
r q

s q’
r q

global_start
 hm_done
 wnt_done

oh1_done & mvm4_done

 oh0_done
 cg_done
 fk_done

 oh1_done
 cjd_done

mvm1_done
mvm2_done
mvm3_done

mvm4_done

mvm1_done
 hm_done

Figure 31: Final Hardware Portion of Run-Time Scheduler

Figure 31 shows the hardware portion of the run-time scheduler. Signals wnt,

gp1,gv1,. . . , hm in Figure 31 are the start events for the corresponding tasks in Fig-

ures 29 and 30. The signal global start kicks of execution for the very �rst time;

after that, the done signal of hm restarts the iteration. The right-hand box is the

FSM generated from the CFE for the system [CM96, MSM97]. Note that Figure 31

shows an optimization in the control logic for mvm1. Since the best case execution

time, or BCET, of oh1 is greater than the WCET of fk, we can set the start signal

of mvm1 based only on the done signals of oh1 and mvm4 (rather than a conjunction

of the done signals of fk, oh1 and mvm4). Similarly, due to the length of mvm1-4, we

�nd that we do not need to add the fxb2 ! xf1g precedence constraint. Finally,

note that the designer knows that hm does not need to wait for the transmission of

the torque values to the robot arms; it can begin calculating right after mvm4 �nishes.

These optimizations were added in Serra manually by the user.

The software tasks are compiled and linked into assembly, with data and program

memory statically allocated, as well as memory-mapped I/O. Finally, the software

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 107

portion of the run-time scheduler is generated in the form of an Interrupt Service

Routine that reads in a start vector which task needs to be executed in software,

a priority scheduler which selects which software-task to execute, and routines for

saving and restoring context.

The system begins each iteration once a millisecond. After obtaining the positions

and velocities of the two robot arms, the run-time scheduler starts the execution of

cg in hardware for Jhold Law and oh0 in software for Ohold1 Law. It continues with

interleaved hardware-software execution as shown in Table 8 and pictured graphically

in Figure 20. Finally, it tightly schedules accesses to Xmit Frame and Xmit Bit to

set the torques for the robot.

Notice that from the point of view of the run-time scheduler, xf1 and xf2 are

only one-cycle actions; we do not wait for any done signal, but assume that if xb1

completes then xf1 has completed, and similarly that if xb2 completes then xf2 has

completed. This was a design decision made up front based on the Verilog HDL code

for the tasks. On the other hand, notice that xf1, xb1, xf2, and xb2 are all in the

same NEV ER set. This is because the same hardware-tasks, Xmit Frame and Xmit

Bit, are used to transmit the torque data, and we do not want xf2 to begin while

xb1 is still executing, nor xf1 to begin while xb2 is still executing. Thus we need to

pay attention to the done events of xb1 and xb2.

Software-Task Lines Lines Task Task Icache re�ll

C Assem. BCET WCET WCET

oh0 90 237 1,598 2,221 612

oh1 693 3,263 12,341 17,399 4,050

cjd 286 1,177 9,989 13,213 3,258

int-ser-routine N/A 26 11 38 N/A

context-switch N/A 42 34 162 N/A

priority-sch-sw 107 141 26 98 N/A

Table 9: Code space, BCET and WCET for sw-tasks.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 108

The complete, attened DAG with relative timing constraints is shown in Fig-

ure 30 (reprinted from Figure 9 with additional information added). The epsilon

task takes zero cycles and serves to synchronize the task executions by making sure

every task before it has completed before continuing. The scheduling of tasks shown

in Figure 30 but not in Figure 10 { wnt, gp1, gv1, gp2, gv2, xf1, xb1, xf2, xb2, hm

{ together take 57,200 cycles in the worst case. Since our MIPS R4000 core runs at

100 MHz, the rate constraint allows us to use 100,000 cycles. Thus, we have 42,800

cycles left for the remaining tasks { oh0, oh1, fk, cg, cjd and mvm1-4. The WCET

of 42,113 we found �ts our rate constraint (note that without out-of-order execution,

we would have had a WCET of 46,284, which would violate the constraint). Thus,

our schedule guarantees that we meet our hard real-time rate constraint.

Hardware-Task Lines Area WCET

Verilog

cg 2897 59,587 11,000

fk 2362 42,168 4,500

mvm 629 33,645 4,400

xmit-frame 108 987 322

xmit-bit 66 199 322

run-time-sch-hw 484 413 99,701

Table 10: Results for the synthesis of hw-tasks.

Table 9 presents the results for the compilation of the software and best- and worst-

case execution time estimation with cinderella-M. Unfortunately, cinderella-M

does not perform any data-cache analysis, so all data references are assumed to miss,

incurring the cost of loading in a data cache line.

In Table 10, we see the results for the synthesis of the hardware tasks of Figure 10

using the Behavioral Compiler
TM

, except for the run-time scheduler hardware part

which was synthesized with the Design Compiler
TM

. The third column in Table 10

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 109

shows the number of gate equivalents of hardware required using the LSI 10K Logic

library. The WCET values are initial estimates based on the number of control steps

needed to execute the hardware as scheduled by the Behavioral Compiler
TM

. The

estimates are rounded up and then scaled to allow direct comparison with the MIPS

R4000 processor operating at 100MHz (we clock the hardware at 10 MHz).

5.2.2 Verilog Simulation

Using a MIPS R4000 processor core model in Verilog HDL, we simulated the Robot

Arm Controller, with its synthesized run-time scheduler, in Verilog HDL using Syn-

opsys' Chronologic VCSTM . The simulation utilized memory-mapped I/O as the

medium of interface between the hardware and software tasks involved in the robotics

control algorithm.

The run-time scheduler comprises, for hardware, the Run-Time Scheduler module

and its associated set-reset latches as shown in Figure 31, and, for software, the

Priority Scheduler and the Interrupt Service Routine.

Figure 32 shows a simpli�ed block diagram of the Verilog simulation showing

the memory mapping for the Priority Scheduler and Interrupt Service Routine, the

three robot control software algorithms, and the memory-mapped and local start and

done vectors. Note that the diagram neglects to depict the interrupt signal and the

existence of the L1 cache. Our target architecture consists of a MIPS R4000 core

with multiple hardware modules, each implementing a particular hardware-task. The

CPU has a two-level memory hierarchy consisting of instruction and data caches with

a large RAM.

The Priority Scheduler (PRS), along with the robot control software algorithms

are automatically placed in main memory starting at word address 0x64 by the linker.

The Interrupt Service Routine (ISR) is placed in memory at location 0x2000 0060.

This location was chosen because the Program Counter (PC) jumps to 0x2000 0060

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 110

Priority Scheduler

Ohold0

Cjd

Ohold1

Interrupt Service Routine

Software Start Vector

Software Done Vector

Local Done Vector (Register 27)

Run−Time

Scheduler

Local Start Vector (Register 26)

0000_0064

2000_0060

2800_0000

2800_4000

 Word Address

Memory−Mapped IO

Interrupt Memory

Cg

Mvm
Fkmvm_done

fk_start

fk_done

cg_start

cg_done

mvm_start

Main Memory

Figure 32: Simpli�ed Block Diagram of the Simulation

whenever an interrupt is asserted on the CPU.

The memory-mapped start and done vectors were chosen to be at 0x2800 000 and

0x2800 4000, respectively. The lower 32 bit contents of 0x2800 0000 are loaded into

register r26 by the ISR whenever an interrupt is asserted, whereas the contents of

register r27 are written out to 0x2800 4000 by the PRS once a speci�c software task

is done. Registers r26 and r27 were chosen because they are kernel-reserved registers.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 111

5.2.3 Run-Time Scheduler Software

Compiling the Priority Scheduler

The Priority-Scheduler code is written in C in �le prs:c. The task of this code is to:

� Look at the on-chip (32-bit) start register (register 26)

� Determine which corresponding software task should be run

� Write out the proper value to the on-chip done vector (register 27) once a speci�c

software task is done. The contents of register 27 are later transferred to the

done vector in memory-mapped I/O.

However, reading from, and writing to, an on-chip register is somewhat di�cult

to do in C. To get around this problem, we can either inline assembly code in the C

code, or change the compiled C. We have chosen the latter option since it was trivial

to change the assembly code by hand.

Thus the procedure for compiling prs:c is:

� Compile prs:c with the standard cc compiler on the SGI.

� Edit the resultant �le, prs:s, from the previous step to have all instances of

start and done access registers 26 and 27 respectively. For instance, the code

fragment

start = start & ~CJD;

in prs.c compiles to

.loc 2 178

start = start & ~CJD;

lw $12, $36($29) // $29 is the stack pointer

and $13, $12, -3

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 112

sw $13, $36($29)

in prs:s. This needs to be be modi�ed to access register 26, where the start

value really resides, instead of the stack, like so:

.loc 2 178

start = start & ~CJD;

add $12, $0, $26

and $13, $12, -3

add $26, $0, $13

� Also change

done ioif = done;

lw $12, $32($29)

sw $12, $40($29)

to

done ioif = done;

add $12, $0, $27 // This transfers the done vector to register 27

sw $12, 0xA0010000 // $2800 4000 in memory-mapped I/O

Note that just the instruction sw $27, 0xA001000 will not work as the com-

piler has allocated space for two instructions during the compilation of prs:c

(although inserting a nop would work).

� Assemble prs:s with the MIPS assembler available on the SGI using cc

� Copy the objectcode, prs:h, to objectfile:h, and prs:start to objectfile:start.

During initialization of the simulation, memory:v will read in objectfile:h and

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 113

place it in main memory at location 0x64 (it actually varies depending on the

start location speci�ed by the linker in prs:h).

� For purposes of veri�cation, the contents of mainmemory just after initialization

can be viewed in the �le memstart:txt.

Interrupt Service Routine

The Interupt Service Routine code, isr:s, is written in MIPS assembly and transfers

the start vector in memory-mapped I/O to register 26 when an interrupt is asserted

by the hardware Run-Time Scheduler (rts:v); isr.s is assembled with the cc assembler

on an SGI Indigo.Because the MIPS R4000 CPU transfers program execution to

0x2000 0060 whenever its interrupt pin is asserted, we have to forcibly place the ISR

code there. This is simply done by changing the �rst line of isr:h to read 2000 0060.

However this means that we have to ensure isr:s does not contain any \hard-coded"

jumps/branches to code within itself.

Initialization

Registers 26 and 27 have to be initialized to zero at the start of the simulation,

otherwise a software task may be prematurely started. This is done in regfile:v.

At simulation initialization,memory:v will read in isr:h and place it at 0x2000 0060.

This can be veri�ed by looking at the contents of the �le memstart int:txt.

5.2.4 Run-Time Scheduler Hardware

The Run-Time Scheduler hardware modules rts:v and srlatch:v are the heart of the

run-time scheduler system. The �le rts:v handles resetting the hardware modules

involved in the control ow, passes the start and done vectors between each of the

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 114

hardware and software tasks, and restarts the control ow after each iteration. The

�le srlatch:v models a normal set-reset latch.

Initialization

The initial block present in rts.v asserts a RESET on the following hardware modules:

MVM 3:v rst (the hardware module for task mvm), CG 2:v (task cg), FJ 2:v (task

fj), and robotarmcheckzero:ver2, which was synthesized with Thalia2, at simula-

tion start time. It also starts o� the contol ow by setting c0 high for 10 processor

cycles.

Control ow module

The synthesized Verilog HDL module of the control ow implemented in the sim-

ulation is stored in �le robotarmcheckzero:ver2. It has inputs c1 to c6 with the

following correspondences: c1-oh0, c2-mvm, c3-fk, c4-oh1, c5-cjd, c6-cg. It also

has outputs wnt, gp1, gv1, gp2, gv2, mvm, cjd, cg, oh0, oh1, fk, xf1, xb1, xf2,

xb2 which are actually the start vectors for each similarly-named task as shown in

Figure 31.

Start/done for hardware tasks

File rts:v instantiates a set-reset latch for each hardware task. Thus, the hardware

start and done vectors are not in registers but are hooked up directly to each har-

ware task. For example, the task cg has a set-reset latch called trigger cg. When

task cjd completes, it sends a done signal to the set (S) port of trigger cg, and

trigger cg then outputs a high. This output is hooked up to the input pin c6 of

robotarmcheckzero:ver2. Hence a cycle later robotarmcheckzero:ver2 will assert

a high on its output pin cg. Signal cg feeds directly into CG 2:v, so this starts

o� task cg. Once task cg is done, CG 2:v sends out a done signal to the reset

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 115

(R) port of trigger cg, causing trigger cg0s output to go low; this then prompts

robotarmcheckzero:ver2 to start the next task, which in this case is xf2.

Start/done for software tasks

File rts:v also instantiates a set-reset latch for each software task. For software tasks,

however, a start value has to be sent to the start vector in memory-mapped I/O.

This is accomplished by feeding in the output (start) pins corresponding to each

software task from robotarmcheckzero:ver2 into a register and concatenating them

thus HW data in in = f61'b0, oh1, cjd, oh0g . HW data in in was chosen as a 64-bit

register because data transfers to and from memory-mapped I/O occur in double-

words. The initiation of a software task is detected whenever any of the pins oh1,

cjd, or oh0 go from low to high. When this happens, a series of steps follow:

� rts:v sends a write request to memory-mapped I/O.

� rts:v sends a number indicating the location where it wants to write to. This

number is an index o�set, with each index step being a double-word, from the

start of memory-mapped I/O (word address 0x2800 0000). Normally we want

to send a 0 to have the memory-mapped start vector be at 0x2800 0000.

� rts:v then waits for an OK from memory-mapped I/O (it looks at the pin

hw ok).

� When the OK arrives, rts:v asserts an interrupt on the CPU (IntB = 1'b0),

writes out the contents of HW data in in to 0x2800 0000 and deasserts the

write request.

� A cycle later, the interrupt is deasserted to prevent the CPU from thinking

there were two interrupts requested instead of just one.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 116

A few cycles after the completion of a particular software task, another series of steps,

which also involve the Priority Scheduler, follow:

� The on-chip done vector is written to its corresponding memory-mapped I/O

location by the Priority Scheduler. The on-chip done vector is actually written

to the L1 cache �rst and then, because the R4000 implements a write-through

cache, to memory-mapped I/O.

� Whenever a cache line is written to memory, L1cache:v sets PadAddrValid high

� memory mapped io:v notices that PadAddrValid is high and checks to see whether

the cache line is being sent to memory-mapped I/O.

� If it is, memory mapped io:v checks whether the address written to is where

the memory-mapped done vector resides (0x2800 4000).

� If so, a cycle later it transfers 64-bits starting at 0x2800 4000 to a register called

done in rts:v.

� rts:v looks at the bits of done and asserts a done signal corresponding to which

bit is on. For instance, if done[1] is on, rts:v asserts cjd done for two cycles

and feeds it to the set port of trigger cg and trigger oh1, thereby starting

those tasks. It also sends it to the reset port of trigger cjd, thus causing

robotarmcheckzero:ver2 to deassert its ouput pin cjd, indicating that task cjd

is �nished.

Restarting the control ow

At the end of the last task in the control ow, we would like task execution to restart

at wnt. This is achieved by asserting c0 for a cycle at the completion of the last task.

We know what the last task is and the detection of the negative edge of a signal from

the last task's output pin from robotarmcheckzero:ver2 is de�ned as its completion.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 117

5.2.5 Running the Simulation

We start the simulation by executing Chronologic VCSTM with �le FBLD:cmd,

which contains a list of the Verilog HDL �les that we want Chronologic VCSTM

to compile. Some highlights from the simulation are outlined below. Note that trace

commands in Chronologic VCSTM , such as vcdpluson and vcdplustraceon

in system:v, should be turned o� as they tend to signi�cantly slow down the simula-

tion by periodically writing to disk.

Assertion of an Interrupt

Figure 33: Interrupt Asserted

In Figure 33 we see the process by which the Run-Time Scheduler hardware sig-

nals the start of a software task. We see c4 going high followed a cycle later by

oh1's start vector being asserted. This prompts rts:v to request a write to memory-

mapped I/O (HW request), with the value that is going to be written out residing

in HW data in in (the value four) . Memory-mapped I/O replies with hw ok. Then

rts:v asserts an interrupt on the CPU and writes the value four from HW data in in

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 118

to the start vector in memory-mapped I/O (SRAM start).

Figure 34: PC Jumps to Start Address for Interrupt Service Routine

In about 30 cycles, as shown in Figure 34, the PC jumps to address 0x2000 0060

and start servicing the interrupt. This transfers the contents of SRAM start to the

on-chip start vector in register 26.

Completion of a software task

Figure 35 illustrates the sequence of events at the completion of a software task. Here,

the software task cjd has �nished execution sometime prior to time 52,790 and the

on-chip done vector in Reg27 contains the correct value. The done vector (done) in

the Run-Time Scheduler hardware still has its old value, however. The PC has just

�nished executing instructions (before 0x9C) that write Reg27 to memory-mapped

I/O.

Thus PadAddrV alid goes high as Reg27 is �rst written to the cache. At the

same time, the address in memory-mapped I/O where Reg27 is going to be written

to is on PadAddress (ie. 0x2800 4000). Because of the write-through nature of

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 119

Figure 35: Software task cjd completes

the cache, the cache line gets sent to location 0x2800 4000 in memory-mapped I/O;

this occurs during the second pulse of PadAddrV alid. The memory-mapped I/O

controller detects the write to 0x2800 4000, recognizes that this is the software done

vector and hence writes it out to RTS tmp. A cycle later done in rts:v gets updated

with the correct value. Then rts:v asserts cjd done, feeding it to the set ports of the

set-reset latches of the next tasks in line (oh1 and cg), causing their start vectors to

go high. Also, cjd done is routed to the reset port of task cjd's set-reset latch, thus

deasserting cjd.

Note that the L1 cache and the signals associated with it { PadAddrV alid,

PadAddress and PadWriteMask { are clocked on Padph2 (not shown here).

Reiteration of the control ow

Looking at Figure 36, we see that at the completion of the last task, in this example

xb1, the control ow loops back and restarts itself. This is predicated by c0 going

high.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 120

Figure 36: Control restarts itself after task xb1

The Run-Time Scheduler smoothly switches between hardware and software tasks.

The memory-mapped I/O interface and the interrupt scheme employed to transfer

control between hardware and software behave as we predicted. Hardware tasks

start and �nish at well-de�ned edges, whereas software tasks are more variable { for

instance, there is a distinct lag between the time an interrupt is asserted and the

time when program execution starts at the appropriate software task. The Verilog

simulation veri�ed the Serra-synthesized run-time scheduler, split between hardware

and software, for a controlling two PUMA robot arms.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 121

5.2.6 Design Gains

The original PUMA arm controller was implemented all in C code. However, due

to the millisecond timing constraint (a hard real-time constraint), the amount of

computation available limits the precision and scope of the control algorithms. For

example, designers in the Computer Science Robotics Laboratory at Stanford indi-

cated that while they would very much like to use larger matrices for the state space

representation of the kinematics and dynamics of the PUMA arms, they are limited

to three-by-three matrices due to the lack of computational power. When they in-

crease the matrix size to �ve-by-�ve, the slow down is signi�cant enough to miss the

millisecond deadline occasionally. If they increase the matrix size to eleven-by-eleven,

then it hardly ever meets the hard real-time constraint of a millisecond.

While the actual hardware-software implementation of the PUMA control system

was not carried out, this case study nonetheless shows that such a design could be

carried out e�ectively and to the level of detail required for design space exploration

and timing veri�cation. Furthermore, the detailed simulation shows the practicality

of the system designed, e.g. in the coordinated ow of start and done control sig-

nals between hardware, software, and the run-time scheduler. With the automation

provided by the Serra system, hardware/software co-design of the control system is

greatly improved over manual speci�cation and design of the run-time system. For

example, handling multiple NEV ER sets of mutually exclusive tasks is much more

e�ciently dealt with automatically than by hand with the many possible orderings

one would need to consider. This is important as the previous research reviewed in

Chapter 2 did not handle the case of multiple NEV ER sets of tasks in hardware

and in software. Overall, the Serra system can predictably satisfy relative timing

constraints, resource constraints (in the form of NEV ER sets), and a rate constraint,

producing a synthesized run-time system and thus allowing for e�cient design space

exploration.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 122

5.3 Design Case Study: Haptic Robot

Figure 37: Haptic Robot With Graphics

In this section we present a sample implementation of a split hardware/software run-

time scheduler controlling an actual real-time robotics application (as opposed to

simulation). We considered the design of the following real-time robotics application:

a Haptic robot implementing force-feedback based on interaction through a graphics

display [RKK97]. The Haptic robotics device contains a thimble where the user places

his or her �nger. The thimble is connected to the end of a small robot arm which

can exert force on the thimble in any direction. The object in the graphics display

is represented by a collection of polygons, usually in the range of 10,000 to 20,000

polygons. Figure 37 shows a user interacting with a graphic display where the Haptic

device gives feedback based on the position of a small point (called a proxy) on the

screen. In particular, whenever the proxy collides with a graphical object, a force is

generated and the user's �nger in the Haptic device is stopped from continuing pene-

tration in that direction. In fact, the feedback is quite complex: the tactile interaction

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 123

includes contact constraints, surface shading, friction, and texture [RKK97]. Such a

system has wide-ranging application possibilities, from helping surgeons operate on

patients to training pilots with ight simulation. This application is a good case

study because there are some tasks which are poorly implemented in software, e.g.

collision detection, which could potentially run much faster in hardware. The �rst

step towards integrating a hardware implementation of such a task into the system

is to have a scheduler for the application.

CLIENT SERVER

proxy update

model construction

low level control

HL Library

User
Application

Haptic
Interface

Graphic
Display

Figure 38: System Architecture

5.3.1 Original Design

The original design consists of an all software solution running on a Silicon Graphics

Indigo (SGI) workstation and an IBM compatible PC. The SGI client contains the

graphics routines which update the display, and the PC server runs the low level

routines for controlling the Haptic device. Our system architecture can be seen in

Figure 38.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 124

Collision Detection

proxy
face covered
by hierarchical
spheres

Figure 39: Sphere Characterization

From measurement, we observed that approximately 50% of the CPU time is spent

in detecting when the proxy collides with an object in the graphics display. Collision

detection is achieved by an algorithmic approach �rst described in [Qui94]. The basic

idea is to take a polygonal surface and cover each polygon with a small sphere. Then,

from this initial set of spheres, they are hierarchically covered. Figure 39 shows the

beginnings of covering a face using this method (the actual algorithm was written for

three dimensions). At the end, we have a root sphere with covers the entire graphical

object and all subspheres. The resulting tree data structure of hierarchical spheres

has height O(lg n). Since the collision detection algorithm checks the sphere hierarchy

to see if collision has occured, O(lg n) checks are needed.

Timing Constraints

Standard solutions are used for the low level hardware interactions that might other-

wise involve strict timing constraints. For writing torque values to the Haptic device,

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 125

we use a device driver; for reading in the joint positions, we utilize the same device

driver to read values from the port.

Model information about the graphics objects and the proxy are communicated

between the SGI workstation and the PC by sending and receiving packets using the

TCP/IP protocol. In the actual code on the PC, we never perform a blocking wait:

instead, we check to see if a packet has arrived, and if so we accept the packet and

continue.

The overriding timing constraint we have is a rate constraint: the tasks of the

following section must complete before a hard real-time deadline is reached. Any

delay in updating the torques could damage the Haptic device or the user.

Haptic Library

The original code for controlling the Haptic device was written in C. Some of the

most time-consuming tasks, such as that of communicating the polygons composing

the graphics objects and then building a sphere hierarchy, are performed during the

initialization and sphere building phases. Once a particular graphical display is up

and running, the following tasks are executed in each iteration of a core loop called

the servo loop:

� wait for next millisecond clock tick

� write torques to Haptic device

� read joint angles of Haptic device

� convert joint angles to x,y,z coordinates

� collision detect

� calculate new proxy position based on collision or not

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 126

� compute new torques for Haptic device

� if ready, send/receive network packets (new proxy position, etc.)

For example, consider a user interacting with a graphical display of a teapot.

When the proxy is in space not near the teapot, the user can move the proxy freely.

However, as soon as the proxy comes close to the teapot, penetrating the sphere

hierarchy (an example penetration in two dimensions is shown in Figure 39), collision

detection is used to check if the user's proxy on the screen has hit the teapot. The

Haptic device provides force-feedback control to simulate the interaction of the proxy

with the graphical object, e.g. when sliding along the curved surface of the teapot.

Figure 37 shows a user utilizing the proxy to push around a spaceship merry-go-round.

An execution of the servo loop for controlling the robot must complete once every

millisecond.

5.3.2 Haptic Control Implememtedwith Split Run-Time Sys-

tem

The new design contains a slightly altered scheduler for the servo loop. We divide

the loop into tasks in order to control their execution from a hardware FSM. Before

entering the loop, we kick o� execution of the FSM. Within the loop, we execute

tasks as directed by the FSM.

Task Execution

We divided the tasks of Section 5.3.1 into three coarse grained groupings as follows:

� \Phantom" routines:

{ wait for next millisecond clock tick

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 127

{ write torques to Haptic device

{ read joint angles of Haptic device

{ convert joint angles to x,y,z coordinates

� \Proxy" routines:

{ collision detect

{ calculate new proxy position based on collision or not

{ compute new torques for Haptic device

� \Network" routines, executed only if there are network packets ready to send/receive:

{ send new proxy position to graphics over network

{ receive new graphics info over network

We implemented an FSM in hardware to sequence the above three course gran-

ularity software threads. For the sake of experimentation, we use an FPGA-based

board (the PCI Pamette[Sha98]) for the hardware implementation. This hardware

 Verilog

Synopsys−Xilinx
 Netlist Format

 Xilinx
Placement
and Route

Xilinx FPGA
 bitstream

 Synopsys
BC, DC, FPGA

Figure 40: Synopsys-Xilinx Tool Flow

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 128

FSM portion of the run-time scheduler is speci�ed in Verilog HDL and synthesized

using the Synopsys-Xilinx interface; the tool ow is shown in Figure 40. The Syn-

opsys tools used are the Behavioral Compiler
TM

(BC)[Kna96], Design Compiler
TM

(DC) and FGPA Compiler
TM

(FPGA).

Task execution is described in Section 3.2.1. Briey, we associate a start and a

done event with each software task (thread). In software, we have a start vector and a

done vector which encapsulate the start and done events for each software-task. Since

there are less than 32 distinct software-tasks, each vector is contained in a single word

with a simple one-hot encoding.

FSM

st
ar

t
do

ne

P
C

I

start

done

CPU

FSMstart
FSMdone

Figure 41: Run-Time Scheduler Control Communication

The run-time scheduler hardware FSM, synthesized to implement the control-ow

of task invocations, updates the start vector in software as follows. First, it updates

a local register containing the start vector. Then the CPU reads in the new value on

a polling loop. When a software-task is �nished executing, it updates the done vector

by writing the value out with memory mapped I/O. Thus, the the done vector in the

run-time scheduler in hardware is updated.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 129

Note that we wanted to be able to turn the hardware FSM on and o� from software,

since the system initialization is directed by software. Thus, we added FSMstart and

FSMdone signals to kick o� and terminate, respectively, FSM execution. Figure 41

shows the communication of the FSMstart, FSMdone, start and done vectors.

Therefore we split the run-time scheduler into two parts:

� An executive manager in hardware with cycle-based semantics that can satisfy

hard real-time constraints.

� A polling scheduler that executes di�erent threads based on eligible software-

tasks as indicated by the start vector.

The Haptic library code was altered to accommodate this new split. In particular, a

polling scheduler was written as the inner core loop implementing the three course-

grained tasks as described here.

The original system in the Computer Science Robotics Lab at Stanford was suc-

cessfully ported to the NT environment all in software. Then we successfully imple-

mented the split run-time scheduler in the actual design.

5.3.3 System Architecture

Our system architecture consists of an SGI workstation for the graphics, a PC with

a Pentium
TM

processor, and a Haptic device connected to the PC.

The PC has a PCI Pamette[Sha98] board connected to one of its slots. The PCI

Pamette, shown in Figure 42, has one FPGA dedicated to talking to the PC using the

32 or 64 bit PCI protocol, with four more Xilinx 4020E FPGAs con�gurable by the

user. The two 128KB SRAMs are essentially scratchpad memories which the nearest

FPGA can use. Sixteen bits of memory can be written to or read from each SRAM

every cycle.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 130

FPGA FPGA

FPGA FPGA

SRAM

SRAM

Download /
Readback

DRAM SIMM sockets

PMC
 or
Daughter
Board

Secondary
Daughter
Board
Connector

P
C
 I

clocks

FPGA
 (PCI
protocol)

Figure 42: PCI Pamette Version 1 { Architecture

For communication with the FPGAs, we use the PCI protocol as implemented

by the PCI Pamette software library for Visual C++ and the FPGA on the PCI

Pamette. From the point of view of the software code, this appears as a memory-

mapped read or write. However, there are timing constraints which must be observed

by the two FPGAs that can read data from the 32-bit bus coming out from the

FPGA implementing the PCI protocol: once an address appears on the bus, the

data corresponding to that address must be read in the following cycle. Similarly,

for writing to the bus (in which case the software is executing a read from memory-

mapped I/O), the data read must be driven to the bus on the following cycle and

held there for six cycles. There are many more constraints explained in the PCI

documentation [Sha98].

In order to meet these exact timing constraints, we latch values going on/o� chip

using DCTM
and then read the values using behavioral Verilog synthesized in cycle-

accurate mode with BCTM
.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 131

5.3.4 Software Generation

The software for programming and controlling the PCI Pamette is available for Mi-

crosoft Visual C++ 4.0
TM

with Windows NT 4.0
TM

or for the DEC Alpha. Because

we wanted to use a PC, we utilized the NT version.

The original code (called the \Haptic library") for controlling the Haptic device

was written in 10,000 lines of C for Linux. In order to use the Pamette, we ported the

Haptic library to Visual C++ 4.0
TM

with Windows NT 4.0
TM

. This porting e�ort

included writing a device driver in NT to control the Haptic device as well as rewriting

the network code for communication with the SGI workstation using TCP/IP.

Reading and writing to the SRAM on the Pamette is accomplished using memory-

mapped I/O and hardware-tasks in the FPGA. The PCI interface takes an average

of 5 to 9 CPU clock cycles to communicate a single 32-bit read or write.

Therefore, given a particular value of the start vector, the appropriate software-

task(s) can be executed. The scheduler for the software is a simple polling loop. Note

that for this to work we have to guarantee that after indicating that a particular

Figure 43: Teapot Graphical Object With Proxy

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 132

software-task has completed by writing to the done vector, the next start value must

be updated and ready to be read before the software polling loop next reads in the

start vector. Otherwise, the software scheduler could read in the exact same start

vector again and thus fail to meet the rate constraint of updating the robot's torque

values every millisecond. We veri�ed that the FSM implemented in the FPGA was

fast enough by extensive simulation.

Figure 43 shows a graphical teapot model which we used to test the design. The

proxy is shown on the teapot near the base of the spout. The teapot is composed of

3,416 triangular surfaces. The client computer was an SGI Indigo2 High Impact run-

ning IRIX 6.2 and the Haptic server was a PC with a 266 Mhz Pentium Pro running

Windows NT 4.0. The PC has 32 MB of main memory and a 512KB cache. Commu-

nication between the two computers was done through a standard ethernet TCP/IP

connection. The Haptic device used was a ground based PHANToM manipulator

with 3 degrees of freedom in it force-feedback.

Task Lines

C

wait for next millisecond clock tick 65

write torques to Haptic device 50

read joint angles of Haptic device 48

convert joint angles to x,y,z coordinates 428

collision detect 2189

calculate new proxy position 664

compute new torques for Haptic device 10

send/receive information over network 1328

device driver 899

Table 11: Code space for software tasks.

Table 11 shows the code space used for the various software tasks in the inner

servo loop. The �nal executable took up 485KB of memory; however, the code and

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 133

Task Lines Style of

Verilog Verilog

ebusread1.v 146 behavioral

ebuswrite1.v 114 behavioral

generatecontrol.v 48 behavioral

haptic.v 242 structural

hapticcontrol.v 178 behavioral

startcontrol.v 150 behavioral

transactionmodelib.v 154 structural

writestart.v 99 behavioral

Table 12: Code space for hardware tasks.

data used in the servo loop is much less and likely �t entirely in the 512KB cache

on the PC (however, we did not verify this). Table 12 shows the code space used for

reading and writing data from/to the bus and the SRAM, starting/terminating the

hardware FSM, and the hardware FSM itself (in hapticontrol.v). Notice that the

FSM takes only 178 lines of Verilog HDL, while the supporting Verilog HDL code

takes 1195 lines. Table 13 shows the various measures of utilization provided for the

Xilinx 4020E which implements the Verilog HDL code. The 4020E can �t at most

around 20K logic gates. We are currently using about half of the available CLBs.

5.3.5 Future Directions

For future work, an ASIC implementation of the collision detection algorithm would

drastically speed up the application, especially since the sphere checking is quite

naturally parallelizable. The run-time scheduler described here could quite easily

be augmented with such an ASIC. In fact, the inclusion of multiple components in

hardware could be easily added to the system. The major practical design cost would

be the speci�cation and design of the collision detection ASIC.

The PC-Pamette architecture described in the previous sections provides the basis

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 134

Xilinx No. Max. Percent

Measure Used Avail. Used

Occupied CLBs 401 784 51%

Bonded I/O Pins 72 160 45%

F and G Function Generators 494 1568 31%

H Function Generators 93 784 11%

CLB Flip Flops 217 1568 13%

IOB Input Flip Flops 33 224 14%

IOB Output Flip Flops 18 224 8%

3-State Bu�ers 0 1680 0%

3-State Half Longlines 0 112 0%

Edge Decode Inputs 0 336 0%

Edge Decode Half Longlines 0 32 0%

CLB Fast Carry Logic 8 784 1%

Table 13: Statistics for Xilinx 4020E Mapping

for a modular extensible hardware-software run-time system. Since the hardware part

of the run-time system is in FPGAs, it can be recon�gured quickly with the synthesis

path of Figure 40. Currently we only use one of the four available FPGAs. Portions of

the real-time Haptic control system can be migrated to hardware, either into FPGAs,

ASICs or DSPs. For example, an ASIC implementing the collision detection algorithm

(which has a lot of parallelism) could be integrated quickly into the run-time system.

For the �nal embedded application, the hardware part of the run-time system is

synthesized into hardware rapidly since it is described in behavioral Verilog and uses

synthesis all the way down to the bitstream for programming the XILINX 4020E

FPGAs. For example, given a working protype, one could design a single chip imple-

mentation of the control system using a Pentium core, dedicated logic for the logic

implemented in FPGAs in the prototype, and a core for the ASIC implementing the

collision detection algorithm. In other words, given the Intellectual Property (IP) for

each component used in the prototype, it is possible that the entire design could be

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 135

placed on the same single chip and fabricated.

5.4 Summary

In conclusion, we have shown two sample applications of a run-time scheduler split

between hardware and software. The �rst veri�ed via simulation the results of using

the Serra system on a robot arm controller for two PUMA arms. The second

successfully implemented the split run-time scheduler approach on a real-time Haptic

robot prototype.

Note the CAD requirements for hardware/software co-design of both systems.

First of all, we needed to satisfy a hard real-time relative scheduling constraint im-

posed by two of the hardware components in the PUMA control system: tasks xf1 and

xb1 had a relative timing constraint of activating the start event for xb1 no less than

2 and no greater than 8 cycles after activating the start event for xf1. This constraint

was always satis�ed in any of the run-time systems generated by Serra. Satisfaction

of this constraint was a sine qua non for exploring di�erent hardware/software parti-

tions of the PUMA system, which occurred as we moved some tasks from hardware

to software and vice-versa. Second, we altered the NEV ER sets as we moved tasks

around between hardware and software. Serra's run time system, when it found

a solution, always satis�ed the mutual exclusion required by the speci�ed NEV ER

sets. Notice that the WCET values for the di�erent tasks can be quite large; thus,

the e�ect of high-level decisions as to the hardware/software partition as well as the

amount of hardware dedicated to each hardware task (the more hardware area al-

lowed would typically result in a faster hardware task) could be evaluated quickly

and in an interactive fashion. Thus, the designer was able to optimize that design by

exploring the design space much more e�ectively than if the run-time system had to

be regenerated by hand for each partition. Furthermore, the automatic satisfaction

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 136

of speci�ed timing constraints and resource constraints freed the designer from time

consuming calculations that can be automated using the approach in this thesis.

The real-time Haptic robot prototype showed the feasibility of the run-time sched-

uler approach of this thesis in an actual working design. Where as the PUMA con-

troller example explored the range of options a�orded by the Serra system, such as

the support for timing and resource constraints, the Haptic robot prototype focused

on the practicality of the design style. Thus, the split run-time scheduler functioned

perfectly well in the �nal prototype.

In short, both the PUMA controller simulation and the Haptic robot prototype

show the feasibility and utility of the design style and CAD tool for extensible run-

time systems in hardware and software proposed in this thesis.

Chapter 6

Conclusions and Future Work

6.1 Summary

We considered in this thesis analysis and synthesis techniques for hardware/software

run-time systems. We assume a system speci�cation at the task level of hardware

and software, e.g. hardware modules and software threads, together with a main task

that speci�es the control and data ow among all of the speci�ed tasks. We further

assume a target architecture of a CPU core to run the software-tasks together with

custom hardware implementing the hardware-tasks. Unlike previous approaches to

run-time scheduling, we split our run-time scheduler between hardware and software,

as opposed to placing the scheduler all in one or the other. Our analysis also takes

into account the split hardware/software implementation both of the scheduler and

of the tasks.

Thus, we have presented a new system-level scheduling methodology and CAD tool

for hardware/software co-design. In particular, we focused on the following aspects

of hardware/software run-time system analysis and synthesis:

137

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 138

Design Style for Scheduling. We presented a design style for synchroniza-

tion and scheduling in hardware/software co-design where we represent each

hardware- and software-task by an automaton that begins execution upon re-

ceiving a start event and indicates that it has completed execution by emitting

a done event. These start and done events are appropriately implemented in

hardware and software.

Co-Synthesis of a Hardware-Software Run-Time Scheduler. We showed how,

given the control-ow of the tasks in the system, a run-time scheduler can be

synthesized in hardware and software. The hardware part of the run-time sched-

uler consists of an FSM in hardware sequencing the start and done events such

that all speci�ed relative timing constraints are met; relative timing constraint

satisfaction is assured by construction in that we only generate an FSM if we

will meet the relative timing constraints. The software part of the run-time

scheduler is a small kernel consisting of an interrupt service routine, context

switch code, and a static preemptive priority scheduler. The priority scheduler

is parameterized to �t the exact number of software-tasks in the system. This

mixed implementation leverages advantages of hardware, such as predictable

and exact �ne-grained timing separation of start signals, and advantages of

software, such as preemptibility and exibility.

Rate-Constraint Satisfaction Analysis. We presented several scheduling algo-

rithms for tasks in hardware and software under a hard real-time rate constraint

where the precedence constraints among tasks are speci�ed in a DAG. In e�ect,

these techniques extend Worst-Case Execution Time analysis from the pure

software and pure hardware domains to a mixed hardware/software implemen-

tation domain. Furthermore, with our small, custom kernel for the software

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 139

operating system, we can analyze rate-constraint satisfaction in cases where

task preemption may occur.

Resource Constraints. The scheduling style and algorithms support a NEV ER

set of software-tasks implemented on the same CPU and multipleNEV ER sets

of hardware-tasks. While the run-time scheduler can trivially maintain mutual

exclusion among tasks in the same NEV ER set by the addition of precedence

constraints, rate-constraint analysis gives a set of precedence constraints to add

to the scheduler which yields the smallest WCET for the system among the

task orders considered.

Application to Robotics. We presented a full analysis, synthesis, and simulation

of a hardware/software implementation of a system for controlling two PUMA

robot arms. We also described a small prototype of a split hardware/software

run-time scheduler to control a force-feedback Haptic robot using a Pentium
TM

for the software and Xilinx FPGAs for the hardware.

The approach of this thesis allows the exploration of the design space of a run-

time scheduler across the boundary of hardware and software. The designer gains

the advantage of predictable satisfaction of timing constraints for hardware/software

systems within a framework that enables di�erent hardware/software partitions to

be quickly evaluated. Thus, in relation to previous work in hardware/software par-

titioning, a partitioning tool could easily sit on top of Serra which would generate

run-time systems for di�erent hardware/software partitions chosen for evaluation. In

addition, Serra's more e�cient design space exploration can improve time-to-market

for a product, enabling the product to enter the market sooner.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 140

6.2 Future Work

During the development of this work, we observed that several lines of research which

promise signi�cant impact in the coming years.

� Hardware/software co-design of a modular Real Time Operating System in

hardware and software. With so much space available on the chip, future

system-on-a-chip designs will provide an opportunity to rede�ne the goals of

RTOS research for embedded systems. In particular, with the high demands

placed on tomorrow's dedicated applications, there is a role for an RTOS where

hardware is used to both speed up critical bottlenecks and more e�ectively

manage concurrency among hardware and software. Such a modular RTOS

would include providing functionality for updating and debugging the system,

functionality which is \modular" and thus can be thrown away when the real

application is to be run at the highest possible performance.

� Recon�gurable architectures for application-speci�c system-on-a-chip designs.

For a set of applications, a system-on-a-chip design can be tuned to maxi-

mize performance for the speci�c applications desired. Recon�gurable inter-

faces among tasks as well as recon�gurable scheduling can help obtain the best

results. A design style with associated CAD tools for such application-speci�c

recon�gurable architectures can key signi�cant improvements in design space

exploration, time-to-market, and even testability of the �nal chip.

� Hardware/software co-design of recon�gurable run-time systems with multiple

processors. If the FSM part of the run-time scheduler presented in this thesis

were implemented in recon�gurable logic, for example with SRAM-based FPGA

technology, then the hardware part of the scheduler would be recon�gurable.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 141

The software part is already recon�gurable by de�nition. With multiple proces-

sors available, e.g. a DSP core and a microcontroller core, the design space to be

explored is quite signi�cant. Greatly needed are CAD tools to allow designers

to e�ciently explore this wide design space.

Abbreviations and Symbols

2 Symbol marking the end of an example.

] Symbol marking the end of a proof.

AMPL A Mathematical Programming Language

ASIC Application Speci�c Integrated Circuit

BCTM
Synopsys Behavioral Compiler

TM

BCET Best-Case Execution Time

BDD Binary Design Diagram

CAD Computer-Aided Design

CB Communication Blocks

CFSM Co-design Finite State Machine

CDFG Control-Data Flow Graph

CPU Central Processing Unit

DAG Directed Acyclic Graph

DFL Data Flow Language

142

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 143

DCTM
Synopsys Design Compiler

TM

DMA Direct Memory Access

DSP Digital Signal Processing

FCFS First-Come-First-Served

FPGA Field-Programmable Gate Array

FSM Finite-State Machine

HDL Hardware Description Language

IBC Inter-Block Communication

IC Integrated Circuit

ILP Integer Linear Program

I/O Input/Output

IP Intellectual Property

LCM Least Common Multiple

NSDS Never Set DAG Scheduling

PCI Peripheral Component Interconnect bus for ASIC designers

RAM Random Access Memory

RMA Rate Monotonic Analysis

RPC Remote Procedure Call

RTL Register-Transfer-Level

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 144

RTOS Real-Time Operating System

SoC System-on-a-Chip

SRAM Static Random Access Memory

SRTD Sequencing with Release Times and Deadlines

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WCET Worst-Case Execution Time

Bibliography

[ABD
+
95] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. J. Wellings. \Fixed

Priority Pre-emptive scheduling: A Historical Perspective". Real-Time

Systems, 8:173{198, 1995.

[ABR
+
93] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.

\Applying new scheduling theory to static priority pre-emptive schedul-

ing". Software Engineering Journal, pages 284{292, 1993.

[ACJ96] M. Abid, A. Changuel, and A. Jerraya. \Exploration of Hard-

ware/Software Design Space through a Codesign of Robot Arm Con-

troller". In Proceedings of the European Design Automation Conference,

pages 42{47, September 1996.

[AFLS96] J. Adomat, J. Furunas, L. Lindh, and J. Starner. \Real-Time Kernel in

Hardware RTU: A Step Towards Deterministic and High Performance

Real-Time Systems". In Real-Time Workshop, June 1996.

[AKB86] B. Armstrong, O. Khatib, and J. Burdick. \The explicit model and

inertial parameters of the PUMA 560 arm". Proceedings of IEEE Inter-

national Conference on Robotics and Animation, 1:510{518, 1986.

[AM98] A. Morawiec, President. European CAD Standardization Initiative.

http://www.vsi.org/, 1998.

145

BIBLIOGRAPHY 146

[AT95] J. Adams and D. Thomas. \Multiple-Process Behavioral Synthesis for

Mixed Hardware-Software Systems". In Proceedings of the International

Symposium on System Synthesis, pages 10{15, September 1995.

[BCG
+
97] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,

C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and

B. Tabbara. Hardware-Software Co-Design of Embedded Systems: The

POLIS Approach. Kluwer Academic Publishers, 1997.

[BCO96] G. Borriello, P. Chou, and Ross B. Ortega. \Embedded System Co-

Design: Towards Portability and Rapid Integration". In G. De Micheli

and M. Sami, editors, Hardware/Software Co-Design, pages 243{264.

Kluwer Academic Publishers, 1996.

[Ber96] G. Berry. See http://zenon.inria.fr/meije/esterel/, 1996.

[BG] G. Berry and G. Gonthier. \The Esterel Synchronous Programming Lan-

guage: Design, Semantics, Implementation". Ecole Nationale Sup�erieure

des Mines de Paris and Institut National de Recherche en Informatique

et Automatique.

[BHLM94] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. \Ptolemy:

A Framework for Simulating and Prototyping Heterogeneous Systems".

Int. Journal of Computer Simulation, special issue on \Simulation

Software Development", 4:155{182, April 1994. Also available from

http://ptolemy.eecs.berkeley.edu.

[BS91] F. Boussinot and R. De Simone. \The ESTEREL Language". Proceed-

ings of the IEEE, 79(9):1293{1303, September 1991.

BIBLIOGRAPHY 147

[CB94] P. Chou and G. Borriello. \Software Scheduling in the Co-Synthesis

of Reactive Real-Time Systems". In Proceedings of the 31
stDesign Au-

tomation Conference, pages 1{4, June 1994.

[CM96] C. N. Coelho Jr. and G. De Micheli. \Analysis and Synthesis of Con-

current Digital Circuits Using Control-Flow Expressions". IEEE Trans-

actions on CAD/ICAS, 15(8):854{876, August 1996.

[CM97] C. N. Coelho Jr. and G. De Micheli. \Modeling and Synthesis of

Synchronous System-Level Speci�cations". In J. Berge, O. Levia, and

J. Rouillard, editors, Models in System Design, pages 243{264. Kluwer

Academic Publishers, 1997.

[COB92] Pai Chou, Ross Ortega, and Gaetano Borriello. \Synthesis of the Hard-

ware/Software Interface in Microcontroller-Based Systems". In Proceed-

ings of the International Conference on Computer-Aided Design, pages

488{495, Santa Clara, November 1992.

[COB95] P. Chou, Ross B. Ortega, and G. Borriello. \The Chinook Hard-

ware/Software Co-Synthesis System". In Proceedings of the Interna-

tional Symposium on System Synthesis, pages 22{27, September 1995.

[Coe96] C. N. Coelho Jr. \Analysis and Synthesis of Concurrent Digital Systems

Using Control-Flow Expressions", March 1996. CSL-TR-96-690.

[Cow98] CoWare touts `interface synthesis' for codesign. EE Times, page 54,

February 1998.

[CWB94] P. Chou, E. Walkup, and G. Borriello. \Scheduling for Reactive Real-

Time Systems". IEEE Micro, August 1994.

BIBLIOGRAPHY 148

[DF98] D. Fairbairn, President. Virtual Sockets Interface Alliance.

http://www.vsi.org/, 1998.

[DJ98] B. Dave and N. Jha. \CASPER: Concurrent Hardware-Software Co-

synthesis of Hard Real-Time Aperiodic and Periodic Speci�cations of

Embedded System Architectures". In Proceedings of the Design, Au-

tomation and Test in Europe, pages 118{124, February 1998.

[DKMT90] G. DeMicheli, D. C. Ku, F. Mailhot, and T. Truong. \The Olympus

Synthesis System for Digital Design". IEEE Design and Test, pages

37{53, October 1990.

[DLJ97] B. Dave, G. Lakshminarayana, and N. Jha. \COSYN: Hardware-

Software Co-synthesis of Embedded Systems". In Proceedings of the

Design Automation Conference, pages 703{708, June 1997.

[EHB
+
96] R. Ernst, J. Henkel, Th. Benner, W. Ye, U. Holtmann, D. Herrmann,

and M. Trawny. \The COSYMA environment for hardware/software

cosynthesis of small embedded systems". IEEE Micro, 20:159{166, 1996.

[EKP
+
98] P. Eles, K. Kucheinski, Z. Peng, A. Doboli, and P. Pop. \Scheduling of

Conditional Process Graphs for the Synthesis of Embedded Systems".

In Proceedings of the Design, Automation and Test in Europe, pages

132{138, February 1998.

[EY97] R. Ernst and W. Ye. \Embedded program timing analysis based on path

clustering and architecture classi�cation". In Proceedings of the Inter-

national Conference on Computer-Aided Design, pages 598{604, Santa

Clara, CA, November 1997.

BIBLIOGRAPHY 149

[FGK93] R. Fourer, D. Gay, and B. Kernighan. AMPL: A Modeling Language for

Mathematical Programming. The Scienti�c Press, 1993.

[GJ79] M. Garey and D. Johnson. Computers and Intractability. W. Freeman

and Company, 1979.

[Gup95] R. Gupta. Co-Synthesis of Hardware and Software for Digital Embedded

Systems. Kluwer Academic Publishers, 1995.

[HB97] Ken Hines and Gaetano Borriello. \Optimizing Communication in Em-

bedded System Co-simulation". In International Workshop on Hard-

ware/Software Co-Design, pages 121{125, 1997.

[HE95] J. Henkel and R. Ernst. \A Path-Based Technique for Estimating Hard-

ware Runtime in HW/SW-Cosynthesis". In Proceedings of the Interna-

tional Symposium on System Synthesis, pages 116{121, September 1995.

[HE96] J. Henkel and R. Ernst. \The Interplay of Run-Time Estimation and

Granularity in HW/SW Partitioning". In International Workshop on

Hardware/Software Co-Design, 1996.

[HL95] F. Hillier and G. Lieberman. Introduction to Operations Research.

McGraw-Hill, 1995.

[HWS95] M. Humphrey, G. Wallace, and J. Stankovic. \Kernel-Level Threads for

Dynamic, Hard Real-Time Environment". In Proceedings of the Real

Time Systems Symposium, pages 38{48, 1995.

[KD90] D. C. Ku and G. DeMicheli. HardwareC - a language for hardware

design (version 2.0). CSL Technical Report CSL-TR-90-419, Stanford,

April 1990.

BIBLIOGRAPHY 150

[KM92] D. Ku and G. De Micheli. High-level Synthesis of ASICs under Tim-

ing and and Synchronization Constraints. Kluwer Academic Publishers,

1992.

[Kna96] D. Knapp. Behavioral Synthesis: Digital System Design Using the Syn-

opsys Behavioral Compiler. Prentice-Hall, 1996.

[Lat91] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,

1991.

[Lin92] L. Lindh. \Idea of FASTHARD - A Fast Time Deterministic Hardware

Based Real-Time Kernel". In Real-Time Workshop, June 1992.

[LL73] C. Liu and J. Layland. \Scheduling algorithms for multiprogramming in

a hard-real time environment". Journal of the ACM, 20(1):46{61, 1973.

[LM95] Y. Li and S. Malik. \Performance Estimation of Embedded Software

with Instruction Cache Modeling". In Proceedings of the International

Conference on Computer-Aided Design, pages 380{387, Santa Clara, CA,

November 1995.

[LS91] L. Lindh and F. Stanischewski. \FASTCHART { Idea and Implemen-

tation". In Proceedings of the International Conference on Computer

Design, pages 401{404, 1991.

[LSF95] L. Lindh, J. Starner, and J. Furunas. \From Single to Multiprocessor

Real-Time Kernels in Hardware". In Real-Time Technology and Appli-

cations Symposium, May 1995.

[MBL
+
96] H. De Man, I. Bolsens, B. Lin, K. Van Rompaey, S. Vercauteren, and

D. Verkest. \Co-design of DSP Systems". In G. De Micheli and M. Sami,

BIBLIOGRAPHY 151

editors, Hardware/Software Co-Design, pages 75{104. Kluwer Academic

Publishers, 1996.

[MBL
+
97] H. De Man, I. Bolsens, B. Lin, K. Van Rompaey, S. Vercauteren, and

D. Verkest. \Hardware/Software Co-Design of Digital Telecommunica-

tion Systems". Proceedings of the IEEE, 85(3):391{418, March 1997.

[MCSM96] V. J. Mooney III, C. N. Coelho Jr., T. Sakamoto, and G. De Micheli.

Synthesis from mixed speci�cations. In Proceedings of the European

Design Automation Conference, pages 114{119, September 1996.

[Mic94] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-

Hill, 1994.

[Mic97] G. De Micheli. Special Issue on Hardware/Software Co-Design. In Pro-

ceedings of the IEEE, March 1997.

[MS96] G. De Micheli and M. Sami. Hardware/Software Co-Design. Kluwer

Academic Publishers, 1996.

[MSM97] V. J. Mooney III, T. Sakamoto, and G. De Micheli. \Run-Time Sched-

uler Synthesis For Hardware-Software Systems and Application to Robot

Control Design". In International Workshop on Hardware/Software Co-

Design, pages 95{99, March 1997.

[MWWL96] S. Malik, W. Wolf, A. Wolf, and Y. Li. \Performance Analysis of

Embedded Systems". In G. De Micheli and M. Sami, editors, Hard-

ware/Software Co-Design, pages 45{74. Kluwer Academic Publishers,

1996.

[NVG92] S. Narayan, F. Vahid, and D. Gaski. \System Speci�cation with the

SpecCharts Language". IEEE Design & Test of Computers, pages 6{13,

BIBLIOGRAPHY 152

December 1992.

[OB97] Ross Ortega and Gaetano Borriello. \Communication Synthesis for Em-

bedded Systems with Global Considerations". In International Work-

shop on Hardware/Software Co-Design, pages 69{73, 1997.

[OBE
+
97] A. Osterling, T. Benner, R. Ernst, D. Herrmann, T. Scholz, and W. Ye.

\The Cosyma System". In Hardware/Software Co-Design: Principles

and Practice. Kluwer Academic Publishers, 1997.

[PS89] D. Peng and K. Shin. \Static Allocation of Periodic Tasks with Prece-

dence Constraints in Distributed Real-Time Systems". In International

Conference on Distributed Computing Systems, pages 190{198, 1989.

[Qui94] S. Quinlan. \E�cient Distance Computation between Non-Convex Ob-

jects". International Conference on Robotics and Automation, pages

3324{3329, 1994.

[Raj91] R. Rajkumar. \Synchronization in Real-Time Systems: A Priority In-

heritance Approach". Kluwer Academic Publishers, 1991.

[Ram90] K. Ramamritham. \Allocation and Scheduling of Complex Periodic

Tasks". In International Conference on Distributed Computing Systems,

pages 108{115, 1990.

[Ram95] K. Ramamritham. \Allocation and Scheduling of Precedence-Related

Periodic Tasks". IEEE Proceedings on Parallel and Distributed Systems,

6(4):412{420, April 1995.

[RK98] Ryo Koyama, Chairman, Board of Directors. Reuseable Application-

Speci�c Intellectual Property Developers. http://www.rapid.org/, 1998.

BIBLIOGRAPHY 153

[RKK97] D. Ruspini, K. Kolarov, and O. Khatib. \The Haptic Display of Complex

Graphical Environments". Proceedings of SIGGRAPH, pages 345{352,

August 1997.

[RVBM96] Karl Van Rompaey, Diederik Verkest, Ivo Bolsens, and Hugo De Man.

\CoWare { A design environment for heterogeneous hardware/software

systems". In Proceedings of the European Design Automation Confer-

ence, pages 252{257, September 1996.

[Sha98] M. Shand. PCI Pamette V1. Digital Equipment Corporation, System

Research Center, http://www.research.digital.com/SRC/pamette/, 1998.

[SRL90] L. Sha, R. Rajkumar, and J. P. Lehoczky. \Priority Inheritance Proto-

cols: An Approach to Real-Time Synchronizations". IEEE Transactions

on Computers, pages 1175{1185, December 1990.

[SRS94] L. Sha, R. Rajkumar, and S. Sathaye. \Generalized rate monotonic

scheduling theory: a framework for developing real-time systems". Pro-

ceedings of the IEEE, 82(1):68{82, January 1994.

[SSM
+
92] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, and

A. Sangiovanni-Vincentelli. Sequential circuits design using synthesis

and optimization. In Proceedings of the International Conference on

Computer Design, pages 328{333, Cambridge, MA, 1992.

[SSNB95] J. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo. Implications

of classical scheduling results for real-time systems. IEEE Computer,

pages 16{47, June 1995.

[Uni84] Unimation. \Unimate PUMA Mark II Robot: 500 Series Equipment

and Programming Manual 398P1". pages 1{36, April 1984.

BIBLIOGRAPHY 154

[VLM96a] S. Vercauteren, B. Lin, and H. De Man. \Constructing Application-

Speci�c Heterogeneous Embedded Architectures from Custom HW/SW

Applications". In Proceedings of the Design Automation Conference,

pages 521{526, June 1996.

[VLM96b] S. Vercauteren, B. Lin, and H. De Man. \Embedded Architecture Co-

Synthesis and System Integration". In International Workshop on Hard-

ware/Software Co-Design, 1996.

[VRBM96] D. Verkest, K. Van Rompaey, I. Bolsens, and H. De Man. \CoWare {

A Design Environment for Heterogeneous Hardware/Software Systems".

Design Automation of Embedded Systems, 1(4):357{386, October 1996.

[WDC
+
94] P. Willekens, D. Devisch, M. Van Canneyt, P. Conitti, and D. Genin.

\Algorithm Speci�cation in DSP Station using Data Flow Language".

DSP Applications, pages 8{16, January 1994.

[YW95] T.-Y. Yen and W. Wolf. \Performance Estimation for Real-Time Dis-

tributed Embedded Systems". In Proceedings of the International Con-

ference on Computer Design, pages 64{69, 1995.

[YW96] T.-Y. Yen and W. Wolf. Hardware-Software Co-Synthesis of Distributed

Embedded Systems. Kluwer Academic Publishers, 1996.

Appendix A

A Mathematical Program

Formulation

In this section we show a mathematical program formulation for optimal scheduling

of hardware and software tasks in a DAG with a single NEV ER set. Speci�cally, we

show the formulation as implemented in the AMPL modeling language [FGK93]. We

set DAG := src a b c d e f snk;

set N := b c d;

set of Predecessors

set P := (src,a) (src,b) (src,c) (a,d) (b,e) (d,f) (c,snk) (e,snk) (f,snk);

param: WCET :=

src 0

a 5000

b 3000

c 20000

d 15000

e 5000

f 11000

snk 0 ;

Figure 44: AMPL data for dagopt problem.

155

APPENDIX A. A MATHEMATICAL PROGRAM FORMULATION 156

then compare the AMPL solution to our solution using the Constructive Heuristic

Scheduling of Section 4.2.

For our example, we use the DAG of Figure 16 and refer to it as the dagopt

problem. For our mathematical model in AMPL shown in Figure 45, we de�ne the

set DAG to contain the nodes shown in Figure 16, including the source and the sink.

The set N contains the tasks in the same NEV ER set; in this example we have a

single NEV ER set. The set P contains the set of predecessors: (x; y) 2 P indicates

set DAG; # nodes in Directed Acyclic Graph

set N; # NEVER set

set P within (DAG cross DAG); # set of predecessors, starting with the src

param WCET DAG >= 0; # WCET for each node in DAG

param MAXTIME >= 0 default 1000000;

var x i in N, j in N binary; # = 1 if task j is processed before i, 0 o.w.

var starttime DAG >= 0; # time when each node starts

var sinkendtime >= 0;

minimize max cost: sinkendtime;

subject to sinkendtime def i in DAG:

sinkendtime >= starttime[i] + WCET[i];

subject to Precedence s (i,j) in P:

starttime[j] >= starttime[i] + WCET[i];

subject to Mutual exclusion i in N, j in N: i != j:

starttime[j] + WCET[j] <= starttime[i] + (1 - x[j,i])*MAXTIME;

subject to Mutual exclusion2 i in N, j in N: i != j:

starttime[j] + x[j,i]*MAXTIME >= starttime[i] + WCET[i];

subject to same x2 i in N:

x[i,i] = 1;

Figure 45: AMPL model for dagopt problem.

APPENDIX A. A MATHEMATICAL PROGRAM FORMULATION 157

that x is a predecessor of y in the DAG. With each element of the set DAG, we as-

sociate a WCET in the setWCET, which is de�ned over the elements of DAG. The

binary decision variable x decides the order of tasks in the NEV ER set, set N. Con-

straint Precedence smakes sure that no task starts until all of its predecessors have

completed execution. Constraints Mutual exclusion and Mutual exclusion2

make sure that for two tasks i and j in set N, i 6= j, either task i �nishes execution

before task j, or task j �nishes execution before task i. The MAXTIME constant

indicates that above MAXTIME cycles, we do not need to look anymore, because

our real-time constraint is violated. The use of the MAXTIME constant enables

the formulation of linear constraints in the AMPL model. The data corresponding to

this model is shown in Figure 44.

We solve the problem in AMPL using the solver CPLEX [FGK93]. CPLEX uses

an exact solution method to �nd the optimal schedule, which results in a WCET of

40,000 cycles. The solution found with Constructive Heuristic Scheduling, however,

�nds a suboptimal schedule resulting in aWCET of 43,000 cycles, exactly as described

in Figure 16.

Example WCET w/ ET w/ WCET w/ ET w/

heuristic heuristic AMPL AMPL

dagopt 43,000 0.003 seconds 40,000 0.03 seconds

dagopt2 81,000 0.010 seconds 76,000 1.6 seconds

dagopt3 119,000 0.040 seconds 114,000 24 minutes

dagopt4 157,000 0.110 seconds | > one day

dagopt5 195,000 0.280 seconds | out of memory

Table 14: WCET found and run times for Constructive Heuristic Scheduling versus

AMPL.

This base example, which we label dagopt in Table 14, has been extended to four

additional examples simply by doubling, tripling, quadrupling, and quintupling the

APPENDIX A. A MATHEMATICAL PROGRAM FORMULATION 158

number of tasks in dagopt { the examples are named dagopt2, dagopt3, dagopt4

and dagopt5, respectively. For example, dagopt2 is shown in Figure 46. We �nd,

as expected, that the polynomial algorithm of the Constructive Heuristic Scheduling

performs faster than the exact algorithm of CPLEX. Furthermore, in dagopt4 and

dagopt5, which have 26 and 32 nodes, respectively, we �nd that CPLEX does not even

arrive at a solution after one day. The resulting WCET's, each with a corresponding

ET (Execution Time), are shown in Table 14. The Constructive Heuristic Scheduling

algorithm was run on a Silicon Graphics INDY 4400 at 200 MHz with 64 MBytes of

RAM. The AMPL program was executed on a Sun SPARCstation 20 at 150 MHz

with 64 MBytes of RAM.

src

sink

 d

 a

 f

 c
 c1

 e
 d1

 a1

 f1

 b
 b1

 e1

NEVER = {b,c,d,b1,c1,d1}

task
−−−−
 a
 b
 c
 d
 e
 f
 a1
 b1
 c1
 d1
 e1
 f1

wcet
(cycles)
−−−−−
 5,000
 3,000
20,000
15,000
 5,000
11,000
 5,000
 3,000
20,000
15,000
 5,000
11,000

Figure 46: The dagopt2 problem, generated from the dagopt problem (Figure 16)

by doubling the number of tasks.

Of course, AMPL/CPLEX can solve an extremely wide range of optimization

problems exactly, whereas the Constructive Heuristic Scheduling algorithm is targeted

to a speci�c problem.

